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Abstract. We examine a micro-scale model of superfluidity derived by Pitaevskii (Sov. Phys. JETP 8:282-287, 1959) which
describes the interacting dynamics between superfluid He-4 and its normal fluid phase. This system consists of the non-
linear Schrödinger equation and the incompressible, inhomogeneous Navier-Stokes equations, coupled to each other via a
bidirectional nonlinear relaxation mechanism. The coupling permits mass/momentum/energy transfer between the phases,
and accounts for the conversion of superfluid into normal fluid. We prove the existence of global weak solutions in T

3 for a
power-type nonlinearity, beginning from small initial data. The main challenge is to control the inter-phase mass transfer
in order to ensure the strict positivity of the normal fluid density, while obtaining time-independent a priori estimates.
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1. Introduction and Mathematical Model

In this article, we present a rigorous analysis of the Pitaevskii model (a micro-scale description) of
superfluidity [43] in three dimensions. The system consists of a superfluid phase and a normal fluid
phase, described by modified versions of the nonlinear Schrödinger equation (NLS) and the Navier–Stokes
equations (NSE), respectively. This is one of many different theories proposed to explain and quantify the
underlying mechanisms of superfluidity. For more details, see [11,13,28,32,44,50] and references therein.
The Pitaevskii model, specifically, works well in the context of small length scales (� inter-vortex spacing),
and has previously been explored in [29,33,34]. A similar model has also been numerically simulated in
[16]. The superfluid phase is represented by a complex-valued wavefunction ψ, while the normal fluid is
characterized by its density ρ, velocity u, and pressure q. The form of the Pitaevskii model used here is
as follows (with the prefix “c” in the equation labels signifying that the equations are coupled):

∂tψ + λBψ = − 1
2i

Δψ +
μ

i
|ψ|pψ (c-NLS)

B =
1
2

(−i∇ − u)2 + μ|ψ|p = −1
2
Δ +

1
2
|u|2 + iu · ∇ + μ|ψ|p (CPL)

∂tρ + ∇ · (ρu) = 2λ Re(ψ̄Bψ) (c-CON)

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇q − νΔu + αρu = −2λ Im(∇ψ̄Bψ) + λ∇ Im(ψ̄Bψ) +
μ

2
∇|ψ|p+2 (c-NSE)

∇ · u = 0. (DIV)

The strength of the superfluid’s scattering self-interactions is measured by μ > 0, while ν > 0 and α > 0
denote the viscosity and drag coefficient of the normal fluid. The quantum scattering is a power-type
nonlinearity, with exponent p ∈ [1,∞). The interactions between the two phases are mediated by the
nonlinear coupling operator B, and the strength of the coupling is quantified by the positive constant
λ. The structure of this coupling permits bidirectional mass/momentum/energy transfer between the
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two phases, which results in a relaxation mechanism for the otherwise non-dissipative NLS. Indeed, the
coupling gives (c-NLS) a parabolic flavor. These equations are supplemented with the initial conditions

ψ(0, x) = ψ0(x), u(0, x) = u0(x), ρ(0, x) = ρ0(x) a.e. x ∈ T
3. (INI)

We use periodic boundary conditions, i.e., we are working in a 3-dimensional torus [0, 1]3. The above
equations are a slight modification of Pitaevskii’s original work [43], which were valid for any type of
scattering interactions and for a compressible, heat-conducting normal fluid. The simplifying assumptions
used here are detailed in [29].

While (DIV) implies that the velocity is divergence-free, this does not mean that the density is constant
along particle trajectories. In fact, the density is governed by (c-CON), a transport equation with a
complicated source term. This inhomogeneity on the RHS is the principal limiting factor of the analysis,
since it forces us to ensure that the normal fluid density does not become zero (vacuum) or negative
(unphysical). By integrating (c-CON) over T

3, the advective term vanishes and using the positivity of
the operator B [29, Lemma 2.7], we have

d

dt

∫
T3

ρ dx = 2λ Re
∫
T3

ψ̄Bψ ≥ 0. (1.1)

This implies that the net mass of the normal fluid does not decrease with time. Due to conservation of
total mass (of both fluids), we have

d

dt

∫
T3

(
ρ + |ψ|2

)
dx = 0. (1.2)

In other words, the coupling results in a conversion of superfluid into normal fluid, on average. However,
the RHS of (c-CON) is not necessarily non-negative for all x ∈ T

3, and we have to control the local mass
transfer between the two phases. Indeed, this means bounding the L∞ norm (in space) of the source
term, Re(ψBψ), as described in Sect. 2.2. Since the coupling is a second-order differential operator, this
essentially translates into finding an estimate of ‖ψ‖L∞

x
‖Δψ‖L∞

x
, which dictates the required regularity

of the wavefunction. In the case of no source term for the continuity equation, there are several results
pertaining to the standard version of the incompressible, inhomogeneous NSE — see [20,22,23,36,38–
40,46] among many other references.

The NLS, an archetypal dispersive PDE, is often used to study quantum systems with low-energy
wave interactions, like dipolar gases [21,47] and quantum ferrofluids [15]. There is a rich literature on
the mathematical analysis of the NLS (see [49] for a collection of results). One particular aspect of NLS
that has attracted much attention is its quantum hydrodynamic (QHD) reformulation [7–9,31,35,51].
Another connection with the compressible fluid dynamics community has been the study of Korteweg
models [12,18,25,26], of which QHD and even capillary flows [10] are special cases. The linear drag
included in (c-NSE) is not unheard of: similar terms have been used previously to either prove the global
existence of solutions [19], or to show relaxation to a steady state [14,48]. For QHD with a combination
of linear drag and electrostatic forces, see [3,4,30].

Given the vast mathematical literature that exists on the NSE and NLS independently, it is surprising
that there are hardly any on a combination of the two, like the Pitaevskii model or others [17,37]. The
first attempt to study a combined model was by Antonelli and Marcati [5], in which a fractional time-step
method pioneered by the same authors [3,6] was utilized. In this approach, the standard, uncoupled NLS
is solved over a small time interval at the end of which the wavefunction is “updated” to account for
the interactions with the normal fluid. However, this was still a uni-directionally coupled system, i.e., the
wavefunction ψ was dependent on the density ρ and velocity u, but not the other way around. This yields
the standard form of the continuity equation: without a source term.

