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Abstract. We introduce a new class of fractal circle packings in the plane,
generalizing the polyhedral packings defined by Kontorovich and Naka-
mura. The existence and uniqueness of these packings are guaranteed
by infinite versions of the Koebe–Andreev–Thurston theorem. We prove
structure theorems giving a complete description of the symmetry groups
for these packings. And we give several examples to illustrate their number-
theoretic and group-theoretic significance.
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1. Introduction

The well-known Apollonian circle packing can be constructed from a set of
four base circles, and four dual circles, as shown in Fig. 1. The orbit of the
base circles under the group generated by reflections through the dual circles
is the packing, an infinite fractal set of circles. Beyond their aesthetic appeal,
Apollonian packings have properties of great interest in number theory, group
theory, and fractal geometry.

In [14], Kontorovich and Nakamura define polyhedral circle packings, gener-
alizing the Apollonian packing construction. Any circle configuration has a
tangency graph, with a vertex for each circle and an edge for each tangency
between circles. In the case of the Apollonian packing, both the base circles
and the dual circles have tetrahedral tangency graphs. In general, one can start
with a finite set of base circles whose tangency graph is the graph of any convex
polyhedron and a finite set of dual circles whose tangency graph is the graph of
the dual polyhedron. The orbit of the base circles under the group generated
by the dual circles is a polyhedral packing. Polyhedral packings encompass
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(a) Base and dual circles (b) Apollonian packing

Figure 1 Constructing the Apollonian packing

(a) Base and dual circles (b) Square packing

Figure 2 Constructing the square packing

many of the generalizations of the Apollonian packing that have been studied
previously. For example, the packing introduced by Guettler and Mallows [10]
is the octahedral packing; the Q[

√−2] packing studied by Stange [23] is the
cubic packing.

In this article, we study packings which originate from infinite configurations
of base and dual circles, a further generalization. A particularly symmetric
example is shown in Fig. 2. In this example, both the base and dual circles
have the square lattice as their tangency graphs. Again, the orbit of the base
circles under the group generated by the dual circles is a fractal set of circles.
We call this object the square packing.

In general, we work with a base circle configuration B and a dual configuration
B̂ whose tangency graphs determine dual tilings, or cellular decompositions of
the sphere Ĉ or the plane C—see Definition 2.1. Tilings of the sphere give rise
to polyhedral packings, while tilings of the plane give rise to new examples. In
both cases, the final packings have similar geometric properties. For example,
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the circles in the packing are pairwise disjoint or tangent, they can be oriented
with disjoint interiors, and the interiors are dense in the ambient space. The
symmetry groups of polyhedral packings and of our new examples have similar
structure, as we prove in Sect. 4. And some of our new examples have integrality
properties, raising number-theoretic questions.

One motivation to introduce these new packings comes from the literature on
the Koebe–Andreev–Thurston theorem and its generalizations. The Koebe–
Andreev–Thurston theorem [3,13,25] is the remarkable result that any pair of
finite graphs G, Ĝ representing a polyhedron and its dual can be realized as
the tangency graphs for a pair of dual circle configurations B, B̂. Moreover,
the circle configurations B, B̂ are unique up to conformal automorphism of
Ĉ (see Theorem 3.1 for a precise statement). The Koebe–Andreev–Thurston
theorem implies the existence and uniqueness up to Möbius transformation of
a circle packing for every polyhedron.

It is natural to try to extend this theorem to infinite graphs. Important work
of Beardon–Stephenson and of Schramm achieves this in many cases [4,20,21],
following a constructive approach suggested by Thurston. Stephenson’s text
[24] synthesizes this work. One result is that any infinite graph G representing
a triangulation of the plane can be realized as the tangency graph for a circle
configuration B, and B is unique up to conformal automorphism of C (see
Theorem 3.2). The proofs use deep geometric ideas—mappings between circle
configurations give a discrete analogue of the Riemann mapping theorem.

Just as the construction of polyhedral circle packings relies on the finite Koebe–
Andreev–Thurston theorem, our construction relies on its infinite generaliza-
tions. In Sect. 3, we state various versions of the theorem which imply the
existence and uniqueness up to conformal automorphism of many of our pack-
ings. We also make a more general conjecture which would imply existence and
uniqueness in all cases. Our work combines geometric ideas from the infinite
Koebe–Andreev–Thurston theorem with arithmetic ideas from the Apollonian
packing and its relatives.

Another motivation comes from the definitions of crystallographic packings in
[14]. These are a class of packings which generalize the Apollonian packing,
and encompass many known examples of circle and sphere packings. To con-
struct crystallographic circle packings, one can start with a geometrically finite
reflection group which acts on H3 with finite covolume. Each wall of the fun-
damental chamber intersects the spherical boundary of H3 in a circle. Suppose
that these circles are partitioned into two sets, a “cluster” and “cocluster,”
such that circles in the cluster are pairwise disjoint or tangent, and each circle
in the cluster is disjoint, tangent, or orthogonal to each circle in the coclus-
ter. Then the orbit of the cluster under the group generated by reflections
across the cocluster is a crystallographic packing. All polyhedral packings are
crystallographic, but not all crystallographic packings are polyhedral.

Kontorovich and Nakamura classify crystallographic circle packings with a
strong arithmetic property called superintegrality—see Definition 5.1. Every
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(a) 100-sided prism configuration (b) Square configuration

Figure 3 Limiting configurations

superintegral packing arises from an arithmetic finite-covolume reflection group
acting on H3. There are finitely many such groups up to commensurability,
tabulated in [19], and all the non-cocompact groups in the tabulation give rise
to superintegral packings. The most interesting case is the Bianchi group of
the Eisenstein integers. This is represented by the Coxeter-Dynkin diagram:

Each vertex represents a circle, and the edge types indicate angles between
circles. There is a finite-index subgroup with the diagram:

See Fig. 9A, where this diagram is realized as a set of five circles. If the left
vertex is the cluster and the remaining vertices are the cocluster, the result is
the triangular packing of Fig. 10. Similarly, if the right vertex is the cluster and
the remaining vertices are the cocluster, the result is the hexagonal packing
of Fig. 11. These are fundamental examples of superintegral crystallographic
packings. We conjecture that they are not polyhedral, or commensurate (on the
level of hyperbolic reflection groups) to any polyhedral packing. Nevertheless,
our construction allows us extend theorems about polyhedral packings, like
the group structure theorems of Sect. 4, to this packing. One might hope to
realize all superintegral crystallographic circle packings with our construction.
This would require finding an infinite cluster/cocluster pair representing dual
tilings of the plane for each non-polyhedral example.

