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Abstract. The goal of this paper is an analysis of the geometry of billiards
in ellipses, based on properties of confocal central conics. The extended
sides of the billiards meet at points which are located on confocal ellipses
and hyperbolas. They define the associated Poncelet grid. If a billiard is
periodic then it closes for any choice of the initial vertex on the ellipse.
This gives rise to a continuous variation of billiards which is called billiard
motion though it is neither a Euclidean nor a projective motion. The
extension of this motion to the associated Poncelet grid leads to new
insights and invariants.
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1. Introduction

A billiard is the trajectory of a mass point within a domain with ideal physi-
cal reflections in the boundary. Already for two centuries, billiards in ellipses
have attracted the attention of mathematicians, beginning with J.-V. Pon-
celet, C.G.J. Jacobi and A. Cayley. One basis for the investigations was the
theory of confocal conics. In 2005 S. Tabachnikov published a book on various
aspects of billiards, including their role as completely integrable systems [29].
In several publications and in the book [13], V. Dragović and M. Radnović
studied billiards, also in higher dimensions, from the viewpoint of dynamical
systems.

Computer animations of billiards in ellipses, which were carried out by Reznik
[24], stimulated a new vivid interest on this well studied topic, where algebraic
and analytic methods are meeting (see, e.g., [2,3,11,21–23] and many further
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references in [24]). These papers focus on invariants of periodic billiards when
the vertices vary on the ellipse while the caustic remains fixed. This variation
is called billiard motion though neither angles nor side lengths remain fixed;
and it is not a projective motion preserving the circumscribed ellipse.

The goal of this paper is a geometric analysis of billiards in ellipses and their
associated Poncelet grid, starting from properties of confocal conics. We con-
centrate on a certain symmetry between the vertices of any billiard and the
contact points with the caustic, which can be an ellipse or hyperbola. Bil-
liard motions induce motions of associated billiards with the same caustic and
circumscribed confocal ellipses.

2. Metric properties of confocal conics

A family of confocal central conics (Fig. 1) is given by

x2

a2 + k
+

y2

b2 + k
= 1, where k ∈ R \ {−a2,−b2} (2.1)

serves as a parameter in the family. All these conics share the focal points

F1,2 = (±d, 0), where d2 := a2 − b2. (2.2)

The confocal family sends through each point P outside the common axes of
symmetry two orthogonally intersecting conics, one ellipse and one hyperbo-
la [15, p. 38]. The parameters (ke, kh) of these two conics define the elliptic
coordinates of P with

−a2 < kh < −b2 < ke .

If (x, y) are the cartesian coordinates of P , then (ke, kh) are the roots of the
quadratic equation

k2 + (a2 + b2 − x2 − y2)k + (a2b2 − b2x2 − a2y2) = 0, (2.3)

while conversely

x2 =
(a2 + ke)(a2 + kh)

d2
, y2 = − (b2 + ke)(b2 + kh)

d2
. (2.4)

Let (a, b) = (ac, bc) be the semiaxes of the ellipse c with k = 0. Then, for
points P on a confocal ellipse e with semiaxes (ae, be) and k = ke > 0, i.e.,
exterior to c, the standard parametrization yields

P = (x, y) = (ae cos t, be sin t), 0 ≤ t < 2π,
with a2

e = a2
c + ke, b2e = b2c + ke .

(2.5)

For the elliptic coordinates (ke, kh) of P follows from (2.3) that

ke + kh = a2
e cos2 t + b2e sin2 t − a2

c − b2c .

After introducing the respective tangent vectors of e and c, namely

te(t) := (−ae sin t, be cos t),
tc(t) := (−ac sin t, bc cos t), where ‖te‖2 = ‖tc‖2 + ke , (2.6)
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we obtain1

kh = kh(t) = −(a2
c sin2 t + b2c cos2 t) = −‖tc(t)‖2 = −‖te(t)‖2 + ke (2.7)

and

‖te(t)‖2 = ke − kh(t) . (2.8)

Note that points on the confocal ellipses e and c with the same parameter t
have the same coordinate kh. Consequently, they belong to the same confocal
hyperbola (Figs. 5 and 8). Conversely, points of e or c on this hyperbola have
a parameter out of {t,−t, π + t, π − t}.

Normal vectors of e and c can be defined respectively as

ne(t) :=
( cos t

ae
,

sin t

be

)
,

nc(t) :=
( cos t

ac
,

sin t

bc

)
,

where ‖nc(t)‖ =
‖tc(t)‖
acbc

. (2.9)

We complete with two useful relations between the parameter t and the second
elliptic coordinate kh(t):

tan2 t = − b2c + kh(t)
a2

c + kh(t)
and sin t cos t =

ahbh

d2
(2.10)

with ah and bh as semiaxes of the hyperbola corresponding to the parameter
t, i.e., a2

h = a2
c + kh and b2h = −(b2c + kh).

Proof. From (2.7) follows

kh = −a2
c tan2 t + b2c
1 + tan2 t

, hence tan2 t(a2
c + kh) = −b2c − kh

and

sin t cos t =
tan t

1 + tan2 t
=

√−(b2c + kh)(a2
c + kh)

a2
c − b2c

=
ah bh

d2
.

�
Referring to Fig. 1, the following lemma addresses an important property of
confocal conics (note, e.g., [15, pp. 38 and 309]).

Lemma 2.1. The tangents drawn from any fixed point P to the conics of a
confocal family share the axes of symmetry, which are tangent to the two conics
passing through P .

This means, if a ray is reflected at P in one of the conics passing through,
then the incoming and the outgoing ray contact the same confocal ellipse or
hyperbola.

Below, we report about results concerning a pair of confocal conics. Due to
their meaning for billiards in ellipses, we restrict ourselves to pairs (e, c) of
confocal ellipses with c in the interior e, and we call c the caustic (Fig. 2).

1 The norm ‖te‖ equals half length of the diameter of e which is parallel to te .
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Figure 1 The tangents from the point P to the conics of a
confocal family are symmetric w.r.t. the tangents at P to the
confocal conics passing through P

Figure 2 Periodic billiard P1P2 . . . P5 inscribed in the ellipse
e with the caustic c

Lemma 2.2. Let P = (ae cos t, be sin t) with elliptic coordinates (ke, kh) be a
point on the ellipse e with ke > 0 and c be the confocal ellipse with k = 0.
Then, the angle θ(t)/2 between the tangent at P to e and any tangent from P
to c satisfies

sin2 θ

2
=

ke

‖te(t)‖2 =
ke

ke− kh
, tan

θ

2
= ±

√
− ke

kh
, (2.11)

cos θ = 1 − 2ke

‖te(t)‖2 =
kh+ ke

kh− ke
, sin θ = ±2

√−kekh

ke − kh
. (2.12)
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Proof. The tangent tP to e at P = (ae cos t, be sin t) in direction of te has the
slope

f := tan α1 =
−be cos t

ae sin t
.