The small-data global existence of solutions for the Pitaevskii model on T
2 was established in [29] for

the nonlinearity exponent p ∈ [1, 4). Moreover, for p ≥ 4, an almost-global existence was shown, wherein
the existence time grows with decreasing data size, exponentially for p = 4 and polynomially for p > 4.
The path to the required a priori bounds of ψ is by energy-type estimates, up to L∞

t H
5
2
x .
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In the current work, we obtain the global existence of weak solutions in T
3, for the entire range of

power nonlinearities (characterized by 1 ≤ p < ∞), thus proving that the inter-phase mass transfer may
be controlled for small initial data. We emphasize that we deal with density that is simply in L∞

x , and
thus not necessarily differentiable. This limits the highest regularity that one can subject the momentum
equation (and the velocity) to. In turn, through the coupling operator B, this also restricts the regularity
we can achieve for the wavefunction. The primary objective is to derive time-independent a priori bounds
on ψ that ensure that the RHS of (c-CON) will not lead to non-positive densities.

The approach used for 2D is not applicable in 3D, owing to the insufficiency of the L∞
t H1

x ∩ L2
t H

2
x

bound for the velocity. This regularity of u is not enough to derive an energy estimate of the required
order for ψ in 3D. Any higher regularity of u would mean taking the derivatives of ρ, which is off limits.
Another roadblock is the extremely slow mass decay for high values of p, i.e., when the superfluid interacts
much more strongly with itself rather than the normal fluid. In such a scenario, a purely energy-based
method [29] led to a bifurcation in the existence time of solutions (global or almost-global) for different
ranges of the nonlinear index p. The mass decay rate (independent of dimension) pervades all levels
of energy estimates, dominating the decay of higher norms as well. We overcome these challenges by a
hybrid approach: combining the decay of superfluid mass with a maximal regularity estimate for parabolic
equations (Sect. 2.3). The time-control of the mass conversion and of the higher order energy norm are
presented in Lemmas 3.1 and 3.3, and state that the L2

x and Ḣ2
x norms of the wavefunction decrease as

(1 + t)− 1
p and (1 + t)− 1

2− 1
p , respectively. These allow us to evaluate the integral in (2.13), independent

of the final time T , leading to global control of the solution. In order to apply maximal regularity, the
initial wavefunction ψ0 must belong to an interpolation (Besov) space, which is carefully chosen to be
marginally larger than H2, so that the assumption ψ0 ∈ H2 is sufficient for our purposes. The resulting
solution ψ is shown to belong to C([0,∞);H2), among other spaces. To summarize, we demonstrate that
wielding the power of parabolic regularity allows us to guarantee global solutions, even when the mass
decay is exceedingly small.

We now briefly outline the notation used in this article. Following this, we state and discuss the main
result in Sect. 2. Several a priori estimates are derived in Sect. 3, which ends with an argument on ensuring
a positive lower bound for the density. In this paper, we only present the required a priori estimates, as
the general construction of solutions (and the density renormalization) follows as in [29, Section 4].

1.1. Notation

We denote by Hs(T3) the completion of C∞(T3) under the Sobolev norm Hs. When referring to the
homogeneous Sobolev spaces, we use Ḣs(T3). Consider a 3D vector-valued function u ≡ (u1, u2, u3) ∈
C∞(T3). The set of all divergence-free, smooth 3D functions u defines C∞

d (T3). Then, Hs
d(T3) is the

completion of C∞
d (T3) under the Hs norm. There are many equivalent ways of defining Besov spaces,

and the most appropriate choice for our purposes is through the method of real interpolation between
Sobolev spaces [1,2]. For 1 ≤ q ≤ ∞, 0 < θ < 1, and s = (1 − θ)s1 + θs2, we define

Bs
2,q := (Hs1 ,Hs2)θ,q.

The L2 inner product, denoted by 〈·, ·〉, is sesquilinear (the first argument is complex conjugated,
indicated by an overbar) to accommodate the complex nature of the Schrödinger equation. Explicitly,
〈φ, ψ〉 =

∫
T3 φ̄ψ dx.

We use the subscript x on a Banach space to denote that the Banach space is defined over T
3. For

instance, Lr
x := Lr(T3) and Hs

d,x := Hs
d(T3). For spaces/norms over time, the subscript t is used, such as

Lr
t .

We also use the notation X � Y and X � Y to imply that there exists a positive constant C such
that X ≤ CY and CX ≥ Y , respectively. When appropriate, the dependence of the constant on various
parameters shall be denoted using a subscript as X �k1,k2 Y or X ≤ Ck1,k2Y . Throughout the article, C
is used to denote a (possibly large) constant that depends on the system parameters listed in (2.4), while
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κ is used to represent a (small) positive number. The values of C and κ can vary across the different
steps of calculations.

2. Main Result and Discussion

2.1. Weak Solutions and the Existence Theorem

First, we define the notion of a weak solution used here.

Definition 2.1. (Weak solutions1) For a given time T > 0, a triplet (ψ, u, ρ) is a weak solution to the
Pitaevskii model if

(i) ψ ∈ L2(0, T ;H3(T3)), u ∈ L2(0, T ;H2
d(T3)), ρ ∈ L∞([0, T ] × T

3), and
(ii) ψ, u, and ρ satisfy the governing equations in the sense of distributions for all test functions, i.e.,

−
∫ T

0

∫
T3

(
ψ∂tϕ̄ +

1
2i

∇ψ · ∇ϕ̄ − λϕ̄Bψ − iμϕ̄|ψ|pψ
)

dx dt

=
∫
T3

(
ψ0ϕ̄(0) − ψ(T )ϕ̄(T )

)
dx

(2.1)

and

−
∫ T

0

∫
T3

(
ρu · ∂tΦ + ρu ⊗ u : ∇Φ − ν∇u : ∇Φ − 2λΦ · Im(∇ψ̄Bψ) + αρu · Φ

)
dx dt

=
∫
T3

(
ρ0u0Φ(0) − ρ(T )u(T )Φ(T )

)
dx

(2.2)

and

−
∫ T

0

∫
T3

(
ρ∂tσ + ρu · ∇σ + 2λσ Re(ψ̄Bψ)

)
dx dt =

∫
T3

(
ρ0σ(0) − ρ(T )σ(T )

)
dx (2.3)

where ψ0 ∈ H2(T3), u0 ∈ H1
d(T3) and ρ0 ∈ L∞(T3) are the initial data. The test functions are:

(a) A complex-valued scalar field ϕ ∈ H1(0, T ;L2(T3)) ∩ L2(0, T ;H1(T3)),
(b) A real-valued, divergence-free (3D) vector field Φ ∈ H1(0, T ;L2

d(T
3)) ∩ L2(0, T ;H1

d(T3)), and
(c) A real-valued scalar field σ ∈ H1(0, T ;L2(T3)) ∩ L2(0, T ;H1(T3)).

Remark 2.2. The last two terms in (c-NSE) are pure gradients, and thus we can absorb them into the
pressure, relabeling the latter as q. Due to the use of the divergence-free test functions, all gradient terms
in the definition of the weak solution disappear.

Now, we state the main result.