A final motivation comes from limits in polyhedral packing families. In [2],
fractal dimensions for many polyhedral packings are computed. It is observed
that for some sequences of polyhedra-pyramids, prisms, antiprisms, etc.—the
fractal dimensions converge to a limit. More surprisingly, the packings them-
selves seem to converge to a limit. This phenomenon is illustrated in Fig. 3.
A configuration of circles in the polyhedral packing for the 100-sided prism
is shown. As the number of sides increases, this configuration approaches a
configuration found in the square packing of Fig. 2. The limit of the prism
packings is our square packing.
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The article [2] focuses on examples, and does not succeed in giving a precise
definition of the topology on the space of polyhedral packings. Some of the
limit packings are also polyhedral—e.g. the limit of the pyramid packings is
the original Apollonian packing—and others are not polyhedral but satisfy
our definition. We discuss all these examples in Sect. 5. If the topology on the
space of polyhedral packings can be defined, it would be interesting to know
whether our definition gives the closure of this space.

This article is structured as follows. In Sect. 2, Definitions 2.1 and 2.7 describe
the class of packings we study. We prove some of the fundamental geometric
consequences of these definitions, and compare them to the definitions of poly-
hedral, crystallographic, and Kleinian packings. In Sect. 3, we recall versions
of the Koebe–Andreev–Thurston theorem and propose our extension, Conjec-
ture 3.3. In Sect. 4, we analyze the symmetries of our packings. Theorems 4.1,
4.2, and 4.10 give a complete description of the symmetry group. In Sect. 5, we
give three main examples of our packings, which we call the triangular, square,
and hexagonal packings. We focus on their arithmetic properties-integrality,
quadratic and linear forms. In Sect. 6, we give a broader class of examples,
with a focus on symmetries. Theorem 6.2 shows that all 17 wallpaper groups
appear in the symmetry groups of packings.

In future work, we hope to elaborate on the number theory of the packings
described here. As indicated in Sect. 5, many of our packings have integral
curvatures. Is there an asymptotic formula for curvatures in the packing, as
in [15]? Is there an asymptotic local-to-global principle for curvatures, as in
[6]? These questions can be answered by the methods of [9] for some periodic
packings. They become much more subtle if the base configuration lacks any
symmetry. It is possible to construct integral, aperiodic packings using the
same refinement method as in the proof of Theorem 6.2. Unlike the packings
discussed in Sects. 5 and 6, these will not be crystallographic or Kleinian.
They are still geometrically interesting, and their number theory remains to
be explored.

2. Definitions and Basic Properties

The extended complex plane Ĉ is C∪{∞}, with the topology of the sphere. Our
packings consist of oriented generalized circles, i.e. circles and lines, in Ĉ. Each
generalized circle divides Ĉ into two simply connected regions. Orienting the
circle is equivalent to choosing one of these regions as the interior, and the other
as the exterior. When we refer to circles in this article, we always mean oriented
generalized circles. These circles have an action by the group of holomorphic
and antiholomorphic Möbius transfomations Möb ∼= SL2(C)�Z/2Z. For more
details on this setup, see [16].

For any collection of circles B, we can associate its tangency graph GB which
has a vertex for every circle and an edge between each pair of tangent circles.
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Figure 4 Base and dual circle configurations

If the circles have disjoint interiors, then the tangency graph is equipped with
a planar embedding by mapping each vertex to a point inside its circle. We
will say that a collection of circles accumulates at a point x ∈ Ĉ if any open
neighborhood of x contains infinitely many circles from this collection. We now
define the notions of base and dual circle configurations, which are the starting
point for the packings we construct.

Definition 2.1. Let B and B̂ be two collections of oriented generalized cir-
cles, with tangency graphs GB and GB̂ , respectively. Then B is called a base
configuration and B̂ is called a dual configuration if the following properties
hold:

1. The circles in B are pairwise disjoint or tangent, with disjoint interiors,
and the same holds for the circles in B̂.

2. The tangency graphs GB and GB̂ are each nontrivial, connected, and are
dual plane graphs.

3. If a circle in B and a circle B̂ intersect, they do so orthogonally and they
correspond to a face-vertex pair in the tangency graphs. Otherwise, their
interiors are disjoint.

4. B ∪ B̂ has at most one accumulation point.

Note that the roles of B and B̂ are interchangeable in this definition. Note
also that the duality in Property (2) is dependent on the planar embeddings
of GB and GB̂ discussed above. An example of a base and dual configuration
pair is shown in Fig. 4.

Our definition is modeled on the conclusion of the structure theorem for crys-
tallographic packings, Theorem 28 in [14], where the base and dual configu-
rations are called the cluster and cocluster. We impose a stricter and more
symmetric duality condition between the two configurations, while relaxing
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the condition (implicit in [14]) that the configurations are finite. When B and
B̂ are finite, GB and GB̂ represent polyhedra, and our definition is equiva-
lent to the definition of a polyhedral packing in [14]. When B and B̂ have
one accumulation point, GB and GB̂ represent tilings of the plane. It may be
interesting to consider other sets of possible accumulation points, like a finite
set or a circle.

The four properties, and especially the duality property, imply stronger geo-
metric statements, for example:

Proposition 2.2. Suppose that two circles c1, c2 ∈ B are tangent at a point
x ∈ Ĉ. Then no other circles from B go through this point. Moreover, if x is
not the accumulation point, then it is also a point of tangency for exactly two
dual circles d1, d2 ∈ B̂, which intersect c1, c2 orthogonally at x.

Proof. First, there cannot be any additional circle in B tangent to c1, c2 at x
as this would violate the disjoint interiors property (1). Next, suppose that x
is not the accumulation point, and consider the edge connecting c1, c2 in GB .
By the duality of property (2), this corresponds to an edge connecting some
pair of tangent dual circles d1, d2 ∈ GB̂ , which intersect c1, c2 orthogonally.
After applying a Möbius transformation, we may assume that c1 and c2 are
parallel horizontal lines which are tangent at the point x = ∞. Then it is clear
that d1, d2 must be parallel vertical lines which are tangent at the same point
x. Again, there cannot be any additional circle in B̂ tangent to d1, d2 at x as
this would violate property (1). �

We will often use Möbius transformations to place the accumulation point
at ∞, so that any circle through the accumulation point becomes a line. If
two circles are tangent at the accumulation point, they become parallel lines
bounding the packing. We also have situations, like Fig. 2, where no circle goes
through the accumulation point.

Proposition 2.3. Each circle in c ∈ B is orthogonal to at least three dual circles
in B̂. These dual circles can be labeled by elements of Z or Z/nZ so that
consecutive circles are tangent.

Proof. The vertex corresponding to c in GB must be connected to the rest of
the graph by at least three edges; if it were connected by two edges, the dual
graph would have a double edge, and if it were connected by one edge, then
the dual graph would have a loop. Thus the vertex is incident to at least three
faces. These faces must correspond to distinct dual circles because each dual
circle is uniquely determined by two points of intersection with c. Then the
rest of the statement follows from the fact that the faces incident to a vertex
in a planar graph can be ordered cyclically so that any two consecutive faces
are adjacent. �

We will describe the situation of Proposition 2.3 by saying that c is ringed
by circles from B̂. One subtlety in the proof is the possibility that c could be
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ringed by infinitely many circles. This can happen if the unique accumulation
point lies on c, and in this case, the orthogonal circles can be labeled by the
integers so that any two consecutive circles are tangent.

