The geometry of billiards in ellipses and their poncelet grids

Hellmuth Stachel

Abstract

The goal of this paper is an analysis of the geometry of billiards in ellipses, based on properties of confocal central conics. The extended sides of the billiards meet at points which are located on confocal ellipses and hyperbolas. They define the associated Poncelet grid. If a billiard is periodic then it closes for any choice of the initial vertex on the ellipse. This gives rise to a continuous variation of billiards which is called billiard motion though it is neither a Euclidean nor a projective motion. The extension of this motion to the associated Poncelet grid leads to new insights and invariants.

Mathematics Subject Classification. Primary 51N35, Secondary 51N20, 52C30, 37D50.
Keywords. Billiard in ellipse, Caustic, Poncelet grid, Confocal conics, Billiard motion, Canonical parametrization.

1. Introduction

A billiard is the trajectory of a mass point within a domain with ideal physical reflections in the boundary. Already for two centuries, billiards in ellipses have attracted the attention of mathematicians, beginning with J.-V. Poncelet, C.G.J. Jacobi and A. Cayley. One basis for the investigations was the theory of confocal conics. In 2005 S . Tabachnikov published a book on various aspects of billiards, including their role as completely integrable systems [29]. In several publications and in the book [13], V. Dragović and M. Radnović studied billiards, also in higher dimensions, from the viewpoint of dynamical systems.

Computer animations of billiards in ellipses, which were carried out by Reznik [24], stimulated a new vivid interest on this well studied topic, where algebraic and analytic methods are meeting (see, e.g., $[2,3,11,21-23]$ and many further
references in [24]). These papers focus on invariants of periodic billiards when the vertices vary on the ellipse while the caustic remains fixed. This variation is called billiard motion though neither angles nor side lengths remain fixed; and it is not a projective motion preserving the circumscribed ellipse.
The goal of this paper is a geometric analysis of billiards in ellipses and their associated Poncelet grid, starting from properties of confocal conics. We concentrate on a certain symmetry between the vertices of any billiard and the contact points with the caustic, which can be an ellipse or hyperbola. Billiard motions induce motions of associated billiards with the same caustic and circumscribed confocal ellipses.

2. Metric properties of confocal conics

A family of confocal central conics (Fig. 1) is given by

$$
\begin{equation*}
\frac{x^{2}}{a^{2}+k}+\frac{y^{2}}{b^{2}+k}=1, \text { where } k \in \mathbb{R} \backslash\left\{-a^{2},-b^{2}\right\} \tag{2.1}
\end{equation*}
$$

serves as a parameter in the family. All these conics share the focal points

$$
\begin{equation*}
F_{1,2}=(\pm d, 0), \text { where } d^{2}:=a^{2}-b^{2} \tag{2.2}
\end{equation*}
$$

The confocal family sends through each point P outside the common axes of symmetry two orthogonally intersecting conics, one ellipse and one hyperbola $\left[15\right.$, p. 38]. The parameters $\left(k_{e}, k_{h}\right)$ of these two conics define the elliptic coordinates of P with

$$
-a^{2}<k_{h}<-b^{2}<k_{e}
$$

If (x, y) are the cartesian coordinates of P, then $\left(k_{e}, k_{h}\right)$ are the roots of the quadratic equation

$$
\begin{equation*}
k^{2}+\left(a^{2}+b^{2}-x^{2}-y^{2}\right) k+\left(a^{2} b^{2}-b^{2} x^{2}-a^{2} y^{2}\right)=0 \tag{2.3}
\end{equation*}
$$

while conversely

$$
\begin{equation*}
x^{2}=\frac{\left(a^{2}+k_{e}\right)\left(a^{2}+k_{h}\right)}{d^{2}}, \quad y^{2}=-\frac{\left(b^{2}+k_{e}\right)\left(b^{2}+k_{h}\right)}{d^{2}} . \tag{2.4}
\end{equation*}
$$

Let $(a, b)=\left(a_{c}, b_{c}\right)$ be the semiaxes of the ellipse c with $k=0$. Then, for points P on a confocal ellipse e with semiaxes $\left(a_{e}, b_{e}\right)$ and $k=k_{e}>0$, i.e., exterior to c, the standard parametrization yields

$$
\begin{align*}
P= & (x, y)=\left(a_{e} \cos t, b_{e} \sin t\right), 0 \leq t<2 \pi \\
& \text { with } a_{e}^{2}=a_{c}^{2}+k_{e}, b_{e}^{2}=b_{c}^{2}+k_{e} \tag{2.5}
\end{align*}
$$

For the elliptic coordinates $\left(k_{e}, k_{h}\right)$ of P follows from (2.3) that

$$
k_{e}+k_{h}=a_{e}^{2} \cos ^{2} t+b_{e}^{2} \sin ^{2} t-a_{c}^{2}-b_{c}^{2} .
$$

After introducing the respective tangent vectors of e and c, namely

$$
\begin{align*}
& \mathbf{t}_{e}(t):=\left(-a_{e} \sin t, b_{e} \cos t\right), \tag{2.6}\\
& \mathbf{t}_{c}(t):=\left(-a_{c} \sin t, b_{c} \cos t\right),
\end{align*} \text { where }\left\|\mathbf{t}_{e}\right\|^{2}=\left\|\mathbf{t}_{c}\right\|^{2}+k_{e},
$$

we obtain ${ }^{1}$

$$
\begin{equation*}
k_{h}=k_{h}(t)=-\left(a_{c}^{2} \sin ^{2} t+b_{c}^{2} \cos ^{2} t\right)=-\left\|\mathbf{t}_{c}(t)\right\|^{2}=-\left\|\mathbf{t}_{e}(t)\right\|^{2}+k_{e} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathbf{t}_{e}(t)\right\|^{2}=k_{e}-k_{h}(t) \tag{2.8}
\end{equation*}
$$

Note that points on the confocal ellipses e and c with the same parameter t have the same coordinate k_{h}. Consequently, they belong to the same confocal hyperbola (Figs. 5 and 8). Conversely, points of e or c on this hyperbola have a parameter out of $\{t,-t, \pi+t, \pi-t\}$.

Normal vectors of e and c can be defined respectively as

$$
\begin{align*}
& \mathbf{n}_{e}(t):=\left(\frac{\cos t}{a_{e}}, \frac{\sin t}{b_{e}}\right), \tag{2.9}\\
& \mathbf{n}_{c}(t):=\left(\frac{\cos t}{a_{c}}, \frac{\sin t}{b_{c}}\right),
\end{align*} \quad \text { where }\left\|\mathbf{n}_{c}(t)\right\|=\frac{\left\|\mathbf{t}_{c}(t)\right\|}{a_{c} b_{c}} .
$$

We complete with two useful relations between the parameter t and the second elliptic coordinate $k_{h}(t)$:

$$
\begin{equation*}
\tan ^{2} t=-\frac{b_{c}^{2}+k_{h}(t)}{a_{c}^{2}+k_{h}(t)} \quad \text { and } \quad \sin t \cos t=\frac{a_{h} b_{h}}{d^{2}} \tag{2.10}
\end{equation*}
$$

with a_{h} and b_{h} as semiaxes of the hyperbola corresponding to the parameter t, i.e., $a_{h}^{2}=a_{c}^{2}+k_{h}$ and $b_{h}^{2}=-\left(b_{c}^{2}+k_{h}\right)$.

Proof. From (2.7) follows

$$
k_{h}=-\frac{a_{c}^{2} \tan ^{2} t+b_{c}^{2}}{1+\tan ^{2} t}, \quad \text { hence } \quad \tan ^{2} t\left(a_{c}^{2}+k_{h}\right)=-b_{c}^{2}-k_{h}
$$

and

$$
\sin t \cos t=\frac{\tan t}{1+\tan ^{2} t}=\frac{\sqrt{-\left(b_{c}^{2}+k_{h}\right)\left(a_{c}^{2}+k_{h}\right)}}{a_{c}^{2}-b_{c}^{2}}=\frac{a_{h} b_{h}}{d^{2}} .
$$

Referring to Fig. 1, the following lemma addresses an important property of confocal conics (note, e.g., [15, pp. 38 and 309]).

Lemma 2.1. The tangents drawn from any fixed point P to the conics of a confocal family share the axes of symmetry, which are tangent to the two conics passing through P.

This means, if a ray is reflected at P in one of the conics passing through, then the incoming and the outgoing ray contact the same confocal ellipse or hyperbola.
Below, we report about results concerning a pair of confocal conics. Due to their meaning for billiards in ellipses, we restrict ourselves to pairs (e, c) of confocal ellipses with c in the interior e, and we call c the caustic (Fig. 2).

[^0]

Figure 1 The tangents from the point P to the conics of a confocal family are symmetric w.r.t. the tangents at P to the confocal conics passing through P

Figure 2 Periodic billiard $P_{1} P_{2} \ldots P_{5}$ inscribed in the ellipse e with the caustic c

Lemma 2.2. Let $P=\left(a_{e} \cos t, b_{e} \sin t\right)$ with elliptic coordinates $\left(k_{e}, k_{h}\right)$ be a point on the ellipse e with $k_{e}>0$ and c be the confocal ellipse with $k=0$. Then, the angle $\theta(t) / 2$ between the tangent at P to e and any tangent from P to c satisfies

$$
\begin{align*}
\sin ^{2} \frac{\theta}{2} & =\frac{k_{e}}{\left\|\boldsymbol{t}_{e}(t)\right\|^{2}}=\frac{k_{e}}{k_{e}-k_{h}}, \tan \frac{\theta}{2}= \pm \sqrt{-\frac{k_{e}}{k_{h}}} \tag{2.11}\\
\cos \theta & =1-\frac{2 k_{e}}{\left\|\boldsymbol{t}_{e}(t)\right\|^{2}}=\frac{k_{h}+k_{e}}{k_{h}-k_{e}}, \quad \sin \theta= \pm \frac{2 \sqrt{-k_{e} k_{h}}}{k_{e}-k_{h}} \tag{2.12}
\end{align*}
$$

Proof. The tangent t_{P} to e at $P=\left(a_{e} \cos t, b_{e} \sin t\right)$ in direction of \mathbf{t}_{e} has the slope

$$
f:=\tan \alpha_{1}=\frac{-b_{e} \cos t}{a_{e} \sin t}
$$

If s_{1} and s_{2} denote the slopes of the tangents from P to c, then they satisfy

$$
y-b_{e} \sin t=s_{i}\left(x-a_{e} \cos t\right), \quad i=1,2 .
$$

As tangents of c, their homogeneous line coordinates

$$
\left(u_{0}: u_{1}: u_{2}\right)=\left(\left(b_{e} \sin t-s_{i} a_{e} \cos t\right): s_{i}:-1\right)
$$

must satisfy the tangential equation $-u_{0}^{2}+a_{c}^{2} u_{1}^{2}+b_{c}^{2} u_{2}^{2}=0$ of c. This results in a quadratic equation for the unknown s, namely

$$
\left(a_{e}^{2} \sin ^{2} t-k_{e}\right) s^{2}+2 a_{e} b_{e} s \sin t \cos t+\left(b_{e}^{2} \cos ^{2} t-k_{e}\right)=0 .
$$

