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1. Introduction

Throughout this paper, I is an open interval and all functions, mappings are
of class C∞ unless otherwise stated.

Envelopes of planar regular curve families have fascinated many pioneers since
the dawn of differential analysis (for instance, see [3]). In most typical cases,
straight line families have been studied. However, even for envelopes created by
straight line falimies, there were several unsolved problems until very recently.
For instance, as the following Example 1 shows, the well-known method to
represent the envelope for a given straight line family creating an envelope
is useless in some cases. and the representation problem was open until very
recently.

Example 1. Consider the elementary plane curve f : R → R
2 defined by f(t) =(

t, t3
)
. The regular curve f gives a parametrization of the non-singular cubic

curve

C =
{
(X,Y ) ∈ R

2 |Y = X3
}

.

The affine tangent line Lt to C at a point
(
t, t3

)
may be defined by

(
X − t, Y − t3

) · (−3t2, 1
)

= 0,

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-023-00708-z&domain=pdf
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Figure 1 Reflection of sound waves

where the dot in the center stands for the standard scalar product of two
vectors

(
X − t, Y − t3

)
and

(−3t2, 1
)
. Since the straight line family {Lt}t∈R

is the affine tangent line family to C, the non-singular cubic curve C must be
an envelope of {Lt}t∈R

. Set

F (X,Y, t) =
(
X − t, Y − t3

) · (−3t2, 1
)

= −3t2X + Y + 2t3.

We have the following.

D =
{

(X,Y ) ∈ R
2

∣
∣
∣
∣ ∃t ∈ R s.t. F (X,Y, t) =

∂F

∂t
(X,Y, t) = 0

}

=
{
(X,Y ) ∈ R

2
∣
∣ ∃t ∈ R s.t. − 3t2X + Y + 2t3 = −6t(X − t) = 0

}

=
{
(X,Y ) ∈ R

2
∣
∣ Y = 0 or Y = X3

}

� C.

Therefore, unfortunately, the well-known method to represent the envelope
does not work well in this case and it must be applied under appropriate
assumptions.

In [6], by solving four basic problems on envelopes created by straight line
families in the plane (existence problem, representation problem, uniqueness
problem and equivalence problem of definitions), the second author constructs
a general theory for envelopes created by straight line families in the plane. On
the other hand, circle families in the plane are non-negligible families because
the envelopes of them have already had an important application, namely, an
application to Seismic Survey. Following 7.14(9) of [1], a brief explanation of
Seismic Survey is given as follows. In the Euclidean plane R

2, consider the
“ground level curve” C parametrized by γ : I → R

2. Suppose that there is
a stratum of granite below the top layer of sandstone and that the dividing
curve, denoted by M , is parametrized by f̃ : I → R

2. Seismic Survey is the
following method to obtain an approximation of f̃ as precisely as possible.
Take one fixed point A of C and consider an explosion at A. Assume that the
sound waves travel in straight lines and are reflected from M , arriving back at
points γ(t) of C where their times of arrival are exactly recorded by sensors
located along C (see Fig. 1).

It is known that there exists a curve W parametrized by f : I → R
2 with

well-defined normals such that each broken line of a reflected ray starting at
A and finishing on C can be replaced by a straight line which is normal to
W and of the same total length. The curve W is called the orthotomic of M
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Figure 2 An envelope created by the circle family

relative to A and conversely the curve M is called the anti-orthotomic of W
relative to A. Then, an envelope created by the circle family

{
(x, y) ∈ R

2
∣
∣ ||(x, y) − γ(t)|| = ||f(t) − γ(t)||}

t∈I

recovers W (see Fig. 2).

After obtaining the parametrization f of W , the parametrization f̃ of M can
be easily obtained by using the anti-orthotomic technique developed in [5].
Therefore, in order to investigate the parametrization of W as precisely as
possible, it is very important to construct a general theory on envelopes created
by circle families in the plane, which is the main purpose of this paper.

For a point P of R
2 and a positive number λ, the circle C(P,λ) centered at P

with radius λ is naturally defined as follows:

C(P,λ) =
{

(x, y) ∈ R
2
∣
∣ ((x, y) − P ) · ((x, y) − P ) = λ2

}
,

where the dot in the center stands for the standard scalar product. For a
curve γ : I → R

2 and a positive function λ : I → R+, the circle family C(γ,λ) is
naturally defined as follows. Here, R+ stands for the set consisting of positive
real numbers.

C(γ,λ) =
{
C(γ(t),λ(t))

}
t∈I

.

It is reasonable to assume that at each point γ(t) the normal vector to the
curve γ is well-defined. Thus, we easily reach the following definition.

Definition 1. A curve γ : I → R
2 is called a frontal if there exists a mapping

ν : I → S1 such that the following identity holds for each t ∈ I, where S1 is
the unit circle in R

2.
dγ

dt
(t) · ν(t) = 0.
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For a frontal γ, the mapping ν : I → S1 given above is called the Gauss
mapping of γ.