Proposition 2.4. The circles in B, B̂, and their interiors cover all points in Ĉ

other than the accumulation point.

The accumulation point may or may not be covered, depending on whether or
not it lies on a circle.

Proof. It suffices to show that all points on one face in the planar embedding
of GB are covered. After a Möbius transformation, we may assume that this
face does not contain the point ∞, and that none of the generalized circles in
B surrounding it are lines. By Proposition 2.3, the face is a simply connected
polygon (possibly with infinitely many sides), with vertices at the centers of
circles in B. Each edge goes through a point of tangency between two circles in
B, and is orthogonal to both circles. Then by Proposition 2.2, the dual circle
in B̂ corresponding to the face is tangent to each edge, i.e. it is inscribed in
the polygon. Removing the dual circle and its interior leaves one connected
component for each vertex, and each connected component is contained in the
interior of the corresponding circle. �

A graph is is said to be n-connected if after removing any n−1 vertices and their
adjacent edges, the graph remains connected. It is said to be n-edge connected
if after removing any n − 1 edges, the graph remains connected. Because GB

and GB̂ are a pair of dual simple planar graphs, they are necessarily 3-edge
connected. If removing an edge could disconnect GB , then GB̂ would have
to contain a loop, and if removing two edges could disconnect GB , then GB̂

would have to contain a double edge. In fact, we can make an even stronger
connectedness statement:

Proposition 2.5. The tangency graphs GB and GB̂ are 3-connected.

Proof. It suffices to show that if one or two vertices and their adjacent edges
are removed from GB , then all faces in the planar embedding of GB remain
simply connected. This implies that GB remains connected.

If a single vertex c1 is removed, then the faces incident to that vertex are all
identified. By Proposition 2.3, these faces correspond to the ring of dual circles
around c1. Because these faces are all distinct and simply connected, gluing
them at the vertex and along their common edges results in a larger simply
connected face.

If two non-adjacent vertices c1, c2 are removed, then at each vertex the incident
faces are identified. If c1, c2 have no face in common, then the argument is
exactly the same as above. If they have a face in common, there can only
be one such face. Indeed, after applying a Möbius transformation, we may
assume that c1, c2 are concentric circles centered at the origin. Any dual circle
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orthogonal to both must be a line through the origin. By the disjoint interiors
property (1), B̂ can contain at most one such line. In this case, removing c1
and c2 creates one new larger face, the union of all faces incident to c1 or c2.
Because the union of faces incident to c1 is simply connected, the union of
faces incident to c2 is simply connected, and they overlap in a unique simply
connected face, the new face must be simply connected.

Finally, if two adjacent vertices c1, c2 are removed, by Proposition 2.2, there
are exactly two faces incident to these two vertices, meeting along the edge
from c1 to c2. The union of these two faces is simply connected. Removing
c1 and c2 creates one new larger face, the union of all faces incident to c1 or
c2. Because the union of faces incident to c1 is simply connected, the union of
faces incident to c2 is simply connected, and they overlap in a simply connected
union of two faces, the new face must be simply connected. �

By the compactness of Ĉ, B is finite if an only if it has no accumulation point.
In this case GB is a finite 3-connected simple planar graph, so by Steinitz’s
theorem, it is the graph of a polyhedron.

One further property we might ask for in base and dual configurations is
periodicity:

Definition 2.6. For n = 1, 2, B is n-periodic, i.e. periodic under an n-dimensional
lattice, if there exist v1, . . . , vn ∈ C, linearly independent over R, such that
B + v1 = · · · = B + vn = B.

If B is 1-periodic or 2-periodic, it necessarily has an accumulation point at ∞.
The embedded tangency graph of a 2-periodic B gives a 2-periodic tiling of
the plane.

We are now ready to define the class of circle packings that we will study. For
any circle d, let σd denote the reflection across d, a Möbius transformation.

Definition 2.7. The packing P is the orbit of B under the group generated by
reflections σd across circles d ∈ B̂. The dual packing P̂ is the orbit of B̂ under
the same group.

The superpacking is the orbit of B under the group generated by reflections
across circles in B and B̂.

Note that under this definition, the dual packing and superpacking contain
two oppositely-oriented copies of each circle. It is possible to assign a single
orientation to circles in the dual packing and the superpacking in a consistent
way, but since we will not use the orientations of these circles in an important
way, we do not pursue this. We will only be concerned with the orientations
of the circles in P.

For each packing P, we define the following symmetry groups:

1. Γ = Sym(P, P̂): the group of Möbius transformations that preserve
both the packing and the dual packing;
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2. Γ1 = 〈σd : d ∈ B̂〉: the group generated by reflections across the dual
circles;

3. Γ2 = Sym(B, B̂): the group of Möbius transformations that preserve both
the base configuration and the dual configuration.

Some fundamental geometric properties generally associated with circle pack-
ings can be deduced directly from our definition.

Proposition 2.8. Every circle in P is either a base circle in B or inside some
dual circle, and every circle in P̂ is either a dual circle in B̂ or inside some
dual circle.

Note that when we say circle c1 is inside circle c2, we only mean that c1 is
contained in the union of c2 and its interior, not necessarily that the two
interiors are nested.

Proof. By definition, each circle in P is in B or it is σd1 · · · σdk
(c) for some

c ∈ B, d1, . . . dk ∈ B̂, with consecutive di distinct. We may assume that c is not
orthogonal to dk, because then dk could be dropped from this expression. Then
by property (3), c is outside dk, so σdk

(c) is inside dk. By property (1), this
implies that σdk

(c) is outside dk−1, so σdk−1σdk
(c) is inside dk−1. Repeating

the argument inductively, we see that σd1 · · · σdk
(d) is inside d1. The proof of

the second statement is similar. �

Proposition 2.9. The circles in P are pairwise disjoint or tangent, with dis-
joint interiors.

Proof. Suppose that we have two circles in P with overlapping interiors. After
applying a Möbius transformation, we may assume that one of the circles, c1 is
in B. We may write the other circle as σd1 · · · σdk

(c2) for c2 ∈ B, d1, . . . dk ∈ B̂,
with consecutive di distinct. If dk is orthogonal to c2, then we can shorten this
expression to σd1 · · · σdk−1(c2). Otherwise, by property (3) of Definition 2.1,
dk and c2 have disjoint interiors, and after inversion, the interior of σdk

(c2) is
contained inside the interior of dk. After the remaining inversions, by property
(1), the interior of σd1 · · · σdk

(c2) is contained inside the interior of d1. By
property (3), in order for c1 to intersect σd1 · · · σdk

(c2), c1 must be orthogonal
to d1. Then inverting across d1, we find that c1 also intersects σd2 · · · σdk

(c2). In
either case, we have shortened the string σd1 · · · σdk

. Repeating this process, we
eventually find two circles c1, c2 ∈ B with overlapping interiors, contradicting
property (1). �

Proposition 2.10. The interiors of the circles in P are dense in Ĉ.