Theorem 2.3. (Global existence) Fix p ∈ [1,∞), and choose 0 < δ < min{1
3 , 1

p−1}. Let ψ0 ∈ H2(T3),
and let u0 ∈ H1

d(T3). Suppose 0 < mi ≤ ρ0 ≤ Mi < ∞ a.e. in T
3. Then, there exists a global weak

solution (ψ, u, ρ) to the Pitaevskii model such that the density is always bounded between mf ∈ (0,mi)
and Mf := Mi + mi − mf , provided the initial data satisfy the smallness condition

‖ψ0‖2H2
x

+ ‖u0‖2H1
x

+ ‖ψ0‖p+2

Lp+2
x

≤ ε0(λ, μ, ν,mi,Mi,mf , α, p). (2.4)

The solution has the regularity

ψ ∈ C([0,∞);H2(T3)) ∩ L2(0,∞;H3(T3)) ∩ L1+δ(0,∞; Ḣ
7
2+δ1(T3)) (2.5)

u ∈ C([0,∞);H1
d (T3)) ∩ L2(0,∞;H2(T3)) (2.6)

ρ ∈ L∞([0,∞) × T
3) ∩ C([0,∞);Ls(T3)), (2.7)

1See Remark 2.5.
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for a sufficiently small δ1 > 0, and 1 ≤ s ≤ 6. Additionally, the solution satisfies the energy equality
1
2

∥∥∥√
ρ(t)u(t)

∥∥∥2

L2
x

+
1
2

‖∇ψ(t)‖2L2
x

+
2μ

p + 2
‖ψ(t)‖p+2

Lp+2
x

+ ν ‖∇u‖2L2
[0,t]L

2
x

+ α ‖√
ρu‖2L2

[0,t]L
2
x

+ 2λ ‖Bψ‖2L2
[0,t]L

2
x

=
1
2

‖√
ρ0u0‖2L2

x
+

1
2

‖∇ψ0‖2L2
x

+
2μ

p + 2
‖ψ0‖p+2

Lp+2
x

a.e. t ∈ [0,∞).

(2.8)

The proof of Theorem 2.3 is based on a priori estimates, a semi-Galerkin scheme to construct solutions,
and an adaptation of the classical renormalization procedure for the density [39, Theorem 2.4]. Since the
coupling operator B contains the velocity u by itself (and not in combination with ρ), we limit the
calculations to when the density has a positive lower bound. This gives us an indication to the level of
regularity expected of the RHS of (c-CON), which in turn defines the spaces in which ψ and u belong to.
In order to achieve this, we derive the required a priori control for the wavefunction and velocity, while
ensuring that the density is neither differentiated nor does it become zero anywhere in the domain.

Before a more specific discussion on the method of proof, a few remarks about the result are warranted.

Remark 2.4. Once we have ρ ∈ L∞
t,x, the renormalization procedure from [24] can be used to show that ρ

indeed belongs to CtL
s
x. In a finite 3D domain, the Sobolev embedding H1 ⊂ Ls for 1 ≤ s ≤ 6 accounts

for the integrability in Theorem 2.3. It is worth mentioning that in the analogous result in 2D, we get
1 ≤ s < ∞ due to the more favorable embedding.

Remark 2.5. The regularity of the solutions seem to suggest that the wavefunction and velocity are strong
solutions. Indeed this is true, as they are strongly continuous in their topologies. On the other hand, the
density is truly a weak solution and is the reason for referring to the triplet as a weak solution. This low
regularity of the density influences the nature of the calculations that follow, and in fact also prevent us
from concluding uniqueness of the weak solutions. See [34] for results akin to weak-strong uniqueness for
the Pitaevskii model.

Remark 2.6. In Lemma 3.1, we establish that the mass of superfluid decreases with time (algebraically)
and goes to 0 as t → ∞. Due to overall mass conservation, this means an increase in normal fluid mass,
and an eventual conversion of all the superfluid into normal fluid. This inter-phase mass transfer is one
of the underlying physical phenomena that the Pitaevskii model was designed to explain. In the macro-
scale models of superfluidity (like the HVBK equations [27,32], the coupling between the two fluids is
suggestively called mutual friction, as it dissipates the overall energy of the system. In the micro-scale
model that we are concerned with, such an energy sink can be interpreted as “heating up” the Bose-
Einstein condensate (superfluid particles) into excited states (normal fluid particles).

Remark 2.7. We point out that Theorem 2.3 is also valid for the 2D Pitaevskii model (with the same
regularity, except for the density renormalization argument holding for all 1 ≤ s < ∞).

Remark 2.8. It would be interesting to consider the Pitaevskii model in R
3. It may help to localize the

dynamics by using an external confining potential (in the NLS) that rises in strength with increasing
distance from the origin. This would be akin to trapped-ion quantum systems in condensed matter
physics. In such a scenario, it is plausible to expect that the current results from T

3 would continue to
be valid in R

3 as well. We thank one of the anonymous referees for posing this question.

2.2. The Strategy

As indicated above, the main difficulty is to guarantee that if we begin from ρ0 that is bounded below,
then the time evolution does not result in a degeneration where ρ vanishes at certain points in the domain.
Hence, we define our existence time so that ρ does not go below a fixed lower bound until t = T∗. So we
aim to show that the chosen lower bound can be maintained for an arbitrarily long time.
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Definition 2.9. (Local existence time) Start with an initial density field 0 < mi ≤ ρ0(x) ≤ Mi < ∞.
Given 0 < mf < mi, we define the existence time for the solution as

T∗ := inf{t > 0 | inf
T3

ρ(t, x) = mf}. (2.9)

Consider the Lagrangian path of a particle starting at y ∈ T
3, as it is advected by the local velocity.

These characteristic curves are denoted by Xy(t) and solve the ODE given by

d

dt
Xy(t) = u(t,Xy(t))

Xy(0) = y ∈ T
3,

(2.10)

where u is the velocity of the normal fluid. Traveling along such a curve, we observe that

ρ(t,Xy(t)) = ρ0(y) + 2λ Re
∫ t

0

ψ̄Bψ(τ,Xy(τ)) dτ (2.11)

is a (formal) solution to the continuity equation. From (2.9) and (2.11), it is clear that a sufficient
condition to ensure the density is bounded from below by mf ∈ (0,mi) is

2λ

∫ T

0

|ψ̄Bψ|(τ,Xy(τ)) dτ < mi − mf . (2.12)

This is, in turn, guaranteed by the sufficiency

2λ

∫ T

0

‖ψ‖L∞
x

‖Bψ‖L∞
x

< mi − mf . (2.13)

By selecting small enough data so that all the arguments may be bootstrapped, it is possible to achieve (2.13)
independently of T > 0. Since Bψ involves a second-order derivative, its L∞

x norm translates into high-
regularity Sobolev spaces. For u, this means showing that it belongs to L2

t H
2
x ∩ H1

t L2
x, which also proves

useful in establishing strong continuity in time for the solution. As for the wavefunction, we make use of
the parabolic nature of (c-NLS) to derive the necessary regularity (see Lemma 2.11 below). It is impor-
tant to remember that throughout these calculations, we handle the density only in L∞

x , and not in any
derivative spaces.