By definition, a frontal is a mapping giving a solution of the first order linear
differential equation defined by Gauss mapping ν. Thus, for a fixed mapping
ν : I → S1 the set consisting of frontals with a given Gauss mapping ν : I → S1

is a linear space. For frontals, [4] is recommended as an excellent reference.
Hereafter in this paper, the curve γ : I → R

2 for a circle family C(γ,λ) is
assumed to be a frontal.

In this paper, the following is adopted as the definition of an envelope created
by a circle family.

Definition 2. Let C(γ,λ) be a circle family. A mapping f : I → R
2 is called an

envelope created by C(γ,λ) if the following two hold for any t ∈ I.

(1) df
dt (t) · (f(t) − γ(t)) = 0.

(2) f(t) ∈ C(γ(t),λ(t)).

By definition, as the same as an envelope created by a hyperplane family (see
[6]), an envelope created by a circle family is a mapping giving a solution of a
first order differential equation with one constraint condition. Moreover, again
by definition, an envelope f created by a circle family C(γ,λ) is a frontal with
Gauss mapping I � t → f(t)−γ(t)

||f(t)−γ(t)|| ∈ S1.

Problem 1. Let γ : I → R
2 be a frontal with Gauss mapping ν : I → S1 and

let λ : I → R+ be a positve function.

(1) Find a necessary and sufficient condition for the circle family C(γ,λ) to
create an envelope in terms of γ, ν and λ.

(2) Suppose that the circle family C(γ,λ) creates an envelope. Then, find a
parametrization of the envelope created by C(γ,λ) in terms of γ, ν and λ.

(3) Suppose that the circle family C(γ,λ) creates an envelope. Then, find a
criterion for the number of distinct envelopes created by C(γ,λ) in terms
of γ, ν and λ.

Note 1. (1) (1) of Problem 1 is a problem to seek the integrability condi-
tions. There are various cases, for instance the concentric circle family
{{(x, y) ∈ R

2 |x2 + y2 = t2}}t∈R+ does not create an envelope while the
parallel-translated circle family {{(x, y) ∈ R

2 | (x− t)2 +y2 = 1}}t∈R does
create two envelopes. Thus, (1) of Problem 1 is significant.

(2) The following Example 2 shows that the well-known method to represent
the envelope is useless in this case. Thus, (2) of Problem 1 is important
and the positive answer to it is much desired.

(3) The following Example 3 shows that there are at least three cases: the
case having a unique envelope, the case having exactly two envelopes and
the case having uncountably many envelopes. Thus, (3) of Problem 1 is
meaningful and interesting.
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Example 2. Let γ : R → R
2 be the mapping defined by γ(t) =

(
t3, t6

)
. Set

ν(t) = 1√
4t6+1

(−2t3, 1
)
. It is clear that the mapping γ is a frontal with Gauss

mapping ν : R → S1. Let λ : R → R+ be the constant function defined by
λ(t) = 1. Then, it seems that the circle family C(γ,λ) creates envelopes. Thus,
we can expect that the created envelopes can be obtained by the well-known
method. Set F (x, y, t) =

(
x − t3

)2+
(
y − t6

)2−1. Then, we have the following.

D =

{
(x, y) ∈ R

2

∣
∣∣
∣ ∃t such that F (x, y, t) =

∂F

∂t
(x, y, t) = 0

}

=
{
(x, y) ∈ R

2
∣
∣
∣ ∃t such that

(
x − t3

)2
+

(
y − t6

)2 − 1 = 0, −6t2
(
x − t3

)

−12t5
(
y − t6

)
= 0

}

=
{
(x, y) ∈ R

2
∣
∣∣ ∃t such that

(
x − t3

)2
+

(
y − t6

)2 − 1 = 0, t2
((

x − t3
)

+2t3
(
y − t6

))
= 0

}

=
{
(x, y) ∈ R

2
∣∣ x2 + y2 = 1

} ⋃ {
(x, y) ∈ R

2
∣∣
∣
(
x − t3

)2
+

(
y − t6

)2 − 1 = 0,

x = t3 − 2t3
(
y − t6

)}

=
{
(x, y) ∈ R

2
∣
∣ x2 + y2 = 1

} ⋃ {
(x, y) ∈ R

2
∣
∣
∣
(−2t3

(
y − t6

))2
+

(
y − t6

)2
= 1,

x = t3
(
1 − 2y + 2t6

)}

=
{
(x, y) ∈ R

2
∣
∣ x2 + y2 = 1

} ⋃ {(
t3 ∓ 2t3√

4t6 + 1
, t6 ± 1√

4t6 + 1

)
∈ R

2

∣
∣
∣
∣ t ∈ R

}
.

In Example 4 of Sect. 3, it turns out that the set D calculated here is actu-
ally larger than the set of envelopes created by C(γ,λ), namely the unit circle{
(x, y) ∈ R

2
∣
∣ x2 + y2 = 1

}
is redundant. Therefore, the well-known method

to represent the envelopes does not work well in general and it must be ap-
plied under appropriate assumptions even for circle families. The circle family
C(γ,λ) and the candidates of its envelope are depicted in Fig. 3.

