
J. Geom. (2024) 115:2

c© 2023 The Author(s)

0047-2468/24/010001-17
published online December 11, 2023
https://doi.org/10.1007/s00022-023-00699-x Journal of Geometry
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Abstract. In this work, we examine the isoptic surfaces of line segments
in the S2×R and H2×R geometries, which are from the 8 Thurston
geometries. Based on the procedure first described in Csima and Szirmai
(Results Math 78:194-19, 2023), we are able to give the isoptic surface
of any segment implicitly. We rely heavily on the calculations published
in Szirmai (Bul Acad Ştiinţe Repub Mold Mat 2:44–61, 2020; Q J Math
73:477–494, 2022). As a special case, we examine the Thales sphere in
both geometries, which are called Thaloid . In our work we will use the
projective model of S2×R and H2×R described by Molnár (Beitr Algebra
Geom 38:261–288, 1997).
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1. Introduction

Of the Thurston geometries, those with constant curvature (Euclidean E3, hy-
perbolic H3, spherical S3) have been extensively studied, but the other five
geometries, H2×R, S2×R, Nil, ˜SL2R, Sol have been thoroughly studied only
from a differential geometry and topological point of view. However, classical
concepts can be formulated highlighting the beauty and underlying structure
of these geometries, such as: geodesic curves and spheres, equidistant surfaces,
translation curves an spheres, lattices, geodesic and translation triangles and
their surfaces, their interior angle sum, locus of points from a segment sub-
tends a given angle (isoptic surfaces) and similar statements to those known
in constant curvature geometries. See e.g. [19–23,31–35,39–41].
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In this paper among the 8 Thurston geometries (see [28] and [42]) we are
interested in S2×R and H2×R spaces, at the same time. This is primarily due
to the fact that a significant symmetry can be observed in both the calculations
and the results. That is why in the following sections, after introducing the
appropriate notations, we examine the two spaces simultaneously. In Sect. 2,
we will introduce both geometries.

In S2×R and H2×R geometries, we put the question on the agenda of the
locus of the points in space from which a given segment subtends a given angle.
To do this, we need to understand how two points can be connected in these
geometries. We basically have three options for this. The Euclidean segment
imagined in the model of the corresponding geometries is practical and easy
to handle, but has no real geometric importance in some geometries, in S2×R
and H2×R for instance, so we will not deal with it hereafter.

Our second option is the geodesic curve, usually defined as having locally min-
imal arc length between any two (near enough) points. The equation system
of the parametrized geodesic curve g(x(t), y(t), z(t)) can be determined by the
Levy-Civita theory of Riemann geometry. We can assume, that the starting
point of a geodesic curve is the origin because we can transform it into an
arbitrary starting point by an appropriate translation. The above procedure
gives the geodesic curve as the solution of a second-order differential equation.

The third and last option so far is the translation curve, that in the Thurston
spaces, can be introduced in a natural way (see [17,36]) by translations map-
ping each point to any point. Consider a unit vector at the origin. Translations,
postulated at the beginning carry this vector to any point by its tangent map-
ping. If a curve t → (x(t), y(t), z(t)) has just the translated vector as tangent
vector in each point, then the curve is called a translation curve. This assump-
tion leads to a system of first order differential equations, thus translation
curves are simpler than geodesics.

One can ask that is it possible that these curves differ from each other? The
answer is positive generally (excluding some special cases) in Nil, ˜SL2R and
Sol geometries. Moreover, they play an important role and often seem to be
more natural in these geometries, than their geodesic lines (see e.g [26,27]).
In the remaining five Thurston geometries E3, S3, H3, S2×R and H2×R,
the translation and geodesic curves coincide with each other. Furthermore, in
E3, S3 and H3, all three curves are the same and in ˜SL2R, translation curves
looks like Euclidean straight lines in the model, described in [16]. From now on,
when two points are connected, it is done with the corresponding translation
(or geodesic) curve and not with a Euclidean line segment. In Sect. 2, we recall
these curves, determined in [17].

In Sect. 3, we prepare the matrix of the transformation that pulls an arbitrary
point back to the origin of the model and we recall the definition of the isoptic
curves and surfaces described in [8], for which we use triangles. With this
approach, we can avoid problems arising from orientation. Internal angle sum
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for triangles in S2×R and H2×R had been studied in [37]. We can draw from
this study and use the angle calculation method provided there to calculate a
single internal angle. This approach seems generally effective to determine the
implicit equation of the isoptic surface for a segment. We recall the procedure
more precisely in Sect. 3, that have already applied for Nil in [8] and for ˜SL2R
in [5]. We visualize these surfaces in both S2×R and H2×R, using their models
and Thaloids will be also analyzed as a special case.