Proof. For x ∈ Ĉ, by Proposition 2.4, either x is the accumulation point, x is
in some circle in B, or x is in some circle in B̂. It follows that either x is in the
closure of the interiors of the circles in B or x is in the interior of some circle
in B̂. If x is in the interior of a dual circle d1, reflect it across d1. Then either
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σd1(x) is in the closure of the interiors of the circles in B, which means that
x is in the closure of the interiors of the circles in σd1(B), or σd1(x) is in the
interior of some circle d2 ∈ B̂, which means x is in the interior of σd1(d2). In
the latter case, reflect σd1(x) across d2 and repeat the process. If, at some step,
we find that x is in the closure of the interiors of the circles in σd1 · · · σdk

(B),
then since these are circles in P, x is in the closure of the interiors of the
circles in P as desired.

Otherwise, this construction produces an infinite sequence

d̃1 = d1, d̃2 = σd1(d2), d̃3 = σd1σd2(d3), . . .

with consecutive di distinct, of nested circles in P̂ whose interiors contain
x. We will show that these circles converge to x in Ĉ, in the sense that they
eventually lie within any open neighborhood of x. After applying a Möbius
transformation, we may assume that d̃1 is not a line and is oriented inward so
that its interior does not contain ∞. Since the circles d̃k are nested, they all
have these properties.

We have that

d̃k+1 = σd̃k
(σd1 · · · σdk−1(dk+1))

by Lemma 4.5 below. If dk+1 	= dk−1, then σd1 · · · σdk−1(dk+1) and d̃k are both
contained inside d̃k−1, so neither one contains infinity. Thus, the reflection of
σd1 · · · σdk−1(dk+1) across d̃k does not contain the center of d̃k, so the radius
of d̃k+1 is at most half the radius of d̃k. Therefore, if dk+1 	= dk−1 for infinitely
many values of k, then the radii must approach 0, so the circles must approach
x.

If dk+1 = dk−1, then d̃k+1 = σd̃k
(d̃k−1) (with the orientation reversed). If

this holds for all but finitely many values of k, then there exists some K ∈ N

such that for all k ≥ K, d̃k+1 = σd̃k
(d̃k−1). Suppose that d̃K and d̃K+1 are

disjoint. Then, after another Möbius transformation, we may assume that d̃K
has radius 1, d̃K+1 has radius r < 1, and they are concentric. An inductive
argument shows that the radius of d̃K+k is rk. These radii approach 0, so the
circles must approach x.

On the other hand, suppose that d̃K and d̃K+1 are tangent. After a Möbius
transformation, we may assume d̃K has radius 1 and d̃K+1 has radius r <

1. In this case, an inductive argument shows that the radius of d̃K+k is
(
1 + k

r − k
)−1

. These radii approach 0, so the circles must approach x.

Since the circles d̃k ∈ P̂ approach x, there is a corresponding sequence of
circles c̃k ∈ P, with c̃k orthogonal to d̃k, such that the interiors of the circles
c̃k come arbitrarily close to x. �

The residual set of P is the set of points in Ĉ not in the interior of any circle
of P.
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2.1. Relation to other packing definitions

In [14] and [11], definitions are given for the related notions of Kleinian, crys-
tallographic, and polyhedral packings. To compare our definition to these, we
give sufficient conditions for our packings to be polyhedral, crystallographic,
or Kleinian.

The definition of a polyhedral packing coincides with our definition, with the
stricter additional assumption that GB and GB̂ are the graphs of a convex
polyhedron and its dual. By the Koebe–Andreev–Thurston theorem, every
polyhedron gives rise to a polyhedral packing. Proposition 2.5 and Steinitz’s
theorem imply the following:

Proposition 2.11. If B and B̂ are finite circle configurations satisfying the con-
ditions of Definition 2.1, then they give rise to a polyhedral circle packing P.

The definitions of crystallographic and Kleinian packings are more general, and
relate the packing to a discrete group action on a higher-dimensional hyperbolic
space. The two-sphere Ĉ is identified with the boundary of three-dimensional
hyperbolic space H3, and Möbius transformations are viewed as isometries
of H3. The definitions of crystallographic and Kleinian circle packings are as
follows:

Definition 2.12. Let P denote a collection of circles whose interiors are disjoint
and dense in Ĉ. P is a crystallographic packing if its residual set is the limit
set of a geometrically finite reflection group of isometries of H3. It is Kleinian
if its residual set is the limit set of any geometrically finite group of isometries
of H3.

All polyhedral packings are crystallographic, and all crystallographic packings
are Kleinian.

The following theorem gives sufficient conditions for a packing P to be crys-
tallographic or Kleinian.

Theorem 2.13. A packing P satisfying Definition 2.7 is Kleinian if any of the
following conditions hold:

1. B ∪ B̂ is finite.
2. After applying some Möbius transformation, B∪B̂ is a strip configuration

(i.e. it contains two parallel lines) and Γ2 contains a translation.
3. After applying some Möbius transformation, Γ2 contains two linearly in-

dependent translations.

Furthermore, P is crystallographic if any of the above conditions hold, with
Γ2 replaced by the maximal reflective subgroup of Γ2.

Proof. By Propositions 2.9, 2.10, the interiors of circles in P are disjoint and
dense in Ĉ. We will show that each condition (1)-(3) implies that Γ, viewed
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as a group of isometries of H3, is geometrically finite. This is essentially a
consequence of Theorems 4.2, 4.10. Up to finite index, we have the following
fundamental domains for Γ2: in case (1) all of Ĉ, in case (2) a strip, and in case
(3) a compact parallelogram. Each condition implies that this fundamental
domain only intersects finitely many dual circles in B̂. Using the half-space
model of H3, we may define a half-plane for each wall of the fundamental
domain for Γ2, and a hemisphere for each dual circle in this fundamental
domain. These walls bound a geometrically finite fundamental domain for Γ.
The limit set of Γ is the residual set of P. Thus the packing is Kleinian. The
proof in the crystallographic case works similarly. �

Our construction gives rise to packings which are polyhedral (in fact, all poly-
hedral packings), packings which are crystallographic but not polyhedral, pack-
ings which are Kleinian but not crystallographic, and packings which are none
of the above. All of the packings discussed in Sects. 5 and 6 are crystallographic
or Kleinian, but the same method used in the proof of Theorem 6.2 can also
be used to produce packings which are not Kleinian. This will be discussed
further in Sect. 6.

