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On the extremal compatible linear
connection of a Randers space

Csaba Vincze and Márk Oláh

Abstract. A linear connection on a Finsler manifold is called compati-
ble to the metric if its parallel transports preserve the Finslerian length
of tangent vectors. Generalized Berwald manifolds are Finsler manifolds
equipped with a compatible linear connection. Since the compatibility
to the Finslerian metric does not imply the unicity of the linear con-
nection in general, the first step of checking the existence of compatible
linear connections on a Finsler manifold is to choose the best one to look
for. A reasonable choice is introduced in Vincze (J Differ Geom Appl,
2019. arXiv:1909.03096) called the extremal compatible linear connec-
tion, which has torsion of minimal norm at each point. Randers metrics
are special Finsler metrics that can be written as the sum of a Riemann-
ian metric and a 1-form (they are “translates” of Riemannian metrics). In
this paper, we investigate the compatibility equations for a linear connec-
tion to a Randers metric. Since a compatible linear connection is uniquely
determined by its torsion, we transform the compatibility equations by
taking the torsion components as variables. We determine when these
equations have solutions, i.e. when the Randers space becomes a general-
ized Berwald space admitting a compatible linear connection. Describing
all of them, we can select the extremal connection with the norm minimiz-
ing property. As a consequence, we obtain the characterization theorem
in Vincze (Indag Math 26(2):363–379, 2014): a Randers space is a non-
Riemannian generalized Berwald space if and only if the norm of the
perturbating term with respect to the Riemannian part of the metric is
a positive constant.
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1. Notations and terminology

Let M be a differentiable manifold with local coordinates u1, . . . , un. The in-
duced coordinate system of the tangent manifold TM consists of the functions
x1, . . . , xn and y1, . . . , yn. For any v ∈ TpM , xi(v) := ui ◦ π(v) = ui(p) =: pi

and yi(v) = v(ui), where i = 1, . . . , n and π : TM → M is the canonical
projection.

A Finsler metric is a continuous function F : TM → R satisfying the following
conditions: F is smooth on the complement of the zero section (regularity),
F (tv) = tF (v) for all t > 0 (positive homogeneity) and the Hessian

gij =
∂2E

∂yi∂yj

of the energy function E = F 2/2 is positive definite at all nonzero elements
v ∈ TpM (strong convexity). The pair (M,F ) is called a Finsler manifold.

Definition 1. Let (M,F ) be a Finsler manifold. A linear connection ∇ on M
is compatible to F if the parallel transports with respect to ∇ preserve the
Finslerian length of tangent vectors. If ∇ is a compatible linear connection to
F , then the triplet (M,F,∇) is called a generalized Berwald manifold.

Let ∇ be a linear connection on M compatible to F , which means that F is
constant along parallel vector fields. Denoting an arbitrary parallel vector field
along the curve c : [0, 1] → M by X,

(F ◦ X)′ = (xk ◦ X)′ ∂F

∂xk
◦ X + (yk ◦ X)′ ∂F

∂yk
◦ X.

Here we have that (xk ◦ X)′ = (uk ◦ π ◦ X)′ = (uk ◦ c)′ = ck′ and the function
yk ◦ X =: Xk satisfies the differential equation

Xk′
+ Xjci′Γk

ij ◦ c = 0

of parallel vector fields, i.e. Xk′ = −ci′XjΓk
ij ◦ c. Therefore

(F ◦ X)′ = ci′
(

∂F

∂xi
− yjΓk

ij ◦ π
∂F

∂yk

)
◦ X.

So the compatibility of ∇ is equivalent to
∂F

∂xi
− yjΓk

ij ◦ π
∂F

∂yk
= 0 (i = 1, . . . , n). (1)

We will call (1) the system of compatibility equations and the vector fields

Xh
i :=

∂

∂xi
− yjΓk

ij ◦ π
∂

∂yk
(i = 1, . . . , n)

acting on the Finslerian metric in the compatibility equations are called hor-
izontal vector fields. To sum up, the linear connection ∇ determines (by its
connection parameters) the horizontal vector fields Xh

1 , . . . , Xh
n , and the van-

ishing of the derivatives of F along them characterizes the compatibility of ∇
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to F . Together with ∇ we also have a Riemannian metric on the manifold M ,
which is related to F in a “nice way”.