2. On S2×R and H2×R geometries and their translation
curves

In [18] Molnár has shown that the homogeneous 3-spaces have a unified inter-
pretation in the projective 3-sphere PS3(V 4,V 4, R). In this work, we will use
this projective model of S2×R and H2×R. We will use the Cartesian homoge-
neous coordinate simplex E0(e0),E∞

1 (e1),E∞
2 (e2), E∞

3 (e3), ({ei} ⊂ V4 with
the unit point E(e = e0 + e1 + e2 + e3)) which is distinguished by an origin
E0 and by the ideal points of coordinate axes, respectively. Moreover, y = cx
with 0 < c ∈ R (or c ∈ R \ {0}) defines a point (x) = (y) of the projective
3-sphere PS3 (or that of the projective space P3 where opposite rays (x) and
(−x) are identified). The dual system {(ei)}, ({ei} ⊂ V 4), with eie

j = δj
i

(the Kronecker symbol), describes the simplex planes, especially the plane at
infinity (e0) = E∞

1 E∞
2 E∞

3 , and generally, v = u 1
c defines a plane (u) = (v)

of PS3 (or that of P3). Thus 0 = xu = yv defines the incidence of point
(x) = (y) and plane (u) = (v), as (x)I(u) also denotes it. Thus S2×R can be
visualized in the affine 3-space A3 (so in E3) and the points of H2×R form
an open cone solid, described by the following set:

H2×R =
{
X(x = xiei) ∈ P3 : −(x1)2 + (x2)2 + (x3)2 < 0 < x0, x1

}
(2.1)

In this context Molnár [16] has derived the well-known infinitesimal arc-length
squares invariant under translations at any point as follows

S2×R : (ds)2 =
(dx)2 + (dy)2 + (dz)2

x2 + y2 + z2

H2×R : (ds)2 =
1

(x2 − y2 − z2)2
{
(x2 + y2 + z2)(dx)2

+ 2x(dx)(−2y(dy) − 2z(dz)) + (x2 + y2 − z2)(dy)2

+2yz2(dy)(dz) + (x2 − y2 + z2)(dz)2
}

(2.2)

In both geometries, we introduce a new coordinate system in order to write
both the arc-length squares and the translation curves more simply. We intro-
duce the polar parametrization of S2×R and the cylindrical parametrization
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of H2×R in V 4

S2×R : x0 = 1, x1 = et cos θ cos φ, x2 = et cos θ sinφ, x3 = et sin θ

− π < φ ≤ π, −π

2
≤ θ ≤ π

2
, t ∈ R

(2.3)

H2×R : x0 = 1, x1 = et cosh θ cosh φ, x2 = et cosh θ sinhφ, x3 = et sinh θ

− ∞ < φ < ∞, −∞ < θ < ∞, t ∈ R

(2.4)

where (θ, φ) and are the polar coordinates of S2 and hypercyclic coordinates of
H2, furthermore t is the real component, the so-called fibre coordinate in the
direct product S2×R and H2×R. With x = x1

x0
, y = x2

x0
, z = x3

x0
, setting t to

be 0 describes the unit sphere in (2.3), and the x > 0 part of the two-sheeted
hyperboloid x2 − y2 − z2 = 1 in (2.4). This last surface can be called the unit
hyperboloid of H2×R. In both geometries t = ∞ would be the ideal plane
(e0) at infinity, t = −∞ would be the origin (e0) in limit in E3 model. Central
similarity with factor ea means the translation by R-component a, commuting
with any isometry of S2 and H2.

Then with the new coordinates, the arc-length square is more simple.

S2×R : (ds)2 = (dt)2 + (dθ)2 + cos2(θ)(dφ)2

H2×R : (ds)2 = (dt)2 + (dr)2 + cosh2(r)(dφ)2
(2.5)

We can assume that the starting point of a translation curve in both geometries
is the (1, 1, 0, 0) point, as it is the origin of the coordinate systems, described
above. Hereafter, let the functions S(t) and C(t) be sin(t) and cos(t) in S2×R,
sinh(t) and cosh(t) in H2×R. Then the translation curve by [17] can be given:

x(τ) = eτ sin(v)C(τ cos(v)),

y(τ) = eτ sin(v)S(τ cos(v)) cos(u),

z(τ) = eτ sin(v)S(τ cos(v)) sin(u),

−π < u ≤ π, −π

2
≤ v ≤ π

2
.