Note that Proposition 2.11 and Theorem 2.13 give sufficient but not neces-
sary conditions for P to be polyhedral, crystallographic, or Kleinian. Their
proofs involve the structure of the group Γ = Sym(P, P̂). But P may have
additional symmetry not detected by Γ; in general, Sym(P, P̂) 	= Sym(P).
We might make different choices of base and dual configuration B, B̂, which
give rise to the same packing P but a different dual packing P̂, and thus a
different Γ. For example, working with the classical Apollonian packing, we
could select any collection of circles defining a 3-connected subgraph of the
full tangency graph as B. With a nonstandard choice of base and dual config-
uration, we would find a smaller symmetry group Γ, and the packing would
not be immediately identifiable as polyhedral, crystallographic, or Kleinian.

3. Existence and uniqueness of packings and a generalized
Koebe–Andreev–Thurston theorem

In this section, we recall different versions of the Koebe–Andreev–Thurston
theorem that imply the existence and uniqueness up to conformal automor-
phism of our packings in many cases. We conjecture a generalization which
would imply existence and uniqueness in all cases.

To state the problem precisely: let G and Ĝ be a pair of simple 3-connected
plane graphs corresponding to the 1-skeleton of a cellular decomposition of the
sphere Ĉ or the plane C, and the 1-skeleton of the dual cellular decomposition.
Note that a cellular decomposition of the plane can be viewed as a cellular
decomposition of the sphere with a unique accumulation point at ∞. Do there
exist circle configurations B and B̂, satisfying the conditions of Definition 2.1,
such that GB

∼= G and GB̂
∼= Ĝ? The ∼= symbol here means an isomorphism
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of graphs and of the associated cellular decompositions. Moreover, are the
configurations B and B̂ unique up to conformal automorphism of Ĉ or C? A
conformal automorphism of Ĉ is a Möbius transformation; a conformal auto-
morphism of C is a Möbius transformation which fixes infinity, i.e. a similarity
z �→ az + b or z �→ az̄ + b.

The Koebe–Andreev–Thurston theorem answers these questions in the affirma-
tive when G and Ĝ are finite graphs. A version of the theorem closely aligned
with this article appears in [7]. Restated in our language, their Theorem 6 is
as follows:

Theorem 3.1. Let G and Ĝ be a pair of finite, simple, 3-connected plane graphs,
corresponding to a cellular decomposition of Ĉ and its dual. Then there exist
circle configurations B, B̂, satisfying Definition 2.1, such that GB

∼= G and
GB̂

∼= Ĝ, and these configurations are unique up to Möbius transformation.

As discussed in the introduction, this theorem has been extended to some
infinite graphs. Theorem 4.3, the “Discrete Uniformization Theorem” in [24]
implies the following:

Theorem 3.2. Let G be an infinite simple, 3-connected plane graph, corre-
sponding to a triangulation of C. Then there exist circle configurations B,
B̂, satisfying Definition 2.1, such that GB

∼= G, and these configurations are
unique up to similarity.

Stephenson’s statement of the theorem includes triangulations of other surfaces
as well. The restriction to triangulations, not general cellular decompositions,
seems to be a convenient simplification rather than an essential restriction. In
this case, the existence and uniqueness of B immediately imply the existence
and uniqueness of B̂. But if G is not a triangulation, then B and B̂ must be
constructed together, and both are needed to ensure uniqueness.

Given these two versions of the Koebe–Andreev–Thurston theorem, it is nat-
ural to conjecture the following common extension:

Conjecture 3.3. Let G and Ĝ be a pair of simple, 3-connected plane graphs,
corresponding to a cellular decomposition of C and its dual. Then there exist
circle configurations B, B̂, satisfying Definition 2.1, such that GB

∼= G and
GB̂

∼= Ĝ, and these configurations are unique up to similarity.

This would imply the existence and uniqueness of the whole class of pack-
ings we study. We hope to prove this conjecture in future work, following the
methods of [24]. As further evidence for the conjecture, we remark that several
special cases have been studied carefully in the literature. When G is the trian-
gular lattice, the uniqueness of the associated circle configuration is a crucial
step in Rodin and Sullivan’s celebrated proof of the convergence of circle pack-
ings to the Riemann mapping [18, Appendix 1]. This means that the triangular
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and hexagonal packings studied in Sect. 5 are unique up to similarity. When
G is the square lattice, the uniqueness of the associated circle configuration is
the main theorem of [22]. So the square packing in Sect. 5 is also unique up to
similarity.

It should also be possible to extend Conjecture 3.3 to the hyperbolic plane and
other surfaces, but we have not investigated this.

4. Group structure theorems

In this section, we give a complete algebraic description of the symmetry groups
associated to packings P. We begin with the structure of the groups Γ1 and
Γ2. Then, via an examination of the action on P, we show that Γ = Γ1 � Γ2.

Theorem 4.1. Γ1 is a free Coxeter group generated by σd for d ∈ B̂, where the
only relations are σ2

d = 1.

Proof. We must show that the relations σ2
d = 1 are the only ones. Choose a

point x ∈ Ĉ, outside of every circle in B̂. Suppose that a string σd1 · · · σdk
∈ Γ1,

with consecutive di distinct, is applied to x. Since x is outside of dk, σdk
(x) is

in the interior of dk. Repeating this process, by property (1) from Definition
2.1, we find that σd1 · · · σdk

(x) is in the interior of d1. Thus it is not equal to
x, and σd1 · · · σdk

is not the identity. �

Theorem 4.2. If B is finite, then Γ2 is the group of symmetries of a polyhedron.
If B is infinite, then Γ2 is conjugate to a discrete group of isometries of the
plane: a cyclic group, dihedral group, frieze group, or wallpaper group.

A frieze group is a discrete group of isometries of the plane which contains
translations in one direction; a wallpaper group is a discrete group of isometries
of the plane which contains translations in two linearly independent directions.

Proof. If B is finite, then we have shown that GB is the graph of a polyhe-
dron. By the Koebe–Andreev–Thurston theorem, the circle configuration B
with this graph is unique up to Möbius transformations. Moreover, any graph
automorphism of GB gives rise to a permutation of the circles in GB , which
must be realized by a Möbius transformation in Γ2. Conversely, any element
of Γ2 determines a graph automorphism of GB . So Γ2 ≡ Aut(GB). There
is a three-dimensional realization of the polyhedron GB , called the canonical
embedding, with all edges tangent to the unit sphere, such that every auto-
morphism of GB is realized as a rigid motion of this polyhedron preserving the
sphere [26, Thm. 4.13]. Thus Γ2 is the group of symmetries of a polyhedron,
or a finite group of isometries of the sphere.