If s1 and s2 denote the slopes of the tangents from P to c, then they satisfy

y − be sin t = si(x − ae cos t), i = 1, 2.

As tangents of c, their homogeneous line coordinates

(u0 : u1 : u2) = ((be sin t − si ae cos t) : si : −1)

must satisfy the tangential equation −u2
0 + a2

cu
2
1 + b2cu

2
2 = 0 of c. This results

in a quadratic equation for the unknown s, namely

(a2
e sin2 t − ke)s2 + 2aebes sin t cos t + (b2e cos2 t − ke) = 0.

We conclude

s1 + s2 =
−2aebe sin t cos t

a2
e sin2 t − ke

and s1s2 =
b2e cos2 t − ke

a2
e sin2 t − ke

.

The slopes f = tan α1 of tP and tan α2 = s1 or s2 of the tangents to c imply for
the enclosed signed angle θ(t)/2 (for brevity, we often suppress the parameter
t)

tan
θ

2
= tan(α1 − α2) =

s1 − f

1 + s1f
=

f − s2
1 + s2f

,

hence

tan2 θ

2
=

(s1 − f)(f − s2)
(1 + s1f)(1 + s2f)

=
f(s1 + s2) − s1s2 − f2

f(s1 + s2) + 1 + f2s1s2
.

After some computations, we obtain

tan2 θ

2
=

ke

a2
e sin2 t + b2e cos2 t − ke

=
ke

‖te‖2 − ke
=

ke

‖tc‖2 ,

therefore

cot2
θ

2
=

‖te‖2
ke

− 1 and sin2 θ

2
=

1
1 + cot2 θ

2

=
ke

‖te‖2 ,

where ke = a2
e − a2

c = b2e − b2c , and finally

cos θ = 1 − 2 sin2 θ

2
= 1 − 2ke

‖tc‖2 + ke
=

‖tc‖2 − ke

‖tc‖2 + ke
.

�

Remark 2.3. A change of the origin k = 0 for the elliptic coordinates in a
family of confocal conics corresponds to a shift of the coordinates. Hence, if in
Lemma 2.2 the ellipse c is replaced by another confocal conic with the coordi-
nate k, then the formulas (2.11) and (2.12) remain valid under the condition
that we replace ke by ke − k and kh by kh − k.
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Lemma 2.4. Let P1P2 be a chord of the ellipse e, which contacts the caustic c
at the point Q1. Then the signed distances of the line [P1, P2] to the center O
and to the pole R1 w.r.t. e have the constant product −ke. The lines [P1, P2]
and [Q1, R1] are orthogonal (Fig. 2).

Proof. Let the side P1P2 touch the caustic c at the point Q1 = (ac cos t′1, bc sin
t′1). Then the Hessian normal form of the spanned line tQ = [P1, P2] reads

tQ :
bc cos t′1 x + ac sin t′1 y − acbc√

b2c cos2 t′1 + a2
c sin2 t′1

= 0.

Its pole w.r.t. e has the coordinates

R1 =
(

a2
e cos t′1

ac
,

b2e sin t′1
bc

)
. (2.13)

This yields for the signed distances to the line tQ

OtQ =
−acbc

‖tc(t′1)‖
(2.14)

and

R1tQ = R1Q1 =
ke(b2c cos2 t′1 + a2

c sin2 t′1)
acbc‖tc(t′1)‖

=
ke‖tc(t′1)‖

acbc
. (2.15)

Thus, we obtain a constant product OtQ ·R1tQ = −ke , as stated in Lemma 2.4.

The last statement holds since R1 and Q1 are the poles of [P1, P2] w.r.t. the
confocal conics e and c. It is wellknown that the poles of any line � w.r.t.
confocal conics lie on a line �∗ orthogonal to � (see, e.g., [15, p. 340]). �

3. Confocal conics and billiards

By virtue of Lemma 2.1, all sides of a billiard inscribed to the ellipse e with
parameter k = ke are tangent to a fixed conic c confocal with e (Fig. 2). The
caustic c with parameter kc can be a smaller ellipse with −b2 < kc < ke or
a hyperbola with −a2 < kc < −b2 or, in the limiting case with kc = −b2,
consist of the pencils of lines with the focal points F1, F2 of c as carriers. At
the beginning, we confine ourselves to an ellipse with kc = 0 (Fig. 2), and
we speak of an elliptic billiard. Only the Figs. 10, 11 and 12 show (periodic)
billiards in e with a hyperbola as caustic, called hyperbolic billards.

For billiards . . . P1P2P3 . . . in the ellipse e and with the ellipse c as caustic,
we assume from now on a counter-clockwise order and signed exterior angles
θ1, θ2, θ3, . . . (see Fig. 2). The tangency points Q1, Q2, . . . of the billiard’s sides
P1P2, P2P3, . . . with the caustic c subdivide the sides into two segments. We
denote the lengths of the segments adjacent to Pi as

li := PiQi and ri := PiQi−1. (3.1)
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Based on the parametrizations (ae cos t, be sin t) of e and (ac cos t′, bc sin t′) of
c, we denote the respective parameters of P1, Q1, P2, Q2, P3, . . . with t1, t′1,
t2, t′2, t3, . . . in strictly increasing order.

The following two lemmas deal with sides of billiards in the ellipse e.

Lemma 3.1. The connecting line [Pi, Pi+1] of the vertices with respective pa-
rameters t1, t2 on e contacts the caustic c if and only if

a2
c

a2
e

cos2
t1 + t2

2
+

b2c
b2e

sin2 t1 + t2
2

= cos2
t1 − t2

2
.

This is equivalent to

sin2 t1 − t2
2

=
ke

aebe

∥∥∥ te

( t1 + t2
2

)∥∥∥
2

.

Proof. The line connecting the points (ae cos ti, be sin ti), i = 1, 2, has homo-
geneous line coordinates (u0 : u1 : u2) equal to

(aebe(cos t1 sin t2 − sin t1 cos t2) : be(sin t1 − sin t2) : ae(cos t2 − cos t1)) .

It contacts the caustic c if −u2
0 + a2

cu
2
1 + b2cu

2
2 = 0, i.e.,

a2
cb

2
e sin2 t1 − t2

2
cos2

t1 + t2
2

+ b2ca
2
e sin2 t1 − t2

2
sin2 t1 + t2

2
= a2

eb
2
e sin2 t2 − t1

2
cos2

t2 − t1
2

.

Under the condition sin[(t1 − t2)/2] �= 0 we obtain the first claimed equation.
The second follows after the substitutions a2

c = a2
e − ke and b2c = b2e − ke from

1 − ke

a2
eb

2
e

(
b2e cos2

t1 + t2
2

+ a2
e sin2 t1 + t2

2

)
= cos2

t2 − t1
2

.

by (2.9). �

Lemma 3.2. Referring to the notation in Lemma 3.1, if the side PiPi+1 con-
tacts the caustic c at Qi with parameter t′i, then

sin t′i =
bc

be

sin ti+ti+1
2

cos ti−ti+1
2

, cos t′i =
ac

ae

cos ti+ti+1
2

cos ti−ti+1
2

, tan t′i =
bcae

acbe
tan

ti + ti+1

2
.