We conclude

$$
s_{1}+s_{2}=\frac{-2 a_{e} b_{e} \sin t \cos t}{a_{e}^{2} \sin ^{2} t-k_{e}} \text { and } s_{1} s_{2}=\frac{b_{e}^{2} \cos ^{2} t-k_{e}}{a_{e}^{2} \sin ^{2} t-k_{e}} .
$$

The slopes $f=\tan \alpha_{1}$ of t_{P} and $\tan \alpha_{2}=s_{1}$ or s_{2} of the tangents to c imply for the enclosed signed angle $\theta(t) / 2$ (for brevity, we often suppress the parameter $t)$

$$
\tan \frac{\theta}{2}=\tan \left(\alpha_{1}-\alpha_{2}\right)=\frac{s_{1}-f}{1+s_{1} f}=\frac{f-s_{2}}{1+s_{2} f},
$$

hence

$$
\tan ^{2} \frac{\theta}{2}=\frac{\left(s_{1}-f\right)\left(f-s_{2}\right)}{\left(1+s_{1} f\right)\left(1+s_{2} f\right)}=\frac{f\left(s_{1}+s_{2}\right)-s_{1} s_{2}-f^{2}}{f\left(s_{1}+s_{2}\right)+1+f^{2} s_{1} s_{2}} .
$$

After some computations, we obtain

$$
\tan ^{2} \frac{\theta}{2}=\frac{k_{e}}{a_{e}^{2} \sin ^{2} t+b_{e}^{2} \cos ^{2} t-k_{e}}=\frac{k_{e}}{\left\|\mathbf{t}_{e}\right\|^{2}-k_{e}}=\frac{k_{e}}{\left\|\mathbf{t}_{c}\right\|^{2}},
$$

therefore

$$
\cot ^{2} \frac{\theta}{2}=\frac{\left\|\mathbf{t}_{e}\right\|^{2}}{k_{e}}-1 \text { and } \sin ^{2} \frac{\theta}{2}=\frac{1}{1+\cot ^{2} \frac{\theta}{2}}=\frac{k_{e}}{\left\|\mathbf{t}_{e}\right\|^{2}},
$$

where $k_{e}=a_{e}^{2}-a_{c}^{2}=b_{e}^{2}-b_{c}^{2}$, and finally

$$
\cos \theta=1-2 \sin ^{2} \frac{\theta}{2}=1-\frac{2 k_{e}}{\left\|\mathbf{t}_{c}\right\|^{2}+k_{e}}=\frac{\left\|\mathbf{t}_{c}\right\|^{2}-k_{e}}{\left\|\mathbf{t}_{c}\right\|^{2}+k_{e}} .
$$

Remark 2.3. A change of the origin $k=0$ for the elliptic coordinates in a family of confocal conics corresponds to a shift of the coordinates. Hence, if in Lemma 2.2 the ellipse c is replaced by another confocal conic with the coordinate k, then the formulas (2.11) and (2.12) remain valid under the condition that we replace k_{e} by $k_{e}-k$ and k_{h} by $k_{h}-k$.

Lemma 2.4. Let $P_{1} P_{2}$ be a chord of the ellipse e, which contacts the caustic c at the point Q_{1}. Then the signed distances of the line $\left[P_{1}, P_{2}\right]$ to the center O and to the pole R_{1} w.r.t. e have the constant product $-k_{e}$. The lines $\left[P_{1}, P_{2}\right]$ and $\left[Q_{1}, R_{1}\right]$ are orthogonal (Fig. 2).

Proof. Let the side $P_{1} P_{2}$ touch the caustic c at the point $Q_{1}=\left(a_{c} \cos t_{1}^{\prime}, b_{c} \sin \right.$ $\left.t_{1}^{\prime}\right)$. Then the Hessian normal form of the spanned line $t_{Q}=\left[P_{1}, P_{2}\right]$ reads

$$
t_{Q}: \frac{b_{c} \cos t_{1}^{\prime} x+a_{c} \sin t_{1}^{\prime} y-a_{c} b_{c}}{\sqrt{b_{c}^{2} \cos ^{2} t_{1}^{\prime}+a_{c}^{2} \sin ^{2} t_{1}^{\prime}}}=0
$$

Its pole w.r.t. e has the coordinates

$$
\begin{equation*}
R_{1}=\left(\frac{a_{e}^{2} \cos t_{1}^{\prime}}{a_{c}}, \frac{b_{e}^{2} \sin t_{1}^{\prime}}{b_{c}}\right) \tag{2.13}
\end{equation*}
$$

This yields for the signed distances to the line t_{Q}

$$
\begin{equation*}
\overline{O t_{Q}}=\frac{-a_{c} b_{c}}{\left\|\mathbf{t}_{c}\left(t_{1}^{\prime}\right)\right\|} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{R_{1} t_{Q}}=\overline{R_{1} Q_{1}}=\frac{k_{e}\left(b_{c}^{2} \cos ^{2} t_{1}^{\prime}+a_{c}^{2} \sin ^{2} t_{1}^{\prime}\right)}{a_{c} b_{c}\left\|\mathbf{t}_{c}\left(t_{1}^{\prime}\right)\right\|}=\frac{k_{e}\left\|\mathbf{t}_{c}\left(t_{1}^{\prime}\right)\right\|}{a_{c} b_{c}} . \tag{2.15}
\end{equation*}
$$

Thus, we obtain a constant product $\overline{O t_{Q}} \cdot \overline{R_{1} t_{Q}}=-k_{e}$, as stated in Lemma 2.4.
The last statement holds since R_{1} and Q_{1} are the poles of [P_{1}, P_{2}] w.r.t. the confocal conics e and c. It is wellknown that the poles of any line ℓ w.r.t. confocal conics lie on a line ℓ^{*} orthogonal to ℓ (see, e.g., [15, p. 340]).

3. Confocal conics and billiards

By virtue of Lemma 2.1, all sides of a billiard inscribed to the ellipse e with parameter $k=k_{e}$ are tangent to a fixed conic c confocal with e (Fig. 2). The caustic c with parameter k_{c} can be a smaller ellipse with $-b^{2}<k_{c}<k_{e}$ or a hyperbola with $-a^{2}<k_{c}<-b^{2}$ or, in the limiting case with $k_{c}=-b^{2}$, consist of the pencils of lines with the focal points F_{1}, F_{2} of c as carriers. At the beginning, we confine ourselves to an ellipse with $k_{c}=0$ (Fig. 2), and we speak of an elliptic billiard. Only the Figs. 10, 11 and 12 show (periodic) billiards in e with a hyperbola as caustic, called hyperbolic billards.

For billiards $\ldots P_{1} P_{2} P_{3} \ldots$ in the ellipse e and with the ellipse c as caustic, we assume from now on a counter-clockwise order and signed exterior angles $\theta_{1}, \theta_{2}, \theta_{3}, \ldots$ (see Fig. 2). The tangency points Q_{1}, Q_{2}, \ldots of the billiard's sides $P_{1} P_{2}, P_{2} P_{3}, \ldots$ with the caustic c subdivide the sides into two segments. We denote the lengths of the segments adjacent to P_{i} as

$$
\begin{equation*}
l_{i}:=\overline{P_{i} Q_{i}} \text { and } r_{i}:=\overline{P_{i} Q_{i-1}} . \tag{3.1}
\end{equation*}
$$

Based on the parametrizations $\left(a_{e} \cos t, b_{e} \sin t\right)$ of e and $\left(a_{c} \cos t^{\prime}, b_{c} \sin t^{\prime}\right)$ of c, we denote the respective parameters of $P_{1}, Q_{1}, P_{2}, Q_{2}, P_{3}, \ldots$ with t_{1}, t_{1}^{\prime}, $t_{2}, t_{2}^{\prime}, t_{3}, \ldots$ in strictly increasing order.
The following two lemmas deal with sides of billiards in the ellipse e.
Lemma 3.1. The connecting line $\left[P_{i}, P_{i+1}\right]$ of the vertices with respective parameters t_{1}, t_{2} on e contacts the caustic c if and only if

$$
\frac{a_{c}^{2}}{a_{e}^{2}} \cos ^{2} \frac{t_{1}+t_{2}}{2}+\frac{b_{c}^{2}}{b_{e}^{2}} \sin ^{2} \frac{t_{1}+t_{2}}{2}=\cos ^{2} \frac{t_{1}-t_{2}}{2}
$$

This is equivalent to

$$
\sin ^{2} \frac{t_{1}-t_{2}}{2}=\frac{k_{e}}{a_{e} b_{e}}\left\|\boldsymbol{t}_{e}\left(\frac{t_{1}+t_{2}}{2}\right)\right\|^{2} .
$$

Proof. The line connecting the points $\left(a_{e} \cos t_{i}, b_{e} \sin t_{i}\right), i=1,2$, has homogeneous line coordinates ($u_{0}: u_{1}: u_{2}$) equal to

$$
\left(a_{e} b_{e}\left(\cos t_{1} \sin t_{2}-\sin t_{1} \cos t_{2}\right): b_{e}\left(\sin t_{1}-\sin t_{2}\right): a_{e}\left(\cos t_{2}-\cos t_{1}\right)\right) .
$$

It contacts the caustic c if $-u_{0}^{2}+a_{c}^{2} u_{1}^{2}+b_{c}^{2} u_{2}^{2}=0$, i.e.,

$$
\begin{aligned}
& a_{c}^{2} b_{e}^{2} \sin ^{2} \frac{t_{1}-t_{2}}{2} \cos ^{2} \frac{t_{1}+t_{2}}{2}+b_{c}^{2} a_{e}^{2} \sin ^{2} \frac{t_{1}-t_{2}}{2} \sin ^{2} \frac{t_{1}+t_{2}}{2} \\
& =a_{e}^{2} b_{e}^{2} \sin ^{2} \frac{t_{2}-t_{1}}{2} \cos ^{2} \frac{t_{2}-t_{1}}{2}
\end{aligned}
$$