If B is infinite, then we may apply a Möbius transformation to place the unique
accumulation point of B at ∞. All symmetries of B must map the accumulation
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point to itself, so they must have the form f(z) = az + b or f(z) = az̄ + b. If
|a| 	= 1, then such a map has a fixed point in C, which will be an attracting
fixed point for f or f−1. This produces an additional accumulation point for
B, a contradiction. Thus Γ2 consists of maps f(z) = az + b or f(z) = az̄ + b
with |a| = 1, which are isometries of the plane C. Again because B has no
accumulation points in C, Γ2 must be a discrete group of isometries of C. The
rest of the theorem follows from the classification of these groups, see [8]. �

In Sect. 6, we will show that each of the above possibilities for Γ2 is in fact
realized by an appropriate choice of B.

In order to understand the interactions of Γ1 and Γ2, we need further geo-
metric information about their action on packings. Any circle in P is c =
σd1 · · · σdk

(c0) for some c0 ∈ B, d1, . . . dk ∈ B̂. Define the length �(c) as the
minimum k for which such an expression exists. A circle has length 0 if and
only if it is in B.

Lemma 4.3. Suppose c ∈ P has �(c) > 0. For d ∈ B̂, �(σd(c)) < �(c) if and
only if c is inside d.

Proof. Say that c = σd1 · · · σdk
(c0) and that this expression is minimal. Then

c0 is not orthogonal to dk, so it is outside dk. Thus σdk
(c0) is inside dk, and

hence outside dk−1. Repeating inductively, we conclude that c is inside d1.
Since the circles of B̂ have disjoint interiors, d1 is the unique circle in B̂ whose
interior contains c. If we reflect through d1, the length of c will be lowered.

On the other hand, if we reflect through any other circle d ∈ B̂, σd(c) will
be inside d. Then �(c) = �(σdσd(c)) < �(σd(c)), so the length of c will be
raised. �

Lemma 4.4. For any g ∈ Γ and d ∈ B̂, one of the following holds:

Case 1: all circles in g(B) are inside or orthogonal to d;

Case 2: all circles in g(B) are outside or orthogonal to d.

Proof. For convenience in this proof, we consider a circle orthogonal to d as
being both inside and outside d. Since d is a dual circle and g preserves P̂,
we know that g−1(d) ∈ P̂. By Proposition 2.8, we know that for some d̃ ∈
B̂, g−1(d) is either d̃ or inside d̃. All circles in B are completely outside d̃
by definition, so they are outside g−1(d) as well. Applying g to both B and
g−1(d), we have that all circles in g(B) are completely inside or completely
outside d. �

Lemma 4.5. Let g be a Möbius transformation, d be a circle, and σd be the
reflection across d. We have gσdg

−1 = σg(d).

Proof. The map gσdg
−1σg(d) is a holomorphic Möbius transformation which

fixes the circle g(d), so it is the identity. Thus gσdg
−1 = σg(d). �
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Proposition 4.6. For a circle packing P with base configuration B and dual
configuration B̂, we have Γ = 〈Γ1,Γ2〉.

Proof. By definition, we have Γ1 ≤ Γ. For any g ∈ Γ2, we know g preserves P̂
because it preserves B̂, and we also know g preserves P because it preserves
both B and B̂. Hence, we have Γ2 ≤ Γ and thus 〈Γ1,Γ2〉 ⊆ Γ.

We now want to show that Γ ⊆ 〈Γ1,Γ2〉. By Lemma 4.4, for any g ∈ Γ, we
know g(B) is either outside all dual circles or is completely inside some dual
circle.

Case 1: If g(B) is outside all dual circles, then g(B) ⊆ B. Let GB be the
tangency graph of B, and let Gg(B) be the subgraph of GB that is also the
tangency graph of g(B). The faces of Gg(B) are either faces of GB or unions of
these faces. We will show that each face of Gg(B) is a face of GB , implying that
g(B) = B. Notice that every face in Gg(B) corresponds to a circle g(d̃) ∈ P̂

for some d̃ ∈ B̂. Since g(d̃) is ringed by circles from g(B) and thus from
B, we know g(d̃) cannot be inside any dual circle. By Proposition 2.8, then,
we know that g(d̃) is a dual circle, which implies that g(B) = B. Because
g preserves GB , we know g also preserves the dual graph of GB , which is
the tangency graph of g(B̂). Let GB̂ be the dual graph of GB . Since there
is a unique circle orthogonal to a ring of circles, every vertex in GB̂ must
correspond to a circle in B̂. Therefore, we have g(B̂) = B̂ and thus g ∈
Γ2.

Case 2: If g(B) is completely inside some dual circle d1 ∈ B̂, reflect across
d1 and apply Lemma 4.4 to the configuration σd1g(B). If this configuration
is outside all dual circles, then by Case 1, we conclude that σd1g ∈ Γ2. Oth-
erwise, it lies inside some other dual circle d2, and we can reflect across d2
and repeat the argument. It suffices to show that this process eventually
terminates, i.e. that σdk

· · · σd1g(B) is outside all the dual circles for some
k.

Consider a finite set S of circles in g(B) such that no circle in Ĉ is orthogonal
to all of them. Such a set can be obtained starting from three circles ringing a
common dual circle, and then choosing a fourth which is not part of this ring.
At each step of reflecting through a dual circle, the length of each circle in S
decreases or stays constant by Lemma 4.3. Moreover, the latter possibility can
only occur if a circle is orthogonal to the dual, so at least one circle’s length
decreases at each step. The process terminates when all the circles in S reach
length 0, so they are mapped to B. When this occurs, the circles in S are all
orthogonal to or outside each circle in B̂, and at least one is outside each dual
circle. By Lemma 4.4, all circles in g(B) are then outside or orthogonal to each
dual circle. �

Corollary 4.7. For any g ∈ Γ, there exists g1 ∈ Γ1 and g2 ∈ Γ2 such that
g = g1g2.
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Proof. By the proof of Theorem 4.6, each g ∈ Γ has the form g = σd1 · · · σdk
g2

for some sequence of di ∈ B̂ and g2 ∈ Γ2. Let g1 = σd1 · · · σdk
. By definition,

we know that g1 ∈ Γ1, and g = g1g2. �

Proposition 4.8. Γ1 is a normal subgroup of Γ.

Proof. By Proposition 4.6, it suffices to show that Γ2 normalizes Γ1. Let g ∈ Γ2,
and let σd be a generator of Γ1. By Lemma 4.5, gσdg

−1 = σg(d). Since g(d) ∈ B̂,
this is an element of Γ1. Thus Γ2, and hence Γ, normalizes Γ1. �

In general, Γ2 is not a normal subgroup of Γ. Let g2 be an element in Γ2

that sends some dual circle d ∈ B̂ to a different dual circle in B̂. The element
σdg2σ

−1
d ∈ Γ sends d to a circle inside d, which means that σdg2σ

−1
d doesn’t

preserve B̂ and thus σdg2σ
−1
d 	∈ Γ2.

