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The automorphism group of NU(3, q2)

Federico Romaniello and Valentino Smaldore

Abstract. Let H(n, q2) be a non-degenerate Hermitian variety of PG(n, q2),
n ≥ 2. Let NU(n + 1, q2) be the graph whose vertices are the points of
PG(n, q2) \H(n, q2) and two vertices u, v are adjacent if the line joining
u and v is tangent to H(n, q2). Then NU(n + 1, q2) is a strongly regular
graph. In this paper we show that the automorphism group of the graph
NU(3, q2) is isomorphic either to PΓU(3, q), the automorphism group of
the projective unitary group PGU(3, q), or to S3 �S4, according as q �= 2,
or q = 2.

1. Introduction

A strongly regular graph with parameters (v, k, λ, μ) is a graph with v vertices
where each vertex is incident with k edges, any two adjacent vertices have
λ common neighbours, and any two non-adjacent vertices have μ common
neighbours. Strongly regular graphs were introduced by R. C. Bose in [1] in
1963, and ever since they have intensively been investigated. In particular, the
eigenvalues of the adjacency matrix of a strongly regular are known; see [2]:

a strongly regular graph G with parameters (v, k, λ, μ) has exactly three eigen-
values: k, θ1 and θ2 of multiplicity, respectively, 1, m1 and m2, where:

θ1 =
1
2
[
(λ − μ) +

√
(λ − μ)2 + 4(k − μ)

]
,

θ2 =
1
2
[
(λ − μ) −

√
(λ − μ)2 + 4(k − μ)

]
,

m1 =
1
2

[
(v − 1) − 2k − (v − 1)(λ − μ)

√
(λ − μ)2 + 4(k − μ)

]
,

m2 =
1
2

[
(v − 1) +

2k − (v − 1)(λ − μ)
√

(λ − μ)2 + 4(k − μ)

]
.
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The spectrum of a strongly regular graph is the triple (k, θm1
1 , θm2

2 ). Therefore,
two strongly regular graphs with the same parameters are cospectral, that is,
they have the same spectrum. Two isomorphic graphs are always cospectral,
but the converse is not always true. Even in the family of strongly regular
graphs there are examples with same parameters, but not isomorphic.

Several strongly regular graphs derive from finite polar spaces, in particular
from collinearity graphs or incidence graphs. The tangent graph of a polar
space P embedded in a projective space is defined to be the graph in which
the vertices are the non-isotropic points with respect to the polarity defining
P, and two vertices are adjacent if and only if they lie on the same tangent
line to P. In [2] it is proved that tangent graphs are strongly regular.

The tangent graph NU(n + 1, q2) of the classical Hermitian polar space as-
sociated to a non-degenerate Hermitian variety in PG(n, q2) was studied in
[5] and [2]. Moreover, F. Ihringer, F. Pavese and V. Smaldore in [8] pointed
out that NU(n + 1, q2) is not uniquely determined by its spectrum for n �= 3.
In particular, for n = 2, they constructed a strongly regular graph that is
cospectral but non isomorphic to NU(n + 1, q2). The construction relied on
the existence of non-classical unitals embedded in PG(2, q2) for q > 2. The
goal in this paper is to determine the automorphism group of NU(3, q2).

Theorem 1.1. Let G2 = Aut(NU(3, q2)) be the automorphism group of the
graph NU(3, q2):

1. if q �= 2, G2
∼= PΓU(3, q), the semilinear collineation group stabilizing

the Hermitian variety H(2, q2);
2. if q = 2, G2

∼= S3 � S4
∼= S4

3 � S4.

2. Preliminary results

2.1. Hermitian varieties and classical unitals

In design theory, an unital U is defined as a 2 − (a3 + 1, a + 1, 1) block design,
a ≥ 3, i.e. a set of a3+1 points arranged into blocks of size a+1, such that each
pair of distinct points is contained in exactly one block. There exist unitals
which are embedded in a projective plane of order a2. The incidence structure
made of points and secants of the Hermitian curve H(2, q2) in PG(2, q2) is
called the classical unital.