Definition 2. Let (M,F ) be a Finsler manifold and suppose that γ is a Rie-
mannian metric on M . We will call γ compatible to F if every linear connection
compatible to F is also compatible to γ.

In other words, the parallel transports preserving the Finslerian length preserve
the Riemannian length, too. Such a Riemannian metric always exists: it is well-
known that the so-called averaged Riemannian metric given by integration over
the indicatrices has this property; for the details see [3,5]. Unfortunately, it
is hard to compute in practice, so instead (whenever possible) we should find
a compatible Riemannian metric which is easier to handle. For some other
candidates, see [1,2]. In what follows, γ denotes an arbitrary (previously fixed)
compatible Riemannian metric to F , ∇∗ is its (uniquely existing) Lévi-Civita
connection and Γk∗

ij are the (symmetric) connection parameters of ∇∗. The
horizontal vector fields generated by ∇∗ are

Xh∗
i :=

∂

∂xi
− yjΓk∗

ij ◦ π
∂

∂yk
(i = 1, . . . , n).

2. The compatibility equations in terms of the torsion
components

Following [6], we are going to transform the system (1) of the compatibility
equations for ∇ by taking the torsion components as variables. The Christoffel
process gives the following formula:

Γr
ij = Γ∗r

ij − 1
2

(
T l

jkγkrγil + T l
ikγkrγjl − T r

ij

)
. (2)

In terms of the torsion components, the system (1) of the compatibility equa-
tions for ∇ can be written into the form

Xh∗
i F +

1
2
yj

(
T l

jkγkrγil + T l
ikγkrγjl − T r

ij

) ◦ π
∂F

∂yr
= 0 (i = 1, . . . , n).

Taking a nonzero vector v ∈ TpM , we have the inhomogeneous system of linear
equations

yj(v)
(
T l

jkγkrγil + T l
ikγkrγjl − T r

ij

)
(p)

∂F

∂yr
(v) = −2Xh∗

i F (v) (i = 1, . . . , n)

for the unknown scalars T c
ab(p). The set Ap(v) of its solutions is an affine

subspace in the vector space ∧2T ∗
p M ⊗ TpM spanned by

dui
p ∧ duj

p ⊗
(

∂

∂uk

)
p

(1 ≤ i < j ≤ n, k = 1, . . . , n)
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of dimension
(

n

2

)
n. By going through all nonzero tangent vectors v ∈ TpM ,

the solution set

Ap =
⋂

v∈TpM\{0}
Ap(v)

containing the restrictions of the torsion tensors of all compatible linear con-
nections to the Cartesian product TpM × TpM is also an affine subspace of
∧2T ∗

p M ⊗ TpM (as the intersection of affine subspaces). Let us rewrite these
equations in a more concise form. The skew-symmetry allows us to keep only
the components T c

ab with lower indices a < b. Denoting by σ̃c
ab;i the coefficient

of T c
ab (a < b) in the i-th equation,

σ̃c
ab;i =

(
yaγbr − ybγar

) ∂F

∂yr
γic +

(
δai γbr − δbi γar

) ∂F

∂yr
yjγjc − (

δai yb − δbi ya
) ∂F

∂yc
.

If ∂/∂u1, . . . , ∂/∂un is an orthonormal basis at p ∈ M with respect to the
compatible Riemannian metric γ, then

σ̃c
ab;i = δci

(
ya ∂F

∂yb
− yb ∂F

∂ya

)
+ δai

(
yc ∂F

∂yb
− yb ∂F

∂yc

)
− δbi

(
yc ∂F

∂ya
− ya ∂F

∂yc

)
(3)

and the compatibility equations are
∑

a<b,c

σ̃c
ab;iT

c
ab = −2Xh∗

i F (i = 1, . . . , n), (4)

where the summation symbol means summing over the following indices:

{(a, b, c) ∈ Nn × Nn × Nn | a < b} (Nn := {1, . . . , n}).

3. The extremal compatible linear connection

According to the previous section, the pointwise solutions of the compatibility
equations form affine subspaces in ∧2T ∗

p M ⊗ TpM (p ∈ M). So there is no
reason for a global solution (if there is a solution at all) to be unique. Therefore
the first step of checking the existence of compatible linear connections on a
Finsler manifold is to choose the best one to look for. A reasonable choice is
introduced in [6].

