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Finsler metrics and semi-symmetric
compatible linear connections

Csaba Vincze and Márk Oláh

Abstract. Finsler metrics are direct generalizations of Riemannian metrics
such that the quadratic Riemannian indicatrices in the tangent spaces of
a manifold are replaced by more general convex bodies as unit spheres.
A linear connection on the base manifold is called compatible with the
Finsler metric if the induced parallel transports preserve the Finslerian
length of tangent vectors. Finsler manifolds admitting compatible lin-
ear connections are called generalized Berwald manifolds Wagner (Dokl
Acad Sci USSR (N.S.) 39:3–5, 1943). Compatible linear connections are
the solutions of the so-called compatibility equations containing the com-
ponents of the torsion tensor as unknown quantities. Although there are
some theoretical results for the solvability of the compatibility equations
(monochromatic Finsler metrics Bartelmeß and Matveev (J Diff Geom
Appl 58:264–271, 2018), extremal compatible linear connections and algo-
rithmic solutions Vincze (Aequat Math 96:53–70, 2022)), it is very hard to
solve them in general because compatible linear connections may or may
not exist on a Finsler manifold and may or may not be unique. Therefore
special cases are of special interest. One of them is the case of the so-
called semi-symmetric compatible linear connection with decomposable
torsion tensor. It is proved Vincze (Publ Math Debrecen 83(4):741–755,
2013 (see also Vincze (Euro J Math 3:1098–1171, 2017))) that such a
compatible linear connection must be uniquely determined. The original
proof is based on averaging in the sense that the 1-form in the decom-
position of the torsion tensor can be expressed by integrating differential
forms on the tangent manifold over the Finslerian indicatrices. The inte-
gral formulas are very difficult to compute in practice. In what follows we
present a new proof for the uniqueness by using linear algebra and some
basic facts about convex bodies. We present an explicit formula for the
solution without integration. The method has a new contribution to the
problem as well: necessary conditions of the solvability are formulated in
terms of intrinsic equations without unknown quantities.
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Keywords. Convex bodies, Tangent hyperplanes, Minkowski norm, Finsler
spaces, Generalized Berwald spaces, Semi-symmetric linear connections,
Intrinsic Geometry.

1. Compatibility equations in Finsler geometry

Let M be a smooth connected manifold with a local coordinate system u1, . . . ,
un. The induced local coordinate system on the tangent manifold TM consists
of the functions x1, . . . , xn and y1, . . . , yn given by xi(v) := ui◦π(v) = ui(p) =:
pi, where π : TM → M is the canonical projection and yi(v) = v(ui), i =
1, . . . , n. Throughout the paper, we will use the shorthand notations

∂i :=
∂

∂xi
and ∂̇i :=

∂

∂yi
. (1.1)

A Finsler metric [1] on a manifold is a smoothly varying family of Minkowski
norms in the tangent spaces. It is a direct generalization of Riemannian metrics
such that the inner products (quadratic indicatrices) in the tangent spaces are
replaced by Minkowski norms (smooth strictly convex bodies).

Definition 1.1. A Finsler metric is a non-negative continuous function F : TM
→ R satisfying the following conditions: F is smooth on the complement of the
zero section (regularity), F (tv) = tF (v) for all t > 0 (positive homogeneity),
F (v) = 0 if and only if v = 0 (definiteness) and the Hessian gij = ∂̇i∂̇jE of
the energy function E = F 2/2 is positive definite at all non-zero elements
v ∈ TpM (strong convexity). The pair (M,F ) is called a Finsler manifold.

On a Riemannian manifold we obviously have compatible linear connections in
the sense that the induced parallel transports preserve the Riemannian length
of tangent vectors (metric linear connections). Following the classical Christof-
fel process it is clear that such a linear connection is uniquely determined by
the torsion tensor. In contrast to the Riemannian case, non-Riemannian Finsler
manifolds admitting compatible linear connections form a special class of
spaces in Finsler geometry. They are called generalized Berwald manifolds [2].
It is known that some Finsler manifolds do not admit any compatible linear
connections because of topological constraints, some have infinitely many com-
patible linear connections and it can also happen that the compatible linear
connection is uniquely determined [3], see also [4].