Proof. The tangent to c at Q1 has the line coordinates

(u0 : u1 : u2) = (−acbc : bc cos t′1 : ac sin t′1) ,

which must be proportional to those in the proof of Lemma 3.1. �

Remark 3.3. 1. The half-angle substitution

τi := tan
ti
2

for i = 1, 2

allows to express the equation of Lemma 3.1 (for i = 1) in projective coordi-
nates on e. We obtain a symmetric biquadratic condition

b2ekeτ
2
1 τ2

2 − b2ca
2
e(τ

2
1 + τ2

2 ) + 2(a2
eke + a2

cb
2
e)τ1τ2 + b2eke = 0,
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Figure 3 The Joachimsthal integral Je := −〈ui, ne|i〉 is con-
stant along e

which defines a 2-2-correspondence on e between the endpoints P1, P2 of a
chord which contacts c. This remains valid after iteration, i.e., between the
initial point P1 and the endpoint PN+1 of a billiard after N reflections in e.

Now, we recall a classical argument for the underlying Poncelet porism (see
also [18] and the references there): A 2-2-correspondence different from the
identity keeps fixed at most four points. However, four fixed points on e are
already known as contact points between e and the common complex conjugate
(isotropic) tangents2 with the caustic c, since tangents of e remain fixed under
the reflection in e. If therefore one N -sided billiard in e with caustic c closes,
then the correspondence is the identity and all billiards close.

2. With the aid of Jacobi’s arguments in [20], Lemma 3.2 paves already the
way to a representation of the billiard’s vertices in terms of Jacobian elliptic
functions (note [27]).

Given any billiard P1P2 . . . in the ellipse e, let pi = (xi, yi) denote the position
vector of Pi for i = 1, 2, . . . , while u1,u2, . . . denote the unit vectors of the ori-
ented sides P1P2, P2P3, . . . (Fig. 3). By (2.9), the vector ne|i := (xi/a2

e, yi/b2e)
is orthogonal to e at Pi. According to [2, Proposition 2.1], the scalar product

Je := −〈ui, ne|i〉 (3.2)

is invariant along the billiard in e and called Joachimsthal integral (note also
[29, p. 54]).

The invariance of the Joachimsthal integral, which also holds in higher dimen-
sions for billiards in quadrics, is the key result for the integrability of billiards,
i.e., in the planar case for the existence of a caustic [2, p. 3]. In our approach,
the invariance of Je follows from Lemma 2.2.

Lemma 3.4. The Joachimsthal integral Je := −〈ui, ne|i〉 equals

Je =
√

ke

aebe

2 They follow from the second equation in Lemma 3.1 for t1 = t2.
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with ke as elliptic coordinate of e w.r.t. c, i.e., ke = a2
e − a2

c = b2e − b2c.

Proof. From (2.11) follows for the points (ae cos t, be sin t) of e

Je = −〈u, ne〉 = − cos
(π

2
+

θ

2

)
‖ne‖ = sin

θ

2
‖ne‖ = sin

θ

2
‖te‖
aebe

,

hence by (2.11), (2.7), (2.6), and (2.9)

J2
e = sin2 θ

2
‖ne‖2 =

ke

‖te‖2 ‖ne‖2 =
ke

a2
e b2e

.

This confirms the claim. �

3.1. Poncelet grid

The following theorem is the basis for the Poncelet grid associated to each
billiard. We formulate and prove a projective version. The special case dealing
with confocal conics, has already been published by Chasles [9, p. 841] and
later by Böhm in [8, p. 221]. The same theorem was studied in [21,25] and in
[1]. In [19], the authors proved it in a differential-geometric way.

In the theorem and proof below, the term conic stands for regular dual conics,
i.e., conics seen as the set of tangent lines, but also for pairs of line pencils
and for single line pencils with multiplicity two. Expressed in terms of homo-
geneous line coordinates, the corresponding quadratic forms have rank 3, 2 or
1, respectively. Moreover, we use the term range for a pencil of dual conics.
The term net denotes a 2-parametric linear system of dual curves of degree 2.
Obviously, conics and ranges included in a net play the role of points and lines
of a projective plane within the 5-dimensional projective space of dual conics.
Any two ranges in a net share a conic (compare with [10, Théorèmes I – IV]).

Theorem 3.5. Let c be a regular conic and A1, B1 two points such that the tan-
gents t1, . . . , t4 drawn from A1 and B1 to c form a quadrilateral. Its remaining
pairs of opposite vertices are denoted by (Ai, Bi), i = 2, 3. Then,

1. for each conic c1 passing through A1 and B1, the range Rc spanned by c
and c1 contains conics ci passing through Ai and Bi, simultaneously. The
tangents at Aj and Bj to cj for j = 1, 2, 3 meet at a common point R. If
ci has rank 2, then we obtain, as the limit of ci , the diagonal [Ai, Bi] of
the quadrilateral t1, . . . , t4.

2. This result holds also in the limiting case t1 = t2, where the chord A1B1

of c1 contacts c at B2.

In Fig. 4, the particular case is displayed where c and c1 = e span a range Rc

of confocal conics (note also [6, Fig. 19]). Then by Lemma 2.1, the tangents
at Aj and Bj to cj are angle bisectors of the quadrilateral. In case of a rank
deficiency of ci , either one axis of symmetry of the confocal family or the line
at infinity shows up as ci .
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Figure 4 Left: Opposite vertices Ai, Bi of the quadrilateral
t1 . . . t4 of tangents to c belong to a conic ci out of the range
Rc (Theorem 3.5). Right: The net N and the ranges Rt, Rc

in the projective space of dual conics

Proof. The conics tangent to t1, . . . , t4 define a range Rt, which includes for
j = 1, 2, 3 the pairs of line pencils (Aj , Bj) as well as the initial conic c. On
the other hand, c and c1 span a range Rc. Since both ranges share the conic
c, they span a net N of conics.

The pair (A1, B1) of line pencils spans together with c1 the range of conics
sharing the points A1, B1 and the tangents there, which meet at a point R.
This range, which also belongs to N , contains the rank-1 conic with carrier
R. Each pair of line pencils (Ai, Bi), i = 1, 2 , spans with the pencil R again
a range within N . This range shares with the range Rc a conic ci passing
through Ai and Bi with respective tangent lines through R.3

All these conclusions remain valid in the case, when Rt consists of conics which
touch c at B2 and are tangent to t3 and t4 . �

As already indicated by the notation, we are interested in the particular case
of Theorem 3.5 where the conics c and e in the range Rc are confocal. The
following result follows directly from Theorem 3.5 and summarizes properties
of the Poncelet grid. For the points of intersection between extended sides of
a billiard . . . P0P1P2 . . . we use the notation

S
(j)
i :=

{
[Pi−k−1, Pi−k] ∩ [Pi+k, Pi+k+1] for j = 2k,

[Pi−k, Pi−k+1] ∩ [Pi+k, Pi+k+1] for j = 2k − 1
(3.3)

where i = . . . , 0, 1, 2, . . . and j = 1, 2, . . . Note that there are j sides between
those which intersect at S

(j)
i , and ‘in the middle’ of these j sides there is for

3 An extended version of this theorem in [26] addresses the symmetry between the ranges
Rc and Rt. This generalizes the statement that in the case of confocal conics c and c1 the
quadrilateral A1A2B1B2 has an incircle d (Figs. 4, 6 and 14, compare with [1,19]).
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even j the vertex Pi and otherwise the point of contact Qi . At the same token,
the point S

(j)
i is the pole of the diagonal [Qi−k−1, Qi+k] or [Qi−k, Qi+k] of the

polygon . . . Q1Q2Q3 . . . of contact points w.r.t. the caustic.