Example 3. (1) Let γ : R+ → R
2 be the mapping defined by γ(t) = (0, 1 + t).

Then, it is clear that γ is a frontal. Let λ : R+ → R+ be the positive
function defined by λ(t) = 1 + t. Then, it is easily seen that the origin
(0, 0) of the plane R

2 itself is a created envelope by the circle family
C(γ,λ) and that there are no other envelopes created by C(γ,λ). Hence, the
number of created envelopes is one in this case.

(2) The parallel-translated circle family {{(x, y) ∈ R
2 | (x− t)2 +y2 = 1}}t∈R

creates exactly two envelopes.
(3) Let γ : R → R

2 be the constant mapping defined by γ(t) = (0, 0). Then,
it is clear that γ is a frontal. Let λ : R → R+ be the constant function
defined by λ(t) = 1. Then, for any function θ : R → R, the mapping
f : R → R

2 defined by f(t) = (cos θ(t), sin θ(t)) is an envelope created
by the circle family C(γ,λ). Hence, there are uncountably many created
envelopes in this case.
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Figure 3 The circle family C(γ,λ) and the candidates of its
envelope

In order to solve Problem 1, we prepare several terminologies which can be
derived from a frontal γ : I → R

2 with Gauss mapping ν : I → S1 and a
positive function λ : I → R+. For a frontal γ : I → R

2 with Gauss mapping
ν : I → S1, following [2], we set μ(t) = J(ν(t)), where J is the anti-clockwise
rotation by π/2. Then we have a moving frame {μ(t), ν(t)}t∈I along the frontal
γ. Set

�(t) =
dν

dt
(t) · μ(t), β(t) =

dγ

dt
(t) · μ(t).

The pair of functions (�, β) is called the curvature of the frontal γ with Gauss
mapping ν. We want to focus the ratio of dλ

dt (t) and β(t). The following defi-
nition is the key of this paper.

Definition 3. Let γ : I → R
2, λ : I → R+ be a frontal with Gauss mapping

ν : I → S1 and a positive function respectively. Then, the circle family C(γ,λ) is
said to be creative if there exists a mapping ν̃ : I → S1 such that the following
identity holds for any t ∈ I.

dλ

dt
(t) = −β(t) (ν̃(t) · μ(t)) .

Set cos θ(t) = −ν̃(t) · μ(t). Then, the creative condition is equivalent to say
that there exists a function θ : I → R satisfying the following identity for any
t ∈ I.

dλ

dt
(t) = β(t) cos θ(t).
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By definition, any family of concentric circles with smoothly expanding radii
is not creative, and it is clear that such the circle family does not create an
envelope. Under the above preparation, Problem 1 is solved as follows.

Theorem 1. Let γ : I → R
2 be a frontal with Gauss mapping ν : I → S1 and

let λ : I → R+ be a positive function. Then, the following three hold.

(1) The circle family C(γ,λ) creates an envelope if and only if C(γ,λ) is creative.
(2) Suppose that the circle family C(γ,λ) creates an envelope f : I → R

2.
Then, the created envelope f is represented as follows.

f(t) = γ(t) + λ(t)ν̃(t),

where ν̃ : I → S1 is the mapping defined in Definition 3.
(3) Suppose that the circle family C(γ,λ) creates an envelope. Then, the num-

ber of envelopes created by C(γ,λ) is characterized as follows.
(3-i) The circle family C(γ,λ) creates a unique envelope if and only

if the set consisting of t ∈ I satisfying β(t) �= 0 and dλ
dt (t) = ±β(t) is

dense in I.
(3-ii) There are exactly two distinct envelopes created by C(γ,λ) if

and only if the set of t ∈ I satisfying β(t) �= 0 is dense in I and there
exists at least one t0 ∈ I such that the strict inequality |dλ

dt (t0)| < |β(t0)|
holds.

(3-∞) There are uncountably many distinct envelopes created by
C(γ,λ) if and only if the set of t ∈ I satisfying β(t) �= 0 is not dense in I.

By the assertion (2) of Theorem 1, it is reasonable to call ν̃ the creator for an
envelope f created by C(γ,λ).

This paper is organized as follows. Theorem 1 is proved in Sect. 2. In Sect. 3,
several examples to which Theorem 1 is effectively applicable are given. Finally,
in Sect. 4, relations of several definitions of an envelope created by a circle
family are investigated.

2. Proof of Theorem 1

2.1. Proof of the assertion (1) of Theorem 1

Suppose that C(γ,λ) is creative. By definition, there exists a mapping ν̃ : I → S1

such that the equality dλ
dt (t) = −β(t) (ν̃(t) · μ(t)) holds for any t ∈ I. Set

f(t) = γ(t) + λ(t)ν̃(t).