Definition 1.2. A linear connection is compatible with the Finsler metric if the
induced parallel transports preserve the Finslerian length of tangent vectors.
Finsler manifolds admitting compatible linear connections are called general-
ized Berwald manifolds.
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In terms of local coordinates, equations

Xh
i F := ∂iF − yj

(
Γk
ij ◦ π

)
∂̇kF = 0 (i = 1, . . . , n) (1.2)

form necessary and sufficient conditions for a linear connection ∇ to be com-
patible with the Finsler metric F over a local neighbourhood. Equations (1.2)
are called compatibility equations or CEQ for short1. The fundamental result
of generalized Berwald manifold theory states that a compatible linear con-
nection ∇ is always Riemann metrizable [6], i.e. ∇ must be a metric linear
connection with respect to a Riemannian metric γ. Such a Riemannian metric
can be given by integration of gij on the indicatrix hypersurfaces [6], see also
[7] and [8]. It is the so-called averaged Riemannian metric. Therefore CEQ can
be reformulated by replacing the Christoffel symbols Γk

ij by the torsion tensor
components [9], see also [4]. Using the horizontal vector fields

Xh∗
i := ∂i − yj

(
Γk∗
ij ◦ π

)
∂̇k (i = 1, . . . , n),

where Γk∗
ij are the Christoffel symbols of the Levi-Civita connection of the

averaged Riemannian metric γ, CEQ takes the form

yj
(
T l
jkγ

krγil + T l
ikγ

krγjl − T r
ij

)
∂̇rF = −2Xh∗

i F (i = 1, . . . , n). (1.3)

The unknown quantities T c
ab are the torsion tensor components of the com-

patible linear connection. In the rest of the paper we use normal coordinates
with respect to the Riemannian metric γ around a given point p ∈ M . The
coordinate vector fields ∂/∂u1, . . . , ∂/∂un form an orthonormal basis in TpM ,
i.e. γij(p) = δij and Γk∗

ij (p) = 0. Therefore Xh∗
i (v) = ∂i(v) for any v ∈ TpM

and CEQ takes the form
∑

a<b,c

σc
ab;iT

c
ab = −2∂iF (i = 1, . . . , n), (1.4)

where the coefficients are

σc
ab;i := δai fcb + δbi fac + δci fab, fij := yi∂̇jF − yj ∂̇iF. (1.5)

If none of the indices a, b, c is equal to i then σc
ab;i = 0. Otherwise the table

shows the possible cases, where indices are separated according to their values
(equal indices are put into the same cell and different cells contain different
values). To complete the list we also collect the remaining three trivial cases:
σi
aa;i = 0 (i = c, a = b), σc

ii;i = 0 (i = a = b, c) and σi
ii;i = 0 (i = a = b = c).

Therefore the i-th compatibility equation at the point p is
∑′

a

2fiaT
i
ia +

∑′

a<b

fab
(
T a
ib + T i

ab + T b
ai

)
= −2 ∂iF, (1.6)

1The local solutions only very implicitly indicate the existence of a global solution. Roughly
speaking, if we have at least continuous local solutions (connection parameters) then the local
parallel vector fields provide linear isometries between the tangent spaces neighbourhood
to neighbourhood. Therefore the manifold is locally monochromatic. It becomes a global
property in case of a connected manifold and the main result in [5] implies that we have
a generalized Berwald manifold. However, it is enough to consider the local solutions as the
consequences of the global solution in our present paper.
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Indices The coefficients

1. i = a b c σc
ib;i = fcb

2. i = a b = c σb
ib;i = 0

3. i = b a c σc
ai;i = fac

4. i = b a = c σa
ai;i = 0

5. i = c a b σi
ab;i = fab

6. i = a = c b σi
ib;i = 2fib

7. i = b = c a σi
ai;i = 2fai

where the primed summation means summing for a �= i in the first one, and
in the second one, a and b where i �= a, b.

2. The geometry of the tangent spaces

The following table shows a panoramic view about the geometric structures
of the tangent space TpM due to the simultaneously existing Finsler and Rie-
mannian metrics.

