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An extremal problem of regular simplices:
the five-dimensional case

Ákos G. Horváth

Abstract. The new result of this paper is connected with the following
problem: consider a supporting hyperplane of a regular simplex and its
reflected image at this hyperplane. When will the volume of the convex
hull of these two simplices be maximal? We prove that in the case when
the dimension is less or equal to 4, the maximal volume attained in the
case when the hyperplane goes through on a vertex and is orthogonal
to the height of the simplex at this vertex. More interesting that in the
higher dimensional cases this position is not optimal. We also determine
an optimal position of the hyperplane in the 5-dimensional case. This
corrects an erroneous statement in my paper (Horváth in Beitr Geom
Algebra 55(2):415–428, 2014).
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1. Introduction

Assume that the intersecting simplices S and SH are reflected copies of each
other in the hyperplane H. Then H intersects each of them in the same set.
By the Main Lemma of paper [3] we have that the intersection of the sim-
plices in an optimal case (when the volume of their common convex hull is
maximal) is a common vertex. In the paper [3] we stated the following (see
Theorem 3 in [3]): If S is a regular simplex of dimension n, then c(S, SH) :=

1
Voln(S)Vol(conv(S, SH)) = 2n. The proof contained a wrong substitution im-
plying partly-false result. We prove that this statement is true when n ≤ 4
and it is false in the higher dimensional cases. Additionally, we solve the 5-
dimensional case and obtain the position of the simplex which gives maximal
volume. Since this position cannot be generalized trivially for higher dimen-
sions, we proposed the following open problem:

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-019-0472-4&domain=pdf
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Problem 1. Consider a supporting hyperplane H of a regular n-simplex S and
denote by S′

H the orthogonal projection of S to H. Determine the supporting
hyperplane H for the volume of conv{S, S′

H} is maximal.

As we mentioned, Theorem 1 gives the answer in the cases when n ≤ 5. We may
mention here a very similar problem solved by P. Filliman. He investigated in
[1,2] the volume of the projection of a body using the exterior algebra method.
He determined those supporting hyperplanes H of the regular simplex S for
which the volume of S′

H is maximal or minimal, respectively. Similar interesting
questions can be found in the paper [4] on the volume of the union of two
convex bodies and also in the survey paper [5].

2. Regular simplex

First we give a sort of elementary computations regarding a n-dimensional
regular simplex. The reader can be skipped this section if knows the men-
tioned results.1 Let us denote the vertices of the regular simplex of dimen-
sion n by 1√

2
ei, where {e0, e1, . . . , en} is an orthonormal basis of an (n + 1)-

dimensional Euclidean space. Let si := 1√
2
(ei − e0) for i = 0, . . . , n the

system of the vertices with respect to the n-dimensional hyperplane, H :={∑n
i=0 xiei :

∑n
i=0 xi = 1√

2

}
. Then

s =
1√
2

n∑
i=1

si =
1√
2

⎛
⎜⎜⎜⎝

−n
1
...
1

⎞
⎟⎟⎟⎠ , s2,k =

1√
2

k−1∑
i=1

si =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(k − 1)
1
...
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

moreover we get the formulas on the vertices

s02,k =
s2,k

‖s2,k‖ , c =
1

n + 1
s,

‖s‖ =

√
n(n + 1)

2
, ‖s2,k‖ =

√
(k − 1)k

2
, h =

1
n

‖s‖ =

√
n + 1
2n

,

‖c‖ =
√

n

2(n + 1)
,

1Consider this part of the paper only hints. It is possible that the notation used here is used
in later sections for different object.
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and finally the once on the normals

u0 =
s

‖s‖ =
1√

n(n + 1)

⎛
⎜⎜⎜⎝

−n
1
...
1

⎞
⎟⎟⎟⎠ , ui =

c − si
‖c − si‖ =

1√
n(n + 1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1

−n
1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From the above results we can compute some further important formulas, we
get

〈s2,k, u0〉 =
(k − 1)(n + 1)√

2n(n + 1)
, 〈ui, uj〉 = − 1

n
,

s − sj =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−n + 1
1
...
1
0
1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, s − (n + 1)sj =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1

−n
1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

√
n(n + 1)

2
uj .

Assume that the (n − 1)-dimensional flat H of the hyperplane H through the
vertex s0 contains precisely the vertices s0, . . . sr and it is parallel to the affine
hull of the remaining ones. Then the unit normal vector of H directed towards
to the interior of the half-space H+ which contains the simplex is

u =
1√

(n − r)(r + 1)(n + 1)

(
r∑

i=0

−(n − r)ei +
n+1∑

i=r+1

(r + 1)ei

)

=
1√

(n − r)(r + 1)(n + 1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(n − r)
...