Then, since (f(t) − γ(t)) · (f(t) − γ(t)) = λ2(t), it follows f(t) ∈ C(γ(t),λ(t)).
Moreover, since

df

dt
(t) =

dγ

dt
(t) +

dλ

dt
(t)ν̃(t) + λ(t)

dν̃

dt
(t),
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we have the following.

df

dt
(t) · (f(t) − γ(t))

=
(

dγ

dt
(t) +

dλ

dt
(t)ν̃(t) + λ(t)

dν̃

dt
(t)

)
· (λ(t)ν̃(t))

=
dγ

dt
(t) · (λ(t)ν̃(t)) +

dλ

dt
(t)λ(t)

= (β(t)μ(t)) · (λ(t)ν̃(t)) + (−β(t) (ν̃(t) · μ(t)))λ(t)
= β(t)λ(t) (μ(t) · ν̃(t)) − β(t)λ(t) (ν̃(t) · μ(t))
= 0.

Hence, f is an envelope created by the circle family C(γ,λ).

Conversely, suppose that the circle family C(γ,λ) creates an envelope f : I → R.
Then, by definition, it follows that f(t) ∈ C(γ(t),λ(t)) and df

dt (t) · (f(t) − γ(t)) =
0. The condition f(t) ∈ C(γ(t),λ(t)) implies that there exists a mapping ν̃ : I →
S1 such that the following equality holds for any t ∈ I.

f(t) = γ(t) + λ(t)ν̃(t).

Then, since

df

dt
(t) =

dγ

dt
(t) +

dλ

dt
(t)ν̃(t) + λ(t)

dν̃

dt
(t),

we have the following.

0 =
df

dt
(t) · (f(t) − γ(t))

=
(

dγ

dt
(t) +

dλ

dt
(t)ν̃(t) + λ(t)

dν̃

dt
(t)

)
· (λ(t)ν̃(t))

= (β(t)μ(t)) · (λ(t)ν̃(t)) +
dλ

dt
(t)λ(t)

= λ(t)
(

β(t) (μ(t) · ν̃(t)) +
dλ

dt
(t)

)
.

Since λ(t) is positive for any t ∈ I, it follows

β(t) (μ(t) · ν̃(t)) +
dλ

dt
(t) = 0.

Therefore, the circle family C(γ,λ) is creative. �

2.2. Proof of the assertion (2) of Theorem 1

The proof of the assertion (1) given in Sect. 2.1 proves the assertion (2) as
well. �
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2.3. Proof of the assertion (3) of Theorem 1

2.3.1. Proof of (3-i). Suppose that the circle family C(γ,λ) creates a unique
envelope. Then, by the assertion (2) of Theorem 1, the set {f : I → R

2 | f(t) =
γ(t)+λ(t)ν̃(t) (t ∈ I)} consists of only one mapping. Therefore, for any t ∈ I
the unit vector ν̃(t) satisfying

dλ

dt
(t) = −β(t) (ν̃(t) · μ(t))

must be uniquely determined. Hence, under considering continuity of two
functions dλ

dt and β, it follows that the set consisting of t ∈ I satisfying
dλ
dt (t) = ±β(t) �= 0 must be dense in I.

Conversely, suppose that the set consisting of t ∈ I satisfying dλ
dt (t) = ±β(t) �=

0 is dense in I. Then, under considering continuity of the function t �→ ν̃(t) ·
μ(t), it follows that for any t ∈ I, ν̃(t) · μ(t) = 1 (resp., ν̃(t) · μ(t) = −1)
if dλ

dt (t) = −β(t) (resp., dλ
dt (t) = β(t)). Thus, the created envelope f(t) =

γ(t) + λ(t)ν̃(t) must be unique. �

2.3.2. Proof of (3-ii). Suppose that there are exactly two distinct envelopes
created by C(γ,λ). Then, by the equality dλ

dt (t) = −β(t) (ν̃(t) · μ(t)) , the set
consisting of t ∈ I satisfying β(t) �= 0 must be dense in I. Suppose moreover
that the equality dλ

dt (t) = ±β(t) holds for any t ∈ I. Then, it follows that
the set consisting of t ∈ I satisfying dλ

dt (t) = ±β(t) �= 0 is dense in I. Then,
by the assertion (3-i), the given circle family must create a unique envelope.
This contradicts the assumption that there are exactly two distinct envelopes.
Hence, there must exist at least one t0 ∈ I such that the strict inequality
|dλ

dt (t0)| < |β(t0)| holds.

Conversely, suppose that the set of t ∈ I satisfying β(t) �= 0 is dense in I and
there exists at least one t0 ∈ I such that the strict inequality |dλ

dt (t0)| < |β(t0)|
holds. Then, it follows that there must exist an open interval Ĩ in I such that
the absolute value |ν̃(t) · μ(t)| = | cos θ(t)| is less than 1 for any t ∈ Ĩ. Thus,
it follows θ(t) �= −θ(t) for any t ∈ Ĩ. Hence, for any t ∈ Ĩ, there exist exactly
two distinct unit vectors ν̃+(t), ν̃−(t) corresponding ν̃+(t) · μ(t) = − cos θ(t)
and ν̃−(t) · μ(t) = − cos (−θ(t)) respectively. Therefore, by the assertion (2) of
Theorem 1, the circle family must create exactly two distinct envelopes. �

2.3.3. Proof of (3-∞). Suppose that there are uncountably many distinct en-
velopes created by C(γ,λ). Suppose moreover that the set of t ∈ I such that
β(t) �= 0 is dense in I. Then, from (3-i) and (3-ii), it follows that the circle
family C(γ,λ) must create a unique envelope or two distinct envelopes. This con-
tradicts the assumption that there are uncountably many distinct envelopes
created by C(γ,λ). Hence, the set of t ∈ I such that β(t) �= 0 is never dense in
I.