Finsler structure Riemannian
structure

Minkowski norm Metric on TpM Euclidean norm
and inner product

Finslerian spheres Fp(λ) Level sets of λ ∈ R+ Euclidean
spheres Rp(λ)

Fv Tangent hyperplanes
of level sets at
v ∈ TpM

Rv

LFv := Fv − v Linear tangent
hyperplanes at
v ∈ TpM

LRv := Rv − v

G := grad F = [∂̇1F, . . . , ∂̇nF ] Normal vector fields
(w.r.t. γ)

C := [y1, . . . , yn]

Both gradient vector fields G and C are non-zero everywhere on T ◦
p M :=

TpM\{0}. For every element v ∈ T ◦
p M the tangent hyperplanes of the Finsle-

rian and the Riemannian (Euclidean) spheres passing through v can be related
as follows.

• If Fv = Rv, i.e. Gv ‖ Cv, we call the point v a vertical contact point of
the metrics.
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• If Fv �= Rv, i.e. Gv and Cv are linearly independent, then the intersection
LFv ∩LRv is the orthogonal complement of span(Cv, Gv), and thus Fv ∩
Rv is an affine subspace of dimension n − 2.

Using normal coordinates with respect to the Riemannian metric γ around a
given point p ∈ M , let us define the vector field

Hv := [∂1F (v), . . . , ∂nF (v)] , (2.1)

where v ∈ T ◦
p M . An element v ∈ T ◦

p M is a horizontal contact point of the
metrics if Hv is the zero vector. It can be easily seen that if TpM is a vertical
contact tangent space, i. e. all of its non-zero elements are vertical contact,
then the Finsler metric is a scalar multiple of γ at the point p ∈ M . Moreover,
if the indicatrix of a generalized Berwald metric is quadratic at a single point,
then it is quadratic at every point of the (connected) base manifold because
the tangent spaces are related by linear isometries due to the parallel trans-
ports with respect to the compatible linear connection with the Finsler metric.
Therefore such a generalized Berwald manifold reduces to a Riemannian man-
ifold. At a horizontal contact point, equations of (1.4) are homogeneous. If
TpM is a horizontal contact tangent space, i. e. all of its non-zero elements are
horizontal contact, then T = 0 is a solution of CEQ at p ∈ M .

2.1. A useful family of vector fields

Let us define the vector fields

fi(v) := [fi1(v), fi2(v), . . . , fin(v)]T (i = 1, . . . , n) (2.2)

on T ◦
p M to help in proving some elementary properties and solving CEQ.

Lemma 2.1. span(f1(v), . . . , fn(v)) ⊆ span(Gv, Cv) for any v ∈ T ◦
p M .

Proof. Observe that fi can be written as

fi =

⎡

⎢
⎢
⎢
⎣

fi1
fi2
...

fin

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

yi∂̇1F − y1∂̇iF

yi∂̇2F − y2∂̇iF
...

yi∂̇nF − yn∂̇iF

⎤

⎥
⎥
⎥
⎦

= yi

⎡

⎢
⎢
⎢
⎣

∂̇1F

∂̇2F
...

∂̇nF

⎤

⎥
⎥
⎥
⎦

− ∂̇iF

⎡

⎢
⎢
⎢
⎣

y1

y2

...
yn

⎤

⎥
⎥
⎥
⎦

, (2.3)

i.e. fi = yi · G − ∂̇iF · C. �

Lemma 2.2. At a vertical contact point v ∈ T ◦
p M , fi(v) = 0 and CEQ takes

the form 0 = ∂iF (v) (i = 1, . . . , n).

Proof. If v is vertically contact, then Gv = λCv for some non-zero λ ∈ R.
Substituting into (2.3), we get

fi(v) = vi · λCv − λvi · Cv = 0 (i = 1, . . . , n),

i.e. the coordinates of fi are all zero at v and the reformulation (1.6) of CEQ
implies the statement. �
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Corollary 2.3. In order for CEQ to have a solution, all vertically contact points
must be horizontal contact.

Lemma 2.4. At a not vertically contact v ∈ T ◦
p M there are indices such that

fij(v) �= 0 and the vectors fi and fj are linearly independent over some neigh-
borhood U of v in TpM .