Under the condition $\sin \left[\left(t_{1}-t_{2}\right) / 2\right] \neq 0$ we obtain the first claimed equation. The second follows after the substitutions $a_{c}^{2}=a_{e}^{2}-k_{e}$ and $b_{c}^{2}=b_{e}^{2}-k_{e}$ from

$$
1-\frac{k_{e}}{a_{e}^{2} b_{e}^{2}}\left(b_{e}^{2} \cos ^{2} \frac{t_{1}+t_{2}}{2}+a_{e}^{2} \sin ^{2} \frac{t_{1}+t_{2}}{2}\right)=\cos ^{2} \frac{t_{2}-t_{1}}{2} .
$$

by (2.9).
Lemma 3.2. Referring to the notation in Lemma 3.1, if the side $P_{i} P_{i+1}$ contacts the caustic c at Q_{i} with parameter t_{i}^{\prime}, then

$$
\sin t_{i}^{\prime}=\frac{b_{c}}{b_{e}} \frac{\sin \frac{t_{i}+t_{i+1}}{2}}{\cos \frac{t_{i}-t_{i+1}}{2}}, \cos t_{i}^{\prime}=\frac{a_{c}}{a_{e}} \frac{\cos \frac{t_{i}+t_{i+1}}{2}}{\cos \frac{t_{i}-t_{i+1}}{2}}, \tan t_{i}^{\prime}=\frac{b_{c} a_{e}}{a_{c} b_{e}} \tan \frac{t_{i}+t_{i+1}}{2} .
$$

Proof. The tangent to c at Q_{1} has the line coordinates

$$
\left(u_{0}: u_{1}: u_{2}\right)=\left(-a_{c} b_{c}: b_{c} \cos t_{1}^{\prime}: a_{c} \sin t_{1}^{\prime}\right),
$$

which must be proportional to those in the proof of Lemma 3.1.
Remark 3.3. 1. The half-angle substitution

$$
\tau_{i}:=\tan \frac{t_{i}}{2} \quad \text { for } i=1,2
$$

allows to express the equation of Lemma 3.1 (for $i=1$) in projective coordinates on e. We obtain a symmetric biquadratic condition

$$
b_{e}^{2} k_{e} \tau_{1}^{2} \tau_{2}^{2}-b_{c}^{2} a_{e}^{2}\left(\tau_{1}^{2}+\tau_{2}^{2}\right)+2\left(a_{e}^{2} k_{e}+a_{c}^{2} b_{e}^{2}\right) \tau_{1} \tau_{2}+b_{e}^{2} k_{e}=0,
$$

Figure 3 The Joachimsthal integral $J_{e}:=-\left\langle\mathbf{u}_{i}, \mathbf{n}_{e \mid i}\right\rangle$ is constant along e
which defines a 2-2-correspondence on e between the endpoints P_{1}, P_{2} of a chord which contacts c. This remains valid after iteration, i.e., between the initial point P_{1} and the endpoint P_{N+1} of a billiard after N reflections in e.
Now, we recall a classical argument for the underlying Poncelet porism (see also [18] and the references there): A 2-2-correspondence different from the identity keeps fixed at most four points. However, four fixed points on e are already known as contact points between e and the common complex conjugate (isotropic) tangents ${ }^{2}$ with the caustic c, since tangents of e remain fixed under the reflection in e. If therefore one N-sided billiard in e with caustic c closes, then the correspondence is the identity and all billiards close.
2. With the aid of Jacobi's arguments in [20], Lemma 3.2 paves already the way to a representation of the billiard's vertices in terms of Jacobian elliptic functions (note [27]).

Given any billiard $P_{1} P_{2} \ldots$ in the ellipse e, let $\mathbf{p}_{i}=\left(x_{i}, y_{i}\right)$ denote the position vector of P_{i} for $i=1,2, \ldots$, while $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots$ denote the unit vectors of the oriented sides $P_{1} P_{2}, P_{2} P_{3}, \ldots$ (Fig. 3). By (2.9), the vector $\mathbf{n}_{e \mid i}:=\left(x_{i} / a_{e}^{2}, y_{i} / b_{e}^{2}\right)$ is orthogonal to e at P_{i}. According to [2, Proposition 2.1], the scalar product

$$
\begin{equation*}
J_{e}:=-\left\langle\mathbf{u}_{i}, \mathbf{n}_{e \mid i}\right\rangle \tag{3.2}
\end{equation*}
$$

is invariant along the billiard in e and called Joachimsthal integral (note also [29, p. 54]).

The invariance of the Joachimsthal integral, which also holds in higher dimensions for billiards in quadrics, is the key result for the integrability of billiards, i.e., in the planar case for the existence of a caustic [2, p. 3]. In our approach, the invariance of J_{e} follows from Lemma 2.2.

Lemma 3.4. The Joachimsthal integral $J_{e}:=-\left\langle\boldsymbol{u}_{i}, \boldsymbol{n}_{e \mid i}\right\rangle$ equals

$$
J_{e}=\frac{\sqrt{k_{e}}}{a_{e} b_{e}}
$$

[^1]with k_{e} as elliptic coordinate of e w.r.t. c, i.e., $k_{e}=a_{e}^{2}-a_{c}^{2}=b_{e}^{2}-b_{c}^{2}$.
Proof. From (2.11) follows for the points $\left(a_{e} \cos t, b_{e} \sin t\right)$ of e
$$
J_{e}=-\left\langle\mathbf{u}, \mathbf{n}_{e}\right\rangle=-\cos \left(\frac{\pi}{2}+\frac{\theta}{2}\right)\left\|\mathbf{n}_{e}\right\|=\sin \frac{\theta}{2}\left\|\mathbf{n}_{e}\right\|=\sin \frac{\theta}{2} \frac{\left\|\mathbf{t}_{e}\right\|}{a_{e} b_{e}},
$$
hence by (2.11), (2.7), (2.6), and (2.9)
$$
J_{e}^{2}=\sin ^{2} \frac{\theta}{2}\left\|\mathbf{n}_{e}\right\|^{2}=\frac{k_{e}}{\left\|\mathbf{t}_{e}\right\|^{2}}\left\|\mathbf{n}_{e}\right\|^{2}=\frac{k_{e}}{a_{e}^{2} b_{e}^{2}} .
$$

This confirms the claim.

3.1. Poncelet grid

The following theorem is the basis for the Poncelet grid associated to each billiard. We formulate and prove a projective version. The special case dealing with confocal conics, has already been published by Chasles [9, p. 841] and later by Böhm in [8, p. 221]. The same theorem was studied in [21,25] and in [1]. In [19], the authors proved it in a differential-geometric way.

In the theorem and proof below, the term conic stands for regular dual conics, i.e., conics seen as the set of tangent lines, but also for pairs of line pencils and for single line pencils with multiplicity two. Expressed in terms of homogeneous line coordinates, the corresponding quadratic forms have rank 3,2 or 1, respectively. Moreover, we use the term range for a pencil of dual conics. The term net denotes a 2-parametric linear system of dual curves of degree 2 . Obviously, conics and ranges included in a net play the role of points and lines of a projective plane within the 5 -dimensional projective space of dual conics. Any two ranges in a net share a conic (compare with [10, Théorèmes I-IV]).

Theorem 3.5. Let c be a regular conic and A_{1}, B_{1} two points such that the tangents t_{1}, \ldots, t_{4} drawn from A_{1} and B_{1} to c form a quadrilateral. Its remaining pairs of opposite vertices are denoted by $\left(A_{i}, B_{i}\right), i=2,3$. Then,

1. for each conic c_{1} passing through A_{1} and B_{1}, the range \mathcal{R}_{c} spanned by c and c_{1} contains conics c_{i} passing through A_{i} and B_{i}, simultaneously. The tangents at A_{j} and B_{j} to c_{j} for $j=1,2,3$ meet at a common point R. If c_{i} has rank 2, then we obtain, as the limit of c_{i}, the diagonal $\left[A_{i}, B_{i}\right]$ of the quadrilateral t_{1}, \ldots, t_{4}.
2. This result holds also in the limiting case $t_{1}=t_{2}$, where the chord $A_{1} B_{1}$ of c_{1} contacts c at B_{2}.

In Fig. 4, the particular case is displayed where c and $c_{1}=e$ span a range \mathcal{R}_{c} of confocal conics (note also [6, Fig. 19]). Then by Lemma 2.1, the tangents at A_{j} and B_{j} to c_{j} are angle bisectors of the quadrilateral. In case of a rank deficiency of c_{i}, either one axis of symmetry of the confocal family or the line at infinity shows up as c_{i}.

Figure 4 Left: Opposite vertices A_{i}, B_{i} of the quadrilateral $t_{1} \ldots t_{4}$ of tangents to c belong to a conic c_{i} out of the range \mathcal{R}_{c} (Theorem 3.5). Right: The net \mathcal{N} and the ranges $\mathcal{R}_{t}, \mathcal{R}_{c}$ in the projective space of dual conics

Proof. The conics tangent to t_{1}, \ldots, t_{4} define a range \mathcal{R}_{t}, which includes for $j=1,2,3$ the pairs of line pencils $\left(A_{j}, B_{j}\right)$ as well as the initial conic c. On the other hand, c and c_{1} span a range \mathcal{R}_{c}. Since both ranges share the conic c, they span a net \mathcal{N} of conics.
The pair $\left(A_{1}, B_{1}\right)$ of line pencils spans together with c_{1} the range of conics sharing the points A_{1}, B_{1} and the tangents there, which meet at a point R. This range, which also belongs to \mathcal{N}, contains the rank- 1 conic with carrier R. Each pair of line pencils $\left(A_{i}, B_{i}\right), i=1,2$, spans with the pencil R again a range within \mathcal{N}. This range shares with the range \mathcal{R}_{c} a conic c_{i} passing through A_{i} and B_{i} with respective tangent lines through $R .^{3}$

All these conclusions remain valid in the case, when \mathcal{R}_{t} consists of conics which touch c at B_{2} and are tangent to t_{3} and t_{4}.

As already indicated by the notation, we are interested in the particular case of Theorem 3.5 where the conics c and e in the range \mathcal{R}_{c} are confocal. The following result follows directly from Theorem 3.5 and summarizes properties of the Poncelet grid. For the points of intersection between extended sides of a billiard $\ldots P_{0} P_{1} P_{2} \ldots$ we use the notation

$$
S_{i}^{(j)}:= \begin{cases}{\left[P_{i-k-1}, P_{i-k}\right] \cap\left[P_{i+k}, P_{i+k+1}\right] \text { for }} & j=2 k, \tag{3.3}\\ {\left[P_{i-k}, P_{i-k+1}\right] \cap\left[P_{i+k}, P_{i+k+1}\right] \text { for }} & j=2 k-1\end{cases}
$$

where $i=\ldots, 0,1,2, \ldots$ and $j=1,2, \ldots$ Note that there are j sides between those which intersect at $S_{i}^{(j)}$, and 'in the middle' of these j sides there is for

[^2]even j the vertex P_{i} and otherwise the point of contact Q_{i}. At the same token, the point $S_{i}^{(j)}$ is the pole of the diagonal $\left[Q_{i-k-1}, Q_{i+k}\right]$ or $\left[Q_{i-k}, Q_{i+k}\right]$ of the polygon $\ldots Q_{1} Q_{2} Q_{3} \ldots$ of contact points w.r.t. the caustic.