−(n − r)
(r + 1)

...
r + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and in this case we have

〈u, u0〉 =
√

n − r

r + 1
1√
n

.

Observe that s0 always lies in H while sn does not lie in it. Hence the inequality
0 ≤ r ≤ n − 1 holds.
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3. The theorem

In this section we prove the following theorem:

Theorem 1. If S is the regular simplex of dimension n ≤ 4, then

c(S, SH) :=
1

Voln(S)
Vol(conv(S, SH)) = 2n,

attained only in the case when u = u0 = s
‖s‖ . For n = 5 we have

c(S, SH) = 10

(
1
2

+
√

77
10

√
3

)
≈ 10.06623 > 10 = 2n.

Proof. Without loss of generality we can assume that ‖s1‖ = · · · = ‖sn‖ = 1
as in the previous paragraph. We imagine that H is horizontal and H+ is the
upper half-space. Define the upper side of S as the collection of those facets
in which a ray orthogonal to H and terminated in a far point of H+ is first
intersecting S. The volume of the convex hull is twice the sum of the volumes
of the prisms whose bases are on the orthogonal projection of the facets of the
simplex of the upper side. Let Fi1 , . . . , Fik denotes the facets of the upper side,
F ′
i1

, . . . , F ′
ik

their orthogonal projections on H, and ui1 , . . . , uik their respective
unit normals, directed outwardly. Observe that in this case

uil =

{
(n+1)sil−s

‖(n+1)sil−s‖ if il �= 0
s

‖s‖ if il = 0,

moreover

‖(n + 1)sil − s‖ = |〈uil , (n + 1)sil − s〉| = |(n + 1)〈uil , sil〉 − 〈uil , sil〉|

=

√
n(n + 1)

2
‖s1‖.

We also introduced the notation s =
∑n

i=0 si =
∑n

i=1 si. Since i1 = 0 corre-
sponds to an upper facet, using Statement 2 in [3] we get

Vol(conv(S, SH))

Voln(S)
= 2n

k∑
l=1

〈uil , u〉〈u, s − sil〉
|〈uil , (n + 1)sil − s〉|

= 2n

(
〈u0, u〉2 +

2

(n + 1)n

k∑
l=2

〈−(n + 1)sil + s, u〉〈u, s − sil〉
)

= 2n

(
〈u0, u〉2 +

2

(n + 1)n

k∑
l=2

(−(n + 1)〈sil , u〉 + 〈s, u〉) (〈u, s〉 − 〈u, sil〉)
)

= 2n

(
〈u0, u〉2 +

2

(n + 1)n

k∑
l=2

(
(n + 1) 〈sil , u〉2 − (n + 2)〈s, u〉 〈u, sil〉 + 〈u, s〉2)

)
.

If the only upper facet corresponds to the normal vector u0, then only the first
term occurs—meaning that k = 1—and the maximal value of the right hand
side is less than or equal to 2n with equality in the required case.
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Assume now that k ≥ 2. By the regularity of the simplex we have that s =√
(n+1)n

2 u0, hence we get

Vol(conv(S, SH))

Voln(S)
:= 2nf

(〈
s02,k, u

〉
, 〈u0, u〉)

= 2n

(
〈u0, u〉2 +

k∑
l=2

(
2

n
〈sil , u〉2 −

√
2

n(n + 1)
(n + 2)〈u0, u〉 〈sil , u〉 + 〈u0, u〉2

))

= 2n

(
2

n

k∑
l=2

〈sil , u〉2 −
√

2

n(n + 1)
(n + 2)〈u0, u〉

〈
k∑

l=2

sil , u

〉
+ k〈u0, u〉2

)

Set s2,k :=
∑k

l=2 sil and s02,k := s2,k
‖s2,k‖ , respectively.

Denote by f the expression in the bracket then

2nf := 2n

(
2
n

k∑
l=2

〈sil , u〉2 −
√

(k − 1)k
n(n + 1)

(n + 2)〈u0, u〉 〈s02,k, u
〉

+ k〈u0, u〉2
)

.

First we remark that the inequality 1
n ≤ 〈u0, u〉 ≤ 1 is fulfilled. We can observe

that if Fil is an upper facet then
〈∑

i�=il

(si − sil) , u

〉
≥ 0,

implying that

〈s − (n + 1)sil , u〉 ≥ 0.