Proof. Suppose that all the fij(v), and consequently, all the vectors fi(v) are
zero. Since v is not vertically contact, Gv and Cv are linearly independent. In
particular, neither of them is the zero vector, so one of their coordinates is
non-zero, meaning that for some index i, (2.3) gives the zero vector as a linear
combination of the independent vectors Cv and Gv with non-zero coefficients.
This is a contradiction, so there must be an fij(v), and thus two vectors fi(v)
and fj(v) different from zero. Since the matrix

[
fi
fj

]
=

[
fi1 . . . 0 . . . fij . . . fin
fj1 . . . fji . . . 0 . . . fjn

]

has rank 2 at v (choose the i-th and j-th columns), they are linearly inde-
pendent at v and the same is true at the points of some adequately small
neighborhood of v in TpM by a continuity argument. �

Corollary 2.5. At a point v ∈ T ◦
p M ,

span(f1(v), . . . , fn(v)) =
{ {0} if v is vertically contact,

span(Gv, Cv) if v is not vertically contact.

Proof. For any v ∈ T ◦
p M , we have span(f1(v), . . . , fn(v)) ⊆ span(Gv, Cv) by

Lemma 2.1. If v is vertically contact, all the vectors fi(v) are zero according
to Lemma 2.2. If not, there are 2 independent vectors among them according
to Lemma 2.4, thus generating the whole span(Gv, Cv). �

Lemma 2.6. At a not vertically contact v ∈ T ◦
p M , let us choose indices i �= j

such that fij(v) �= 0. Then (fi, fj) is a basis of span(G,C) over some neigh-
borhood U of v in TpM and

fk =
fkj
fij

· fi +
fik
fij

· fj (k = 1, . . . , n) (2.4)

at any point of U .

Proof. By Lemma 2.4, we know that (fi, fj) is a basis of span(G,C) at the
points of U . Let us choose an index k ∈ {1, . . . , n} and write fk = λ1fi +λ2fj .
By (2.3), we can write that

fk = yk · G − ∂̇kF · C = λ1

(
yi · G − ∂̇iF · C

)
+ λ2

(
yj · G − ∂̇jF · C

)
.

By comparing the coefficients in the basis (G,C),
[

yk

∂̇kF

]
=

[
yi yj

∂̇iF ∂̇jF

]
·
[
λ1

λ2

]
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and, consequently,
[
λ1

λ2

]
=

1
fij

[
∂̇jF −yj

−∂̇iF yi

]
·
[

yk

∂̇kF

]
=

1
fij

[
yk∂̇jF − yj ∂̇kF

yi∂̇kF − yk∂̇iF

]
.

�

3. The semi-symmetric compatible linear connection and its
uniqueness

Although there are some theoretical results for the solvability of the compa-
tibility equations (monochromatic Finsler metrics [5], extremal compatible lin-
ear connections and algorithmic solutions [9]), it is very hard to solve them
in general because compatible linear connections may or may not exist on a
Finsler manifold and may or may not be unique. Therefore special cases are
of special interest. One of them is the case of the so-called semi-symmetric
compatible linear connection with decomposable torsion tensor.

Definition 3.1. A linear connection is called semi-symmetric if its torsion ten-
sor can be written as

T (X,Y ) = ρ(Y )X − ρ(X)Y (3.1)

for some differential 1-form ρ on the base manifold.

It is proved [10] that a semi-symmetric compatible linear connection must be
uniquely determined.

Theorem 3.2. [10] A non-Riemannian Finsler manifold admits at most one
semi-symmetric compatible linear connection.

The original proof is based on averaging in the sense that the 1-form ρ can
be expressed by integrating differential forms on the tangent manifold over
the Finslerian indicatrices. The integral formulas are very difficult to compute
in practice. In what follows we present a new proof for the uniqueness by
using linear algebra and some basic facts about convex bodies. We present an
explicit formula for the solution without integration. The method has a new
contribution to the problem as well: necessary conditions of the solvability are
formulated in terms of intrinsic equations without unknown quantities.

3.1. The proof of Theorem 3.2

Since

T

(
∂

∂ui
,

∂

∂uj

)
= ρ

(
∂

∂uj

)
∂

∂ui
− ρ

(
∂

∂ui

)
∂

∂uj
= ρj

∂

∂ui
− ρi

∂

∂uj

=
(
δki ρj − δkj ρi

) ∂

∂uk
,
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the torsion components are

T k
ij = δki ρj − δkj ρi. (3.2)

In particular, all torsion components with 3 different indices are zero, and

T i
ij = δiiρj − δijρi = ρj (j �= i).