Theorem 3.6. Let ... $P_{0} P_{1} P_{2} \ldots$ be a billiard in the ellipse e with sides $P_{i} P_{i+1}$ contacting the ellipse c at the respective points Q_{i} for all $i \in \mathbb{Z}$. Then the vertices $S_{i}^{(j)}$ of the associated Poncelet grid are distributed on the following conics.

1. The points $S_{i}^{(1)}, S_{i}^{(3)}, \ldots$ are located on the confocal hyperbola through Q_{i}, while the points $S_{i}^{(2)}, S_{i}^{(4)}, \ldots$ are located on the confocal hyperbola through P_{i}.
2. For each $j \in\{1,2, \ldots\}$, the points $\ldots S_{i}^{(j)} S_{i+(j+1)}^{(j)} S_{i+2(j+1)}^{(j)} \ldots$ are vertices of another billiard with the caustic c inscribed in a confocal ellipse $e^{(j)}$, provided that $e^{(j)}$ is regular. Otherwise $e^{(j)}$ coincides with an axis of symmetry or with the line at infinity. The locus $e^{(j)}$ is independent of the position of the initial vertex $P_{0} \in e$.

Proof. 1. The side lines $\left[P_{0}, P_{1}\right]\left(P_{0}=P_{7}\right.$ in Fig. 5) and $\left[P_{2}, P_{3}\right]$ meet at $S_{1}^{(1)}$, while $\left[P_{1}, P_{2}\right]$ contacts c at Q_{1}. By Theorem $3.5,2$. the points Q_{1} and $S_{1}^{(1)}$ belong to the same confocal hyperbola.
Now we go one step away from Q_{1} : the tangents from P_{0} and P_{3} to c intersect at $S_{1}^{(1)}$ and $S_{1}^{(3)}=\left[P_{-1}, P_{0}\right] \cap\left[P_{3}, P_{4}\right]$. The confocal conic through $S_{1}^{(1)}$ and $S_{1}^{(3)}$ must again be the hyperbola through Q_{1}. This follows by continuity after choosing Q_{1} on one axis of symmetry. Iteration confirms the first claim in Theorem 3.6.
The tangents to c from P_{0} and P_{2} form a quadrilateral with P_{1} and $S_{1}^{(2)}$ as opposite vertices. Therefore, there exists a confocal conic passing through both points. This conic must be a hyperbola, as can be concluded by continuity: If P_{1} is specified at a vertex of e, then due to symmetry the points P_{1} and $S_{1}^{(2)}$ are located on an axis of symmetry.
The tangents to c from P_{-1} and P_{3} form a quadrilateral with $S_{1}^{(2)}$ and $S_{1}^{(4)}$ as opposite vertices. Theorem 3.5 and continuity guarantee that this is again the confocal hyperbola through P_{1}. Iteration shows the same of $S_{1}^{(6)}$ etc. However, the points $P_{1}, S_{1}^{(2)}, S_{1}^{(4)}, \ldots$ need not belong to the same branch of the hyperbola.
2. The tangents through P_{2} and $S_{2}^{(2)}$ (note Fig. 5) form a quadrilateral with $S_{1}^{(1)}$ and $S_{2}^{(1)}$ as opposite vertices. This time, continuity shows that the two points belong to the same confocal ellipse $e^{(1)}$. The same holds for the tangents through P_{3} and $S_{3}^{(2)}$ etc.
Similarily, starting with the points P_{0} and P_{3}, we find the ellipse $e^{(2)}$ through $S_{1}^{(2)}$ and $S_{2}^{(2)}$, and so on.
In order to prove that these ellipses $e^{(1)}, e^{(2)}, \ldots$ are independent of the choice of the initial point $P_{1} \in e$, we follow an argument from [2, proof of

Figure 5 Periodic billiard $(N=7)$ with extended sides

Corollary 2.2]: The claim holds for all confocal ellipses e where billiards with the same caustic c are aperiodic and traverse e infinitely often. Since these ellipses form a dense set, the claim holds also for those with periodic billiards. The invariance of the ellipses $e^{(1)}, e^{(2)}, \ldots$ is already mentioned in [2, Theorem 7].
An alternative proof consists in demonstrating that the elliptic coordinate $k_{e}^{(j)}$ of $e^{(j)}$ for all j does not depend on the parameter t. As one example, we present below in (3.7), (3.6) and (3.8) formulas for the semiaxes $a_{e \mid 1}$, $b_{e \mid 1}$ and the elliptic coordinate $k_{e \mid 1}$ of $e^{(1)}$.

Remark 3.7. Figure 5 reveals, that the polygons $P_{1} S_{1}^{(1)} P_{2} S_{2}^{(1)} \ldots$ as well as $P_{1} S_{2}^{(2)} P_{3} S_{4}^{(2)} \ldots$ and $S_{1}^{(2)} S_{1}^{(1)} S_{2}^{(2)} S_{2}^{(1)} \ldots$ are zigzag billiards in rings bounded by two confocal ellipses. However, we find also zigzag billiards between two confocal hyperbolas, e.g., $\ldots S_{1}^{(2)} P_{2} P_{1} S_{2}^{(2)} \ldots$ or the twofold covered $\ldots S_{1}^{(2)}$ $S_{1}^{(1)} P_{1} Q_{1} P_{1} S_{1}^{(1)} S_{1}^{(2)} \ldots$. Billiards between other pairs of confocal conics can be found in [12].

The coming lemma addresses invariants related to the incircles of quadrilaterals built from the tangents to c from any two vertices P_{i} and P_{j} of a billiard in e (note circle d in Fig. 4 and $[1,5,19]$).

Lemma 3.8. Referring to Fig. 6, the power w^{2} of the point $S_{i}^{(1)}$ w.r.t. the incircle of the triangle $P_{i} P_{i+1} S_{i}^{(1)}$ is the same for all i. Similarly, the power w_{1}^{2} of $S_{i}^{(2)}$ w.r.t. the incircle of the quadrangle $P_{i} S_{i-1}^{(1)} S_{i}^{(2)} S_{i}^{(1)}$ is constant.

Proof. According to Graves's construction [15, p. 47], an ellipse e can be constructed from a smaller ellipse c in the following way: Let a closed piece of

Figure 6 The power w^{2} of $S_{2}^{(1)}$ w.r.t. the incircle of the triangle $S_{2}^{(1)} P_{2} P_{3}$ shows up at all $S_{i}^{(1)}$ and equals the power of P_{i} w.r.t. the incircle of the quadrangle $P_{i} S_{i-1}^{(1)} S_{i}^{(2)} S_{i}^{(1)}$
string strictly longer than the perimeter of c be posed around c. If point P is used to pull the string taut, then P traces a confocal ellipse e. Consequently, for each vertex P_{i} and neighboring tangency points Q_{i-1} and Q_{i} of a billiard in e with caustic c, the sum of the lengths $\overline{Q_{i-1} P_{i}}$ and $\overline{P_{i} Q_{i}}$ minus the length of the elliptic arc between Q_{i-1} and Q_{i}, i.e.,

$$
\begin{equation*}
D_{e}:=\overline{Q_{i-1} P_{i}}+\overline{P_{i} Q_{i}}-\stackrel{\frown}{Q_{i-1}} Q_{i} \tag{3.4}
\end{equation*}
$$

is constant (Fig. 6).
The incircle of $P_{2} P_{3} S_{2}^{(1)}$ has the center R_{2} and the radius $\overline{Q_{2} R_{2}}$ by (2.15). The power of P_{2} w.r.t. this circle is l_{2}^{2}, that of P_{3} is r_{3}^{2}. From Graves' construction follows for the ellipse e that

$$
D_{e}=r_{2}+l_{2}-\overparen{Q_{1} Q_{2}}=r_{3}+l_{3}-\overparen{Q_{2} Q_{3}}=\text { const }
$$

is the same for all P_{i}, provided that $\overparen{Q i}_{i}$ denotes the length of the (shorter) arc along c between Q_{i} and Q_{j}. For the analogue invariant at $e^{(1)}$ follows (Fig. 6)

$$
\begin{align*}
D_{e \mid 1} & :=\overline{Q_{1} S_{2}^{(1)}}+\overline{S_{2}^{(1)} Q_{3}}-\overparen{Q_{1}}{ }_{3} \\
& =\left(r_{2}+l_{2}+w\right)+\left(r_{3}+l_{3}+w\right)-\overparen{Q_{1}}{ }_{3}=2 D_{e}+2 w=\text { const. } \tag{3.5}
\end{align*}
$$

hence $w=$ const., where w^{2} is the power of $S_{2}^{(1)}$ w.r.t. the said incircle.
Since the incircle of the quadrangle $P_{2} S_{1}^{(1)} S_{2}^{(2)} S_{2}^{(1)}$ is an excircle of the triangle $P_{2} P_{3} S_{2}^{(1)}$ (Fig. 6), the power of P_{2} w.r.t. the excircle equals w^{2}, too. This follows from elementary geometry.
As an alternative, the constancy of w can also be concluded from the fact, that neighboring circles with centers R_{i}^{1}, R_{i} or R_{i}, R_{i+1}^{1} share three tangents, and one circle is an incircle, the other an excircle of the triangle. Therefore, on the common side the same length w shows up twice and also at the adjacent pairs of neighboring circles. Since the distance w is constant for all aperiodic billiards, it reveals also for periodic billiards that w is independent of the choice of the initial vertex. In a similar way follows the invariance of the length w_{1}, as shown in Fig. 6.

It needs to be noted that $S_{2}^{(1)}$ or $S_{2}^{(2)}$ can be located on the other branch of the related hyperbola. Then the said 'incircle' of the triangle $P_{2} P_{3} S_{2}^{(1)}$ has to be replaced by the excircle which contacts c at Q_{2} and is tangent to the side lines [P_{1}, P_{2}] and $\left[P_{3}, P_{4}\right]$. Similarly, the said 'incircle' of the quadrangle becomes an excircle. In all these cases, Lemma 3.8 and the proof given above have to be adapted.

Remark 3.9. The Theorems 3.5 and 3.6 as well as the constancy of the length w according to Lemma 3.8 are also valid in spherical geometry (note [26]) and in hyperbolic geometry. On the sphere (see Fig. 7), the caustic consists of a pair of opposite components, and for N-periodic billiards the confocal spherical ellipse $e^{(j)}$ coincides with $e^{(N-2-j)}$ w.r.t. the opposite caustic.
We obtain other families of incircles when we focus on pairs of consecutive sides of the billiards in $e^{(1)}, e^{(2)}$ and so on. However, these circles are not mutually disjoint. By the way, the centers $R_{i}^{(j)}$ of all these circles are the poles of diagonals of $\ldots P_{1} P_{2} P_{3} \ldots$ w.r.t. the ellipse e.