Conversely, suppose that the set of t ∈ I such that β(t) �= 0 is not dense in
I. This assumption implies that there exists an open interval Ĩ in I such that



7 Page 10 of 20 Y. Wang and T. Nishimura J. Geom.

β(t) = 0 for any t ∈ Ĩ. On the other hand, since C(γ,λ) creates an envelope f0,
the equality

dλ

dt
(t) = −β(t) (ν̃(t) · μ(t))

holds for any t ∈ I. Thus, there are no restrictions for the value ν̃(t) · μ(t)
for any t ∈ Ĩ. Take one point t0 of Ĩ and denote the ν̃ for the envelope f0

by ν̃0. Then, by using the standard technique on bump functions, we may
construct uncountably many distinct creators ν̃a : I → S1 (a ∈ A) such that
the following (a), (b), (c) and (d) hold, where A is a set consisting uncountably
many elements such that 0 �∈ A.

(a) The equality dλ
dt (t) = −β(t) (ν̃a(t) · μ(t)) holds for any t ∈ I and any

a ∈ A.
(b) For any t ∈ I − Ĩ and any a ∈ A, the equality ν̃a(t) = ν̃0(t) holds.
(c) For any a ∈ A, the property ν̃a(t0) �= ν̃0(t0) holds.
(d) For any two distinct a1, a2 ∈ A, the property ν̃a1(t0) �= ν̃a2(t0) holds.

Therefore, by the assertion (2) of Theorem 1, the circle family C(γ,λ) creates
uncountably many distinct envelopes. �

3. Examples

Example 4. We examine Example 2 by applying Theorem 1. In Example 2,
γ : R → R

2 is given by γ(t) =
(
t3, t6

)
. Thus, we can say that ν : R → S1 and

μ : R → S1 are given by ν(t) = 1√
4t6+1

(−2t3, 1
)

and μ(t) = 1√
4t6+1

(−1,−2t3
)

respectively. Moreover, the radius function λ : R → R is the constant function
defined by λ(t) = 1. Thus,

dλ

dt
(t) = 0.

By calculation, we have

β(t) =
dγ

dt
(t) · μ(t) =

−3t2(1 + 4t6)√
4t6 + 1

.

Therefore, the unit vector ν̃(t) ∈ S1 satisfying

dλ

dt
(t) = −β(t) (ν̃(t) · μ(t))

exists and it must have the form

ν̃(t) = ±ν(t) =
±1√

4t6 + 1

(−2t3, 1
)
.

Hence, by the assertion (1) of Theorem 1, the circle family C(γ,λ) creates an
envelope f : R → R

2. By the assertion (2) of Theorem 1, f is parametrized as
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follows.

f(t) = γ(t) + λ(t)ν̃(t)

=
(
t3, t6

) ± 1√
4t6 + 1

(−2t3, 1
)

=
(

t3 ∓ 2t3√
4t6 + 1

, t6 ± 1√
4t6 + 1

)
.

Finally, by the assertion (3-ii) of Theorem 1, the number of distinct envelopes
created by the circle family C(γ,λ) is exactly two.

Therefore, Theorem 1 reveals that the set D calculated in Example 2 is cer-
tainly the union of the unit circle and the set of two envelopes of C(γ,λ).

Example 5. We examine (1) of Example 3 by applying Theorem 1. In (1) of
Example 3, γ : R+ → R

2 is given by γ(t) = (0, 1 + t). Thus, if we define the
unit vector ν(t) = (1, 0), ν : R+ → S1 gives the Gauss mapping of γ. By
definition, μ(t) = (0, 1) and thus we have β(t) = dγ

dt (t) · μ(t) = 1. On the other
hand, the radius function λ : R+ → R+ has the form λ(t) = 1 + t in this
example. Thus, the creative condition

dλ

dt
(t) = −β(t) (ν̃(t) · μ(t))

simply becomes

1 = − (ν̃(t) · (0, 1)) (*)

in this case. If we set ν̃(t) = (0,−1), then the above equality holds for any
t ∈ R+. Thus, by the assertion (1) of Theorem 1, the circle family C(γ,λ)

creates an envelope. By the assertion (2) of Theorem 1, the parametrization
of the created envelope is

f(t) = γ(t) + λ(t)ν̃(t) = (0, 1 + t) + (1 + t) (0,−1) = (0, 0) .

Finally, notice that for any t ∈ R+ the creative condition (*) in this case holds
if and only if ν̃(t) = (0,−1) = −μ(t). Thus, by the assertion (3-i) of Theorem
1, the origin (0, 0) is the unique envelope created by C(γ,λ).