From this we get a new connection between the parameters 〈sil , u〉 and 〈u0, u〉,
namely

〈sil , u〉 ≤ ‖s‖
(n + 1)

〈u0, u〉 =
√

n

2(n + 1)
〈u0, u〉.

This implies that

2
n

k∑
l=2

〈sil , u〉2 ≤ (k − 1)
(n + 1)

〈u0, u〉2.

On the other hand, if we write that

〈u0, u〉 := cos α, 〈s02,k, u0〉 := cos β and 〈s02,k, u〉 := cos γ,

then we get that γ ≤ α + β, and so cos α cos β − sin α sin β ≤ cos γ. But

cosβ =
(k − 1) + 1

2
(k − 1)(n − 1)√

(k−1)kn(n+1)
4

=

√
1 − n − k + 1

nk
and sinβ =

√
n − k + 1

nk
,
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hence we have a second inequality which is:

〈u0, u〉
√

(n + 1)(k − 1)
nk

−
√

1 − 〈u0, u〉2
√

n − k + 1
nk

≤ 〈s02,k, u〉

=

√
2

k(k − 1)

k∑
l=2

〈sil , u〉 .

Introduce the notation x := 〈u0, u〉. Now we get that

f ≤
((

k − 1
n + 1

+ k

)
− (k − 1)(n + 2)

n

)
x2

+
(n + 2)

n

√
(k − 1)(n − k + 1)

n + 1
x
√

1 − x2

= x

[(
1 − (k − 1)(n + 2)

(
1
n

− 1
n + 1

))
x

+
(n + 2)

n

√
(k − 1)(n − k + 1)

n + 1

√
1 − x2

]

= x

[(
1 − (k − 1)(n + 2)

n(n + 1)

)
x +

(n + 2)
n

√
(k − 1)(n − k + 1)

n + 1

√
1 − x2

]

= x
[
Ax +

√
B
√

1 − x2
]
.

We have to prove that for all x ∈ [ 1n , 1], n ≥ 3 and 2 ≤ k ≤ n the inequality

x
[
Ax +

√
B
√

1 − x2
]

< 1

holds. We may assume that x > 0. This inequality can be arranged to the
form

1
x

− Ax >
√

B
√

1 − x2.

Observe that the left hand side is greater than zero, because 0 < A < 1 always
hold. (This implies that 1

x − Ax > 1
x − x > 0.) Considering the square of the

inequality we get the following one:

(A2 + B)x4 − (2A + B)x2 + 1 > 0.

The possible roots of the quadric in the left hand side are

(x2)1,2 =
(2A + B) ±√B(4A + B − 4)

2(A2 + B)
.

These are real numbers if and only if 4A + B − 4 = B + 4(A − 1) ≥ 0. From
this inequality we get

0 ≤ (n + 2)2

n2

(k − 1)(n − k + 1)
n + 1

− 4
(k − 1)(n + 2)

n(n + 1)
,

equivalently

4 ≤ (n − k + 1)(n + 2)
n

. (1)
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If n = 3 then for k = 2, 3 the above inequality does not hold showing that the
equation has no real solutions. This means that f < 1 and the statement is
true.

If n = 4 than for k = 3, 4 the inequality (1) is false, too. However for k = 2 it is
hold, because 4 < 18

4 . In this case, A = 1−3/10 = 7/10, B = 9/4 ·3/5 = 27/20
and the roots are

x2
1,2 =

7/5 + 27/20 ±√27/20(14/5 + 27/20 − 4)
2(49/100 + 27/20)

=
11/4 ± 9/20

92/25
,

or simplifying there are

x2
1 = 20/23, x2

2 = 5/8,

respectively. If the variable x = 〈u0, u〉 lies between
√

5/8 and
√

20/23 then
the examined function f(x) can be greater or equal to 1.