Proposition 4.9. The intersection of Γ1 and Γ2 is trivial.

Proof. Let σd1 · · · σdk
∈ Γ1 with consecutive di distinct. Choose a dual circle

d 	= dk in B̂. As in the proof of Prop. 2.8, the map σd1 · · · σdk
sends d to a

circle inside d1, so it doesn’t preserve B̂ and thus is not in Γ2. �

As a a direct result of Propositions 4.6, 4.8, and 4.9, we have the following
theorem:

Theorem 4.10. Γ ∼= Γ1 � Γ2.

We conclude this section by sketching some results on the structure of the
supergroup. Let Γ̂1 denote the group generated by reflections across the base
circles b ∈ B. Recall that the superpacking S is defined as the orbit of B

under the group 〈Γ1, Γ̂1〉. The dual superpacking Ŝ is the orbit of B̂ under
this group. Define ΓS = Sym(S , Ŝ ), the group of Möbius transformations
which preserve both the superpacking and the dual superpacking. One has the
following:

Theorem 4.11. The group 〈Γ1, Γ̂1〉 is a Coxeter group with generators σc for
c ∈ B, σd for d ∈ B̂, and relations σ2

c = 1 for all c ∈ B, σ2
d = 1 for all d ∈ B̂,

and σcσd = σdσc for all pairs c ∈ B, d ∈ B̂ intersecting orthogonally.

Theorem 4.12. ΓS
∼= 〈Γ1, Γ̂1〉 � Γ2.

We omit the proofs because they are similar to previous ones in this section.

5. Examples

This section introduces examples of our construction. We call our three main
examples the triangular, square, and hexagonal packings. We will focus on the
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arithmetic properties of these examples: quadratic forms and linear relations
satisfied by the curvatures, integrality and superintegrality. A “typical” pack-
ing satisfying our definition will have little arithmetic interest, but the highly
symmetric nature of these examples adds more structure.

Some of these examples have appeared in the literature in other contexts, but
their properties have not been explored in detail. The square packing is dis-
cussed in [17, Figure 10.17] as the limit of the 1/n cusp groups in Maskit’s slice.
As discussed in the introduction, the triangular and hexagonal packings appear
in Kontorovich and Nakamura’s classification of superintegral crystallographic
packings. Some of their arithmetic properties are established in [5]. Our exam-
ples are also closely related to the limit packings in [2]. The limit of pyramid
packings is the original Apollonian packing, the limit of prism packings is our
square packing, and the limit of antiprism packings is our triangular packing.
Other families have more complicated limits, which will be briefly discussed
at the end of this section.

Every packing has linear and quadratic forms satisfied by the curvatures, like
the Descartes quadratic form for the Apollonian packing. The following defi-
nition characterizes packings with number-theoretic structure:

Definition 5.1. A packing P is integral if every circle in P has integral cur-
vature. The packing is superintegral if every circle in the superpacking has
integral curvature.

We will also say that an equivalence class of packings under Möbius transfor-
mations is (super)integral if one packing in the class has this property.

The main tool to find the linear and quadratic forms, and check (super)
integrality, is an inversive coordinate system for oriented generalized circles
in Ĉ. A circle is represented as (b̃, b, h1, h2)T ∈ R4, where b is the signed curva-
ture, b̃ is the curvature after inversion through the unit circle, and (h1, h2) are
the coordinates of the center, multiplied by the curvature. Every circle satisfies
the quadratic equation h2

1 + h2
2 − bb̃ = 1. The action of Möbius transforma-

tions on generalized circles becomes a linear action preserving the quadratic
form in this coordinate system. This setup is well explained in [16] and in [12].
The article [1] gives a full set of linear and quadratic forms for all polyhedral
packings.

In each of the following examples, we begin with base and dual circle configura-
tions. We check integrality and superintegrality using the inversive coordinate
system. We give quadratic and linear relations sufficient to determine the cur-
vatures of all the circles in the packing from a finite set of base circles (in
fact, just three). The proofs of these relations are omitted because they are
similar to the polyhedral case. We also relate these packings to others with
commensurate symmetry groups.
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1 2

3 4

(b1 − 3b2)2 + ( b4 − 3b3)2

= 2( b1 + b2)(b3 + b4)

1 3

2

4

b1 + b3 = b2 + b4

1 2

43

b1 + b4 = b2 + b3

Figure 5 Quadratic form and linear relations

(a) The orbit of the upper left circle under

the group generated by reflections across

all the circles is the square superpacking

(b) The orbit of the upper left circle and

lower horizontal line under the group

generated by reflections across all the

circles is the Apollonian superpacking

Figure 6 Commensurability of superpacking groups

5.1. Square packing

The base and dual configurations for this packing are shown in Fig. 2A. The
dual configuration is a translation of the base configuration. In these configu-
rations, all the circles can be represented with coordinates (b̃, b, h1, h2)T ∈ Z4,
so the packing is superintegral.

Quadratic and linear relations satisfied by curvatures in the square packing are
shown in Fig. 5. In the formulas, bi represents the curvature of circle i. Any
image of one of these configurations under Γ will satisfy the same relation. The
symmetry group of the square superpacking is commensurate to the symmetry
group of the Apollonian superpacking, as illustrated in Fig. 6. The full packing
is shown in Fig. 2B.

5.2. Triangular and hexagonal packings

The base configuration and dual configurations for the triangular packing are
shown in Fig. 7. In the hexagonal packing, the roles of base and dual configura-
tions are reversed. Circles in the base and dual configuration for the triangular
packing can be represented with coordinates in the sets

{
(b̃, b, h1, h2)T ∈ R4

∣
∣
∣ b, b̃ ∈ Z, h1 + h2i ∈ 2Z

[
1+i

√
3

2

]}
,

{
(b̃, b, h1, h2)T ∈ R4

∣
∣
∣ b, b̃ ∈

√
3Z, h1 + h2i ∈ 2iZ

[
1+i

√
3

2

]
\ 2

√
3Z

[
1+i

√
3

2

]}
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Figure 7 Base and dual configurations for the triangular and
hexagonal packings

Figure 8 Quadratic forms and linear relation

respectively. Reflection across the base and dual circles preserve these sets, so
the triangular packing is superintegral, and rescaling by

√
3, we see that the

hexagonal packing is superintegral as well.

Quadratic and linear relations satisfied by curvatures in the triangular and
hexagonal packings are shown in Fig. 8. The symmetry group of the triangu-
lar and hexagonal superpackings is commensurate to the symmetry group of
the limit of trapezohedral superpackings from [2], as illustrated in Fig. 9. We
conjecture that this group is not commensurate to the symmetry group of any
polyhedral superpacking. The full triangular packing is shown in Fig. 10 and
the full hexagonal packing is shown in Fig. 11. Note: the circles in Fig. 2B,
10, and 11 were obtained by reflecting a subset of base circles across four
generations of dual circles.