Definition 3. Let (M,F ) be a Finsler manifold with a compatible Riemannian
metric γ, and suppose that the coordinate vector fields ∂/∂u1, . . . , ∂/∂un form
an orthonormal basis at the point p ∈ M with respect to γ. We introduce a
Riemannian metric on ∧2T ∗

p M ⊗ TpM in the following way.
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If T =
∑

i<j,k

T k
ijdui ∧ duj ⊗ ∂

∂uk
, then

〈Tp, Sp〉 :=
∑

i<j,k

T k
ij(p)Sk

ij(p) and ‖Tp‖2 =
∑

i<j,k

T k
ij(p)

2
. (5)

The extremal compatible linear connection on M is the uniquely determined
compatible linear connection whose torsion minimizes its pointwise norm.

The system

dui ∧ duj ⊗ ∂

∂uk
(1 ≤ i < j ≤ n, k = 1, . . . , n)

is an orthonormal basis at the point p ∈ M with respect to the scalar product
introduced above. Since the pointwise solution set Ap of the compatibility
equations is an affine (especially, a convex) set, the element with the minimal
norm (the closest element to the origin) is uniquely determined. For the details,
see [6].

4. Compatible linear connections of Randers spaces

Definition 4. A Finsler metric is called Randers metric if it has the special
form

F (x, y) = α(x, y) + β(x, y),

where

• α is a norm coming from a Riemannian metric on M , i.e. if the matrix
of the Riemannian metric in a local basis ∂/∂u1, . . . , ∂/∂un is αij , then
α(x, y) =

√
αij(x)yiyj ,

• β is a 1-form, i.e. a linear functional on the tangent spaces with the
coordinate representation β(x, y) = βj(x)yj .

Note that both the metric components of the Riemannian part and the compo-
nents of the perturbating term are considered on the tangent manifold as com-
posite functions αij(x) and βk(x), where x = (x1, . . . , xn). It is well-known [4]
that its Riemannian part is compatible to the Randers metric, so γ := α is a
convenient choice for a Riemannian environment because α is directly given
by the Randers metric.

In what follows, we are going to investigate the existence and the intrinsic
expression of compatible linear connections on Randers spaces, i.e. when these
spaces can be considered as generalized Berwald manifolds. We suppose that
M is connected and βp �= 0 at each point of the manifold. Otherwise, if there is
a point p ∈ M of a Randers manifold admitting compatible linear connections
such that βp = 0, then the indicatrix at p is quadratic and the same holds
at all points of the (connected) manifold because the indicatrices are related
by linear parallel translations. Therefore the metric is Riemannian, i.e. the
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compatibility of a linear connection means that it is metrical in the usual
sense and the extremal compatible linear connection is obviously the Lévi-
Civita connection of the Riemannian metric.

4.1. The compatibility equations

Let a point p ∈ M be given. In order to make the computations easier, we
choose local coordinates around p such that the basis ∂/∂u1, . . . , ∂/∂un satis-
fies the following properties:

• (∂/∂u1)p, . . . , (∂/∂un)p is an orthonormal basis of TpM with respect to
α, so αij(p) = δij ;

• β1(p) = · · · = βn−1(p) = 0 and βn(p) �= 0, i.e. the coordinate vector fields
from 1 to n − 1 span the kernel of the linear functional βp : TpM → R.

Under these choices of the coordinate vector fields, the form of the metric at
p is

F (x, y) =
√

δijyiyj + βn(x)yn =
√

(y1)2 + · · · + (yn)2 + βn(x)yn.

The partial derivatives of F with respect to the vectorial directions are

∂F

∂yk
(x, y) =

yk√∑n
i=1(yi)2

+ δn
k βn(x)

and, consequently,

ya ∂F

∂yb
− yb ∂F

∂ya
= ya

(
yb√∑n
i=1(yi)2

+ δn
b βn

)
− yb

(
ya√∑n
i=1(yi)2

+ δn
a βn

)

=
(
yaδn

b − ybδn
a

)
βn.

Plugging it in formula (3) and using that a < b ≤ n we have

σ̃c
ab;i =

[
δc
i

(
yaδn

b − ybδn
a

)
+ δa

i

(
ycδn

b − ybδn
c

) − δb
i (ycδn

a − yaδn
c )

]
βn

=
[(−δc

i y
b − δb

i y
c
)
δn
a + (δc

i y
a + δa

i yc) δn
b +

(
δb
i y

a − δa
i yb

)
δn
c

]
βn

=
[
(δc

i y
a + δa

i yc) δn
b +

(
δb
i y

a − δa
i yb

)
δn
c

]
βn.