Substituting the torsion components into the general form (1.6) of CEQ at a
point p, it takes the (matrix) form

ρ1 ρ2 ρ3 · · · ρn RHS
0 f12 f13 · · · f1n −∂1F

f21 0 f23 · · · f2n −∂2F

f31 f32 0 · · · f3n −∂3F

...
...

...
. . .

...
...

fn1 fn2 fn3 · · · 0 −∂nF

(3.3)

The problem is to solve (3.3) for ρ1, . . . , ρn, considered as the coordinates of
a vector ρ ∈ TpM , as v ranges over T ◦

p M . To prove Theorem 3.2 it is enough
to consider the homogeneous version H-CEQ with vanishing right hand side
of (3.3). We are going to verify that the only solution of H-CEQ is ρ1 = · · · =
ρn = 0. Since the rows of the matrix on the left hand side are exactly the
vectors f1, . . . , fn defined in (2.2), solving H-CEQ at a fixed element v means
finding the orthogonal complement of span(f1(v), . . . , fn(v)). By Corollary 2.5,

• it is TpM for any vertically contact element v,
• it is the orthogonal complement of span(Gv, Cv) for any not vertically

contact element v, i.e. the intersection LFv ∩ LRv of the linear tangent
hyperplanes of the Finslerian and Riemannian spheres.

The solution of H-CEQ at the point p is the intersection of all the solution
spaces as the element v ranges over T ◦

p M . Note that the homogeneity of the
coefficients implies that it is enough to consider the intersection of all the
solution spaces as the element v ranges over the Finslerian (or the Riemannian)
unit sphere.

• If all the elements of TpM are vertically contact and the Finsler man-
ifold admits a compatible (semi-symmetric) linear connection ∇, then
it is a Riemannian manifold because the linear isometries via the par-
allel transports with respect to ∇ extend the quadratic Finslerian (esp.
Riemannian) indicatrix at the point p to the entire (connected) manifold.

• If there is a not vertically contact element v, then, by a continuity ar-
gument, we can consider a neighborhood U ⊆ TpM containing only not
vertically contact elements. For the solution vector ρ we have

ρ ∈
⋂

v∈U

(LFv ∩ LRv) ⊆ ( ⋂

v∈U

LFv

) ∩ ( ⋂

v∈U

LRv

)
.

It is clear that the right hand side contains only the zero vector because
the normal vectors at the points of any open set on the boundary of a



Vol. 113 (2022) Finsler metrics and semi-symmetric Page 9 of 14 45

Euclidean sphere (or any smooth strictly convex body) span the entire
space. Therefore ρ = 0 is the only solution of H-CEQ at p and, con-
sequently, CEQ admits at most one solution for the components of the
torsion tensor of a semi-symmetric linear connection point by point.

�

3.2. Intrinsic equations and v-solvability of CEQ

In this section we investigate (3.3) evaluated at non-zero tangent vectors in
TpM :

ρ1 ρ2 ρ3 · · · ρn RHS
0 f12(v) f13(v) · · · f1n(v) −∂1F (v)

f21(v) 0 f23(v) · · · f2n(v) −∂2F (v)
f31(v) f32(v) 0 · · · f3n(v) −∂3F (v)

...
...

...
. . .

...
...

fn1(v) fn2(v) fn3(v) · · · 0 −∂nF (v)

(3.4)

Definition 3.3. The system of the compatibility equations is called v-solvable
at the point p ∈ M if (1.4) is solvable for any non-zero element v ∈ TpM . The
system of the compatibility equations is called v-solvable for ρ at the point
p ∈ M if (3.4) is solvable for any non-zero element v ∈ TpM .

Remark 3.4. The system of the compatibility equations is v-solvable if and
only if all vertical contact vectors are horizontal contact. It is an obvious ne-
cessary condition because the coefficient matrix of CEQ is zero at a vertically
contact point and the system must be homogeneous with vanishing horizontal
derivatives of the Finsler metric with respect to the Levi-Civita connection
of the averaged Riemannian metric. The sufficiency is based on the idea of
the extremal compatible linear connection [9]. The extremal solution typically
depends on the reference element v ∈ TpM but does not take a decompos-
able form in general. Therefore v-solvability for ρ needs additional conditions.
Using Corollary 2.5 and basic linear algebra we can formulate the following
characterizations of v-solvability in case of semi-symmetric compatible linear
connections.