2.3. Elliptic Operators and Maximal Parabolic Regularity

We now define uniform ellipticity in the context of complex-valued Banach spaces, before stating the
maximal parabolic regularity result that will be utilized in Lemma 3.4.

Definition 2.10. (Uniform (K, ζ)-ellipticity [45]) For a complex-valued Banach space X, consider the
differential operator

A(t, x) =
∑

|α|=2m

aα(t, x)∂α, (2.14)

with domain D(A(t, x)) ⊂ X, where α is a multi-index and ∂α denotes spatial derivatives. The coefficients
aα are bounded and uniformly continuous functions from [0, T ] × R

n to C
N×N for some n,N ∈ N. The

principal symbol associated with this operator is

Ã(t, x, ξ) = (−1)m
∑

|α|=2m

aα(t, x)ξα. (2.15)

The operator A(t, x) is said to be uniformly (K, ζ)-elliptic if there exist K ≥ 1 and ζ ∈ [
0, π

2

)
such that

(i)
∑

|α|=2m ‖aα‖L∞
t,x

≤ K,

(ii)
∣∣∣Ã(t, x, ξ)−1

∣∣∣ ≤ K, and
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(iii) σ
(
Ã(t, x, ξ)

)
⊂ Σζ \ {0},

for (t, x) ∈ [0, T ] × R
n, and ξ ∈ R

n with |ξ| = 1. Here, σ(B) refers to the spectrum of the operator B,
and Σζ := {z ∈ C : |arg z| ≤ ζ} is a sector in the right half of the complex plane.

It is possible to show that a uniformly (K, ζ)-elliptic operator generates an analytic semigroup of
negative type, leading to the maximal regularity below.

Lemma 2.11. (Maximal parabolic regularity) Let X be a (complex-valued) reflexive Banach space and
A : X1 → X be a (K, ζ)-elliptic operator defined on D(A) = X1 ⊂ X. For T > 0, consider the initial
value problem

∂tu(t) + Au(t) = f(t)

u(0) = u0,
(2.16)

where f ∈ Lr([0, T ];X) with 1 < r < ∞ and u0 ∈ X. If it is known that u0 belongs to the real interpolation
space Y := (X,X1)1− 1

r ,r, then there exists a unique solution u ∈ W 1,r([0, T ];X)∩Lr([0, T ];X1) to (2.16)
satisfying the maximal parabolic regularity estimate

‖u‖Lr([0,T ];X) + ‖u‖Lr([0,T ];X1)
+ ‖∂tu‖Lr([0,T ];X) ≤ Cr

(
‖u0‖Y + ‖f‖Lr([0,T ];X)

)
. (2.17)

For the proof of this lemma, see [45, Section 4].

3. A Priori Estimates

We now derive the required a priori estimates, using formal calculations. We assume the wavefunction
and velocity are smooth functions and that the density is bounded from below by mf > 0 in [0, T ]. Here,
T is any time less than the local existence time T∗, and is extended to global existence in Sect. 3.5. The
derivations of some estimates are identical to the 2D case [29], and are not repeated here.

3.1. Superfluid Mass Estimate

Lemma 3.1. (Algebraic decay rate of superfluid mass) The mass S(t) of the superfluid decays algebraically
in time as (1 + t)− 2

p . Specifically,

S(t) := ‖ψ‖2L2
x
(t) � S0(

1 + S
p
2
0 t

) 2
p

, t ∈ [0, T ], (3.1)

where S0 := ‖ψ0‖2L2
x

is the initial mass of the superfluid.

Proof. See Lemma 3.1 of [29]. �

3.2. Energy Estimate

The energy of the system is defined as

E(t) :=
1
2

∥∥∥√
ρ(t)u(t)

∥∥∥2

L2
x

+
1
2

‖∇ψ(t)‖2L2
x

+
2μ

p + 2
‖ψ(t)‖p+2

Lp+2
x

. (3.2)

Lemma 3.2. The energy balance of the system is given by
d

dt
E(t) + ν ‖∇u‖2L2

x
+ α ‖√ρu‖2L2

x
+ 2λ ‖Bψ‖2L2

x
= 0. (3.3)
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Proof. See Section 3.2 of [29]. �

Integrating (3.3) in time, we observe that the energy is bounded from above as

E(t) + ν ‖∇u‖2L2
[0,T ]L

2
x

+ α ‖√ρu‖2L2
[0,T ]L

2
x

+ 2λ ‖Bψ‖2L2
[0,T ]L

2
x

= E0, t ∈ [0, T ], (3.4)

where

E0 :=
1
2

‖√
ρ0u0‖2L2

x
+

1
2

‖∇ψ0‖2L2
x

+
2μ

p + 2
‖ψ0‖p+2

Lp+2
x

(3.5)

denotes the initial energy of the system. Next, we show that the energy is not just bounded, but also
decays (algebraically) with time. In order to achieve this, we observe that ‖Bψ‖L2

x
can be rewritten as∥∥D2ψ

∥∥
L2

x
, at the expense of some nonlinear terms on the RHS. More precisely (see equation (3.14) in

[29] for the exact derivation),

‖Bψ‖2L2
x

≥ 1
8

∥∥D2ψ
∥∥2

L2
x

− C
∥∥∥|u|2 ψ

∥∥∥2

L2
x

− C ‖u · ∇ψ‖2L2
x

+
1
C

‖ψ‖2p+2

L2p+2
x

+
1
C

∥∥∥∇|ψ| p
2+1

∥∥∥2

L2
x

.

Thus, (3.3) now becomes

dE

dt
+ ν ‖∇u‖2L2

x
+ α ‖√

ρu‖2L2
x

+
λ

4

∥∥D2ψ
∥∥2

L2
x

+
1
C

‖ψ‖2p+2

L2p+2
x

+
1
C

∥∥∥∇|ψ| p
2+1

∥∥∥2

L2
x

�
∥∥∥|u|2 ψ

∥∥∥2

L2
x

+ ‖u · ∇ψ‖2L2
x

=: I1 + I2.

(3.6)

The first term on the RHS is estimated as

I1 � ‖u‖4L6
x
‖ψ‖2L6

x
� ‖u‖4H1

x
‖ψ‖2H1

x

using Hölder’s inequality and Sobolev embedding. For the second term in (3.6), we interpolate the L3
x

norm, and apply the Poincaré, Hölder’s, and Young’s inequalities, as well as Sobolev embedding to get

I2 � ‖u‖2L6
x
‖∇ψ‖2L3

x
� ‖u‖2H1

x
‖∇ψ‖L2

x

∥∥D2ψ
∥∥

L2
x

≤ Cκ ‖u‖4H1
x
‖∇ψ‖2L2

x
+ κ

∥∥D2ψ
∥∥2

L2
x
.