For the sake of completeness, we express below in (3.9) the distance w in terms of the semiaxes of e and c. For this purpose, we compute first the semiaxes $a_{e \mid 1}$ an $b_{e \mid 1}$ of $e^{(1)}$, since we need the coordinates of $S_{2}^{(1)}$. From (2.13) and (2.15) follows

$$
R_{2}=\left(\frac{a_{e}^{2} \cos t_{2}^{\prime}}{a_{c}}, \frac{b_{e}^{2} \sin t_{2}^{\prime}}{b_{c}}\right), \quad \overline{Q_{2} R_{2}}=\frac{k_{e}\left\|\mathbf{t}_{c}\left(t_{2}^{\prime}\right)\right\|}{a_{c} b_{c}}
$$

By virtue of Theorem 3.5, the tangents from R_{2} to the confocal hyperbola through Q_{2} contact at

$$
Q_{2}=\left(a_{c} \cos t_{2}^{\prime}, b_{c} \sin t_{2}^{\prime}\right) \in c \quad \text { and } \quad S_{2}^{(1)}=\left(a_{e \mid 1} \cos t_{2}^{\prime}, b_{e \mid 1} \sin t_{2}^{\prime}\right) \in e^{(1)}
$$

Both points lie on the polar of R_{2} w.r.t. the hyperbola in question with the elliptic coordinate $k_{h}=-\left\|\mathbf{t}_{e}\left(t_{2}^{\prime}\right)\right\|^{2}$. This yields the condition

$$
\frac{a_{e}^{2} \cos t_{2}^{\prime}}{a_{c}\left(a_{c}^{2}+k_{h}\left(t_{2}^{\prime}\right)\right)} a_{e \mid 1} \cos t_{2}^{\prime}+\frac{b_{e}^{2} \sin t_{2}^{\prime}}{b_{c}\left(b_{c}^{2}+k_{h}\left(t_{2}^{\prime}\right)\right)} b_{e \mid 1} \sin t_{2}^{\prime}=1
$$

Figure 7 Periodic billiard $P_{1} P_{2} \ldots P_{7}$ on the sphere with extended sides and their contact points with the incircles. All circular arcs marked in black have the same length, as well as those marked in green, and both lengths are invariant against changes of P_{1} on e
or, by virtue of (2.7),

$$
a_{e}^{2} b_{c} a_{e \mid 1}-b_{e}^{2} a_{c} b_{e \mid 1}=a_{c} b_{c} d^{2}, \quad \text { where } \quad a_{e \mid 1}^{2}-b_{e \mid 1}^{2}=d^{2} .
$$

We eliminate $a_{e \mid 1}$ and obtain after some computation the quadratic equation

$$
\left(b_{e}^{4}-2 b_{c}^{2} b_{e}^{2}-b_{c}^{2} d^{2}\right) b_{e \mid 1}^{2}+2 a_{c}^{2} b_{c} b_{e}^{2} b_{e \mid 1}+b_{c}^{2}\left(a_{c}^{2} d^{2}-a_{e}^{4}\right)=0
$$

The second solution besides $b_{e \mid 1}=b_{c}$ is

$$
\begin{equation*}
b_{e \mid 1}=\frac{b_{c}\left(a_{c}^{2} d^{2}-a_{e}^{4}\right)}{b_{e}^{4}-2 b_{c}^{2} b_{e}^{2}-b_{c}^{2} d^{2}}=\frac{b_{c}\left(a_{e}^{2} b_{e}^{2}+d^{2} k_{e}\right)}{a_{c}^{2} b_{c}^{2}-k_{e}^{2}} . \tag{3.6}
\end{equation*}
$$

This implies

$$
\begin{equation*}
a_{e \mid 1}=\frac{a_{c}}{a_{e}^{2} b_{c}}\left(b_{c} d^{2}+b_{e}^{2} b_{e \mid 1}\right)=\frac{a_{c}\left(a_{e}^{2} b_{e}^{2}-d^{2} k_{e}\right)}{a_{c}^{2} b_{c}^{2}-k_{e}^{2}} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{e \mid 1}=b_{e \mid 1}^{2}-b_{c}^{2}=k_{e}\left(\frac{2 a_{c} b_{c} a_{e} b_{e}}{a_{c}^{2} b_{c}^{2}-k_{e}^{2}}\right)^{2} \tag{3.8}
\end{equation*}
$$

and yields finally

$$
\begin{equation*}
w:=\frac{2 a_{e} b_{e} \sqrt{k_{e}^{3}}}{a_{c}^{2} b_{c}^{2}-k_{e}^{2}} \tag{3.9}
\end{equation*}
$$

Negative semiaxes $a_{e \mid 1}, b_{e \mid 1}$ and a negative w in the formulas above mean that the points $S_{i}^{(1)}$ are located on the respectively second branches of the hyperbolas and the incircles of the triangles $P_{i} P_{i+1} S_{i}^{(1)}$ become excircles. In the case of a vanishing denominator for $k_{e}=a_{c} b_{c}$ (periodic four-sided billiard) the ellipse $e^{(1)}$ is the line at infinity.
If on the right-hand side of the formulas (3.7), (3.6) and (3.8) we replace a_{e}, b_{e}, k_{e} respectively by $a_{e \mid 1}, b_{e \mid 1}, k_{e \mid 1}$, then we obtain expressions for $a_{e \mid 3}, b_{e \mid 3}$, $k_{e \mid 3}$, i.e.,

$$
\begin{equation*}
k_{e \mid 3}=k_{e \mid 1}\left(\frac{2 a_{c} b_{c} a_{e \mid 1} b_{e \mid 1}}{a_{c}^{2} b_{c}^{2}-k_{e \mid 1}^{2}}\right)^{2} . \tag{3.10}
\end{equation*}
$$

3.2. Conjugate billiards

For two confocal ellipses c and e, there exists an axial scaling

$$
\begin{equation*}
\alpha:(x, y) \mapsto\left(\frac{a_{e}}{a_{c}} x, \frac{b_{e}}{b_{c}} y\right) \quad \text { with } \quad c \rightarrow e . \tag{3.11}
\end{equation*}
$$

Corresponding points share the parameter t. Hence, they belong to the same confocal hyperbola (Fig. 8). The affine transformation α maps the tangency point $Q_{i} \in c$ of the side $P_{i} P_{i+1}$ to a point $P_{i}^{\prime} \in e$, while α^{-1} maps P_{i} to the tangency point Q_{i-1}^{\prime} of $P_{i-1}^{\prime} P_{i}^{\prime}$, i.e.,

$$
\alpha: Q_{i} \mapsto P_{i}^{\prime}, \quad Q_{i-1}^{\prime} \mapsto P_{i}
$$

This results from the symmetry between t_{i} and t_{i}^{\prime} in the equation

$$
\begin{equation*}
b_{c} a_{e} \cos t_{i} \cos t_{i}^{\prime}+a_{c} b_{e} \sin t_{i} \sin t_{i}^{\prime}=a_{c} b_{c} \tag{3.12}
\end{equation*}
$$

which expresses that $P_{i} \in e$ with parameter t_{i} lies on the tangent to c at Q_{i} with parameter t_{i}^{\prime}. Referring to Fig. 8, α sends the tangent $\left[P_{i-1}^{\prime}, P_{i}^{\prime}\right]$ to c at Q_{i-1}^{\prime} to the tangent $\left[R_{i-1}, R_{i}\right]$ to e at P_{i}. Hence, by α the polygon $Q_{1} Q_{2} \ldots$ is mapped to $P_{1}^{\prime} P_{2}^{\prime} \ldots$ and futhermore to that of the poles $R_{1} R_{2} \ldots$ of the billiard's sides $P_{1} P_{2}, P_{2} P_{3}, \ldots$.

Definition 3.10. Referring to Fig. 8, the billiard $\ldots P_{0}^{\prime} P_{1}^{\prime} P_{2}^{\prime} \ldots$ is called conjugate to the billiard $\ldots P_{0} P_{1} P_{2} \ldots$ in the ellipse e with the ellipse c as caustic, when the axial scaling $\alpha: c \rightarrow e$ defined in (3.11) maps the tangency point Q_{i} of the side $P_{i} P_{i+1}$ to the vertex P_{i}^{\prime}.

Lemma 3.11. For each billiard $\ldots P_{0} P_{1} P_{2} \ldots$ in the ellipse e with the ellipse c as caustic, there exists a unique conjugate billiard $\ldots P_{0}^{\prime} P_{1}^{\prime} P_{2}^{\prime} \ldots$, and the relation between the two billiards in e is symmetric. Moreover,

$$
\begin{equation*}
l_{i}=\overline{P_{i} Q_{i}}=\overline{P_{i}^{\prime} Q_{i-1}^{\prime}}=r_{i}^{\prime} \quad \text { and } \quad r_{i}=\overline{P_{i} Q_{i-1}}=\overline{P_{i-1}^{\prime} Q_{i-1}^{\prime}}=l_{i-1}^{\prime} \tag{3.13}
\end{equation*}
$$

Figure 8 The periodic billiard $P_{1} P_{2} \ldots P_{5}$ in e with the caustic c and the conjugate billiard $P_{1}^{\prime} P_{2}^{\prime} \ldots P_{5}^{\prime}$

Proof. From the symmetry in (3.12) follows for $\alpha: c \rightarrow e$ that P_{i} is the preimage of P_{i} is the tangency point Q_{i-1} of $P_{i-1}^{\prime} P_{i}^{\prime}$. The congruences stated in (3.13) follow from Ivory's Theorem for the two diagonals in the curvilinear quadrangle $P_{i} P_{i}^{\prime} Q_{i} Q_{i-1}^{\prime}$. In view of the sequence of parameters $t_{1}, t_{1}^{\prime}, t_{2}, t_{2}^{\prime}, t_{3}, \ldots$ of the vertices $P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}, P_{3}, \ldots$ on e, the switch between the original billiard and its conjugate corresponds to the interchange of t_{i} with t_{i}^{\prime} for $i=1,2, \ldots$.

Finally we recall that, based on the Arnold-Liouville theorem from the theory of completely integrable systems, it is proved in [19,21] that there exist canonical coordinates u on the ellipses e and c such that for any billiard the transitions from $P_{i} \rightarrow P_{i+1}$ and $Q_{i} \rightarrow Q_{i+1}$ correspond to shifts of the respective canonical coordinates u_{i} and u_{i+1} by $2 \Delta u$. Explicit formulas for the parameter transformation $t \mapsto u$ are provided in [27].