Theorem 3.6. Let . . . P0P1P2 . . . be a billiard in the ellipse e with sides PiPi+1

contacting the ellipse c at the respective points Qi for all i ∈ Z. Then the
vertices S

(j)
i of the associated Poncelet grid are distributed on the following

conics.

1. The points S
(1)
i , S

(3)
i , . . . are located on the confocal hyperbola through

Qi, while the points S
(2)
i , S

(4)
i , . . . are located on the confocal hyperbola

through Pi.
2. For each j ∈ {1, 2, . . . }, the points . . . S

(j)
i S

(j)
i+(j+1)S

(j)
i+2(j+1) . . . are ver-

tices of another billiard with the caustic c inscribed in a confocal ellipse
e(j), provided that e(j) is regular. Otherwise e(j) coincides with an axis
of symmetry or with the line at infinity. The locus e(j) is independent of
the position of the initial vertex P0 ∈ e.

Proof. 1. The side lines [P0, P1] (P0 = P7 in Fig. 5) and [P2, P3] meet at
S
(1)
1 , while [P1, P2] contacts c at Q1. By Theorem 3.5, 2. the points Q1

and S
(1)
1 belong to the same confocal hyperbola.

Now we go one step away from Q1: the tangents from P0 and P3 to
c intersect at S

(1)
1 and S

(3)
1 = [P−1, P0] ∩ [P3, P4]. The confocal conic

through S
(1)
1 and S

(3)
1 must again be the hyperbola through Q1. This

follows by continuity after choosing Q1 on one axis of symmetry. Iteration
confirms the first claim in Theorem 3.6.
The tangents to c from P0 and P2 form a quadrilateral with P1 and
S
(2)
1 as opposite vertices. Therefore, there exists a confocal conic passing

through both points. This conic must be a hyperbola, as can be concluded
by continuity: If P1 is specified at a vertex of e, then due to symmetry
the points P1 and S

(2)
1 are located on an axis of symmetry.

The tangents to c from P−1 and P3 form a quadrilateral with S
(2)
1 and

S
(4)
1 as opposite vertices. Theorem 3.5 and continuity guarantee that this

is again the confocal hyperbola through P1. Iteration shows the same of
S
(6)
1 etc. However, the points P1, S

(2)
1 , S

(4)
1 , . . . need not belong to the

same branch of the hyperbola.
2. The tangents through P2 and S

(2)
2 (note Fig. 5) form a quadrilateral with

S
(1)
1 and S

(1)
2 as opposite vertices. This time, continuity shows that the

two points belong to the same confocal ellipse e(1). The same holds for
the tangents through P3 and S

(2)
3 etc.

Similarily, starting with the points P0 and P3, we find the ellipse e(2)

through S
(2)
1 and S

(2)
2 , and so on.

In order to prove that these ellipses e(1), e(2), . . . are independent of the
choice of the initial point P1 ∈ e, we follow an argument from [2, proof of
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Figure 5 Periodic billiard (N = 7) with extended sides

Corollary 2.2]: The claim holds for all confocal ellipses e where billiards
with the same caustic c are aperiodic and traverse e infinitely often. Since
these ellipses form a dense set, the claim holds also for those with periodic
billiards. The invariance of the ellipses e(1), e(2), . . . is already mentioned
in [2, Theorem 7].
An alternative proof consists in demonstrating that the elliptic coordinate
k
(j)
e of e(j) for all j does not depend on the parameter t. As one example,

we present below in (3.7), (3.6) and (3.8) formulas for the semiaxes ae|1,
be|1 and the elliptic coordinate ke|1 of e(1). �

Remark 3.7. Figure 5 reveals, that the polygons P1S
(1)
1 P2S

(1)
2 . . . as well as

P1S
(2)
2 P3S

(2)
4 . . . and S

(2)
1 S

(1)
1 S

(2)
2 S

(1)
2 . . . are zigzag billiards in rings bounded

by two confocal ellipses. However, we find also zigzag billiards between two
confocal hyperbolas, e.g., . . . S

(2)
1 P2P1S

(2)
2 . . . or the twofold covered . . . S

(2)
1

S
(1)
1 P1Q1P1S

(1)
1 S

(2)
1 . . . . Billiards between other pairs of confocal conics can

be found in [12].

The coming lemma addresses invariants related to the incircles of quadrilaterals
built from the tangents to c from any two vertices Pi and Pj of a billiard in e
(note circle d in Fig. 4 and [1,5,19]).

Lemma 3.8. Referring to Fig. 6, the power w2 of the point S
(1)
i w.r.t. the

incircle of the triangle PiPi+1S
(1)
i is the same for all i. Similarly, the power

w2
1 of S

(2)
i w.r.t. the incircle of the quadrangle PiS

(1)
i−1S

(2)
i S

(1)
i is constant.

Proof. According to Graves’s construction [15, p. 47], an ellipse e can be con-
structed from a smaller ellipse c in the following way: Let a closed piece of
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Figure 6 The power w2 of S
(1)
2 w.r.t. the incircle of the tri-

angle S
(1)
2 P2P3 shows up at all S

(1)
i and equals the power of

Pi w.r.t. the incircle of the quadrangle PiS
(1)
i−1S

(2)
i S

(1)
i

string strictly longer than the perimeter of c be posed around c. If point P is
used to pull the string taut, then P traces a confocal ellipse e. Consequently,
for each vertex Pi and neighboring tangency points Qi−1 and Qi of a billiard
in e with caustic c, the sum of the lengths Qi−1Pi and PiQi minus the length
of the elliptic arc between Qi−1 and Qi, i.e.,

De := Qi−1Pi + PiQi − �
Qi−1Qi (3.4)

is constant (Fig. 6).

The incircle of P2P3S
(1)
2 has the center R2 and the radius Q2R2 by (2.15). The

power of P2 w.r.t. this circle is l22, that of P3 is r23. From Graves’ construction
follows for the ellipse e that

De = r2 + l2 − �
Q1Q2 = r3 + l3 − �

Q2Q3 = const.

is the same for all Pi, provided that
�

QiQj denotes the length of the (shorter)
arc along c between Qi and Qj . For the analogue invariant at e(1) follows
(Fig. 6)

De|1 := Q1S
(1)
2 + S

(1)
2 Q3 − �

Q1Q3

= (r2 + l2 + w) + (r3 + l3 + w) − �
Q1Q3 = 2De + 2w = const.,

(3.5)
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hence w = const., where w2 is the power of S
(1)
2 w.r.t. the said incircle.