Our notation is standard, see [7]. In particular, PG(n, q2) stands for the
n-dimensional projective space over the finite field Fq2 , with homogeneous
projective coordinates (X0,X1, . . . , Xn). The unitary polarity of PG(n, q2)
is induced by the sesquilinear non-degenerate Hermitian form on the vector
space V (n + 1, q2). A non-degenerate Hermitian variety H(n, q2) consists of
the isotropic points of a unitary polarity. A non-degenerate Hermitian variety
H(n, q2) has (qn+1+(−1)n)(qn−(−1)n)

q2−1 points. For n = 2, a canonical form of the
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Hermitian curve H(2, q2) is

Xq+1
0 + Xq+1

1 + Xq+1
2 = 0,

and the semilinear group stabilizing H(2, q2) is the projective unitary group
PΓU(3, q), acting on the points of the curve as 2-transitive permutation group,
as it was shown in [7].

The Hermitian curve H(2, q2) has q3 +1 points and does not contain isotropic
lines, i.e. line whose all points are isotropic. Lines of PG(2, q2) are called either
tangent or secant when they meet the curve in 1 or q + 1 points respectively.
In design theory terminology, blocks of the classical unital are the sets of
q +1 collinear points in the unital. The automorphism group of the Hermitian
unital acts on the points (as well a on the tangents) as PΓU(3, q) in its unique
2-transitive permutation representation.

2.2. Background on the graph NU(n + 1, q2), n ≥ 2

In this paper H = H(n, q2) denotes a non-degenerate Hermitian variety in
PG(n, q2) with n ≥ 2. Then NU(n + 1, q2) is the strongly regular with vertex
set PG(n, q2) \ H where two vertices are adjacent if they lie on the same
tangent line to H. Set ε = (−1)n+1 and r = q2 − q − 1. Then NU(n + 1, q2)
has the following parameters:

v =
qn(qn+1 − ε)

q + 1
k = (qn + ε)(qn−1 − ε)
λ = q2n−3(q + 1) − εqn−1(q − 1) − 2
μ = qn−2(q + 1)(qn−1 − ε).

Furthermore, its complementary graph NU(n + 1, q2) is also strongly regular
and has parameters:

v′ =
qn(qn+1 − ε)

q + 1

k′ =
qn−1r(qn + ε)

q + 1
λ′ = μ′ + εqn−2r − εqn−1

μ′ =
qn−1r(qn−2r + ε)

q + 1
.

For further details and information about this graph see [2]. The following
lemma is a straightforward consequence of the construction of NU(n + 1, q2)
since the group PΓU(n + 1, q2) is transitive on the external points of H(n, q2)
and it preserves the adjacency properties of the graph.

Lemma 2.1. The subgroup PΓU(n+1, q) of PΓL(n+1, q2) is an automorphism
group of NU(n + 1, q2).
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In the planar case, the graph NU(3, q2) arises from a Hermitian curve H(2, q2).
This curve has q3 + 1 isotropic points, so that the vertex set of NU(3, q2) has
size q4 + q2 + 1 − (q3 + 1) = q4 − q3 + q2, while the other parameters are
k = (q2 − 1)(q + 1), λ = 2(q2 − 1) and μ = (q + 1)2 .

Lemma 2.2. If q �= 2, Aut(NU(3, q2)) sends q2 vertices on a tangent line in
other q2 vertices on a tangent line.

Proof. The q2 non-isotropic points on a tangent line, form a maximal clique on
the graph NU(3, q2). From [3] we know that the maximal cliques of NU(3, q2)
are given by either q2 points on a tangent line, or q +2 points on two different
lines. Since the automorphism group of a graph sends maximal cliques in max-
imal cliques then, if q �= 2, i.e. q2 �= q+2, the image of a set of q2 non-isotropic
aligned points consists on other q2 non-isotropic aligned points. �

3. The action of Gn on isotropic points

To understand how the automorphism group of NU(n + 1, q2) acts on the
points of H(2, q2), it is useful to introduce another graph Γn, whose vertex set
consists of all points in PG(n, q2), and with the same vertex-edge incidence
relation of NU(n+1, q2), namely two vertices are adjacent if the points are on
the same tangent. Γn has q2n−1

q2−1 vertices, and its automorphism group has two

orbits of vertices, one is the orbit O1 consisting of the v = qn(qn+1−ε)
q+1 vertices of

NU(n+1, q2), each vertex of this type having k = (qn+ε)(qn−1−ε) neighbours
in NU(n+1, q2) and others in H(n, q2), and the orbit O2 comprises the points
of the Hermitian variety H(n, q2), each vertex of this type having neighbours
in NU(n + 1, q2) but no neighbour in H(n, q2). In other words, we added an
extra point, the (q2+1)-th, to each of the maximal cliques arising from tangent
lines. In fact, since it is possible to prove that PΓU(n + 1, q) ≤ Aut(Γn) with
the same arguments of Lemma 2.1, the automorphism group of Γn is transitive
on both O1 and O2, see [9]. However, it should be observed that the resulting
graph is not strongly regular anymore.