Writing σc
ab;i := σ̃c

ab;i/βn,

σc
ab;i = (δc

i y
a + δa

i yc) δn
b +

(
δb
i y

a − δa
i yb

)
δn
c , (6)

and the compatibility equations at a given point p ∈ M are∑
a<b,c

σc
ab;iT

c
ab = − 2

βn
Xh∗

i F (i = 1, . . . , n). (7)

Lemma 1. For a given point p ∈ M ,

− 2
βn

Xh∗
i F = 2

(
Γn∗

ij ◦ π − 1
βn

∂βj

∂xi

)
yj (i = 1, . . . , n), (8)

where the right hand side is a linear expression in the coordinate functions yj.
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Proof. Since ∇∗ is the Lévi-Civita connection of α, we have

Xh∗
i F = Xh∗

i α + Xh∗
i β = Xh∗

i β.

Furthermore,

Xh∗
i β =

∂βsy
s

∂xi
− yjΓk∗

ij ◦ π
∂βsy

s

∂yk

=
∂βs

∂xi
ys − yjΓk∗

ij ◦ πβk = yj

(
∂βj

∂xi
− βnΓn∗

ij ◦ π

)
. �

Corollary 1. Introducing the notations

Cj;i := Γn∗
ij ◦ π − 1

βn

∂βj

∂xi
, (9)

the compatibility equations are∑
a<b,c

σc
ab;iT

c
ab = 2Cj;iy

j (i = 1, . . . , n). (10)

4.2. The coefficients of the torsion components

Let us arrange the components T c
ab into blocks such that all components with

the same lower indices (a, b) are in the same block, labeled by the index (a, b).

The number of blocks is
(

n

2

)
. In a given block, we order the components in

an increasing way by the index c.

Definition 5. Let us call the first
(
n−1
2

)
blocks whose indices (a, b) does not

contain the number n front blocks, and the remaining n−1 blocks with indices
a < b = n rear blocks. The last elements of the form Tn

ab in the blocks are
called tails, and a block without its tail is called a short block.

For example, in case of n = 4, the components are arranged in the following
way:

front blocks rear blocks

block (1,2) block (1,3) block (2,3) block (1,4) block (2,4) block (3,4)

short b. tail short b. tail short b. tail short b. tail short b. tail short b. tail

T 1
12 T

2
12 T

3
12 T 4

12 T 1
13 T

2
13 T

3
13 T 4

13 T 1
23 T

2
23 T

3
23 T 4

23 T 1
14 T

2
14 T

3
14 T 4

14 T 1
24 T

2
24 T

3
24 T 4

24 T 1
34 T

2
34 T

3
34 T 4

34

Let us examine what the coefficients of the components T c
ab look like. By saying

that a term appears in an equation we mean that its coefficient is not zero.
Using (6), we have the following expressions:

I. σc
ab;i = 0 for any T c

ab (a < b < n, c < n) in a front short block because all
indices are different from n.
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II. σn
ab;i = δb

i y
a −δa

i yb for the tail Tn
ab (a < b < n) of a front block. Therefore

it appears only in two different equations of indices i = a and i = b with
coefficients

σn
ab;a = −yb, σn

ab;b = ya.

III. σc
an;i = δc

i y
a + δa

i yc for any T c
an (a < n, c < n) in a rear short block. We

have two cases:
– if a = c, then the diagonal component T a

an appears only in the
equation of index i = a = c with coefficient

σa
an;a = 2ya;

– if a �= c, then T c
an appears in exactly two equations of indices i = a

and i = c with coefficients

σc
an;a = yc, σc

an;c = ya.

IV. σn
an;i = δn

i ya + δa
i yn + δn

i ya − δa
i yn = 2δn

i ya for the tail Tn
an (a < n)

of a rear block. So it only appears in the last equation of index n with
coefficient σn

an;n = 2ya.