Example 6. Theorem 1 can be applied also to (2) of Example 3 as follows. In
this example, γ(t) = (t, 0) and λ(t) = 1. Thus, we may set ν(t) = (0,−1),
μ(t) = (1, 0). It follows β(t) = dγ

dt (t) · μ(t) = 1. Since the radius function λ is
a constant function, the creative condition

dλ

dt
(t) = −β(t) (ν̃(t) · μ(t))

simply becomes

0 = − (ν̃(t) · (0, 1))

in this case. Thus, for any t ∈ R, the creative condition is satisfied if and only if
ν̃(t) = ±(1, 0). Hence, by the assertion (1) of Theorem 1, the circle family C(γ,λ)
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creates an envelope. By the assertion (2) of Theorem 1, the parametrization
of the created envelope is

f(t) = γ(t) + λ(t)ν̃(t) = (t, 0) ± (0,−1) = (t,∓1) .

Finally, by the assertion (3-ii) of Theorem 1, the number of envelope created
by C(γ,λ) is exactly two.

Example 7. Theorem 1 can be applied even to (3) of Example 3 as follows. In
this example, γ(t) = (0, 0) and λ(t) = 1. Thus, every mapping ν : R → S1

can be taken as Gauss mapping of γ. In particular, γ is a frontal. We have
β(t) = dγ

dt (t) · μ(t) = 0. Since the radius function λ is a constant function
λ(t) = 1, the creative condition

dλ

dt
(t) = −β(t) (ν̃(t) · μ(t))

simply becomes

0 = 0

in this case. Thus, for any ν̃ : R → S1, the creative condition is satisfied.
Hence, by the assertion (1) of Theorem 1, the circle family C(γ,λ) creates an
envelope. By the assertion (2) of Theorem 1, the parametrization of the created
envelope is

f(t) = γ(t) + λ(t)ν̃(t) = (0, 0) + ν̃(t) = ν̃(t).

Finally, by the assertion (3-∞) of Theorem 1, there are uncountably many
distinct envelope created by C(γ,λ).

Example 8. Let γ : R+ → R
2 be the mapping defined by γ(t) = (t, 0) and let

λ : R+ → R+ be the positive function defined by λ(t) = t2. The circle family
C(γ,λ) and the candidate of its envelope is depicted in Fig. 4.

Defining the mapping ν : R+ → S1 by ν(t) = (0,−1) clarifies that the mapping
γ is a frontal. Then, μ(t) = J(ν(t)) = (1, 0) and β(t) = dγ

dt (t) · μ(t) = (1, 0) ·
(1, 0) = 1. We want to seek a mapping ν̃ : R+ → S1 satisfying

dλ

dt
(t) = −β(t) (ν̃(t) · μ(t)) ,

namely, a mapping ν̃ : R+ → S1 satisfying

2t = −((ν̃(t) · (1, 0))).

Since ν̃(t) ∈ S1, from the above expression, it follows that such ν̃(t) does not
exist if 1

2 < t. Thus, the circle family C(γ,λ) is not creative and it creates no
envelopes by the assertion (1) of Theorem 1.

Example 9. This example is almost the same as Example 8. That is, γ(t) =
(t, 0) and λ(t) = t2. The difference from Example 8 is only the parameter space.
In Example 9, the parameter space I is

(
0, 1

2

)
. That is to say, in this example,
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Figure 4 The circle family C(γ,λ) and the candidate of its
envelope

R+ in Example 8 is replaced by
(
0, 1

2

)
and all other settings in Example 8

remain without change.

Then, from calculations in Example 8, it follows that the given circle family
C(γ,λ) is creative. Thus, by the assertion (1) of Theorem 1, C(γ,λ) creates an
envelope. It is easily seen that the expression of ν̃(t) must be as follows.

ν̃(t) =
(
−2t,±

√
1 − 4t2

)
.

Therefore, by the assertion (2) of Theorem 1, an envelope f created by C(γ,λ)

is parametrized as follows.

f(t) = γ(t) + λ(t)ν̃(t)

= (t, 0) + t2
(
−2t, ±

√
1 − 4t2

)

=
(
t − 2t3, ±t2

√
1 − 4t2

)
.

Finally, by the assertion (3-ii) of Theorem 1, it follows that the number of
distinct envelopes created by the circle family C(γ,λ) is exactly two.

Example 10. Let γ : R → R
2 be the mapping defined by γ(t) = (t3, t2) and let

λ : R → R+ be the constant function defined by λ(t) = 1. The circle family
C(γ,λ) and the candidates of its envelope is depicted in Fig. 5.

It is easily seen that the mapping ν : R → S1 defined by ν(t) = 1√
4+9t2

(2,−3t)
gives the Gauss mapping for γ. Thus, γ is a frontal. By definition, the mapping
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Figure 5 The circle family C(γ,λ) and the candidate of its
envelope

μ : R → S1 has the form μ(t) = 1√
4+9t2

(3t, 2). By calculation, we have

β(t) =
dγ

dt
(t) · μ(t) = t

√
4 + 9t2.