Lemma 3.1. If q �= 2, Aut(Γ2) ∼= G2.

Proof. From Lemma 2.2, maximal cliques corresponding to a tangent are fixed
setwise under the action of G2. The projection

π :

{
Aut(Γ2) → G2

λ �→ λ = λ
∣
∣
NU(3,q2)

.

is surjective since every automorphism λ in G2 lifts to an element λ ∈ Aut(Γ2)
by extending the action in a natural way to the isotropic points (i.e. by con-
sidering the image of the tangent lines under the action of λ and mapping the
corresponding tangency points into each other).
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To prove the injectivity of the projection π, consider λ ∈ Aut(Γ2) such that
π(λ) is the identity on NU(3, q2). When all the points of NU(3, q2) are fixed,
the tangency point is fixed as well, since it is adjacent in Γ2 to each of the q2

non-isotropic points on a tangent.

Therefore λ is the identity on Γ2, thus the kernel of the projection π is trivial,
and π is a monomorphism. �

Lemma 3.2. The automorphism group G2 of NU(3, q2), q �= 2, acts
2-transitively on tangents lines.

Proof. Since the action of PΓU(3, q) is 2-transitive on the set of isotropic points
of the Hermitian curve, the assertion follows from Lemma 2.1 and Lemma 3.1
taking into account the fact that every isotropic point is the tangency point
of a unique tangent to H(2, q2). �

Lemma 3.3. G2 does not act 3-transitively on the set of tangents of NU(3, q2).

Proof. In PG(2, q2) let us consider the following two different configurations
of 3-tangent lines: three concurrent tangents or three tangents which intersect
pairwise in three points P1, P2, P3 on a self-polar triangle.

In the graph NU(3, q2) the former set corresponds to three maximal cliques
intersecting in their common vertex, whereas in the latter it corresponds to
three maximal cliques intersecting pairwise in three different vertices. It is
clear that any automorphism of the graph cannot map the former set to the
latter. �

4. Proof of Theorem 1.1

4.1. The case q > 2

From now on, assume that q > 2. Let M be the minimal normal subgroup
of G2 (it is unique by the 2-transitivity of G2). Observe that M cannot be
elementary abelian since its order is not a power of a prime (as it contains
PΓU(3, q) as its subgroup), so M must be a simple group.

We show that among the finite simple groups which are minimal normal sub-
groups of 2-transitive groups, only a few can actually occur in our case. For
this purpose we refer to Cameron’s list [4] reported in Table 1 and to [6] and
[10] for the details about standard group theory arguments.

The Alternating Group Ad is ruled out by Lemma 3.3, as it acts 3-transitively
on the sets of tangents.

It is easily seen that G2 is not any of the sporadic groups in Table 1 since their
degree is different from q3 + 1.
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Table 1 The simple groups M which can occur as minimal
normal subgroups of 2-transitive groups of degree d

M Degree Remarks

Ad d d ≥ 5
PSL(d, u) ud−1

u−1 d ≥ 2
PSU(3, u) u3 + 1 u > 2
Sz(u) u2 + 1 u = 22a+1 > 2
Ree(u) u3 + 1 u = 32a+1 > 3
PSp(2d, 2) 22d−1 + 2d−1 d > 2
PSp(2d, 2) 22d−1 − 2d−1 d > 2
PSL(2, 11) 11
PSL(2, 8) 28
A7 15
M11 11
M11 12
M12 12
M22 22
M23 23
M24 24
HS 176
Co3 276

Moreover, for the same reason, PSL(d, u), d > 2 has also to be excluded by
ud−1
u−1 �= q3 + 1. In fact, if ud−1

u−1 = q3 + 1 were true we would have

ud−1 + ud−2 + · · · + u = q3.