Figure 9 shows how on c such coordinates can be constructed by iterated subdivision, provided that Q_{1} and Q_{3} get the respective canonical coordinates $u=0$ and 1 . A comparison with Fig. 8 reveals that, in the sense of a canonical parametrization, the contact point Q_{i} is exactly halfway from P_{i} to P_{i+1}, i.e.,

$$
\begin{equation*}
u_{i}^{\prime}=u_{i}+\Delta u, \quad u_{i+1}=u_{i}+2 \Delta u . \tag{3.14}
\end{equation*}
$$

Hence, the transition from a billiard to its conjugate is equivalent to a shift of canonical coordinates by Δu. An equivalent result can be found in [21, Sect. 4].

3.3. Billiards with a hyperbola as caustic

As illustrated in Fig. 10, billiards in ellipses e with a confocal hyperbola c as caustic are zig-zags between an upper and lower subarc of e. If the initial point P_{1} is chosen at any point of intersection between e and the hyperbola c, then the billiard is twofold covered, and the first side $P_{1} P_{2}$ is tangent to c at P_{1}.

Figure 9 An example of canonical coordinates on c, e and $e^{(1)}$, this time with origin Q_{1} and unit point Q_{3}

Figure 10 Periodic billiard $P_{1} P_{2} \ldots P_{12}$ in the ellipse e with the hyperbola c as caustic, together with the hyperbolas $e^{(1)}$, $e^{(3)}$ and the ellipse $e^{(2)}$ with the inscribed billiard consisting of three quadrangles $S_{i}^{(2)} S_{i+3}^{(2)} S_{i+6}^{(2)} S_{i+9}^{(2)}$

Here we report briefly, in which way these billiard differ from those with an elliptic caustic. Proofs are left to the readers. In view of the associated Poncelet grid, we start with the analogue to Theorem 3.6 (see Figs. 10, 11 and 12).

Figure 11 The power w^{2} of P_{9} w.r.t. the circle tangent to the sides $\left[P_{7}, P_{8}\right],\left[P_{8}, P_{9}\right],\left[P_{9}, P_{10}\right]$ equals that of P_{12} w.r.t. the circle tangent to [$\left.P_{10}, P_{11}\right],\left[P_{11}, P_{12}\right],\left[P_{12}, P_{1}\right]$

Figure 12 Periodic billiard $P_{1} P \ldots P_{6}$ in the ellipse e with the hyperbola c as caustic, together with the conjugate billiard $P_{1}^{\prime} P_{2}^{\prime} \ldots P_{6}^{\prime}$. The associated polygon with vertices on $e^{(1)}$ splits into two triangles $S_{1}^{(1)} S_{3}^{(1)} S_{5}^{(1)}$ (green shaded) and $S_{2}^{(1)} S_{4}^{(1)} S_{6}^{(1)}$

Theorem 3.12. Let $\ldots P_{0} P_{1} P_{2} \ldots$ be a billiard in the ellipse e with the hyperbola c as caustic.

1. Then the points $S_{i}^{(1)}, S_{i}^{(3)}, \ldots$ are located on confocal ellipses through the contact point Q_{i} of $\left[P_{i}, P_{i+1}\right]$ with c, while the points $S_{i}^{(2)}, S_{i}^{(4)}, \ldots$ are located on the confocal hyperbola through P_{i}.
2. For even j, the points $\ldots S_{i}^{(j)} S_{i+(j+1)}^{(j)} S_{i+2(j+1)}^{(j)} \ldots$ are vertices of another billiard with the caustic c inscribed in a confocal ellipse $e^{(j)}$, provided that $S_{i}^{(j)}$ is finite.
For odd j, the points $S_{i}^{(j)}$ are located on confocal hyperbolas $e^{(j)}$ or an axis of symmetry. At each vertex of $\ldots S_{i}^{(j)} S_{i+(j+1)}^{(j)} S_{i+2(j+1)}^{(j)} \ldots$, one angle bisector is tangent to $e^{(j)}$.
All conics $e^{(j)}$ are independent of the position of the initial vertex $P_{1} \in e$.
At the 12-periodic billiard depicted in Fig. 10, the billiard inscribed to $e^{(2)}$ splits into three quadrangles (dashed). Note that for odd j there are some points $S_{i}^{(j)}$ where the tangent to $e^{(j)}$ is the interior bisector of the angle $\angle S_{i-(j+1)}^{(j)} S_{i}^{(j)} S_{i+(j+1)}^{(j)}$. Hence, we obtain no billiards inscribed to hyperbolas $e^{(j)}$ with the hyperbola c as caustic. In Fig. 12, the 6 -periodic billiard $P_{1} P_{2} \ldots P_{6}$ yields two triangles $S_{i}^{(1)} S_{i+2}^{(1)} S_{i+4}^{(1)}$ inscribed to $e^{(1)}$; one of them is shaded in green.
Lemma 3.8 is also valid for hyperbolas as caustic. An example is depicted in Fig. 11: The power w^{2} of P_{9} w.r.t. the circle tangent to the four consecutive sides $\left[P_{7}, P_{8}\right],\left[P_{8}, P_{9}\right],\left[P_{9}, P_{10}\right]$, and $\left[P_{10}, P_{11}\right]$ equals that of P_{12} w.r.t. the incircle of the quadrilateral with sides $\left[P_{10}, P_{11}\right],\left[P_{11}, P_{12}\right],\left[P_{12}, P_{1}\right]$, and $\left[P_{1}, P_{2}\right.$].
Also for billiards $P_{1} P_{2} \ldots$ in e with a hyperbola c as caustic, there exists a conjugate billiard $P_{1}^{\prime} P_{2}^{\prime} \ldots$, and the relation is symmetric. However, the definition is different. It uses the singular affine transformation

$$
\begin{equation*}
\alpha_{h}: e \rightarrow F_{1} F_{2} \text { with } P_{i} \mapsto T_{i}=\left[P_{i}, P_{i+1}\right] \cap\left[F_{1}, F_{2}\right] \tag{3.15}
\end{equation*}
$$

with F_{1} and F_{2} as the focal points of e and c (Fig. 12).
Definition 3.13. Referring to Fig. 12, the billiard $\ldots P_{0}^{\prime} P_{1}^{\prime} P_{2}^{\prime} \ldots$ in the ellipse e with the hyperbola c as caustic is called conjugate to the billiard $\ldots P_{0} P_{1} P_{2} \ldots$ in e with the same caustic c if the axial scaling α_{h} defined in (3.15) maps the point P_{i}^{\prime} to the intersection T_{i} of $P_{i} P_{i+1}$ with the principal axis.

Lemma 3.14. Let $\ldots P_{0} P_{1} P_{2} \ldots$ be a billiard in the ellipse e with the hyperbola c as caustic. Then to this billiard and to its mirror w.r.t. the principal axis exists a conjugate billiard $\ldots P_{0}^{\prime} P_{1}^{\prime} P_{2}^{\prime} \ldots$, and it is unique up to a reflection in the principal axis. The relation between two conjugate billiards in e is symmetric. Moreover, if T_{i}^{\prime} denotes the intersection of $P_{i}^{\prime} P_{i+1}^{\prime}$ with the principal axis,
then

$$
\begin{equation*}
\overline{P_{i} T_{i}}=\overline{P_{i}^{\prime} T_{i-1}^{\prime}} \text { and } \overline{P_{i} T_{i-1}}=\overline{P_{i-1}^{\prime} T_{i-1}^{\prime}} . \tag{3.16}
\end{equation*}
$$

Proof. The singular affine transformation α_{h} maps P_{1}^{\prime} to T_{1} and P_{1} to a point $T^{\prime}\left(=T_{6}^{\prime}\right.$ in Fig. 12). We assume that P_{1} and P_{1}^{\prime} lie on the same side of the principal axis, since otherwise we apply a reflection in the axis. Then we obtain a curvilinear Ivory quadrangle $P_{1}^{\prime} T_{1} T^{\prime} P_{1}$ with diagonals of equal lengths. On the other hand, the lines $\left[P_{1}^{\prime}, T^{\prime}\right]$ and $\left[P_{1}, T_{1}\right]$ must contact the same confocal conic (see, e.g., [7, p. 153] or [26, Lemma 1]). Hence, the billiard through the point $P_{1}^{\prime} \in e$ with caustic c contains one side on the line $\left[P_{1}^{\prime}, T^{\prime}\right]$. Iteration confirms the claim.

Let \bar{P}_{1} and \bar{P}_{2} be the images of P_{1} and P_{2} under reflection in the principal axis of e (Fig. 12). Then, a comparison with Fig. 9 reveals that the confocal hyperbola through the intersection $T_{1}=\left[P_{1}, P_{2}\right] \cap\left[\bar{P}_{1}, \bar{P}_{1}\right]$ lies 'in the middle' between the hyperbolas through P_{1} and P_{2}.

Remark 3.15. If $\ldots P_{0} P_{1} P_{2} \ldots$ and $\ldots P_{0}^{\prime} P_{1}^{\prime} P_{2}^{\prime} \ldots$ is a pair of conjugate billiards in an ellipse e, then the points of intersection $\left[P_{i}, P_{i+1}\right] \cap\left[P_{i}^{\prime}, P_{i-1}^{\prime}\right]$ are located on a confocal ellipse e^{\prime} inside e. This holds for ellipses and hyperbolas as caustics. If the billiards are N-periodic, then in the elliptical case, the restriction of the two billiards to the interior of e^{\prime} is $2 N$-periodic; conversely, e plays the role of $e^{(1)}$ w.r.t. e^{\prime} (Fig. 8). In the hyperbolic case, the restriction to the interior of e^{\prime} gives two symmetric $2 N$-periodic billiards, provided that also the reflected billiards are involved (Fig. 12).

We conclude with citing a result from [28] about billiards in ellipses. It states that for each billiard $\ldots P_{1} P_{2} P_{3} \ldots$ in e with a hyperbola as caustic there exists a billiard $\ldots P_{1}^{*} P_{2}^{*} P_{3}^{*} \ldots$ in e^{*} with an ellipse as caustic such that corresponding sides $P_{i} P_{i+1}$ and $P_{i}^{*} P_{i+1}^{*}$ are congruent.