(2.6)

In the parametric equation of the translation curve above τ denotes the arc-
length parameter; v denotes the angle, formed by the starting direction vector
of the curve and the tangent plane at the origin A1 = (1, 1, 0, 0) of the unit
sphere (x2 + y2 + z2 = 1) for S2 ×R and the tangent plane at A1 of unit
hyperboloid (x2 − y2 − z2 = 1) for H2×R; and u denotes the angle, formed by
the y axis and the projection of this starting direction onto the tangent plane,
described above (see the left sides of Figs. 1 and 2).

Remark 2.1. 1. It is easy to see, that the translation curve lies in a plane
(see the right sides of Figs. 1 and 2) with equation:

sin(u)y − cos(u)z = 0 (2.7)



Vol. 115 (2024) Isoptic surfaces of segments in S2×R and H2×R geometries Page 5 of 17 2

Figure 1 Translation curve in S2×R

Figure 2 Translation curve in H2×R

2. The tangent vector of (2.6) at the origin is provided by replacing 0 for τ
in the derivative by τ.

t = (sin(v), cos(v) cos(u), cos(v) sin(u)) (2.8)

Definition 2.2. The distance d(P1, P2) between the points P1 and P2 is defined
by the arc length of the above (see (2.6)) translation curve from P1 to P2.

Definition 2.3. The sphere of radius R > 0 with center at the origin, (de-
noted by SO(R)), with the usual longitude and altitude parameters u and v,
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respectively by (2.6), is specified by the following equations:

SO(R) :

⎧
⎨

⎩

x(τ) = eR sin vC(R cos v),
y(τ) = eR sin vS(R cos v) cos(u),
z(τ) = eR sin vS(R cos v) sin(u).

(2.9)

Definition 2.4. The set of points Q satisfying the condition 0 ≤ d(O,Q) ≤ R
is called ball in the S2×R and H2×R spaces with center O and radius R,
denoted by BO(R).

The parametrization in (2.9) allows us, to create the implicit equation of
SO(R):

log2(x2 ± (y2 + z2))
4

+ arcC2

(
x

x2 ± (y2 + z2)

)
= R2, (2.10)

where ± and arcC(x) is + and arccos(x) for S2 ×R, − and arccosh(x) for
H2×R.

3. Isoptic surface

3.1. Transformation matrix

In the following, we describe a series of transformations from the isometry
group of S2×R and H2×R such that their composition translate an arbitrary
point P (1, x, y, z) back to the origin of the model, i.e. E0(1, 1, 0, 0) in both
geometries. This is important for us because, as can be seen from the arc-
length square formula (see (2.5)), at this point the angles appear in their real
size, and we also chose this point as the starting point of each translation
curve.

First, we perform a so called fibre translation T , that shifts the point onto the
unit sphere in S2×R and onto the unit hyperboloid in H2×R. We remind the
dear reader that ± is + for S2×R and − for H2×R.

T = diag

{

1,
1

√
x2 ± (y2 + z2)

,
1

√
x2 ± (y2 + z2)

,
1

√
x2 ± (y2 + z2)

}

(3.1)

P T =

(

1,
x

√
x2 ± (y2 + z2)

,
y

√
x2 ± (y2 + z2)

,
z

√
x2 ± (y2 + z2)

)

(3.2)

Then we rotate around the x axis so that the last coordinate of the image is
zero:

Rx =

⎛

⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 y√

y2+z2
− z√

y2+z2

0 0 z√
y2+z2

y√
y2+z2

⎞

⎟
⎟
⎟
⎠

(3.3)
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P T Rx =

(

1,
x

√
x2 ± (y2 + z2)

,

√
y2 + z2

√
x2 ± (y2 + z2)

, 0

)

(3.4)

It can be verified that the plane of the translation curve drawn from E0 to P
changes under Rx and transforms into the plane z = 0 (see (2.7)). Then we
rotate it around the z axis so that the second to last coordinate of the image is
also zero. During this transformation, the plane of the translation curve does
not change.