Since the incircle of the quadrangle P2S
(1)
1 S

(2)
2 S

(1)
2 is an excircle of the triangle

P2P3S
(1)
2 (Fig. 6), the power of P2 w.r.t. the excircle equals w2, too. This

follows from elementary geometry.

As an alternative, the constancy of w can also be concluded from the fact,
that neighboring circles with centers R1

i , Ri or Ri, R
1
i+1 share three tangents,

and one circle is an incircle, the other an excircle of the triangle. Therefore, on
the common side the same length w shows up twice and also at the adjacent
pairs of neighboring circles. Since the distance w is constant for all aperiodic
billiards, it reveals also for periodic billiards that w is independent of the choice
of the initial vertex. In a similar way follows the invariance of the length w1,
as shown in Fig. 6. �

It needs to be noted that S
(1)
2 or S

(2)
2 can be located on the other branch of the

related hyperbola. Then the said ‘incircle’ of the triangle P2P3S
(1)
2 has to be

replaced by the excircle which contacts c at Q2 and is tangent to the side lines
[P1, P2] and [P3, P4]. Similarly, the said ’incircle’ of the quadrangle becomes
an excircle. In all these cases, Lemma 3.8 and the proof given above have to
be adapted.

Remark 3.9. The Theorems 3.5 and 3.6 as well as the constancy of the length
w according to Lemma 3.8 are also valid in spherical geometry (note [26])
and in hyperbolic geometry. On the sphere (see Fig. 7), the caustic consists
of a pair of opposite components, and for N -periodic billiards the confocal
spherical ellipse e(j) coincides with e(N−2−j) w.r.t. the opposite caustic.

We obtain other families of incircles when we focus on pairs of consecutive
sides of the billiards in e(1), e(2) and so on. However, these circles are not
mutually disjoint. By the way, the centers R

(j)
i of all these circles are the poles

of diagonals of . . . P1P2P3 . . . w.r.t. the ellipse e.

For the sake of completeness, we express below in (3.9) the distance w in terms
of the semiaxes of e and c . For this purpose, we compute first the semiaxes ae|1
an be|1 of e(1), since we need the coordinates of S

(1)
2 . From (2.13) and (2.15)

follows

R2 =
(

a2
e cos t′2

ac
,

b2e sin t′2
bc

)
, Q2R2 =

ke‖tc(t′2)‖
acbc

.

By virtue of Theorem 3.5, the tangents from R2 to the confocal hyperbola
through Q2 contact at

Q2 = (ac cos t′2, bc sin t′2) ∈ c and S
(1)
2 = (ae|1 cos t′2, be|1 sin t′2) ∈ e(1).

Both points lie on the polar of R2 w.r.t. the hyperbola in question with the
elliptic coordinate kh = −‖te(t′2)‖2. This yields the condition

a2
e cos t′2

ac(a2
c + kh(t′2))

ae|1 cos t′2 +
b2e sin t′2

bc(b2c + kh(t′2))
be|1 sin t′2 = 1
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Figure 7 Periodic billiard P1P2 . . . P7 on the sphere with
extended sides and their contact points with the incircles. All
circular arcs marked in black have the same length, as well as
those marked in green, and both lengths are invariant against
changes of P1 on e

or, by virtue of (2.7),

a2
ebcae|1 − b2eacbe|1 = acbcd

2, where a2
e|1 − b2e|1 = d2.

We eliminate ae|1 and obtain after some computation the quadratic equation

(b4e − 2b2cb
2
e − b2cd

2) b2e|1 + 2a2
cbcb

2
e be|1 + b2c(a

2
cd

2 − a4
e) = 0.

The second solution besides be|1 = bc is

be|1 =
bc(a2

cd
2 − a4

e)
b4e − 2b2cb

2
e − b2cd

2
=

bc(a2
eb

2
e + d2ke)

a2
cb

2
c − k2

e

. (3.6)

This implies

ae|1 =
ac

a2
ebc

(
bcd

2 + b2ebe|1
)

=
ac(a2

eb
2
e − d2ke)

a2
cb

2
c − k2

e

(3.7)

and

ke|1 = b2e|1 − b2c = ke

(
2acbcaebe

a2
cb

2
c − k2

e

)2
, (3.8)
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and yields finally

w :=
2aebe

√
k3

e

a2
cb

2
c − k2

e

. (3.9)

Negative semiaxes ae|1, be|1 and a negative w in the formulas above mean
that the points S

(1)
i are located on the respectively second branches of the

hyperbolas and the incircles of the triangles PiPi+1S
(1)
i become excircles. In

the case of a vanishing denominator for ke = acbc (periodic four-sided billiard)
the ellipse e(1) is the line at infinity.

If on the right-hand side of the formulas (3.7), (3.6) and (3.8) we replace
ae, be, ke respectively by ae|1, be|1, ke|1, then we obtain expressions for ae|3, be|3,
ke|3, i.e.,

ke|3 = ke|1

(
2acbcae|1be|1
a2

cb
2
c − k2

e|1

)2
. (3.10)

3.2. Conjugate billiards

For two confocal ellipses c and e, there exists an axial scaling

α : (x, y) 
→
(ae

ac
x,

be

bc
y
)

with c → e . (3.11)

Corresponding points share the parameter t. Hence, they belong to the same
confocal hyperbola (Fig. 8). The affine transformation α maps the tangency
point Qi ∈ c of the side PiPi+1 to a point P ′

i ∈ e, while α−1 maps Pi to the
tangency point Q′

i−1 of P ′
i−1P

′
i , i.e.,

α : Qi 
→ P ′
i , Q′

i−1 
→ Pi .

This results from the symmetry between ti and t′i in the equation

bcae cos ti cos t′i + acbe sin ti sin t′i = acbc (3.12)

which expresses that Pi ∈ e with parameter ti lies on the tangent to c at Qi

with parameter t′i. Referring to Fig. 8, α sends the tangent [P ′
i−1, P

′
i ] to c at

Q′
i−1 to the tangent [Ri−1, Ri] to e at Pi . Hence, by α the polygon Q1Q2 . . .

is mapped to P ′
1P

′
2 . . . and futhermore to that of the poles R1R2 . . . of the

billiard’s sides P1P2, P2P3, . . . .

Definition 3.10. Referring to Fig. 8, the billiard . . . P ′
0P

′
1P

′
2 . . . is called conju-

gate to the billiard . . . P0P1P2 . . . in the ellipse e with the ellipse c as caustic,
when the axial scaling α : c → e defined in (3.11) maps the tangency point Qi

of the side PiPi+1 to the vertex P ′
i .