Observe that u and q must be powers of the same prime p, and this would lead
to a contradiction because the right side of the equation is still a power of p
whereas

ud−1 + ud−2 + · · · + u = u(ud−2 + ud−3 + · · · + 1) �= pk,

for any k ∈ Z. Finally, when d = 2, a PSL(2, u) is not a subgroup of a
PSU(3, q), and this dismiss PSL(2, 8).

Before analysing the remaining candidates, take a normal subgroup M of G2.
Then G2 acts on M in its natural way:

Φg :

{
M → M

m �→ mg := g−1mg,

for all g ∈ G2.

Lemma 4.1. Φg = id ⇔ g = 1

Proof. It is enough to show that Φg = id ⇒ g = 1. From Φg = id it follows g ∈
CG2(M) where CG2(M) is the centraliser of G2 in M . Suppose by contradiction
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that CG2(M) is not trivial. Then it must be primitive since M is 2-transitive
(see [6], Theorem 4.1B). Let t be a tangent line, and consider c ∈ CG2(M).
Then, there exists α ∈ G2 which fixes only t. In our case this implies that t is
also fixed by c, that is,

c(α(t)) = c(t), α(c(t)) = c(α(t)) = c(t).

Therefore, every tangent line is fixed by c, and this implies that c fixes ev-
ery point as tangent lines are the maximal cliques, so CG2(M) is trivial, a
contradiction. �

Lemma 4.1 shows that G2 is a subgroup of Aut(M).

Sz(u), Ree(u), PSp(2d, 2) cannot be the minimal normal subgroup of G2 as
their automorphism group does not contain PΓU(3, q), we refer the reader to
[10] for all the details.

Our discussion on the groups in Table 1 together with lemma 4.1 yield that
M = PSU(3, q). Since G2 is isomorphic to a subgroup of Aut(M) ∼= PΓU(3, q)
(see [10], section 3.6.3), it follows from Lemma 2.1 that G2

∼= PΓU(3, q).

4.2. The case q = 2

In the smallest case q = 2, consider the Hermitian curve H(2, 4) with q3 +
1 = 9 isotropic points. The graph NU(3, 4) has q4 + q2 + 1 − q3 + 1 = 12
vertices. Through an external point P ∈ PG(2, 4) \ H(2, 4) there are q +
1 = 3 tangent lines, and each line is incident with q2 − 1 = 3 non-isotropic
points other than P . Hence the graph is 9-regular. Now let P and Q be two
non-adjacent vertices, then PQ is a (q + 1)-secant line. Through P there are
q + 1 tangent lines, and the same number through Q, and they meet each
other in (q + 1)2 other common neighbours, i.e. μ = 9. Now let P and Q
be two adjacent vertices. Then PQ is tangent to H at T . On PQ there are
q2 − 2 non-isotropic points other than P and Q, so that they have at least
q2 − 2 common neighbours. Moreover, through P there are q tangents other
than PQ, and the same number through Q, and they meet each other in q2

other common neighbours, i.e. λ = 6. The complementary graph NU(3, 4) has
parameters (v′, k′, λ′, μ′) = (12, 2, 1, 0). Therefore it is a trivial strongly regular
graph with four connected components isomorphic to the complete graph K3.
Since Aut(NU(3, 4)) = Aut(NU(3, 4)), it is enough to find the automorphism
group of the complementary graph. Observe that Aut(NU(3, 4)) is the wreath
product of four copies of the automorphism group of K3, which is the dihedral
group D3

∼= S3, by the Symmetric group of degree 4 acting as a permutation
group on the four connected components:

G2 = Aut(NU(3, 4)) ∼= S3 � S4
∼= S4

3 � S4.

In particular, |G2| = 31104. It should be noted that in the graph Γ2 we make
distinction between the two idempotent kinds of maximal cliques, whether
we add or do not the fifth point on the Hermitian curve H(2, 4), i.e. G2 �

Aut(Γ2) ∼= PΓU(3, 2).
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5. Conclusion

To prove our main theorem, we used the strong hypothesis of the 2-transitivity
of the automorphism group and the classification of finite simple groups. When
the dimension n increases, this fundamental condition is no longer satisfied.
With a computer aided search we noted that PΓU(n + 1, q) may still be the
automorphism group of the graph NU(n+1, q2), and this will be investigated
in the future.

Moreover, it is known that cospectral strongly regular graphs arising from non-
classical unitals are not always isomorphic to NU(3, q2). It would be interesting
to determine their automorphism groups.
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