Rz =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 x√
x2±(y2+z2)

v −
√

y2+z2√
x2±(y2+z2)

0

0 ±
√

y2+z2√
x2±(y2+z2)

x√
x2±(y2+z2)

0

0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3.5)

P T RxRz = (1, 1, 0, 0) (3.6)

Finally, to make the plane of the transformed and the original translation curve
coincide, we apply the inverse of the Rx transformation.
T = T RxRzR−1

x

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0
x

x2 ± (y2 + z2)
− y

x2 ± (y2 + z2)
− z

x2 ± (y2 + z2)

0 ± y

x2 ± (y2 + z2)

xy2 + z2
√

x2 ± (y2 + z2)

(x2 ± (y2 + z2))(y2 + z2)

xyz − yz2
√

x2 ± (y2 + z2)

(x2 ± (y2 + z2))(y2 + z2)

0 ± z

x2 ± (y2 + z2)

xyz − yz2
√

x2 ± (y2 + z2)

(x2 ± (y2 + z2))(y2 + z2)

xz2 + y2
√

x2 ± (y2 + z2)

(x2 ± (y2 + z2))(y2 + z2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.7)

3.2. Isoptic surfaces

It is well known that in the Euclidean plane the locus of points from a segment
subtends a given angle α (0 < α < π) is the union of two arcs except for the
endpoints with the segment as common chord. If this α is equal to π

2 then
we get the Thales circle. Replacing the segment to another general curve, we
obtain the Euclidean definition of isoptic curve:

Definition 3.1. ([43]). The locus of the intersection of tangents to a curve meet-
ing at a constant angle α (0 < α < π) is the α – isoptic of the given curve.
The isoptic curve with right angle is called orthoptic curve.

Remark 3.2. Sometimes we consider the α – and π − α – isoptics together.
Thus, in the case of the segment, we get two circles with the segment as a
common chord (endpoints of the segment are excluded). Hereafter, we call
them α – isoptic circles.

Although the name “isoptic curve” was suggested by Taylor in 1884 ([42]), ref-
erence to former results can be found in [43]. In the obscure history of isoptic
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curves, we can find the names of la Hire (cycloids 1704) and Chasles (conics
and epitrochoids 1837) among the contributors of the subject. A very inter-
esting table of isoptic and orthoptic curves is introduced in [43], unfortunately
without any exact reference of its source. However, recent works are available
on the topic, which shows its timeliness. In [1] and [2], the Euclidean isoptic
curves of closed strictly convex curves are studied using their support function.
Papers [11,45,46] deal with Euclidean curves having a circle or an ellipse for
an isoptic curve. Further curves appearing as isoptic curves are well studied in
Euclidean plane geometry E2, see e.g. [12,44]. Isoptic curves of conic sections
have been studied in [9] and [29]. There are results for Bézier curves by Kunkli
et al. as well, see [10]. Many papers focus on the properties of isoptics, e.g.
[13,14], and the references therein. There are some generalizations of the isop-
tics as well e.g. equioptic curves in [25] by Odehnal or secantopics in [24,30]
by Skrzypiec.

We can extend the very first question to the space: “What is the locus of points
where a given segment subtends a given angle?” Or a question equivalent to
the former: “For the given spatial points A and B, what is the locus of the
points P for which the internal angle at P of the triangle ABP� is a given
angle?” We use this to define the α – isoptic surface of a Euclidean spatial
segment.

Definition 3.3. The α – isoptic surface of a Euclidean spatial segment A1A2 is
the locus of points P for which the internal angle at P in the triangle, formed
by A1, A2 and P is α. If α is the right angle, then it is called the Thaloid of
A1A2.

It is easy to see in the Euclidean space that:

Theorem 3.4. The locus of points in the Euclidean space from where a given
segment subtends a given angle α (0 < α < π) or π − α is a self-intersecting
torus obtained by rotating the α – isoptic circles drawn in any plane containing
the segment around the line of the segment. �

Remark 3.5. 1. The torus in the above theorem contains both the isoptic
surface for the given angle and the supplementary angle. In this case, we
can easily separate the α – and π − α – isoptic surfaces along the self-
intersection. Specifically, the orthoptic surface is a sphere whose diameter
is the segment. We can call this the Thaloid of the segment.

2. There is no point in examining the isoptic surface defined in the above
way for other spatial curves, because if the curve is not of constant 0
curvature, then there is an external point from which the curve and the
point cannot be fitted into a plane. In this case, the above definition needs
to be generalized.

For further isoptic surfaces in Euclidean geometry, see [6,7], where we extend
the definition of isoptic surfaces to other spatial objects. The notion of isoptic
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curve can be extended to the other planes of constant curvature (hyperbolic
plane H2 and spherical plane S2). We studied these questions in [3] and [4].

Definition 3.6. The S2×R or H2×R α – isoptic surface of a segment A1A2 is
the locus of points P for which the internal angle at P in the triangle, formed
by A1, A2 and P is α. If α is the right angle, then it is called the Thaloid of
A1A2.