We also use the Poincaré inequality to convert the last term on the LHS of (3.6) into a coercive term for
the internal energy term 2μ

p+2 ‖ψ‖p+2

Lp+2
x

in E(t). To this end, we observe that

‖ψ‖p+2

Lp+2
x

≤
∥∥∥∥|ψ| p

2+1 − 1
|T3|

∫
T3

|ψ| p
2+1

∥∥∥∥
2

L2
x

+
∥∥∥∥ 1

|T3|
∫
T3

|ψ| p
2+1

∥∥∥∥
2

L2
x

�
∥∥∥∇|ψ| p

2+1
∥∥∥2

L2
x

+ ‖ψ‖p+2

L
p
2 +1

≤ C
∥∥∥∇|ψ| p

2+1
∥∥∥2

L2
x

+ κ ‖ψ‖p+2

Lp+2
x

+ Cκ ‖ψ‖p+2
L2

x
.

(3.7)

In the last inequality, we interpolated between the Lp+2
x and L2

x norms, which is valid for p > 2. For a
sufficiently small κ, the second term on the RHS is absorbed into the LHS. On the other hand, when
1 ≤ p ≤ 2, the finite size of the domain implies L2

x ⊆ L
p
2+1
x , which again leads to (3.7). Thus, for any

p ≥ 1, (3.6) becomes

dE

dt
+ ν ‖∇u‖2L2

x
+ α ‖√

ρu‖2L2
x

+
1
C

∥∥D2ψ
∥∥2

L2
x

+
1
C

‖ψ‖p+2

Lp+2
x

+
1
C

‖ψ‖2p+2

L2p+2
x

≤ C ‖ψ‖p+2
L2

x
+ C ‖u‖4H1

x
‖ψ‖2H1

x
.

(3.8)

In order to show a decaying norm, we need coercive terms on the LHS, which have been achieved. To
control the RHS (particularly the second term), we derive a balance equation for a higher-order energy
X(t), defined in (3.19). Combining E(t) with X(t) allows us to close the estimates.
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3.3. Higher-Order Energy Estimate

We now present more a priori bounds for ψ and u, involving one more derivative than the energy E.

3.3.1. The Schrödinger Equation. Acting upon (c-NLS) with the Laplacian −Δ, multiplying by −Δψ̄,
taking the real part, and integrating over the domain yields

1
2

d

dt
‖Δψ‖2L2

x
= −λ Re

∫
T3

(Δ2ψ̄)Bψ + μ Im
∫
T3

(Δ2ψ̄) |ψ|p ψ

=: I3 + I4.
(3.9)

The first term on the RHS of (c-NLS) leads to a term which vanishes due to the periodic boundary
conditions. We now estimate the RHS of (3.9). For the first term, we have

I3 = λ Re
∫
T3

∇(Δψ̄) · ∇
(

−1
2
Δψ +

1
2

|u|2 ψ + iu · ∇ψ + μ |ψ|p ψ

)

= −λ

2

∥∥D3ψ
∥∥2

L2
x

+ λ Re
∫
T3

∇(Δψ̄) · ∇
(

1
2

|u|2 ψ + iu · ∇ψ + μ |ψ|p ψ

)

≤ −λ

4

∥∥D3ψ
∥∥2

L2
x

+ C
∥∥∥∇(|u|2 ψ)

∥∥∥2

L2
x

+ C ‖∇(u · ∇ψ)‖2L2
x

+ C ‖∇(|ψ|p ψ)‖2L2
x
.

The first term on the RHS acts as the dissipative term for ψ at this higher-order energy level. For I4, we
integrate by parts and use Hölder’s inequality to obtain

I4 = −μ Im
∫
T3

∇(Δψ̄) · ∇(|ψ|p ψ) ≤ λ

8

∥∥D3ψ
∥∥2

L2
x

+ C ‖∇(|ψ|p ψ)‖2L2
x
.

Thus, (3.9) becomes

d

dt
‖Δψ‖2L2

x
+

1
C

∥∥D3ψ
∥∥2

L2
x

�
∥∥∥∇

(
|u|2 ψ

)∥∥∥2

L2
x

+ ‖∇(u · ∇ψ)‖2L2
x

+ ‖∇ (|ψ|p ψ)‖2L2
x

=: I5 + I6 + I7.
(3.10)

The first term is bounded using the Poincaré inequality, Sobolev embedding, and Lebesgue interpolation
as

I5 � ‖u‖2L6
x
‖∇u‖2L3

x
‖ψ‖2L∞

x
+ ‖u‖4L6

x
‖∇ψ‖2L6

x

� ‖u‖2H1
x
‖∇u‖L2

x
‖Δu‖L2

x
‖ψ‖2H2

x
+ ‖u‖4H1

x
‖Δψ‖2L2

x

≤ Cκ ‖u‖4H1
x
‖∇u‖2L2

x
‖ψ‖4H2

x
+ κ ‖Δu‖2L2

x
+ C ‖u‖4H1

x
‖Δψ‖2L2

x
.

We applied Young’s inequality to extract out dissipative terms in the last step. Again, κ denotes a small
number whose value shall be fixed later on, and Cκ is a constant whose value depends on κ and the
system parameters. For the second term on the RHS of (3.10), we have

I6 � ‖∇u‖2L3
x
‖∇ψ‖2L6

x
+ ‖u‖2L6

x

∥∥D2ψ
∥∥2

L3
x

� ‖∇u‖L2
x
‖Δu‖L2

x
‖Δψ‖2L2

x
+ ‖u‖2H1

x
‖Δψ‖L2

x

∥∥D3ψ
∥∥

L2
x

≤ Cκ ‖∇u‖2L2
x
‖Δψ‖4L2

x
+ κ ‖Δu‖2L2

x
+ Cκ ‖u‖4H1

x
‖Δψ‖2L2

x
+ κ

∥∥D3ψ
∥∥2

L2
x

Finally, we apply the Poincaré inequality and Sobolev embedding to bound I7. This leads to

I7 � ‖|ψ|p |∇ψ|‖2L2
x

� ‖ψ‖2p
L∞

x
‖∇ψ‖2L2

x
�

(
‖ψ‖2p

L2
x

+ ‖Δψ‖2p
L2

x

)
‖∇ψ‖2L2

x

� ‖ψ‖2p
L2

x
‖Δψ‖2L2

x
+ ‖Δψ‖2p+2

L2
x

.
(3.11)
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Combining all these inequalities into (3.10), and absorbing κ
∥∥D3ψ

∥∥2

L2
x

into the LHS, we end up with

d

dt
‖Δψ‖2L2

x
+

1
C

∥∥D3ψ
∥∥2

L2
x

≤ Cκ

(
‖∇u‖2L2

x
‖Δψ‖4L2

x
+ ‖u‖4H1

x
‖∇u‖2L2

x
‖ψ‖4H2

x

)
+ C ‖u‖4H1

x
‖Δψ‖2L2

x
+ C ‖ψ‖2p

L2
x
‖Δψ‖2L2

x

+ C ‖Δψ‖2p+2
L2

x
+ κ ‖Δu‖2L2

x
.