Since the radius function λ is constant, it follows dλ
dt (t) = 0. Thus, for any

t ∈ R, the unit vector ν̃(t) satisfying
dλ

dt
(t) = −β(t) (ν̃(t) · μ(t))

always exists. Namely we have

ν̃(t) = ±ν(t) =
±1√

4 + 9t2
(2,−3t) .

Thus, by the assertion (1) of Theorem 1, C(γ,λ) creates an envelope, and the
created envelope f : R → R

2 has the following form by the assertion (2) of
Theorem 1.

f(t) = γ(t) + λ(t)ν̃(t) =
(
t3, t2

) ± 1√
4 + 9t2

(2,−3t)

=
(

t3 ± 2√
4 + 9t2

, t2 ∓ 3t√
4 + 9t2

)
.

Finally, by the assertion (3-ii) of Theorem 1, there are no other envelopes
created by C(γ,λ).

4. Alternative definitions

In Definition 2 of Sect. 1, the definition of envelope created by the circle family
is given. In [1], the set consisting of the images of envelopes defined in Definition
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2 is called E2 envelope (denoted by E2) and two alternative definitions (called
E1 envelope and D envelope) are given as follows.

Definition 4. (E1 envelope [1]). Let γ : I → R
2, λ : I → R+ be a frontal and

a positive function respectively. Let t0 be a parameter of I and fix it. Assume
that

lim
ε→0

C(γ(t0),λ(t0)) ∩ C(γ(t0+ε),λ(t0+ε))

is not the empty set and denote the set by I(t0). Take one point e1(t0) =
(x(t0), y(t0)) of I(t0). Then, the set consisting of the images of smooth map-
pings e1 : I → R

2, if exists, is called an E1 envelope created by the circle
family C(γ,λ) and is denoted by E1.

Definition 5. (D envelope [1]). Let γ : I → R
2, λ : I → R+ be a frontal and a

positive function respectively. Set

F (x, y, t) = ||(x, y) − γ(t)||2 − (λ(t))2 .

Then, the following set is called the D envelope created by the circle family
C(γ,λ) and is denoted by D.

{
(x, y) ∈ R

2 | ∃t ∈ I such that F (x, y, t) =
∂F

∂t
(x, y, t) = 0

}
.

Concerning the relationships among E1, E2 and D for a given circle family
C(γ,λ), the following is known.

Fact 1. ([1]). E1 ⊂ D and E2 ⊂ D.

In this section, we study more precise relationships among E1, E2 and D.

4.1. The relationship between E1 and E2

We first establish the relationship between E1 and E2 as follows.

Theorem 2. E1 = E2.

Proof. We first show E1 ⊂ E2. Let t0 be a parameter of I and let {ti}i=1,2,...

be a sequence of I conversing to t0. Take a point (x(t0), y(t0)) of E1. Then,
we may assume that a point (x(ti), y(ti)) is taken from the intersection of two
circles C(γ(ti), λ(ti)) ∩ C(γ(t0), λ(t0)) and satisfies

lim
ti→t0

(x(ti), y(ti)) = (x(t0), y(t0)).

Then, we have the following.

||(x(ti), y(ti)) − γ(ti)||2 = (λ(ti))
2 (1)

||(x(ti), y(ti)) − γ(t0)||2 = (λ(t0))
2
. (2)
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For j = 0, 1, 2, . . ., set γ(tj) = (γx(tj), γy(tj)). Subtracting (2) from (1) yields
the following.

−2 (x(ti) (γx(ti) − γx(t0)) + y(ti) (γy(ti) − γy(t0))) + (γx(ti))
2 − (γx(t0))

2

+ (γy(ti))
2 − (γy(t0))

2 (λ(ti))
2 − (λ(t0))

2
.

Since limi→∞ ti = t0 and limti→t0(x(ti), y(ti)) = (x(t0), y(t0)), this equality
implies

− 2
(

x(t0)
dγx

dt
(t0) + y(t0)

dγy

dt
(t0)

)
+ 2

(
γx(t0)

dγx

dt
(t0) + γy(t0)

dγy

dt
(t0)

)

= 2λ(t0)
dλ

dt
(t0).

Hence we have

− 1
λ(t0)

(x(t0) − γx(t0), y(t0) − γy(t0)) ·
(

dγx

dt
(t0),

dγy

dt
(t0)

)
=

dλ

dt
(t0).

Notice that the vector
1

λ(t0)
(x(t0) − γx(t0), y(t0) − γy(t0)) =

1
λ(t0)

((x(t0), y(t0)) − γ(t0))

is a unit vector and
(

dγx

dt (t0),
dγy

dt (t0)
)

= β(t0)μ(t0). Thus the creative condtion
is satisfied at t = t0. Therefore, by the proof of the assertion (1) of Theorem
1, the point (x(t0), y(t0)) must belong to E2.

Conversely, suppose that the circle family C(γ,λ) creates an E2 envelope f : I →
R

2. By the assertion (2) of Theorem 1, f has the following representation.

f(t) = γ(t) + λ(t)ν̃(t).