Lemma 3.11. For each billiard . . . P0P1P2 . . . in the ellipse e with the ellipse
c as caustic, there exists a unique conjugate billiard . . . P ′

0P
′
1P

′
2 . . . , and the

relation between the two billiards in e is symmetric. Moreover,

li = PiQi = P ′
iQ

′
i−1 = r′

i and ri = PiQi−1 = P ′
i−1Q

′
i−1 = l′i−1. (3.13)
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Figure 8 The periodic billiard P1P2 . . . P5 in e with the caus-
tic c and the conjugate billiard P ′

1P
′
2 . . . P ′

5

Proof. From the symmetry in (3.12) follows for α : c → e that Pi is the
preimage of Pi is the tangency point Qi−1 of P ′

i−1P
′
i . The congruences s-

tated in (3.13) follow from Ivory’s Theorem for the two diagonals in the
curvilinear quadrangle PiP

′
iQiQ

′
i−1. In view of the sequence of parameters

t1, t
′
1, t2, t

′
2, t3, . . . of the vertices P1, P ′

1, P2, P ′
2, P3, . . . on e, the switch be-

tween the original billiard and its conjugate corresponds to the interchange of
ti with t′i for i = 1, 2, . . . . �

Finally we recall that, based on the Arnold-Liouville theorem from the the-
ory of completely integrable systems, it is proved in [19,21] that there exist
canonical coordinates u on the ellipses e and c such that for any billiard the
transitions from Pi → Pi+1 and Qi → Qi+1 correspond to shifts of the re-
spective canonical coordinates ui and ui+1 by 2Δu. Explicit formulas for the
parameter transformation t 
→ u are provided in [27].

Figure 9 shows how on c such coordinates can be constructed by iterated
subdivision, provided that Q1 and Q3 get the respective canonical coordinates
u = 0 and 1. A comparison with Fig. 8 reveals that, in the sense of a canonical
parametrization, the contact point Qi is exactly halfway from Pi to Pi+1, i.e.,

u′
i = ui + Δu, ui+1 = ui + 2Δu . (3.14)

Hence, the transition from a billiard to its conjugate is equivalent to a shift of
canonical coordinates by Δu. An equivalent result can be found in [21, Sect. 4].

3.3. Billiards with a hyperbola as caustic

As illustrated in Fig. 10, billiards in ellipses e with a confocal hyperbola c as
caustic are zig-zags between an upper and lower subarc of e. If the initial point
P1 is chosen at any point of intersection between e and the hyperbola c, then
the billiard is twofold covered, and the first side P1P2 is tangent to c at P1.
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Figure 9 An example of canonical coordinates on c, e and
e(1), this time with origin Q1 and unit point Q3

Figure 10 Periodic billiard P1P2 . . . P12 in the ellipse e with
the hyperbola c as caustic, together with the hyperbolas e(1),
e(3) and the ellipse e(2) with the inscribed billiard consisting
of three quadrangles S

(2)
i S

(2)
i+3S

(2)
i+6S

(2)
i+9

Here we report briefly, in which way these billiard differ from those with an
elliptic caustic. Proofs are left to the readers. In view of the associated Poncelet
grid, we start with the analogue to Theorem 3.6 (see Figs. 10, 11 and 12).
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Figure 11 The power w2 of P9 w.r.t. the circle tangent to
the sides [P7, P8], [P8, P9],[P9, P10] equals that of P12 w.r.t.
the circle tangent to [P10, P11], [P11, P12], [P12, P1]

Figure 12 Periodic billiard P1P . . . P6 in the ellipse e with
the hyperbola c as caustic, together with the conjugate bil-
liard P ′

1P
′
2 . . . P ′

6. The associated polygon with vertices on
e(1) splits into two triangles S

(1)
1 S

(1)
3 S

(1)
5 (green shaded) and

S
(1)
2 S

(1)
4 S

(1)
6
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Theorem 3.12. Let . . . P0P1P2 . . . be a billiard in the ellipse e with the hyper-
bola c as caustic.

1. Then the points S
(1)
i , S

(3)
i , . . . are located on confocal ellipses through the

contact point Qi of [Pi, Pi+1] with c, while the points S
(2)
i , S

(4)
i , . . . are

located on the confocal hyperbola through Pi.
2. For even j, the points . . . S

(j)
i S

(j)
i+(j+1)S

(j)
i+2(j+1) . . . are vertices of another

billiard with the caustic c inscribed in a confocal ellipse e(j), provided that
S
(j)
i is finite.

For odd j, the points S
(j)
i are located on confocal hyperbolas e(j) or an axis

of symmetry. At each vertex of . . . S
(j)
i S

(j)
i+(j+1)S

(j)
i+2(j+1) . . . , one angle

bisector is tangent to e(j).
All conics e(j) are independent of the position of the initial vertex P1 ∈ e.

At the 12-periodic billiard depicted in Fig. 10, the billiard inscribed to e(2)

splits into three quadrangles (dashed). Note that for odd j there are some
points S

(j)
i where the tangent to e(j) is the interior bisector of the angle

∠S
(j)
i−(j+1)S

(j)
i S

(j)
i+(j+1). Hence, we obtain no billiards inscribed to hyperbo-

las e(j) with the hyperbola c as caustic. In Fig. 12, the 6-periodic billiard
P1P2 . . . P6 yields two triangles S

(1)
i S

(1)
i+2S

(1)
i+4 inscribed to e(1); one of them is

shaded in green.

Lemma 3.8 is also valid for hyperbolas as caustic. An example is depicted
in Fig. 11: The power w2 of P9 w.r.t. the circle tangent to the four consec-
utive sides [P7, P8], [P8, P9],[P9, P10], and [P10, P11] equals that of P12 w.r.t.
the incircle of the quadrilateral with sides [P10, P11], [P11, P12], [P12, P1], and
[P1, P2].

Also for billiards P1P2 . . . in e with a hyperbola c as caustic, there exists
a conjugate billiard P ′

1P
′
2 . . . , and the relation is symmetric. However, the

definition is different. It uses the singular affine transformation

αh : e → F1F2 with Pi 
→ Ti = [Pi, Pi+1] ∩ [F1, F2], (3.15)

with F1 and F2 as the focal points of e and c (Fig. 12).

Definition 3.13. Referring to Fig. 12, the billiard . . . P ′
0P

′
1P

′
2 . . . in the ellipse e

with the hyperbola c as caustic is called conjugate to the billiard . . . P0P1P2 . . .
in e with the same caustic c if the axial scaling αh defined in (3.15) maps the
point P ′

i to the intersection Ti of PiPi+1 with the principal axis.