Lemma 3.5. The system of the compatibility equations is v-solvable for ρ at
the point p ∈ M if and only if the following conditions are satisfied:

• all vertically contact elements are also horizontal contact in TpM and
• the rank of the augmented matrix of system (3.4) is 2 at all not vertically

contact elements v ∈ TpM . In other words Hv ∈ span(f1(v), . . . , fn(v)),
where the vector Hv is defined by formula (2.1).

Proposition 3.6. The system of the compatibility equations is v-solvable for ρ
at the point p ∈ M if and only if the following conditions are satisfied:
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• all vertically contact elements are also horizontal contact in TpM and
• for any triplets of distinct indices i, j, k we have

fij(v) ∂kF (v) + fjk(v) ∂iF (v) + fki(v) ∂jF (v) = 0 (3.5)

provided that fij(v) �= 0.

Proof. If v is vertically contact, (3.5) stands trivially. Otherwise we are going
to show that it is equivalent to the augmented matrix having rank 2. Suppose
that v is not vertically contact and choose indices i �= j such that fij(v) �= 0
and (fi(v), fj(v)) is a basis of span(Gv, Cv). By Lemma 2.6, if k �= i, j then

fk =
fkj
fij

· fi +
fik
fij

· fj (k = 1, . . . , n).

In other words we can eliminate the k-th row for any k �= i, j. The elimination
must also yield zeroes on the right-hand side of (3.4) to have a solution, i.e.
for k �= i, j we must have

−∂kF − fkj
fij

· (−∂iF ) − fik
fij

· (−∂jF ) = 0

fij ∂kF − fkj ∂iF − fik ∂jF = 0.

Equation (3.5) follows by interchanging the indices in fkj and fik. �

Remark 3.7. Equations (3.5) do not contain unknown quantities. They are
intrinsic conditions of the solvability. Taking fij(v) �= 0 for some fixed indices
i and j at a not vertically contact element, they provide n − 2 equations to
be automatically satisfied because k = 1, . . . , n, but k �= i, j. The missing
equations are

〈fi, ρ〉 = −∂iF
〈fj , ρ〉 = −∂jF

}
, (3.6)

where 〈fi, ρ〉 and 〈fj , ρ〉 stand for the inner product at p ∈ M coming from the
Riemannian metric γ. They provide the only possible solution ρ in an explicit
form.

3.3. The only possible solution of CEQ at the point p ∈ M

Recall that if the tangent space at p ∈ M contains only vertically contact
non-zero elements (vertically contact tangent space) and the Finsler mani-
fold admits a compatible (semi-symmetric) linear connection ∇, then it is a
Riemannian manifold because the linear isometries via the parallel transports
with respect to ∇ extend the quadratic Finslerian (esp. Riemannian) indica-
trix at the point p to the entire (connected) manifold. Therefore we present
the solution of CEQ in the generic case of non-Riemannian Finsler manifolds.
Let us choose a not vertically contact element v ∈ T ◦

p M and indices i �= j with
fij(v) �= 0, i.e. fi, fj are linearly independent over some neighborhood U of v
in TpM . Using (2.3), the eliminated form (3.6) of CEQ gives that

yi 〈G, ρ〉 − ∂̇iF 〈C, ρ〉 = −∂iF

yj 〈G, ρ〉 − ∂̇jF 〈C, ρ〉 = −∂jF

}
⇐⇒

[
yi −∂̇iF

yj −∂̇jF

]
·
[〈G, ρ〉
〈C, ρ〉

]
=

[−∂iF
−∂jF

]
,
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and, consequently,
[〈G, ρ〉
〈C, ρ〉

]
=

1
fji

[−∂̇jF ∂̇iF
−yj yi

]
·
[−∂iF
−∂jF

]
.