We emphasize here that the segment itself does not appear in our calculations,
we only deal with the endpoints. We can assume by the homogeneity of the
geometries that one of its endpoints coincide with the origin A1 = E0 =
(1, 1, 0, 0) and the other is A2 = (1, a, b, c). Considering a point P = (1, x, y, z),
we can determine the angle A1PA2∠ along the procedure described below.

First, we apply TP to all three points (see (3.7)). This transformation preserves
the angle A1PA2∠ and pulls back P to the origin, hence the angle in question
seems in real size.

TP (P ) = (1, 1, 0, 0);

TP (A1) =
(

1,
x

x2 ± (y2 + z2)
,− y

x2 ± (y2 + z2)
,− z

x2 ± (y2 + z2)

)
;

TP (A2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
ax ± (by + cz)
x2 ± (y2 + z2)

zy(cx − az) − y2(ay − bx) + z(bz − cy)
√

x2 ± (y2 + z2)
(x2 ± (y2 + z2))(y2 + z2)

z2(cx − az) − yz(ay − bx) − y(bz − cy)
√

x2 ± (y2 + z2)
(x2 ± (y2 + z2))(y2 + z2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

(3.8)

To determine the internal angle in A1A2P� at P , we need the tangent vectors
of the translation curves running into the points TP (A1) and TP (A2) from
TP (P ) = E0. It is not necessary to determine the exact value of the parameters
u, v, τ , it is enough to evaluate the vector t (see (2.8)).

Lemma 3.7. Let (1, x, y, z) (x, y, z ∈ R and x2+y2+z2 > 0 in S2×R; x2−y2−
z2 > 0, x > 0 in H2×R) be the homogeneous coordinates of a point P ∈ S2×R
or P ∈ H2×R. Then the translation curve, drawn to P from E0 = (1, 1, 0, 0)
has the following tangent:

τ · tP =

⎛

⎜
⎜
⎜
⎜
⎝

1
2

ln(x2 ± (y2 + z2)),

y arcC

(
x

√
x2 ± (y2 + z2)

)

√
y2 + z2

,
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z arcC

(
x

√
x2 ± (y2 + z2)

)

√
y2 + z2

⎞

⎟
⎟
⎟
⎟
⎠

(3.9)

where ± and arcC(x) is + and arccos(x) for S2 ×R, − and arccosh(x) for
H2×R, and τ is the distance between P and E0.

Proof. We need to express the tangent vector (2.8) by using (2.6).:

x2(τ) ± (y2(τ) + z2(τ)) = e2τ sin(v) ⇒ τ sin(v) =
1

2
ln(x2 ± (y2 + z2)),

C(τ cos(v)) =
x(τ)

√
x2(τ) ± (y2(τ) + z2(τ))

⇒ τ cos(v) = arcC

(
x

√
x2 ± (y2 + z2)

)

,

√
y2(τ) + z2(τ) = eτ sin(v)S(τ cos(v)) ⇒ y

√
y2 + z2

= cos(u) and
z

√
y2 + z2

= sin(u).

�

Applying the above tangent formula to the points TP (A1) and TP (A2), we
obtain the vectors, forming the interior angle at P. Finally, we are able to de-
termine the angle, using the usual angle formula, derived from the dot product
of two vectors. Due to the length of the formula, the result is only presented
in its seriously simplified form (using appropriate dot and cross products and
the spherical/hyperbolic law of cosine for sides), introducing some notations
in the following theorem.

Theorem 3.8. Let A1 = (1, 1, 0, 0) and A2 = (1, a, b, c) be given points in S2×R
or H2×R, and α be a given angle. If a1 = (1, 0, 0); a2 = (a, b, c); p = (x, y, z);
the projected image of A1, A2 and P onto the unit surface (sphere in S2×R
and hyperboloid in H2×R) of the geometry along the corresponding fibre lines
are A′

1 = A1, A′
2 and P ′; d1 and d2 are the distances of P ′ to A′

1 and to A′
2

and γ is the internal angle at P ′ in A′
1A

′
2P

′
� (see Fig. 3 in case of S2×R);

then the α – isoptic surface of the A1A2 segment has the equation

cos(α) =
d1d2 cos(γ) + ln |a1|

|p| · ln |a2|
|p|√(

ln2 |a1|
|p| + d21

) (
ln2 |a2|

|p| + d22

) .� (3.10)