(3.12)

This constitutes the higher-order estimate for the wavefunction. Next, we combine this with corresponding
estimates for the velocity.

3.3.2. The Navier–Stokes Equation. We begin by rewriting (c-NSE) in the non-conservative form, and
applying the Leray projector (see Remark 2.2) to get

P (ρ∂tu + ρu · ∇u − νΔu + αρu) = P (−2λ Im(∇ψ̄Bψ) − 2λu Re(ψ̄Bψ)
)
. (c-NSE’)

Here, P is the Leray projector, which projects a Hilbert space into its divergence-free subspace, thus
removing any purely gradient terms. Next, we multiply (c-NSE’) by ∂tu and integrate over the domain.
This leads to ∫

T3
ρ |∂tu|2 +

ν

2
d

dt
‖∇u‖2L2

x
= −

∫
T3

ρu · ∇u · ∂tu − 2λ

∫
T3

∂tu · Im(∇ψ̄Bψ)

− 2λ

∫
T3

∂tu · u Re(ψ̄Bψ) − α

∫
T3

ρu · ∂tu

=: I8 + I9 + I10 + I11.

(3.13)

Henceforth, we repeatedly use the fact that the density is bounded both above and below (mf ≤ ρ ≤
Mf = Mi + mi − mf ) to control the RHS. In particular, ‖u‖L2

x
and ‖∂tu‖L2

x
are equivalent to

∥∥√
ρu

∥∥
L2

x

and
∥∥√

ρ∂tu
∥∥

L2
x
, respectively. Thus, for the first term,

I8 ≤ 1
8

‖√
ρ∂tu‖2L2

x
+ C

∫
T3

|u|2 |∇u|2 ≤ 1
8

‖√
ρ∂tu‖2L2

x
+ C ‖u‖2L6

x
‖∇u‖2L3

x

≤ 1
8

‖√
ρ∂tu‖2L2

x
+ Cκ ‖u‖4H1

x
‖∇u‖2L2

x
+ κ ‖Δu‖2L2

x
.

In going from the second line to the third, we use the Sobolev embeddings and Lebesgue interpolation.
Finally, Young’s inequality lets us extract the required dissipative term. For the second integral of (3.13),
we have

I9 ≤ 1
8

‖√
ρ∂tu‖2L2

x
+ C ‖∇ψ‖2L6

x
‖Bψ‖2L3

x

≤ 1
8

‖√
ρ∂tu‖2L2

x
+ C ‖Δψ‖2L2

x
‖Bψ‖L2

x
‖Bψ‖H1

x

≤ 1
8

‖√
ρ∂tu‖2L2

x
+ Cκ ‖Bψ‖2L2

x

(
‖Δψ‖4L2

x
+ ‖Δψ‖2L2

x

)
+ κ ‖∇(Bψ)‖2L2

x

where the Bψ term is handled via interpolation and Young’s inequality, while the term ∇ψ is bounded
using Sobolev embedding. For the third integral,

I10 ≤ 1
8

‖√
ρ∂tu‖2L2

x
+ C ‖u‖2L6

x
‖ψ‖2L∞

x
‖Bψ‖2L3

x

≤ 1
8

‖√
ρ∂tu‖2L2

x
+ Cκ ‖Bψ‖2L2

x

(
‖u‖2H1

x
‖ψ‖2H2

x
+ ‖u‖4H1

x
‖ψ‖4H2

x

)
+ κ ‖∇(Bψ)‖2L2

x

where the Bψ term is handled just like in I9. Finally, for the last term, we integrate by parts and
use (c-CON), which results in

I11 = −α

2
d

dt
‖√

ρu‖2L2
x

+
α

2

∫
T3

ρu · ∇ |u|2 + αλ

∫
T3

Re(ψBψ) |u|2 . (3.14)
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We estimate the second term in (3.14) via interpolation and a Sobolev embedding. This gives

α

2

∫
T3

ρu · ∇ |u|2 � ‖u‖L2
x
‖u‖L3

x
‖∇u‖L6

x

≤ Cκ ‖u‖3L2
x
‖u‖L6

x
+ κ ‖Δu‖2L2

x
≤ Cκ ‖u‖4H1

x
+ κ ‖Δu‖2L2

x
.

Similarly, for the third term in (3.14),

αλ

∫
T3

Re(ψBψ) |u|2 � ‖ψ‖L6
x
‖u‖2L6

x
‖Bψ‖L2

x
≤ Cκ ‖ψ‖2H1

x
‖u‖4H1

x
+ κ ‖Bψ‖2L2

x
.

Putting together the above estimates into (3.13), we end up with

ν
d

dt
‖∇u‖2L2

x
+ ‖√

ρ∂tu‖2L2
x

+ α
d

dt
‖√

ρu‖2L2
x

≤ Cκ

(
‖u‖4H1

x
‖∇u‖2L2

x
+ ‖u‖4H1

x
+ ‖ψ‖2H1

x
‖u‖4H1

x

)

+ Cκ ‖Bψ‖2L2
x

(
‖Δψ‖2L2

x
+ ‖u‖2H1

x
‖ψ‖2H2

x
+ ‖Δψ‖4L2

x
+ ‖u‖4H1

x
‖ψ‖4H2

x

)

+ κ ‖Bψ‖2L2
x

+ κ ‖∇(Bψ)‖2L2
x

+ κ ‖Δu‖2L2
x

(3.15)

where Cκ depends on κ as well as the system parameters.
In order to obtain the higher-order velocity dissipation ‖Δu‖2L2

x
, we multiply (c-NSE’) by −θΔu, with

θ > 0 to be fixed shortly, and integrate over the domain. This gives

θν ‖Δu‖2L2
x

= θ

∫
T3

ρ∂tu · Δu + θ

∫
T3

(ρu · ∇u) · Δu + 2λθ

∫
T3

Im(∇ψ̄Bψ) · Δu

+ 2λθ

∫
T3

u Re(ψ̄Bψ) · Δu + αθ

∫
T3

ρu · Δu

=: I12 + I13 + I14 + I15 + I16.

(3.16)

For the first term, we have

I12 ≤ θν

10
‖Δu‖2L2

x
+ Cθ ‖√ρ∂tu‖2L2

x
.