Lemma 3.14. Let . . . P0P1P2 . . . be a billiard in the ellipse e with the hyperbola
c as caustic. Then to this billiard and to its mirror w.r.t. the principal axis
exists a conjugate billiard . . . P ′

0P
′
1P

′
2 . . . , and it is unique up to a reflection in

the principal axis. The relation between two conjugate billiards in e is symmet-
ric. Moreover, if T ′

i denotes the intersection of P ′
iP

′
i+1 with the principal axis,
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then

PiTi = P ′
iT

′
i−1 and PiTi−1 = P ′

i−1T
′
i−1. (3.16)

Proof. The singular affine transformation αh maps P ′
1 to T1 and P1 to a point

T ′ (= T ′
6 in Fig. 12). We assume that P1 and P ′

1 lie on the same side of the
principal axis, since otherwise we apply a reflection in the axis. Then we obtain
a curvilinear Ivory quadrangle P ′

1T1T
′P1 with diagonals of equal lengths. On

the other hand, the lines [P ′
1, T

′] and [P1, T1] must contact the same confocal
conic (see, e.g., [7, p. 153] or [26, Lemma 1]). Hence, the billiard through the
point P ′

1 ∈ e with caustic c contains one side on the line [P ′
1, T

′]. Iteration
confirms the claim. �

Let P 1 and P 2 be the images of P1 and P2 under reflection in the principal
axis of e (Fig. 12). Then, a comparison with Fig. 9 reveals that the confocal
hyperbola through the intersection T1 = [P1, P2] ∩ [P 1, P 1] lies ‘in the middle’
between the hyperbolas through P1 and P2.

Remark 3.15. If . . . P0P1P2 . . . and . . . P ′
0P

′
1P

′
2 . . . is a pair of conjugate bil-

liards in an ellipse e, then the points of intersection [Pi, Pi+1] ∩ [P ′
i , P

′
i−1] are

located on a confocal ellipse e′ inside e. This holds for ellipses and hyperbolas
as caustics. If the billiards are N -periodic, then in the elliptical case, the re-
striction of the two billiards to the interior of e′ is 2N -periodic; conversely, e
plays the role of e(1) w.r.t. e′ (Fig. 8). In the hyperbolic case, the restriction
to the interior of e′ gives two symmetric 2N -periodic billiards, provided that
also the reflected billiards are involved (Fig. 12).

We conclude with citing a result from [28] about billiards in ellipses. It s-
tates that for each billiard . . . P1P2P3 . . . in e with a hyperbola as caustic
there exists a billiard . . . P ∗

1 P ∗
2 P ∗

3 . . . in e∗ with an ellipse as caustic such that
corresponding sides PiPi+1 and P ∗

i P ∗
i+1 are congruent.

4. Periodic N -sided billiards

Let the billiard P1P2 . . . PN in the ellipse e be periodic with an ellipse c as
caustic. Then, the sequence of parameters t1, t

′
1, t2, . . . , tN , t′N of the vertices Pi

and the intermediate contact points Q1, . . . , QN with c is cyclic. Each side line
intersects only a finite number of other side lines. Hence, the corresponding
Poncelet grid contains a finite number of confocal ellipses e(j) through the
points S

(j)
i , namely [N−2

2 ] (including possibly the line at infinity), provided
that N ≥ 5 (Fig. 5). The sequence of ellipses e, e(1), e(2), . . . is cyclic, and

e(j) = e(N−2−j). (4.1)

For example, in the case N = 7 (Fig. 6), the ellipse e(2) coincides with e(3).
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Figure 13 Periodic billiard P1P2 . . . P9 with τ = 1. Note that
l2 = P2Q2 = Q6P7 = r7 and S

(1)
2 P3 = P7S

(1)
7 . The associated

billiard in e(2) splits into three triangles

Definition 4.1. The sum of the oriented exterior angles θi of a periodic billiard
in an ellipse e is an integer multiple of 2π, namely 2τπ. We call τ ∈ N the
turning number of the billiard. It counts the loops of the billiard around the
center O of e, anti-clockwise or clockwise.

If the periodic billiard P1P2 . . . PN has the turning number τ = 1 (Fig. 13),
then the billiard S

(1)
1 S

(1)
3 S

(1)
5 . . . in e(1) has τ = 2, that of S

(2)
1 S

(2)
4 . . . in e(2)

the turning number τ = 3, and so on. In cases with g = gcd(N, τ) > 1 the
corresponding billiard splits into g N

g -sided billiards, each with turning number
τ/g (note [25, Theorem 1.1]).

4.1. Symmetries of periodic billiards

The following is a corollary to Theorem 3.6.

Corollary 4.2. Let P1P2 . . . PN be an N -sided periodic billiard in the ellipse e
with the ellipse c as caustic.

(i) For even N and odd τ , the billiard is centrally symmetric.
(ii) For odd N = 2n + 1 and odd τ , the billiard is centrally symmetric to the

conjugate billiard, where Pi corresponds to P ′
i+n.

4

(iii) If N is odd and τ is even, then the conjugate billiard coincides with the
original one, and Pi = P ′

i+n.

Proof. By virtue of Theorem 3.6, the lines [Pi−j−1, Pi−j , ] and [Pi+j , Pi+j+1]
for j = 1, 2, . . . meet at the point Si(j) on the confocal hyperbola through Pi.

4 All subscripts in this section are understood modulo N .
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Figure 14 Periodic billiard with N = 7 and τ = 2

(i) This means for even N = 2n, odd τ and j = n−1, that also the opposite
vertex S

(n)
i = Pi−n = Pi+n belongs to this hyperbola. If Pi is specified

at a vertex on the minor axis of the ellipse e, then Pi+n is the opposite
vertex. Continuity implies that the two points belong to different branches
of the hyperbola and are symmetric w.r.t. the center O of e.

(ii) , (iii): If N is odd, say N = 2n + 1, then for j = n − 1 the sides
[Pi−n+1, Pi−n] and [Pi+n−1, Pi+n] intersect at a point on the hyperbola
through Qi+n and P ′

i+n. For odd τ (Figs. 8 and 13), the same continuity
argument as before proves that Pi and P ′

i+n are opposite w.r.t. O.
If τ is even (Fig. 14), then the choice of Pi ∈ e on an axis of symmetry
shows the coincidence with P ′

i+n ∈ e, and this must be preserved, when
Pi varies continuously on e. In the case of even τ and N the billiard splits.

�

The billiards with a hyperbola c as caustic (see Figs. 10 and 12) oscillate
between the upper and lower section of e. Therefore, only billiards with an even
N can be periodic. Also for billiards of this type, it possible to define a turning
number τ which counts how often the points P1, P 2, P3, . . . , PN (Fig. 12) run
to and fro along the upper component of e.5 The symmetry properties of these
periodic N -sided billiards differ from those in Corollary 4.2. They follow from
Theorem 3.6, since opposite vertices Pi and Pi+N/2 belong to the same confocal
hyperbola.

Corollary 4.3. Let P1P2 . . . PN be an N -sided periodic billiard in the ellipse e
with the hyperbola c as caustic.

5 The turning number of hyperbolic billiards becomes more intuitive when the billiard is
seen as the limit of a focal billiard in the sense of [28, Theorem 2].
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(i) For N ≡ 0 (mod 4), the billiard is symmetric w.r.t. the secondary axis
of e and c.