4. Periodic N-sided billiards

Let the billiard $P_{1} P_{2} \ldots P_{N}$ in the ellipse e be periodic with an ellipse c as caustic. Then, the sequence of parameters $t_{1}, t_{1}^{\prime}, t_{2}, \ldots, t_{N}, t_{N}^{\prime}$ of the vertices P_{i} and the intermediate contact points Q_{1}, \ldots, Q_{N} with c is cyclic. Each side line intersects only a finite number of other side lines. Hence, the corresponding Poncelet grid contains a finite number of confocal ellipses $e^{(j)}$ through the points $S_{i}^{(j)}$, namely $\left[\frac{N-2}{2}\right.$] (including possibly the line at infinity), provided that $N \geq 5$ (Fig. 5). The sequence of ellipses $e, e^{(1)}, e^{(2)}, \ldots$ is cyclic, and

$$
\begin{equation*}
e^{(j)}=e^{(N-2-j)} \tag{4.1}
\end{equation*}
$$

For example, in the case $N=7$ (Fig. 6), the ellipse $e^{(2)}$ coincides with $e^{(3)}$.

 $l_{2}=\overline{P_{2} Q_{2}}=\overline{Q_{6} P_{7}}=r_{7}$ and $\overline{S_{2}^{(1)} P_{3}}=\overline{P_{7} S_{7}^{(1)}}$. The associated billiard in $e^{(2)}$ splits into three triangles

Definition 4.1. The sum of the oriented exterior angles θ_{i} of a periodic billiard in an ellipse e is an integer multiple of 2π, namely $2 \tau \pi$. We call $\tau \in \mathbb{N}$ the turning number of the billiard. It counts the loops of the billiard around the center O of e, anti-clockwise or clockwise.

If the periodic billiard $P_{1} P_{2} \ldots P_{N}$ has the turning number $\tau=1$ (Fig. 13), then the billiard $S_{1}^{(1)} S_{3}^{(1)} S_{5}^{(1)} \ldots$ in $e^{(1)}$ has $\tau=2$, that of $S_{1}^{(2)} S_{4}^{(2)} \ldots$ in $e^{(2)}$ the turning number $\tau=3$, and so on. In cases with $g=\operatorname{gcd}(N, \tau)>1$ the corresponding billiard splits into $g \frac{N}{g}$-sided billiards, each with turning number τ / g (note [25, Theorem 1.1]).

4.1. Symmetries of periodic billiards

The following is a corollary to Theorem 3.6.
Corollary 4.2. Let $P_{1} P_{2} \ldots P_{N}$ be an N-sided periodic billiard in the ellipse e with the ellipse c as caustic.
(i) For even N and odd τ, the billiard is centrally symmetric.
(ii) For odd $N=2 n+1$ and odd τ, the billiard is centrally symmetric to the conjugate billiard, where P_{i} corresponds to P_{i+n}^{\prime}. ${ }^{4}$
(iii) If N is odd and τ is even, then the conjugate billiard coincides with the original one, and $P_{i}=P_{i+n}^{\prime}$.

Proof. By virtue of Theorem 3.6, the lines $\left[P_{i-j-1}, P_{i-j}\right.$,] and $\left[P_{i+j}, P_{i+j+1}\right]$ for $j=1,2, \ldots$ meet at the point $S_{i}(j)$ on the confocal hyperbola through P_{i}.

[^3]

Figure 14 Periodic billiard with $N=7$ and $\tau=2$
(i) This means for even $N=2 n$, odd τ and $j=n-1$, that also the opposite vertex $S_{i}^{(n)}=P_{i-n}=P_{i+n}$ belongs to this hyperbola. If P_{i} is specified at a vertex on the minor axis of the ellipse e, then P_{i+n} is the opposite vertex. Continuity implies that the two points belong to different branches of the hyperbola and are symmetric w.r.t. the center O of e.
(ii) , (iii): If N is odd, say $N=2 n+1$, then for $j=n-1$ the sides [P_{i-n+1}, P_{i-n}] and $\left[P_{i+n-1}, P_{i+n}\right]$ intersect at a point on the hyperbola through Q_{i+n} and P_{i+n}^{\prime}. For odd τ (Figs. 8 and 13), the same continuity argument as before proves that P_{i} and P_{i+n}^{\prime} are opposite w.r.t. O. If τ is even (Fig. 14), then the choice of $P_{i} \in e$ on an axis of symmetry shows the coincidence with $P_{i+n}^{\prime} \in e$, and this must be preserved, when P_{i} varies continuously on e. In the case of even τ and N the billiard splits.

The billiards with a hyperbola c as caustic (see Figs. 10 and 12) oscillate between the upper and lower section of e. Therefore, only billiards with an even N can be periodic. Also for billiards of this type, it possible to define a turning number τ which counts how often the points $P_{1}, \bar{P}_{2}, P_{3}, \ldots, P_{N}$ (Fig. 12) run to and fro along the upper component of $e .{ }^{5}$ The symmetry properties of these periodic N-sided billiards differ from those in Corollary 4.2. They follow from Theorem 3.6, since opposite vertices P_{i} and $P_{i+N / 2}$ belong to the same confocal hyperbola.

Corollary 4.3. Let $P_{1} P_{2} \ldots P_{N}$ be an N-sided periodic billiard in the ellipse e with the hyperbola c as caustic.

[^4](i) For $N \equiv 0(\bmod 4)$, the billiard is symmetric w.r.t. the secondary axis of e and c.
(ii) For $N \equiv 2(\bmod 4)$ and odd turning number τ, the billiards are centrally symmetric. For even τ, each billiard is symmetric w.r.t. the principal axis of e and c.

4.2. Some invariants

As a direct consequence of the results so far, we present new proofs for the invariants k101, k118 and k119 listed in [24, Table 2], though this table refers already to proofs for some of them in $[2,11]$.

We begin with a result that has first been proved for a much more general setting in [29, p. 103].

Lemma 4.4. The length L_{e} of a periodic N-sided billiard in the ellipse e with the ellipse c as caustic is independent of the position of the initial vertex $P_{1} \in e$.

Proof. We refer to Graves's construction [15, p. 47]. According to (3.4) holds

$$
D_{e}:=\overline{Q_{i-1} P_{i}}+\overline{P_{i} Q_{i}}-\underset{Q_{i-1} Q_{i}}{\frown}
$$

This yields for an N-sided billiard with turning number τ the total length

$$
\begin{equation*}
L_{e}=N \cdot D_{e}-\tau \cdot P_{c} \tag{4.2}
\end{equation*}
$$

where P_{c} denotes the perimeter of the caustic c. Thus, L_{e} does not depend of the choice of the initial vertex $P_{1} \in e$.

If the billiard in e has the turning number τ, then its extension in $e^{(1)}$ has the turning number 2τ, and from (3.5) and (3.9) follows

$$
\begin{equation*}
L_{e \mid 1}=N D_{e \mid 1}-2 \tau P_{c}=2 N\left(D_{e}+w\right)-2 \tau P_{c}=2 L_{e}+2 N \frac{2 a_{e} b_{e} \sqrt{k_{e}^{3}}}{a_{c}^{2} b_{c}^{2}-k_{e}^{2}} \tag{4.3}
\end{equation*}
$$

The following theorem on the invariant k118 in [24] deals with the lengths r_{i} and l_{i} of the segments $Q_{i-1} P_{i}$ and $P_{i} Q_{i}$, as defined in (3.1).

Theorem 4.5. In each N-sided periodic billiard opposite segments are congruent, i.e., if $N=2 n$, then $r_{i+n}=r_{i}$ and $l_{i+n}=l_{i}$, and if $N=2 n+1$, then $r_{i+n}=l_{i-1}$ and $l_{i+n}=r_{i}$. Thus, for odd N holds

$$
\sum_{i=1}^{N} l_{i}=\sum_{i=1}^{N} r_{i}=\frac{L_{e}}{2}
$$

Proof. By Corollary 4.2, for even $N=2 n$ the central symmetry implies for opposite segments $r_{i}=r_{i+n}$ and $l_{i}=l_{i+n}$.
If $N=2 n+1$, then $l_{i}=\overline{P_{i} Q_{i}}$ shows up as $l_{i+n}^{\prime}=\overline{P_{i+n}^{\prime} Q_{i+n}^{\prime}}$ at the conjugate billiard and, by virtue of (3.13), this equals $r_{i+n+1}=\overline{P_{i+n+1} Q_{i+n}}$ (Fig. 13). Similarly follows $r_{i}=l_{i+n}$.

Figure 15 Billiard $P_{1} P_{2} \ldots$ with pedal points w.r.t. O

Remark 4.6. In the particular case $N=3$ the two segments adjacent to any side are congruent (note in Fig. 13 the triangular billiards in $e^{(2)}$). Therefore, the Cevians $\left[P_{i}, Q_{i+1}\right]$ are concurrent and meet at the Nagel point of the triangle. This has already been proved in [23] and agrees with the circles through Q_{i} and centered at R_{i} (see Figs. 6 and 14), which for $N=3$ are excircles of the triangle $P_{1} P_{2} P_{3}$.

The following theorem has first been proved in [2, p. 4]. Another proof can be found in [3, Cor. 3.2]. We give below a new proof.

Theorem 4.7. For the exterior angles $\theta_{1}, \ldots, \theta_{N}$ of the periodic N-sided elliptic billiard in the ellipse e, the sum of cosines is independent of the initial vertex, namely

$$
\sum_{i=1}^{N} \cos \theta_{i}=N-J_{e} L_{e}=N-\frac{\sqrt{k_{e}}}{a_{e} b_{e}} L_{e},
$$

where L_{e} is the common perimeter of these billiards in e.