According to I–IV, none of the components of front short blocks appear in the
equations. So we have the front tails and the rear blocks remaining, together(

n − 1
2

)
+ (n − 1)n =

1
2
(n − 1)(3n − 2)

tensor components. For example, in case of n = 2 we have 2, in case of n = 3
we have 7 and in case of n = 4 we have 15 unknown components.

4.3. The n-th compatibility equation

The n-th compatibility equation is much more simple than the others.

Lemma 2. In the n-th compatibility equation, only the rear tails Tn
an have co-

efficients different from 0, and σn
an;n = 2ya.

Proof. We have seen in IV. that σn
an;n = 2ya. What about the others?

• In short front blocks every coefficient is 0.
• The tails Tn

ab of front blocks have nonzero coefficients in equations of
indices i = a and i = b, but here a < b < n.

• Elements T c
an of rear short blocks have nonzero coefficients in equations

of indices i = a and i = c, but here a < n and c < n. �

Proposition 1. The n-th compatibility equation divided by 2 is
n−1∑
a=1

yaTn
an =

n∑
a=1

Ca;nya.

Proof. The left hand side is given by Lemma 2, and the right hand side is
given by (10). �
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Corollary 2. The n-th compatibility equation is solvable if and only if Cn;n = 0
and the rear tails are uniquely determined:

Tn
an(p) = Ca;n(x)

(9)
= Γn∗

an(p) − 1
βn(x)

∂βa

∂xn
(x) (a = 1, . . . , n − 1). (11)

Proof. By Proposition 1, both sides are linear expressions of the coordinate
functions ya. Comparing the coefficients of ya (a �= n), we have both the
solvability condition and formula (11) immediately. �

By Corollary 2 we exploited all information the n-th equation has. From now
on we consider the equations of indices i = 1, . . . , n − 1.

4.4. The first n − 1 compatibility equations

Let us consider the i-th compatibility equation (i = 1, . . . , n−1) and rearrange
its left hand side with respect to the coordinate functions yk (k = 1, . . . , n).

Lemma 3. For any i = 1, . . . , n − 1, the i-th compatibility equation contains
the coordinate function yk on the left hand side with coefficient

κk;i =

⎧⎪⎪⎨
⎪⎪⎩

Tn
ki + T k

in + T i
kn if k < i,

2T i
in if k = i,

−Tn
ik + T k

in + T i
kn if i < k < n,
0 if k=n.

Proof. First of all recall that the tensor components in the short front blocks
do not appear in the compatibility equations because of I. Otherwise

• the tails Tn
ab of the front blocks have nonzero coefficients in the equations

of indices i = a and i = b. So, in the i-th equation only the components of
the form Tn

ib and Tn
ai appear with coefficients σn

ib;i = −yb and σn
ai;i = ya.

– yi and yn never appear here because of a < b < n.
– Otherwise, yk appears with either −Tn

ik (in case of i < k) or Tn
ki (in

case of k < i).
• The elements T c

an of the rear short blocks, which are not diagonal, have
nonzero coefficients in the equations of indices i = a and i = c (a �= c).
So, in the i-th equation only the components of the form T c

in and T i
an

appear with coefficients σc
in;i = yc and σi

an;i = ya.
– yi and yn never appear here because of a �= c, a < n and c < n.
– Otherwise yk appears with T k

in + T i
kn.

• The rear diagonal component T i
in appears with σi

in;i = 2yi in the i-th
equation. Therefore yi appears with coefficient 2T i

in.
• Rear tails do not appear here (only in the last equation). �

Proposition 2. The i-th compatibility equation is
∑
k<i

(Tn
ki + T k

in + T i
kn)yk + 2T i

inyi +
∑

i<k<n

(−Tn
ik + T k

in + T i
kn)yk =

n∑
k=1

2Ck;iy
k,
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where i = 1, . . . , n − 1.

Proof. The left hand side is given by Lemma 3, and the right hand side is
given by (10). �

Corollary 3. For any i = 1, . . . , n − 1, the i-th compatibility equation is solv-
able if and only if Cn;i = 0 and the rear diagonal components are uniquely
determined:

T a
an(p) = Ca;a(x)

(9)
= Γn∗

aa(p) − 1
βn(x)

∂βa

∂xa
(x) (a = 1, . . . , n − 1). (12)

Proof. By Proposition 2, both sides are linear expressions of the coordinate
functions yk. Comparing the coefficients of yk (k = 1, . . . , n−1), we have both
the solvability condition and formula (12) immediately. �

We have managed to express all tensor components having repeated indices.
The remaining components have different indices one of which is n. By the
condition a < b, every index-triplet appears exactly three times (so for k <
i < n, we have the components Tn

ki, T
k
in, T i

kn, one of which is a front tail and
the other two are elements of the corresponding rear short blocks).