(ii) For N ≡ 2 (mod 4) and odd turning number τ , the billiards are centrally
symmetric. For even τ , each billiard is symmetric w.r.t. the principal axis
of e and c.

4.2. Some invariants

As a direct consequence of the results so far, we present new proofs for the
invariants k101, k118 and k119 listed in [24, Table 2], though this table refers
already to proofs for some of them in [2,11].

We begin with a result that has first been proved for a much more general
setting in [29, p. 103].

Lemma 4.4. The length Le of a periodic N -sided billiard in the ellipse e with
the ellipse c as caustic is independent of the position of the initial vertex P1 ∈ e.

Proof. We refer to Graves’s construction [15, p. 47]. According to (3.4) holds

De := Qi−1Pi + PiQi − �
Qi−1Qi.

This yields for an N -sided billiard with turning number τ the total length

Le = N · De − τ · Pc , (4.2)

where Pc denotes the perimeter of the caustic c. Thus, Le does not depend of
the choice of the initial vertex P1 ∈ e. �

If the billiard in e has the turning number τ , then its extension in e(1) has the
turning number 2τ , and from (3.5) and (3.9) follows

Le|1 = NDe|1 − 2τPc = 2N(De + w) − 2τPc = 2Le + 2N
2aebe

√
k3

e

a2
cb

2
c − k2

e

. (4.3)

The following theorem on the invariant k118 in [24] deals with the lengths ri

and li of the segments Qi−1Pi and PiQi, as defined in (3.1).

Theorem 4.5. In each N -sided periodic billiard opposite segments are congru-
ent, i.e., if N = 2n, then ri+n = ri and li+n = li , and if N = 2n + 1, then
ri+n = li−1 and li+n = ri . Thus, for odd N holds

N∑
i=1

li =
N∑

i=1

ri =
Le

2
.

Proof. By Corollary 4.2, for even N = 2n the central symmetry implies for
opposite segments ri = ri+n and li = li+n.

If N = 2n + 1, then li = PiQi shows up as l′i+n = P ′
i+nQ′

i+n at the conjugate
billiard and, by virtue of (3.13), this equals ri+n+1 = Pi+n+1Qi+n (Fig. 13).
Similarly follows ri = li+n. �
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Figure 15 Billiard P1P2 . . . with pedal points w.r.t. O

Remark 4.6. In the particular case N = 3 the two segments adjacent to any
side are congruent (note in Fig. 13 the triangular billiards in e(2)). Therefore,
the Cevians [Pi, Qi+1] are concurrent and meet at the Nagel point of the tri-
angle. This has already been proved in [23] and agrees with the circles through
Qi and centered at Ri (see Figs. 6 and 14), which for N = 3 are excircles of
the triangle P1P2P3 .

The following theorem has first been proved in [2, p. 4]. Another proof can be
found in [3, Cor. 3.2]. We give below a new proof.

Theorem 4.7. For the exterior angles θ1, . . . , θN of the periodic N -sided elliptic
billiard in the ellipse e , the sum of cosines is independent of the initial vertex,
namely

N∑
i=1

cos θi = N − JeLe = N −
√

ke

aebe
Le ,

where Le is the common perimeter of these billiards in e .

Proof. The pedal points Fi and Fi−1 on the sides PiPi+1 and Pi−1Pi w.r.t.
the center O (Fig. 15) have the position vectors

fi,i−1 = p + λi,i−1
‖te‖

(
cos θi

2 t ± sin θi

2 t⊥
)
,

where 0 =
〈
fi,i−1,

(
cos θi

2 t ± sin θi

2 t⊥
)〉

.

Here, λi and λi+1 denote the signed distances from the vertex Pi in one case
towards Pi+1, in the other opposite to Pi−1. From

〈pi, t〉 = (−a2
e + b2e) cos t sin t and 〈pi, t

⊥〉 = −aebe

follows

λi,i−1 =
1

‖te‖
(

(−a2
e + b2e) cos t sin t cos

θi

2
± aebe sin

θi

2

)
.

This implies by virtue of (2.11) and after reversing the orientation for λi−1,

λi − λi−1 = PiFi + PiFi−1 =
2aebe

‖te‖2
√

ke .
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Since the sum over all signed lengths between Pi and the adjacent pedal points
gives the total perimeter Le of the billiard, we obtain by (2.12)

Le =
N∑

i=1

(
PiFi + PiFi−1

)
=

aebe√
ke

N∑
i=1

2ke

‖te‖2 =
aebe√

ke

N∑
i=1

(1 − cos θi), (4.4)

hence
N∑

i=1

1
‖te‖2 =

Le

2aebe

√
ke

and also
N∑

i=1

cos θi = N −
√

ke

aebe
Le , (4.5)

as stated. �

Remark 4.8. Note that the result in [2] relates to the interior angles of the
billiard. As already mentioned in [2, Theorem 7], the constant sum of cosines
holds also for the ‘extended’ billiards in e(j), where the exterior angles are
θi + θi+1 + · · · + θi+j (note Fig. 5).

The first equation in (4.5) gives rise to two invariants which are already known:
Similar to (2.14), the distance of O to the tangent tP to e at P equals

OtP =
aebe

‖te‖ (4.6)

and yields a result as stated in [3, Cor. 3.2, third equation]. The invariant
k119, first proved by P. Roitmann, deals with the curvature of e , namely by
[15, p. 79] with

κe(t) :=
aebe

‖te(t)‖3 .

Corollary 4.9. The squared distances from the center O to the tangents tPi
at

the vertices Pi of the periodic N -sided elliptic billiard in the ellipse e have a
constant sum, independent of the initial vertex, namely

N∑
i=1

OtP
2

=
aebe

2
√

ke

Le .

The curvatures κi of e at the vertices Pi give rise to an invariant sum
N∑

i=1

κ
2/3
i =

Le

2
√

ke

(aebe)−1/3 .

Remark 4.10. It is remarkable that the quantity κ2/3 appears in the billiard
setting also at the Lazutkin parameter which coincides with the Poritsky string
length, i.e., a kind of canonical parameter, up to additive and multiplicative
constants. For details see [16].

We conclude this section with a comment on (4.1) in connection with (3.8) and
(3.10). For example, we obtain ke|1 = ke for N = 3 and ke = ac bc for N = 4.
The condition ke|2 = ke|1 is valid for N = 5, and ke|2 = ∞ for N = 6. This
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yields algebraic conditions for the semiaxes of the ellipse e with an inscribed
N -periodic billiard when the ellipse c is given as caustic. However, we need to
recall that approximately 200 years ago N. Fuß and J. Steiner presented already
equations for the projectively equivalent case of circles (see [20, pp. 378–380]),
and A. Cayley published an explicit solution for general N in a projective
setting ( [17] or [15, Theorem 9.5.4]). Other approaches are provided in [4,
Sect. VI] and [14, Sect. 11.2.3.9]. Equivalent conditions in terms of elliptic
functions can be deduced from [27, Corollary 3].
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