We are going to concentrate on the second row

〈C, ρ〉 =
1

fji

(
yj∂iF − yi∂jF

)
=:

fh
ji

fji
(3.7)

at the points of the open neighborhood U around v. Let us choose a value
ε > 0 such that all the elements

w1 := v − ε · ∂/∂u1(p) = [v1 − ε, v2, v3, . . . , vn]
w2 := v − ε · ∂/∂u2(p) = [v1, v2 − ε, v3, . . . , vn]

...
wn := v − ε · ∂/∂un(p) = [v1, v2, v3, . . . , vn − ε]

are contained in U . Then (3.7) implies the system
⎡

⎢
⎢
⎢
⎣

v1 − ε v2 v3 · · · vn

v1 v2 − ε v3 . . . vn

...
...

...
. . .

...
v1 v2 v3 . . . vn − ε

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

ρ1
ρ2
...

ρn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

fh
ji/fji(w1)

fh
ji/fji(w2)

...
fh
ji/fji(wn)

⎤

⎥
⎥
⎥
⎦

(3.8)

of linear equations. Using the notation

V :=

⎡

⎢
⎣

v1 v2 · · · vn

...
...

. . .
...

v1 v2 · · · vn

⎤

⎥
⎦ ,

we have to investigate the regularity of the matrix V − εI, where I denotes
the identity matrix of the same type as V .

Lemma 3.8. The matrix V − εI is regular if and only if ε /∈ {0, ṽ := v1 + · · · +
vn}.

Proof. The determinant det(V −εI) is the characteristic polynomial of V with
ε as the variable. It is zero if and only if ε is an eigenvalue of V . Consider the
transpose of V as the matrix of a linear transformation ϕ (the eigenvalues
are the same as those of V ). Since the image of ϕ is the line generated by
v, it follows that ϕ has a kernel of dimension n − 1 and v is an eigenvector
corresponding to the eigenvalue ṽ := v1 + · · · + vn because of

ϕ(v) =

⎡

⎢
⎣

v1 · · · v1

...
. . .

...
vn · · · vn

⎤

⎥
⎦ ·

⎡

⎢
⎣

v1

...
vn

⎤

⎥
⎦ =

⎡

⎢
⎣

v1(v1 + · · · + vn)
...

vn(v1 + · · · + vn)

⎤

⎥
⎦ = ṽ · v.

�
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Lemma 3.9. Choosing ε /∈ {0, ṽ := v1 + · · · + vn}, we have

[V − εI]−1 =
1

(ṽ − ε)ε
[V − (ṽ − ε)I] .

Proof. We shall prove the formula

[V − εI] · [V − (ṽ − ε)I] = (ṽ − ε)εI.

Rearranging the left-hand side,

V · V − (ṽ − ε)V − εV + ε(ṽ − ε)I = (ṽ − ε)εI

because of V · V = ṽ · V . �

Returning to (3.8),
⎡

⎢
⎢
⎢
⎣

ρ1
ρ2
...

ρn

⎤

⎥
⎥
⎥
⎦

=
1

(ṽ − ε)ε

⎡

⎢
⎢
⎢
⎣

v1 + ε − ṽ v2 · · · vn

v1 v2 + ε − ṽ . . . vn

...
...

. . .
...

v1 v2 . . . vn + ε − ṽ

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

fh
ji/fji(w1)

fh
ji/fji(w2)

...
fh
ji/fji(wn)

⎤

⎥
⎥
⎥
⎦

.

Theorem 3.10. If a non-Riemannian Finsler manifold admits a semi-symmetric
compatible linear connection, then the values of the components ρk in formula
(3.2) for its torsion at the point p ∈ M are

ρk =
1
ε

(
1

ṽ − ε

n∑

l=1

vl
fh
ji

fji
(wl) − fh

ji

fji
(wk)

)

, (3.9)

where

• v = [v1, . . . , vn] is a not vertically contact vector in T ◦
p M ,

• ε /∈ {0, ṽ := v1 + · · · + vn},
• wi = [v1, . . . , vi−1, vi − ε, vi+1, . . . , vn], i = 1, . . . , n,

• fh
ji = yj∂iF − yi∂jF = yj ∂F

∂xi
− yi ∂F

∂xj
,

• fji = yj ∂̇iF − yi∂̇jF = yj ∂F

∂yi
− yi ∂F

∂yj
and the coordinates on the base

manifold form a normal coordinate system with respect to the averaged
Riemannian metric γ around the point p ∈ M .
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