Corollary 4. The front tails are uniquely determined:

Tn
ab(p) =

1
βn(x)

(
∂βb

∂xa
(x) − ∂βa

∂xb
(x)

)
, (13)

where a < b < n, and the components with the same indices in different
positions satisfy the following equation:

T c
an(p) + T a

cn(p) = 2Γn∗
ac (p) − 1

βn(x)

(
∂βc

∂xa
(x) +

∂βa

∂xc
(x)

)
=: Sac(x). (14)

Proof. Let us consider the remaining components under the choice k < i < n.
It is easy to see that component-triplets Tn

ki, T
k
in, T i

kn appear always together
and exactly twice:

• in the i-th equation we have (Tn
ki + T k

in + T i
kn)yk,

• in the k-th equation we have (−Tn
ki + T k

in + T i
kn)yi.

By comparing them with the coefficients of yk and yi on the right hand side
∂(i-th eq.)

∂yk
⇒ Tn

ki + T k
in + T i

kn = 2Ck;i

∂(k-th eq.)
∂yi

⇒ −Tn
ki + T k

in + T i
kn = 2Ci;k.

Adding these together, dividing by 2 and using the symmetry of Γk∗
ij ,

T k
in + T i

kn = Ck;i + Ci;k
(9)
= Γn∗

ik ◦ π − 1
βn

∂βk

∂xi
+ Γn∗

ki ◦ π − 1
βn

∂βi

∂xk

= 2Γn∗
ik ◦ π − 1

βn

(
∂βk

∂xi
+

∂βi

∂xk

)
=: Sik.
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Thus, from every component-triplet, the terms T k
in and T i

kn in the correspond-
ing rear short blocks depend only on each other and their sum is Sik(x).
Plugging this into the equation above, we can determine the front tails as

Tn
ki = 2Ck;i − Sik

(9)
= 2Γn∗

ik ◦ π − 2
βn

∂βk

∂xi
− 2Γn∗

ik ◦ π +
1
βn

(
∂βk

∂xi
+

∂βi

∂xk

)

=
1
βn

(
∂βi

∂xk
− ∂βk

∂xi

)
. �

4.5. Solvability conditions

By Corollaries 2 and 3, there exists a solution of the compatibility equations
at p ∈ M if and only if

Cn;i
(9)
= Γn∗

in ◦ π − 1
βn

∂βn

∂xi
= 0 (i = 1, . . . , n).

We are going to reformulate this condition in a coordinate-free way. In the
following computations, the metric components of the Riemanian part and the
components of the perturbating term are considered on the tangent manifold
as composite functions αij(x) and βk(x), where x = (x1, . . . , xn). First, we
compute the Christoffel symbols Γn∗

in of the Lévi-Civita connection ∇∗ of α.
Using αij(p) = δij , the compatibility to the metric implies that

∂

∂xi
αnn =

∂

∂xi
α

(
∂

∂xn
,

∂

∂xn

)
= 2α

(
Γl∗

in ◦ π
∂

∂xl
,

∂

∂xn

)

= 2Γl∗
in ◦ παln = 2Γn∗

in ◦ π. (15)

Secondly, let us replace the 1-form β with its dual vector β�:

∂βn

∂xi
=

∂(βlαln)
∂xi

=
∂βl

∂xi
αln + βl ∂αln

∂xi
=

∂βn

∂xi
+ βn ∂αnn

∂xi
. (16)

Since αij(p) = δij implies that βn = βn, we have

∂

∂xi
(βjβkαjk) = 2

∂βj

∂xi
βkαjk + βjβk ∂αjk

∂xi
= 2βn

∂βn

∂xi
+ β2

n

∂αnn

∂xi

(16)
= 2βn

(
∂βn

∂xi
− βn

∂αnn

∂xi

)
+ β2

n

∂αnn

∂xi
= 2βn

∂βn

∂xi
− β2

n

∂αnn

∂xi

(15)
= 2βn

∂βn

∂xi
− 2β2

nΓn∗
in ◦ π = −2β2

n

(
Γn∗

in ◦ π − 1
βn

∂βn

∂xi

)
.