The second integral is manipulated just as I8, namely,

I13 ≤ θν

20
‖Δu‖2L2

x
+ Cθ

∫
T3

|u|2 |∇u|2 ≤ θν

10
‖Δu‖2L2

x
+ Cθ ‖u‖4H1

x
‖∇u‖2L2

x
.

The integral I14 requires Sobolev embedding, the Poincaré inequality, and Lebesgue norm interpolation,
and reads

I14 ≤ θν

10
‖Δu‖2L2

x
+ Cθ ‖∇ψ‖2L6

x
‖Bψ‖2L3

x

≤ θν

10
‖Δu‖2L2

x
+ Cθ ‖Δψ‖2L2

x
‖Bψ‖L2

x
‖Bψ‖H1

x

≤ θν

10
‖Δu‖2L2

x
+ Cκ,θ ‖Bψ‖2L2

x

(
‖Δψ‖2L2

x
+ ‖Δψ‖4L2

x

)
+ κ ‖∇(Bψ)‖2L2

x
.

In a similar manner, we have

I15 ≤ θν

10
‖Δu‖2L2

x
+ Cθ ‖u‖2L6

x
‖ψ‖2L∞

x
‖Bψ‖2L3

x

≤ θν

10
‖Δu‖2L2

x
+ Cθ ‖u‖2H1

x
‖ψ‖2H2

x
‖Bψ‖L2

x
‖Bψ‖H1

x

≤ θν

10
‖Δu‖2L2

x
+ Cκ,θ ‖Bψ‖2L2

x

(
‖u‖2H1

x
‖ψ‖2H2

x
+ ‖u‖4H1

x
‖ψ‖4H2

x

)
+ κ ‖∇(Bψ)‖2L2

x
.
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The last integral in (3.16) requires, like I12, only Hölder’s and Young’s inequalities. This provides

I16 ≤ θν

10
‖Δu‖2L2

x
+ Cθ ‖√

ρu‖2L2
x
.

In the end, (3.16) becomes
θν

2
‖Δu‖2L2

x
≤ Cθ ‖√

ρ∂tu‖2L2
x

+ Cθ ‖√ρu‖2L2
x

+ Cθ ‖u‖4H1
x
‖∇u‖2L2

x

+ Cκ,θ ‖Bψ‖2L2
x

(
‖Δψ‖2L2

x
+ ‖u‖2H1

x
‖ψ‖2H2

x
+ ‖Δψ‖4L2

x
+ ‖u‖4H1

x
‖ψ‖4H2

x

)

+ κ ‖∇(Bψ)‖2L2
x
. (3.17)

We now add (3.12), (3.15) and (3.17). Then, we note from the definition of Bψ that

‖∇(Bψ)‖2L2
x

�
∥∥D3ψ

∥∥2

L2
x

+
∥∥∥∇(|u|2 ψ)

∥∥∥2

L2
x

+ ‖∇(u · ∇ψ)‖2L2
x

+ ‖∇(|ψ|p ψ)‖2L2
x
,

where the last three terms on the RHS are exactly I5, I6, and I7. Using sufficiently small values for θ and
κ, we also absorb

∥∥√
ρ∂tu

∥∥2

L2
x

and ‖Δu‖2L2
x

on the RHS into the LHS. Finally, we are left with

d

dt

[
‖Δψ‖2L2

x
+ ν ‖∇u‖2L2

x
+ α ‖√

ρu‖2L2
x

]
+

1
C

∥∥D3ψ
∥∥2

L2
x

+
1
C

‖√
ρ∂tu‖2L2

x
+

1
C

‖Δu‖2L2
x

≤ C

((
1 + ‖u‖4H1

x

)
‖∇u‖2L2

x
‖ψ‖4H2

x
+ ‖u‖4H1

x
‖Δψ‖2L2

x
+

(
1 + ‖ψ‖2H1

x

)
‖u‖4H1

x

)

+ C
(

‖ψ‖2p
L2

x
‖Δψ‖2L2

x
+ ‖Δψ‖2p+2

L2
x

+ ‖u‖4H1
x
‖∇u‖2L2

x

)

+ C ‖Bψ‖2L2
x

(
‖Δψ‖2L2

x
+ ‖u‖2H1

x
‖ψ‖2H2

x
+ ‖Δψ‖4L2

x
+ ‖u‖4H1

x
‖ψ‖4H2

x

)

+ Cθ ‖√
ρu‖2L2

x
+ κ ‖Bψ‖2L2

x
. (3.18)

This is the higher-order energy estimate. Using similar arguments to Section 3.3.3 of [29], we can use the
Grönwall inequality to control the higher-order energy and dissipation. The results are summarized in
the following lemma.

Lemma 3.3. (Algebraic decay rate for energies) We label the higher-order energy as

X := ‖Δψ(t)‖2L2
x

+ ν ‖∇u(t)‖2L2
x
. (3.19)

Then, the sum Z := X + E decays as

Z(t) ≤ Z0e
− t

C +
CS

p
2+1
0(

1 + S
p
2
0 t

)1+ 2
p

� Z0 + S
p
2+1
0 , (3.20)

where Z0 := Z(0). Moreover, the time-integral of the corresponding dissipation terms is also bounded.
Specifically,∥∥D3ψ

∥∥2

L2
[0,T ]L

2
x

+ ‖√
ρ∂tu‖2L2

[0,T ]L
2
x

+ ‖Δu‖2L2
[0,T ]L

2
x

+ ‖∇u‖2L2
[0,T ]L

2
x

+ ‖√
ρu‖2L2

[0,T ]L
2
x

+ ‖Bψ‖2L2
[0,T ]L

2
x

� Z0 + Sp
0 (Z0 + S0) � Z0 + Sp+1

0 . (3.21)

In addition, by integrating the higher-order energy estimate over [t, 2t] (for t ≥ 1), we end up with a
time-decaying estimate for the dissipation, given by∥∥D3ψ

∥∥2

L2
[t,2t]L

2
x

+ ‖√
ρ∂tu‖2L2

[t,2t]L
2
x

+ ‖Δu‖2L2
[t,2t]L

2
x

+ ‖∇u‖2L2
[t,2t]L

2
x

+ ‖√
ρu‖2L2

[t,2t]L
2
x

+ ‖Bψ‖2L2
[t,2t]L

2
x

� Z0e
− t

C +
S

p
2+1
0(

1 + S
p
2
0 t

) 2
p

.
(3.22)
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The last inequality in (3.21) is valid because Z0, S0 ≤ 1.