Proof. The pedal points F_{i} and F_{i-1} on the sides $P_{i} P_{i+1}$ and $P_{i-1} P_{i}$ w.r.t. the center O (Fig. 15) have the position vectors

$$
\begin{gathered}
\mathbf{f}_{i, i-1}=\mathbf{p}+\frac{\lambda_{i, i-1}}{\left\|\mathbf{t}_{e}\right\|}\left(\cos \frac{\theta_{i}}{2} \mathbf{t} \pm \sin \frac{\theta_{i}}{2} \mathbf{t}^{\perp}\right), \\
\text { where } \quad 0=\left\langle\mathbf{f}_{i, i-1},\left(\cos \frac{\theta_{i}}{2} \mathbf{t} \pm \sin \frac{\theta_{i}}{2} \mathbf{t}^{\perp}\right)\right\rangle .
\end{gathered}
$$

Here, λ_{i} and λ_{i+1} denote the signed distances from the vertex P_{i} in one case towards P_{i+1}, in the other opposite to P_{i-1}. From

$$
\left\langle\mathbf{p}_{i}, \mathbf{t}\right\rangle=\left(-a_{e}^{2}+b_{e}^{2}\right) \cos t \sin t \text { and }\left\langle\mathbf{p}_{i}, \mathbf{t}^{\perp}\right\rangle=-a_{e} b_{e}
$$

follows

$$
\lambda_{i, i-1}=\frac{1}{\left\|\mathbf{t}_{e}\right\|}\left(\left(-a_{e}^{2}+b_{e}^{2}\right) \cos t \sin t \cos \frac{\theta_{i}}{2} \pm a_{e} b_{e} \sin \frac{\theta_{i}}{2}\right) .
$$

This implies by virtue of (2.11) and after reversing the orientation for λ_{i-1},

$$
\lambda_{i}-\lambda_{i-1}=\overline{P_{i} F_{i}}+\overline{P_{i} F_{i-1}}=\frac{2 a_{e} b_{e}}{\left\|\mathbf{t}_{e}\right\|^{2}} \sqrt{k_{e}} .
$$

Since the sum over all signed lengths between P_{i} and the adjacent pedal points gives the total perimeter L_{e} of the billiard, we obtain by (2.12)

$$
\begin{equation*}
L_{e}=\sum_{i=1}^{N}\left(\overline{P_{i} F_{i}}+\overline{P_{i} F_{i-1}}\right)=\frac{a_{e} b_{e}}{\sqrt{k_{e}}} \sum_{i=1}^{N} \frac{2 k_{e}}{\left\|\mathbf{t}_{e}\right\|^{2}}=\frac{a_{e} b_{e}}{\sqrt{k_{e}}} \sum_{i=1}^{N}\left(1-\cos \theta_{i}\right) \tag{4.4}
\end{equation*}
$$

hence

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{1}{\left\|\mathbf{t}_{e}\right\|^{2}}=\frac{L_{e}}{2 a_{e} b_{e} \sqrt{k_{e}}} \text { and also } \sum_{i=1}^{N} \cos \theta_{i}=N-\frac{\sqrt{k_{e}}}{a_{e} b_{e}} L_{e} \tag{4.5}
\end{equation*}
$$

as stated.
Remark 4.8. Note that the result in [2] relates to the interior angles of the billiard. As already mentioned in [2, Theorem 7], the constant sum of cosines holds also for the 'extended' billiards in $e^{(j)}$, where the exterior angles are $\theta_{i}+\theta_{i+1}+\cdots+\theta_{i+j}$ (note Fig. 5).

The first equation in (4.5) gives rise to two invariants which are already known: Similar to (2.14), the distance of O to the tangent t_{P} to e at P equals

$$
\begin{equation*}
\overline{O t_{P}}=\frac{a_{e} b_{e}}{\left\|\mathbf{t}_{e}\right\|} \tag{4.6}
\end{equation*}
$$

and yields a result as stated in [3, Cor. 3.2, third equation]. The invariant k119, first proved by P. Roitmann, deals with the curvature of e, namely by [15, p. 79] with

$$
\kappa_{e}(t):=\frac{a_{e} b_{e}}{\left\|\mathbf{t}_{e}(t)\right\|^{3}} .
$$

Corollary 4.9. The squared distances from the center O to the tangents $t_{P_{i}}$ at the vertices P_{i} of the periodic N-sided elliptic billiard in the ellipse e have a constant sum, independent of the initial vertex, namely

$$
\sum_{i=1}^{N}{\overline{O t_{P}}}^{2}=\frac{a_{e} b_{e}}{2 \sqrt{k_{e}}} L_{e}
$$

The curvatures κ_{i} of e at the vertices P_{i} give rise to an invariant sum

$$
\sum_{i=1}^{N} \kappa_{i}^{2 / 3}=\frac{L_{e}}{2 \sqrt{k_{e}}}\left(a_{e} b_{e}\right)^{-1 / 3}
$$

Remark 4.10. It is remarkable that the quantity $\kappa^{2 / 3}$ appears in the billiard setting also at the Lazutkin parameter which coincides with the Poritsky string length, i.e., a kind of canonical parameter, up to additive and multiplicative constants. For details see [16].

We conclude this section with a comment on (4.1) in connection with (3.8) and (3.10). For example, we obtain $k_{e \mid 1}=k_{e}$ for $N=3$ and $k_{e}=a_{c} b_{c}$ for $N=4$. The condition $k_{e \mid 2}=k_{e \mid 1}$ is valid for $N=5$, and $k_{e \mid 2}=\infty$ for $N=6$. This
yields algebraic conditions for the semiaxes of the ellipse e with an inscribed N-periodic billiard when the ellipse c is given as caustic. However, we need to recall that approximately 200 years ago N. Fuß and J. Steiner presented already equations for the projectively equivalent case of circles (see [20, pp. 378-380]), and A. Cayley published an explicit solution for general N in a projective setting ([17] or [15, Theorem 9.5.4]). Other approaches are provided in [4, Sect. VI] and [14, Sect. 11.2.3.9]. Equivalent conditions in terms of elliptic functions can be deduced from [27, Corollary 3].

Acknowledgements

The author is grateful to Dan Reznik and Ronaldo Garcia for inspirations and interesting discussions and to the anonymous reviewer for important advice.

Funding Open access funding provided by TU Wien (TUW).

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons. org/licenses/by/4.0/.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Akopyan, A.W., Bobenko, A.I.: Incircular nets and confocal conics. Trans. Am. Math. Soc. 370, 2825-2854 (2018)
[2] Akopyan, A., Schwartz, R., Tabachnikov, S.: Billiards in ellipses revisited. Eur. J. Math. (2020). https://doi.org/10.1007/s40879-020-00426-9.
[3] Bialy, M., Tabachnikov, S.: Dan Reznik's identities and more. Eur. J. Math. (2020). https://doi.org/10.1007/s40879-020-00428-7.
[4] Birkhoff, G.D.: Dynamical systems. American Mathematical Society, Colloquium Publications, Vol. 9, Providence/Rhode Island (1966)
[5] Bobenko, A.I., Schief, W.K., Suris, Y.B., Techter, J.: On a discretization of confocal quadrics. A geometric approach to general parametrizations. Int. Math. Res. Not. IMRN 24, 10180-10230 (2020)
[6] Bobenko, A.I., Fairley, A.Y.: Nets of lines with the combinatorics of the square grid and with touching inscribed conics. Discrete Comput. Geom. (2021). https://doi.org/10.1007/s00454-021-00277-5.
[7] Böhm, W.: Die Fadenkonstruktionen der Flächen zweiter Ordnung. Math. Nachr. 13, 151-156 (1955)
[8] Böhm, W.: Ein Analogon zum Satz von Ivory. Ann. Mat. Pura Appl. 4(54), 221-225 (1961)
[9] Chasles, M.: Propriétés générales des arcs d'une section conique, dont la difference est rectifiable. Comptes Rendus hebdomadaires de séances de l'Académie des sciences 17, 838-844 (1843)
[10] Chasles, M.: Résumé d'une théorie des coniques sphériques homofocales. Comptes Rendus des séances de l'Académie des Sciences 50, 623-633 (1860)
[11] Chavez-Caliz, A.: More about areas and centers of Poncelet polygons. Arnold Math. J. 7, 91-106 (2021)
[12] Dragović, V., Radnović, M.: Integrable billiards and quadrics. Russian Math. Surv. 65(2), 319-379 (2010)
[13] Dragović, V., Radnović, M.: Poncelet porisms and beyond. Hyperelliptic Jacobians and Pencils of Quadrics. Birkhäuser/Springer Basel AG, Basel, Integrable Billiards (2011)
[14] Duistermaat, J.J.: Discrete Integrable Systems. QRT Maps and Elliptic Surfaces. Springer Monographs in Mathematics 304, Springer, New York (2010).
[15] Glaeser, G., Stachel, H., Odehnal, B.: The Universe of Conics. From the ancient Greeks to $21^{\text {st }}$ century developments. Springer Spectrum, Berlin, Heidelberg 2016.
[16] Glutsyuk, A.: On curves with Poritsky property. arXiv:1901.01881 [math.DS], (2020).
[17] Griffiths, P., Harris, J.: On Cayley's explicit solution to Poncelet's porism. L'Enseignement Mathématique 24(1-2), 31-40 (1978)
[18] Halbeisen, L., Hungerbühler, N.: A Simple Proof of Poncelet's Theorem (on the occasion of its bicentennial). Am. Math. Mon. 122(6), 537-551 (2015)
[19] Izmestiev, I., Tabachnikov, S.: Ivory's Theorem revisited. J. Integrable Syst. 2/1, xyx006 (2017). https://doi.org/10.1093/integr/xyx006
[20] Jacobi, C.G.J.: Ueber die Anwendung der elliptischen Transcendenten auf ein bekanntes Problem der Elementargeometrie. Crelle's J. 3(4), 376-389 (1828)
[21] Levi, M., Tabachnikov, S.: The poncelet grid and billiards in ellipses. Am. Math. Mon. 114(10), 895-908 (2007)
[22] Reznik, D., Garcia, R., Koiller, J.: Can the elliptic billiard still surprise us? Math. Intell. 42, 6-17 (2020)
[23] Reznik, D., Garcia, R.: The circumbilliard: any triangle can be a 3-periodic. arXiv:2004.06776 [math.DS] (2020).
[24] Reznik, D., Garcia, R., Koiller, J.: Eighty new invariants of N-periodics in the elliptic billiard. arXiv:2004.12497v11 [math.DS] (2020).
[25] Schwartz, R.E.: The Poncelet grid. Adv. Geom. 7, 157-175 (2007)
[26] Stachel, H.: Recalling Ivory's theorem. FME. Trans. 47(2), 355-359 (2019)
[27] Stachel, H.: On the motion of Billiards in ellipses. arXiv:2105.03624 [math.DG] (2021).
[28] Stachel, H.: Isometric billiards in ellipses and focal billiards in ellipsoids. J. Geom. Gr. 25(1), 97-118 (2021)
[29] Tabachnikov, S.: Geometry and Billiards. American Mathematical Society, Providence (2005)

Hellmuth Stachel
Vienna University of Technology
Wiedner Hauptstr. 8-10/104
1040 Wien
Austria
e-mail: stachel@dmg.tuwien.ac.at
Received: May 14, 2021.
Revised: August 24, 2021.
Accepted: October 2, 2021.

[^0]: ${ }^{1}$ The norm $\left\|\mathbf{t}_{e}\right\|$ equals half length of the diameter of e which is parallel to \mathbf{t}_{e}.

[^1]: ${ }^{2}$ They follow from the second equation in Lemma 3.1 for $t_{1}=t_{2}$.

[^2]: ${ }^{3}$ An extended version of this theorem in [26] addresses the symmetry between the ranges \mathcal{R}_{c} and \mathcal{R}_{t}. This generalizes the statement that in the case of confocal conics c and c_{1} the quadrilateral $A_{1} A_{2} B_{1} B_{2}$ has an incircle d (Figs. 4, 6 and 14, compare with $[1,19]$).

[^3]: ${ }^{4}$ All subscripts in this section are understood modulo N.

[^4]: 5 The turning number of hyperbolic billiards becomes more intuitive when the billiard is seen as the limit of a focal billiard in the sense of [28, Theorem 2].