For a point P ∈ R
2 and a unit vector v ∈ S1, the straight line L(P,v) is

naturally defined as follows.

L(P,v) =
{
(x, y) ∈ R

2 | ((x, y) − P ) · v = 0
}

.

Then, since

df

dt
(t) · ν̃(t) =

(
dγ

dt
(t) +

dλ

dt
(t) · ν̃(t) + λ(t)

dν̃

dt
(t)

)
· ν̃(t) =

dγ

dt
(t) · ν̃(t) +

dλ

dt
(t)

= β(t) (μ(t) · ν̃(t)) +
dλ

dt
(t) = 0,

f is an E2 envelope created by the straight line family

L(f,ν̃) =
{
L(f(t),ν̃(t))

}
t∈R

.

Take one parameter t0 ∈ I and let {ti}i=1,2,... ⊂ I be a sequence converging to
t0. Since for the straight line family L(f,ν̃) the image of E2 envelope is the same
as E1 envelope (see the assertion (c) of Theorem 1 in [6]), for any sufficiently
large i ∈ N there exists a point

(x(ti), y(ti)) ∈ L(f(t0),ν̃(t0)) ∩ L(f(ti),ν̃(ti))
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Figure 6 Existence of (x̃(ti), ỹ(ti)) ∈ C(γ(t0),λ(t0)) ∩
C(γ(ti),λ(ti)) satisfying limi→∞ (x̃(ti), ỹ(ti)) = f(t0)

such that limi→∞ (x(ti), y(ti)) = f(t0). Hence for any sufficiently large i ∈ N

there must exist a point

(x̃(ti), ỹ(ti)) ∈ C(γ(t0),λ(t0)) ∩ C(γ(ti),λ(ti))

such that limi→∞ (x̃(ti), ỹ(ti)) = f(t0) (see Fig. 6).

Therefore, the point f(t0) ∈ R
2 belongs to E1. Since f is an arbitrary enve-

lope created by C(γ,λ) and t0 is an arbitrary parameter in I, it follows that
E2 ⊂ E1. �

4.2. A relationship between E2 and D
In this subsection, we prove the following theorem which asserts that D = E2

if and only if γ : I → R
2 is non-singular, and D contains not only E2 but also

the circle C(γ(t),λ(t)) at a singular point t of γ when γ is singular.

Theorem 3. Let γ : I → R
2, λ : I → R+ be a frontal and a positive func-

tion respectively. Suppose that the circle family C(γ,λ) is creative. Then, the
following holds.

D = E2 ∪
⎛

⎝
⋃

t∈Σ(γ)

C(γ(t),λ(t))

⎞

⎠ .

Here, Σ(γ) stands for the set consisting of singular points of γ : I → R
2.

Proof. Recall that

D =
{

(x, y) ∈ R
2 | ∃t ∈ I such that F (x, y, t) =

∂F

∂t
(x, y, t) = 0

}
.

Let (x0, y0) be a point of D. Since F (x, y, t) = ||(x, y) − γ(t)||2 − |λ(t)|2, it
follows that there exists a t0 ∈ I such that the following (a) and (b) are
satisfied.

(a) ((x0, y0) − γ(t0)) · ((x0, y0) − γ(t0)) − (λ(t0))
2 = 0.
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(b)
d(((x0,y0)−γ(t0))·((x0,y0)−γ(t0))−(λ(t0))

2)
dt = 0.

The condition (a) implies that there exists a unit vector ν1(t0) ∈ S1 such that

(x0, y0) = γ(t0) − λ(t0)ν1(t0).

The condition (b) implies

dγ

dt
(t0) · ((x0, y0) − γ(t0)) − dλ

dt
(t)λ(t0) = 0.

Since dγ
dt (t0) = β(t0)μ(t0), just by substituting, we have the following.

λ(t0)
(

β(t0) (μ(t0) · ν1(t0)) +
dλ

dt
(t0)

)
= 0.

Since λ(t) > 0 for any t ∈ I, it follows

dλ

dt
(t0) = −β(t0) (μ(t0) · ν1(t0)) .

On the other hand, since C(γ,λ) is creative, there must exist a smooth unit
vector field ν̃ : I → S1 along γ : I → R

2 such that

dλ

dt
(t) = −β(t) (μ(t) · ν̃(t))

for any t ∈ I. Suppose that the parameter t0 ∈ I is a regular point of γ. Then,
β(t0) �= 0. Therefore, by the proof of the assertion (1) of Theorem 1, it follows

(x0, y0) ∈ E2.

Suppose that the parameter t0 ∈ I is a singular point of γ. Then, β(t0) = 0.
Thus, for any unit vector v ∈ S1, the following holds.

dλ

dt
(t0) = −β(t0) (μ(t0) · v) .

Hence, at the singular point t0 ∈ I of γ, we may choose any unit vector v ∈ S1

as the unit vector ν1(t0). Therefore, it follows

D0 = C(γ(t),λ(t)),

where D0 =
{
(x, y) ∈ R

2 |F (x, y, t0) = ∂F
∂t (x, y, t0) = 0

}
. �
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