So we have to investigate the original formula in the following situation: Set
n = 4, k = 2 and assume that

√
5/8 ≤ 〈u0, u〉 ≤√20/23. Since s02,k = si,2 we

have the following inequalities between 〈si2 , u〉 and 〈u0, u〉,
√

2
5
〈u0, u〉 ≥ 〈si2 , u〉 ≥ 〈u0, u〉

√
5
8

−
√

1 − 〈u0, u〉2
√

3
8

The function

f =

(
2
n

〈si2 , u〉2 −
√

2
n(n + 1)

(n + 2)〈u0, u〉 〈si2 , u〉 + k〈u0, u〉2
)

is convex for a fixed value of 〈u0, u〉 hence it can takes its maximal values at
the ends of the corresponding interval. Hence we have to determine the values

of f using the conditions
√

2
5 〈u0, u〉 = 〈si2 , u〉 and 〈si2 , u〉 = 〈u0, u〉

√
5
8 −

√
1 − 〈u0, u〉2

√
3
8 , respectively. In the first case we get

(
1
2

〈si2 , u〉2 − 3

√
2
5
〈u0, u〉 〈si2 , u〉 + 2〈u0, u〉2

)
=
(

1
5

− 3
2
5

+ 2
)

〈u0, u〉2 ≤ 1,

showing that f(x) ≤ 1 as we stated. Secondly substitute the lower bound
function into the expression of f . Using again the notation x = 〈u0, u〉, we
have to maximize the function

g(x) :=
5
8
x2 +

(√
27
20

−
√

15
64

)
x
√

1 − x2 +
3
16

,

on the interval
√

5/8 ≤ x ≤√20/23. It can be seen easily that on the interval
[1/2,

√
20/23] it is a concave function with an unique maximal value which is

approximately f(x) ≈ 0.960977 attends at the value x = 0.915944 <
√

20/23,
proving our statement.
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Examine now the 5-dimensional case. The inequality (1) does not hold if k >
6−20/7 = 4−6/7 > 3. Thus we have to investigate two respective cases, when
k = 2 or k = 3.

Let k = 3. If we fix the value of x := 〈u0, u〉 the function

f =

(
2
5

3∑
l=2

〈sil , u〉2 − 7
√

15
15

〈u0, u〉
〈

3∑
l=2

sil , u

〉
+ 3〈u0, u〉2

)

=

(
2
5

〈si2 , u〉2 − 7
√

15
15

〈u0, u〉 〈si2 , u〉 +
3
2
〈u0, u〉2

)

+

(
2
5

〈si3 , u〉2 − 7
√

15
15

〈u0, u〉 〈si3 , u〉 +
3
2
〈u0, u〉2

)

is the sum of two convex functions defined on the same interval. The maximal
value of the two terms separately can be achieved only at the ends of the
interval. We have an upper bound for f if we determine the maximal value
of the two terms separately and we add them. The left end of the examined

interval gave with the equality 〈si2 , u〉 = 〈u0, u〉
√

12
5 −√1 − 〈u0, u〉2

√
3
5 while

the right end with the other one 〈si2 , u〉 =
√

5
12 〈u0, u〉. The sum of the two

terms is less or equal to

2max

⎧
⎨
⎩

⎛
⎝2

5

(
〈u0, u〉

√
12
5

−
√

1 − 〈u0, u〉2
√

3
5

)2

− 7
√

15
15

〈u0, u〉
(

〈u0, u〉
√

12
5

−
√

1 − 〈u0, u〉2
√

3
5

)
+

3
2
〈u0, u〉2

)
,

(
1
6

− 7
6

+
3
2

)
〈u0, u〉2

⎫
⎬
⎭

= 2max
{

−29
50

〈u0, u〉2 +
11
25

〈u0, u〉
√

1 − 〈u0, u〉2 +
6
25

,
1
2
〈u0, u〉2

}
.

The concave function

h(x) := −29
50

x2 +
11
25

x
√

1 − x2 +
6
25

attends its maximal value 0.314005 on the interval [0, 1] at the point x =
0.318833 showing that f(x) < 1 in this case, too.2

The last case3 is when n = 5 and k = 2. The examined function f is

2
5

〈si2 , u〉2 − 7
√

15
15

〈u0, u〉 〈si,2, u〉 + 2〈u0, u〉2

2In this case we did not have to use the smaller domain, based on the sharper calculation

of the values A = 8/15, B = 196/75 and (x2)1,2 = 9(23±7
√
2)

326
.

3In this case A = 23/30, B = 98/75 and (x2)1,2 =
23/15+98/75±

√
98/75(46/15+98/75−4)

2(232/302+98/75)
.
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and the conditions on the two variables are

〈u0, u〉
√

3
5

−
√

1 − 〈u0, u〉2
√

2
5

≤ 〈si,2, u〉 ≤
√

5
12

〈u0, u〉.

Hence we get again that

f(x) ≤ max

{
17
25

〈u0, u〉2 +
23

√
6

75
〈u0, u〉

√
1 − 〈u0, u〉2 +

4
25

, 〈u0, u〉2
}

.