Remark 3.9. If also A2 lies on the unit surface of the geometry, i.e. |a2| = 1,
then restricting P to the unit surface (|p| = 1) will result in S2 or H2 geometry
and the cos(α) = cos(γ) equation. As it has been mentioned before, cos(γ) was
the result of a cosine theorem so that it can be computed just from the sine
and cosine (hyperbolic) functions of distances d1, d2 and d0 = dist(A1;A2).
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Figure 3 Explanatory figure for theorem 3.8 in S2×R with
A1(1, 1, 0, 0), A2(1, 2, 3, 1) and P (1, 1, 1, 2)

Figure 4 Isoptic surfaces of the A1(1, 1, 0, 0) and
A2(1, 4, 1, 2) segment in S2 × R geometry with α = 80◦

(left) and α = 120◦ (right)
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Figure 5 Isoptic surfaces of the A1(1, 1, 0, 0) and
A2(1, 4, 1, 2) segment in H2 × R geometry with α = 75◦

(left) and α = 120◦ (right)

Let us examine the special case when the endpoints of the segment are situated
on the x axis, i.e. A1 = (1, 1, 0, 0) and A2 = (1, a, 0, 0). In this case, the
segment is along a fibre line and it looks like an Euclidean segment in the
model. Applying TP to A1 and A2 where P = (1, x, y, z), we get that:

TP (A1) =
(

1,
x

x2 ± (y2 + z2)
,− y

x2 ± (y2 + z2)
,− z

x2 ± (y2 + z2)

)
,

TP (A2) =
(

1,
ax

x2 ± (y2 + z2)
,− ay

x2 ± (y2 + z2)
,− az

x2 ± (y2 + z2)

) (3.11)

According to Lemma 3.7, we can determine the t1 and t2 tangents of the
translation curves, drawn to TP (A1) and TP (A2)

t1 =

⎛

⎜
⎜
⎜
⎜
⎝

ln
(

1
x2 ± (y2 + z2)

)

2
,−

y arcC

(
x

√
x2 ± (y2 + z2)

)

√
y2 + z2

,

−
z arcC

(
x

√
x2 ± (y2 + z2)

)

√
y2 + z2

⎞

⎟
⎟
⎟
⎟
⎠

,
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t2 =

⎛

⎜
⎜
⎜
⎜
⎝

ln
(

a2

x2 ± (y2 + z2)

)

2
,−

y arcC

(
x

√
x2 ± (y2 + z2)

)

√
y2 + z2

,

−
z arcC

(
x

√
x2 ± (y2 + z2)

)

√
y2 + z2

⎞

⎟
⎟
⎟
⎟
⎠

(3.12)

Since we are interested in the Thaloid, where the angle of t1 and t2 is π
2 , we

consider their dot product to be zero:

〈t1, t2〉 =
1
4

ln
(

1
x2 ± (y2 + z2)

)
ln

(
a2

x2 ± (y2 + z2)

)

+ arcC2

(
x

√
x2 ± (y2 + z2)

)

= 0
(3.13)

To better understand the nature of the above implicit surface, let us apply
a translation which pulls back the midpoint of A1A2 to A1. The translation
curve to A2 has a very simple parametrization in this case: (et, 0, 0), where
t ∈ (0, ln(a)). Then the coordinates of the midpoint is F = (1,

√
a, 0, 0). The

appropriate fibre translation, that maps A1 to F is T = diag {1,
√

a,
√

a,
√

a} ,
so that x = x′√a, y = y′√a and z = z′√a. Then (3.13) has a different form:

1
4

ln
(
a((x′)2 ± ((y′)2 + (z′)2))

)
ln

(
(x′)2 ± ((y′)2 + (z′)2)

a

)

+ arcC2

(
x′

√
(x′)2 ± ((y′)2 + (z′)2)

)

= 0 ⇐⇒

1
4

ln2
(
(x′)2 ± ((y′)2 + (z′)2)

)
+ arcC2

(
x′

√
(x′)2 ± ((y′)2 + (z′)2)

)

=
1
4

ln2(a)

(3.14)

Summarizing the results above, we get that:

Lemma 3.10. Let A1 = (1, 1, 0, 0) and A2 = (1, a, 0, 0) (a ∈ R

+) be given points
in S2×R or H2×R. Then the Thaloid of the A1A2 segment is a sphere with
centre C = (1,

√
a, 0, 0) and radius r = ln(

√
a). �
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Figure 6 Thaloid of the A1(1, 1, 0, 0) and A2(1, 5, 0, 0) seg-
ment in S2×R (left) and H2×R (right) geometries
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