So, we have proved the following characterization theorem obtained in [4] by
different methods.

Proposition 3. A connected non-Riemannian Randers space with a metric F =
α + β is a generalized Berwald space if and only if the dual vector field of the
perturbating term has a positive constant length with respect to the Riemannian
part of the Randers metric.
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Proof. The metric admits a compatible linear connection if and only if the
system (10) has a solution for any p ∈ M . As we have seen above the solvability
conditions

Cn;i(x) = Γn∗
in (p) − 1

βn(x)
∂βn

∂xi
(x) = 0 (i = 1, . . . , n)

are equivalent to the vanishing of the partial derivatives (with respect to the
position) of the norm square of the dual vector field with respect to the Rie-
mannian part of the Randers metric. Using that the manifold is connected,
we have that the norm must be constant. It is positive because the Randers
metric is non-Riemannian. �

5. The extremal compatible linear connection of a Randers
space

Theorem 1. Let F = α + β be a non-Riemannian Randers metric on a con-
nected manifold M . There exists a compatible linear connection on M if and
only if the dual vector field of the perturbating term has a positive constant
length with respect to the Riemannian part of the Randers metric. If p ∈ M is
a given point and ∂/∂u1, . . . , ∂/∂un is a local coordinate system such that

• (∂/∂u1)p, . . . , (∂/∂un)p is an orthonormal basis of TpM with respect to
α,

• β1(p) = · · · = βn−1(p) = 0, βn(p) �= 0,

then the connection parameters of the extremal compatible linear connection
are

Γr
ij(p) = Γ∗r

ij (p) − 1
2

(
T i

jr(p) + T j
ir(p) − T r

ij(p)
)

, (17)

where Γ∗r
ij denotes the connection parameters of the Lévi-Civita connection of

α, and the torsion components T c
ab of the extremal compatible linear connection

are given as follows:

• all components in the front short blocks are 0,
• the tails of the front blocks are

Tn
ab(p) =

1
βn

(x)
(

∂βb

∂xa
(x) − ∂βa

∂xb
(x)

)
(a < b < n),

• the rear diagonal elements are

T a
an(p) = Γn∗

aa(p) − 1
βn(x)

∂βa

∂xa
(x) (a = 1, . . . , n − 1),

• the tails of the rear blocks are

Tn
an(p) = Γn∗

an(p) − 1
βn(x)

∂βa

∂xn
(x) (a = 1, . . . , n − 1),
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• the non-diagonal elements of the rear short blocks are

T c
an(p) = Γn∗

ac (p) − 1

2βn(x)

(
∂βc

∂xa
(x) +

∂βa

∂xc
(x)

)
(a, c = 1, . . . , n − 1, a �= c).

Proof. For the existence of compatible linear connections, we refer to Propo-
sition 3. To compute the connection parameters, we use formula (2) and
αij(p) = δij .

In the previous section, we computed the components of the torsion of an
arbitrary compatible linear connection. We get the extremal connection by
choosing the free parameters in such a way that the quadratic sum of all the
components is minimal.

• Components of the front short blocks never appear in the compatibility
equations, thus they are free variables and no other components depend
on them. So to minimize the norm, we set them all zero.

• The components Tn
ab, T a

an and Tn
an are uniquely determined for every

compatible linear connection, as we have seen by formulas (13), (12) and
(11), respectively.

• According to formula (14), the sum T c
an+T a

cn (a �= c, c < n) is the constant
Sac (and they only depend on each other). So the norm is minimized if
we set them T c

an = T a
cn = 1

2Sac by the solution of the minimum problem
x2 + (c − x)2 → min. �

Remark 1. The so-called extremal linear connection can always be introduced
on a Randers space by the formulas in Theorem 1 for the components of
the torsion tensor. However, it is not compatible to the Randers metric in
general. The necessary and sufficient condition for such a linear connection
to be compatible to the metric is that the dual vector field of β has constant
length with respect to the Riemannian metric α.

Corollary 5. According to the number of the tensor components that can be
chosen arbitrarily, we have that

dim Ap = n

(
n − 1

2

)

for a Randers space of dimension n ≥ 3 admitting compatible linear connec-
tions. Especially, it is of dimension zero, i.e. a singleton, in case of dimension
two.