Consider the first argument of the right hand side and assume that 〈si,2, u〉 =

sin ϕ with a new variable ϕ. Then from the equality sinϕ := 〈u0, u〉
√

3
5 −

√
1 − 〈u0, u〉2

√
2
5 we get that

〈u0, u〉 =

√
3
5

sin ϕ +

√
2
5

cos ϕ.

The examined function now is

g(ϕ) =
17
25

(
3
5

sin2 ϕ +
2
5

cos2 ϕ + 2
√

6
5

sinϕ cos ϕ

)

+
23

√
6

75

(√
3
5

sin ϕ +

√
2
5

cos ϕ

)(√
3
5

cos ϕ −
√

2
5

sinϕ

)
+

4
25

=
(

51
125

− 6
23
533

)
sin2 ϕ +

(
34
125

+ 6
23
533

)
cos2 ϕ

+

(
2
17

√
6

125
+

23
√

6
533

)
sinϕ cos ϕ +

4
25

=
1
5

sin2 ϕ +
4
5

cos2 ϕ +
√

6
3

sin ϕ cos ϕ =
3
5

cos2 ϕ +
√

6
3

sinϕ cos ϕ +
1
5
.

This function takes its maximal value at that point ϕmax for which cos2 ϕmax−
sin2 ϕmax =

√
27
77 and sinϕmax cos ϕmax = 1

2

√
50
77 , from which cos2 ϕmax =

1
2

(
1 +
√

27
77

)
and sin2 ϕmax = 1

2

(
1 −
√

27
77

)
. The maximal value is

g(ϕmax) =
1
2

+
3
10

√
27
77

+
10

√
3

6
√

77
=

1
2

+
√

77
10

√
3

≈ 1.006623.

Since the corresponding values 〈u0, u〉 and 〈si,2, u〉 are allowed in our inves-
tigation this proves that obtained upper bound is attained.4 This proves the
statement. �

4Note that the equalities part of the inequalities connect to real positions of the regular
simplex, hence in these cases we have such placements of the regular simplex which give the
corresponding values. However we didn’t investigate the realizability of the another pairs of
the parameters or the problem that the maximal volume can be or cannot be realized in
another way.
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Remark. An optimal position of the regular simplex can be written geomet-
rically in the five-dimensional case, too. We start with the position of the
simplex, when the edge joining the vertices s0 and s1 lies in H and the affine
hull G of the remaining vertices is parallel to H. The maximal volume can be
computed if we rotate this simplex around the orthogonal direct component
s⊥
1 of the line of s1 with respect to H by the angle ϕmax. Before the rotation

we have that

s0 =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, s1 =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, s2 =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, s3 =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

s4 =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, s5 =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, u =
1

2
√
3

⎛
⎜⎜⎜⎜⎜⎜⎝

−2
−2
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, u0 =
1√
30

⎛
⎜⎜⎜⎜⎜⎜⎝

−5
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since s1 is in the 2-plane which is spanned by u and u0 we have the equality
u0 =

√
15
5 s1+

√
10
5 u. Our rotation restricted to the 4-subspace 〈{s⊥

1 ,
∑6

i=1 ei}〉 is
the identity and on the 2-subspace is generated by s1 and u it acts as a standard
rotation. We consider the new orthonormal basis { 1√

6

∑6
i=1 ei, f1, f2, f3, s1, u}

where {f1, f2, f3} is an orthonormal basis of s⊥
1 . Clearly, 〈{s5−s2, s5−s3, s5−

s4}〉 = 〈{f1, f2, f3}〉 hence we can choose f1 to s5 − s2, f2 to (s5 − s3) − (s5 −
s4) = s4 − s3 and f3 to 1√

2
((−(s5 − s2) + (s5 − s3) + (s5 − s4)), respectively.