We finish this section with some brief remarks on the limits of polyhedral pack-
ing families studied in [2]. The limit of trapezohedral packings is superintegral.
As discussed above, the symmetry group of its superpacking is commensurate
to that of the triangular and hexagonal superpackings. The limit of the cupola
packings is also superintegral. The symmetry group of its superpacking is com-
mensurate to that of the octahedral superpacking. The limit of the anticupola
packings is not integral; this can be proven by an infinite descent argument.
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(a) The orbit of the large circle is the

triangular superpacking. The orbit of the

small circle is the hexagonal superpacking

(b) The orbit of the small circles and

horizontal lines is the limit of trapezohedral

superpackings

Figure 9 Commensurability of superpacking groups

Figure 10 Triangular packing

Figure 11 Hexagonal packing
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Axis of reflection

Axis of glide reflection

Center of rotation by π
Center of rotation by 2 π/ 3

Center of rotation by π/ 2

Center of rotation by π/ 3

Figure 12 Labels for axes of reflection, centers of rotation

6. Wallpaper groups

The goal of this section is to illustrate the rich variety of circle packings satis-
fying Definition 2.7, with a focus on symmetry groups. We give the following
converse to Theorem 4.2:

Theorem 6.1. All the possible groups listed in Theorem 4.2 actually arise as the
group of symmetries Γ2 = Sym(B, B̂) for some base and dual configurations
B, B̂ satisfying Definition 2.1.

In the case of finite B, B̂, this theorem follows directly from the Koebe–
Andreev–Thurston theorem. For infinite B, B̂, the wallpaper group case is
Theorem 6.2 below. The other cases are simpler, and the proofs are omitted.

Theorem 6.2. Any wallpaper group is the symmetry group Γ2 of the base and
dual configurations B, B̂ of some circle packing. Moreover, such B can be
realized as the refinement of the base configuration of either the triangular or
square packing.

Proof. We will prove this theorem by illustration. We label the centers of
rotations and axes of reflections using notation introduced in Fig. 12. The en-
tire base configurations can be generated by these symmetries or translations,
starting from the circles shown.

The wallpaper groups p6m and p4m are the most complicated ones, and they
are the symmetry groups of the base configurations of triangular and square
packings, respectively, as shown in Fig. 13.

Refining these two base configurations by adding smaller circles removes sym-
metries. Thus, we can obtain base configurations with different symmetry
groups by refining the triangular or square configurations. Notice that the
refinements given below are well-defined base configurations because the as-
sociated dual configurations still exist. Refinements of the triangular config-
uration are shown in Fig. 14 and refinements of the square configuration are
shown in Fig. 15. Some wallpaper groups could be obtained by refining either
configuration, but we only show one realization of each group. �
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Figure 13 Maximal wallpaper groups

Figure 14 Refinements of the triangular base configuration

By Theorem 2.13, all the packings constructed in this proof are Kleinian. Those
for which the wallpaper group contains a finite-index reflective subgroup are
also crystallographic. We finish by briefly indicating how to use the refinement
method to construct non-Kleinian packings, including superintegral examples.
Begin with the base configuration for the square packing, arranged so that each
circle has radius 1 and is centered at a point in 2Z2. If we refine by placing
an additional circle of radius

√
2 − 1 centered at the point (1, 1), we obtain an

aperiodic configuration B with a finite symmetry group, which also admits a
dual configuration B̂. The resulting packing is not Kleinian. If we instead refine
by placing two additional circles of radius 1

4 at the points (1, 1± 1
4 ), we obtain

an aperiodic integral configuration B with a finite symmetry group, which also
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Figure 15 Refinements of the square base configuration
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admits an integral dual configuration. The resulting packing is superintegral
but not Kleinian.
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Leipzig 88, 141–164 (1936)

[14] Kontorovich, A., Nakamura, K.: Geometry and arithmetic of crystallographic
sphere packings. Proc. Natl. Acad. Sci. USA 116(2), 436–441 (2019)

[15] Kontorovich, A., Oh, H.: Apollonian circle packings and closed horospheres on
hyperbolic 3-manifolds. J. Am. Math. Soc. 24(3), 603–648 (2011), With an ap-
pendix by Oh and Nimish Shah

[16] Lagarias, J.C., Mallows, C.L., Wilks, A.R.: Beyond the Descartes circle theorem.
Am. Math. Monthly 109(4), 338–361 (2002)

[17] Mumford, D., Series, C., Wright, D.: Indra’s Pearls: The Vision of Felix Klein.
Cambridge University Press, Cambridge (2015)

[18] Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann map-
ping. J. Differ. Geom. 26(2), 349–360 (1987)

[19] Scharlau, R., Walhorn, C.: Integral lattices and hyperbolic reflection groups, no.
209, 1992, Journées Arithmétiques, (Geneva), pp. 15–16, 279–291 (1991)

[20] Schramm, O.: Existence and uniqueness of packings with specified combinatorics.
Israel J. Math. 73(3), 321–341 (1991)

[21] Schramm, O.: Rigidity of infinite (circle) packings. J. Am. Math. Soc. 4(1), 127–
149 (1991)

http://arxiv.org/abs/2109.01289
http://arxiv.org/abs/2104.13838
http://arxiv.org/abs/0706.0372


   17 Page 28 of 28 P. Rehwinkel et al. J. Geom.

[22] Schramm, O.: Circle patterns with the combinatorics of the square grid. Duke
Math. J. 86(2), 347–389 (1997)

[23] Stange, K.E.: The Apollonian structure of Bianchi groups. Trans. Am. Math.
Soc. 370(9), 6169–6219 (2018)

[24] Stephenson, K.: Introduction to Circle Packing. Cambridge University Press,
Cambridge (2005), The theory of discrete analytic functions

[25] Thurston, W.P.: The Geometry and Topology of Three-Manifolds. Princeton
University (1979)

[26] Ziegler, G., Billera, L.J.: Lectures on Polytopes, Graduate Texts in Mathematics,
vol. 152. Springer, New York (1995)

Philip Rehwinkel, Ian Whitehead, David Yang and Mengyuan Yang
Department of Mathematics and Statistics
Swarthmore College
Swarthmore PA
USA
e-mail: iwhiteh1@swarthmore.edu

Received: February 17, 2023.

Revised: February 6, 2024.

Accepted: February 7, 2024.


	Circle packings from tilings of the plane
	Abstract
	1. Introduction
	2. Definitions and Basic Properties
	2.1. Relation to other packing definitions

	3. Existence and uniqueness of packings and a generalized Koebe–Andreev–Thurston theorem
	4. Group structure theorems
	5. Examples
	5.1. Square packing
	5.2. Triangular and hexagonal packings

	6. Wallpaper groups
	Acknowledgements
	References