Proof. The number of the tensor components in the front short blocks is

(n − 1)
(

n − 1
2

)
,

and the number of the components of the form T c
an (a = 1, . . . , n − 1, a �=

c, c < n) is
(

n − 1
2

)
. Their sum gives the dimension of the pointwise solution

space Ap of the compatibility equations. In dimension two we have no free
parameters. �
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6. An example: the case of dimension 4

In dimension 4, the compatibility equation consists of 4 equations with

4
(

4
2

)
=24 unknown torsion components. Among the components in the

(
3
2

)
=3

front blocks only the tails have nonzero coefficients. Since T 1
12, T

2
12, T

3
12;T

1
13, T

2
13,

T 3
13;T

1
23, T

2
23, T

3
23 do not appear in the equations (they have zero cefficients) we

set them all zero to get the extremal compatible connection. Using the formulas
in I–IV., the matrix form of the compatibility equations is

front tails rear block (1,4) rear block (2,4) rear block (3,4)

T 4
12 T 4

13 T 4
23 T 1

14 T 2
14 T 3

14 T 4
14 T 1

24 T 2
24 T 3

24 T 4
24 T 1

34 T 2
34 T 3

34 T 4
34 RHS

1 −y2 −y3 0 2y1 y2 y3 0 y2 0 0 0 y3 0 0 0 2Cj;1y
j

2 y1 0 −y3 0 y1 0 0 y1 2y2 y3 0 0 y3 0 0 2Cj;2y
j

3 0 y1 y2 0 0 y1 0 0 0 y2 0 y1 y2 2y3 0 2Cj;3y
j

4 0 0 0 0 0 0 y1 0 0 0 y2 0 0 0 y3 Cj;4y
j

According to Corollary 2, we can express the rear tails T 4
14, T

4
24, T

4
34 by com-

paring the coefficients of the yj ’s in the 4th equation:

T 4
14(p) = C1;4(x), T 4

24(p) = C2;4(x), T 4
34(p) = C3;4(x).

Rearranging the remaining terms in the first 3 equations, we get

2T 1
14y

1 + (−T 4
12 + T 2

14 + T 1
24)y

2 + (−T 4
13 + T 3

14 + T 1
34)y

3 = 2Cj;1y
j

(T 4
12 + T 2

14 + T 1
24)y

1 + 2T 2
24y

2 + (−T 4
23 + T 3

24 + T 2
34)y

3 = 2Cj;2y
j

(T 4
13 + T 3

14 + T 1
34)y

1 + (T 4
23 + T 3

24 + T 2
34)y

2 + 2T 3
34y

3 = 2Cj;3y
j .

According to Corollary 3, we can express the rear diagonal elements T 1
14, T

2
24,

T 3
34 by comparing the coefficients of yi in the i-th equation:

T 1
14(p) = C1;1(x), T 2

24(p) = C2;2(x), T 3
34(p) = C3;3(x).

We can see that all triplets formed by the remaining terms appear twice. Let
us consider for example T 4

12, T
2
14, T

1
24. It appears in the first equation as the

coefficient of y2 and in the second equation as the coefficient of y1. So we have

−T 4
12 + T 2

14 + T 1
24 = 2C2;1

T 4
12 + T 2

14 + T 1
24 = 2C1;2

Adding these together and using (14),

T 2
14 + T 1

24 = 2Γ4∗
12 ◦ π − 1

β4

(
∂β1

∂x2
+

∂β2

∂x1

)
=: S12,

and by (13),

T 4
12 = 2C1;2 − S12 =

1
β4

(
∂β2

∂x1
− ∂β1

∂x2

)
.
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Using similar arguments, we can see that

T 2
14 + T 1

24 = S12, T 3
14 + T 1

34 = S13, T 3
24 + T 2

34 = S23,

so in order to minimize the norm, we set them

T 2
14 = T 1

24 =
1
2
S12, T 3

14 = T 1
34 =

1
2
S13, T 3

24 = T 2
34 =

1
2
S23.

Finally,

T 4
13 = 2C1;3 − S13 =

1
β4

(
∂β3

∂x1
− ∂β1

∂x3

)
,

T 4
23 = 2C2;3 − S23 =

1
β4

(
∂β3

∂x2
− ∂β2

∂x3

)
.
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