The orthogonal matrix of the basis change is

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
6

0 0 0 − 1√
2

− 1√
3

1√
6

0 0 0 1√
2

− 1√
3

1√
6

− 1√
2

0 1
2 0 1

2
√
3

1√
6

0 − 1√
2

− 1
2 0 1

2
√
3

1√
6

0 1√
2

− 1
2 0 1

2
√
3

1√
6

1√
2

0 1
2 0 1

2
√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since B−1 = BT we can get easily the new coordinates of the vertices. The new
coordinates of the vertex 1√

2
ei are the elements of the i-th row of B multiply

by 1/
√

2, respectively. The translation of the origin to the first vertex 1√
2
e1 of

the simplex is equivalent to the subtraction of the first column of 1√
2
BT from
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the column vector of it, thus the new coordinates of the examined vectors are

s0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, s1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, s2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
− 1

2
0
1√
8
1
2√
3
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, s3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0

− 1
2− 1√
8

1
2√
3
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

s4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
2− 1√

8
1
2√
3
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, s5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2
0
1√
8
1
2√
3
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, u0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0√
15
5√
10
5

⎞
⎟⎟⎟⎟⎟⎟⎠

, u =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The matrix of the rotation and the respective rotated vertices are
⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 cos ϕ − sin ϕ
0 0 0 0 sin ϕ cos ϕ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

s0(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, s1(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

cos ϕ
sin ϕ

⎞
⎟⎟⎟⎟⎟⎟⎠

, s2(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
− 1

2
0
1√
8

1
2 cos ϕ −

√
3
8 sin ϕ

1
2 sin ϕ +

√
3
8 cos ϕ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

s3(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

− 1
2− 1√
8

1
2 cos ϕ −

√
3
8 sin ϕ

1
2 sin ϕ +

√
3
8 cos ϕ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, s4(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
2− 1√

8

1
2 cos ϕ −

√
3
8 sinϕ

1
2 sinϕ +

√
3
8 cos ϕ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

s5(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2
0
1√
8

1
2 cos ϕ −

√
3
8 sin ϕ

1
2 sin ϕ +

√
3
8 cos ϕ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Since we also have

u0(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0√

15
5 cos ϕ −

√
10
5 sin ϕ√

15
5 sin ϕ +

√
10
5 cos ϕ

⎞
⎟⎟⎟⎟⎟⎟⎠

and u =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

we get the calculation of the previous paragraph showing that the maximal

volume attained at cos ϕmax =
√

1
2

(
1 +
√

27
77

)
. Using the notation where a :=

(
1 +
√

27
77

)
and b :=

(
1 −
√

27
77

)
, we get that the eleven vertices of the optimal

polyhedron are

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0√
1
2a

±
√

1
2b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
− 1

2
0
1√
8√

1
8a −

√
3
16b

±
(√

3
16a +

√
1
8b
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

− 1
2− 1√
8√

1
8a −

√
3
16b

±
(√

3
16a +

√
1
8b
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
2− 1√

8√
1
8a −

√
3
16b

±
(√

3
16a +

√
1
8b
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2
0
1√
8√

1
8a −

√
3
16b

±
(√

3
16a +

√
1
8b
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively. The normals of the upper facets are

u0(ϕmax) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0√

3
10a −

√
2
10b√

2
10a +

√
3
10b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and u1(ϕmax) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

−
√

3
10a −

√
2
10b√

2
10a −

√
3
10b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can imagine the corresponding body as pairwise non-overlapping union
of two pyramids and a simplex. The common base of the pyramids is a four-
dimensional prism defined by the convex hull of the vertices s2(ϕmax), s3(ϕmax),
s4(ϕmax), s5(ϕmax) and its reflected images s′

2(ϕmax), s′
3(ϕmax), s′

4(ϕmax),
s′
5(ϕmax) with 4-dimensional volume

(
1
6

· 1 · 1 · 1 · 1√
2

)
2

(√
3
16

a +

√
1
8
b

)
=

1
3

(√
3
32

a +

√
1
16

b

)
.
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The apex of the first pyramid is s0, while of the second one is s1(ϕmax). From
this we get that the volume of the union is

1
5

√
1
2
a · 1

3

(√
3
32

a +

√
1
16

b

)
=

1
3 · 5

(√
3
64

a +

√
1
32

ab

)

=
1

3 · 5

(√
3

8

(
1 +

√
27
77

)
+

√
1
32

50
77

)
=

1
5!

(√
3 +

19√
77

)
.

The last part is that simplex which defined by the vertices ±s1(ϕmax), s′
2(ϕmax),

s′
3(ϕmax), s′

4(ϕmax), s′
5(ϕmax). Its volume is 1

4·5!
(√

3 + 1√
77

)
giving the volume

of the body:

v =
1

4 · 5!

(
5
√

3 +
√

77
)

.

Since the volume of the regular simplex of dimension 5 with edge length 1 is
√
3

4·5!
we get immediately again the ratio 10

(
1
2 +

√
77

10
√
3

)
of the previous paragraph.
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