3.4. Maximal Parabolic Regularity for ψ

From the previous analysis, we have obtained ψ ∈ L2
[0,T ]H

3
x. However, as pointed out in the discussion

following Definition 2.9, we seek Bψ ∈ L2
[0,T ]L

∞
x , which follows from ψ ∈ L2

[0,T ]H
7
2+
x . In the 2D case [29],

this was achieved by taking advantage of the Sobolev embedding H1+δ
x ⊂ L∞

x and deriving a “highest-
order energy estimate” for ψ. This approach does not work here due to the embedding H

3
2+δ
x ⊂ L∞

x , which
would require higher-order estimates on u and ρ. Instead, we exploit the parabolic nature of (c-NLS) and
apply the method of maximal regularity to gain the necessary control of ψ.

Lemma 3.4. (Maximal regularity for ψ) For δ as defined in Theorem 2.3, and a sufficiently small δ1 > 0,
we have the maximal regularity bound

‖∂tψ‖
L1+δ

[0,T ]H
3
2+δ1

x

+ ‖Δψ‖
L1+δ

[0,T ]H
3
2+δ1

x

≤ f (Z0, S0) , (3.23)

uniformly in time T , where f : (R+)2 → R+ is a continuous polynomial, with f(0, 0) = 0.

Proof. We begin by rewriting (c-NLS) in a parabolic form as

∂tψ − λ + i

2
Δψ = −λ

2
|u|2 ψ − iλu · ∇ψ − μ(λ + i) |ψ|p ψ. (3.24)

The differential operator in this case is A = −λ+i
2 Δ. Comparing this to (2.14), we see that m = 1,

and aα = −λ+i
2 when α ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2)} and aα = 0 otherwise. Thus, the first condition in

Definition 2.10 is satisfied. The principal symbol of the operator is

Ã(ξ) =
λ + i

2
|ξ|2 ,

from which it is clear that Ã(ξ)−1 is also bounded for |ξ| = 1. Finally, the spectrum σ
(

λ+i
2 |ξ|2

)
belongs

to the sector Σζ0 for tan ζ0 > λ−1 > 0. Thus, the operator A is uniformly (K, ζ0)-elliptic for K =
max{

√
1+λ2

2 , 2√
1+λ2 }, and the maximal parabolic regularity estimate is applicable.

We now act upon (3.24) by (−Δ)
3
4+

δ1
2 for some δ1 > 0 that will be determined shortly. We then apply

Lemma 2.11 with X = L2(T3) and X1 = H2(T3), which results in∥∥∥∂t(−Δ)
3
4+

δ1
2 ψ

∥∥∥
Lr

t L2
x

+
∥∥∥(−Δ)

3
4+

δ1
2 ψ

∥∥∥
Lr

t H2
x

�
∥∥∥(−Δ)

3
4+

δ1
2 ψ0

∥∥∥
(L2

x,H2
x)1− 1

r
,r

+
∥∥∥(−Δ)

3
4+

δ1
2 (|u|2 ψ)

∥∥∥
Lr

t L2
x

+
∥∥∥(−Δ)

3
4+

δ1
2 (u · ∇ψ)

∥∥∥
Lr

t L2
x

+
∥∥∥(−Δ)

3
4+

δ1
2 (|ψ|p ψ)

∥∥∥
Lr

t L2
x

:= I17 + I18 + I19 + I20, (3.25)

for r = 1 + δ with δ ∈ (0, 1
3 ), and this restriction will become clear when estimating I18 in (3.27). It is

important to note that Lr
t is calculated on [0, T ], where T > 0 is the local existence time defined in (2.9).

We now estimate each of the terms on the RHS. The norm of the initial condition is found to belong to
a Besov space as a result of the interpolation (see [2, Chapter 7]). Indeed, we have

I17 =
∥∥∥(−Δ)

3
4+

δ1
2 ψ0

∥∥∥
(L2

x,H2
x)1− 1

r
,r

=
∥∥∥(−Δ)

3
4+

δ1
2 ψ0

∥∥∥
(L2

x,H2
x) δ

1+δ
,1+δ

=
∥∥∥(−Δ)

3
4+

δ1
2 ψ0

∥∥∥
B

2δ
1+δ
2,1+δ

�
∥∥∥(−Δ)

3
4+

δ1
2 ψ0

∥∥∥
H

2δ
1+δ

+δ2
≤ ‖ψ0‖

H
3
2+ 2δ

1+δ
+δ1+δ2

≤ ‖ψ0‖H2 , (3.26)
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for sufficiently small values for δ, δ1, and δ2. The first inequality is due to the embedding Hs+δ2 ⊂ Bs
2,q

for any δ2 > 0 (see [41, Lemma 2.2]). Due to the restriction δ < 1
3 , we have 2δ

1+δ < 1
2 , implying that we

may bound I17 with the initial data, as in the last inequality of (3.26). Next, we deal with the second
term on the RHS of (3.25) as

I18 �
∥∥∥|u|2 ψ

∥∥∥
L1+δ

t H2
x

�
∥∥∥‖u‖L∞

x
‖u‖H2

x
‖ψ‖L∞

x

∥∥∥
L1+δ

t

+
∥∥∥‖u‖2L∞

x
‖ψ‖H2

x

∥∥∥
L1+δ

t

�
∥∥∥‖u‖ 1

2
H1

x
‖u‖ 3

2
H2

x
‖ψ‖H2

x

∥∥∥
L1+δ

t

+
∥∥∥‖u‖H1

x
‖u‖H2

x
‖ψ‖H2

x

∥∥∥
L1+δ

t

� ‖u‖ 1
2

L
2(1+δ)
1−3δ

t H1
x

‖u‖ 3
2
L2

t H2
x
‖ψ‖L∞

t H2
x

+ ‖u‖
L

2(1+δ)
1−δ

t H1
x

‖u‖L2
t H2

x
‖ψ‖L∞

t H2
x

�
(

Z0 + S
1+ 2pδ

1+δ

0

) 1
4 (

Z0 + Sp+1
0

) 3
4

(
Z0 + S

p
2+1
0

) 1
2

+
(

Z0 + S
1+ pδ

1+δ

0

) 1
2 (

Z0 + Sp+1
0

) 1
2

(
Z0 + S

p
2+1
0

) 1
2

. (3.27)

The second inequality follows from the product rule for Sobolev norms [42, Lemma 3.4], and the third
inequality from Agmon’s inequality and Sobolev embedding. The fourth inequality is due to Hölder’s
inequality, while the final step follows from (3.20) and (3.21). In a similar way, we can analyze the third
term on the RHS of (3.25), yielding

I19 � ‖u · ∇ψ‖L1+δ
t H2

x

�
∥∥∥‖u‖L∞

x
‖∇ψ‖H2

x

∥∥∥
L1+δ

t

+
∥∥∥‖u‖H2

x
‖∇ψ‖L∞

x

∥∥∥
L1+δ

t

� ‖u‖ 1
2

L
2(1+δ)
1−3δ

t H1
x

‖u‖ 1
2
L2

t H2
x

∥∥D3ψ
∥∥

L2
t L2

x
+ ‖u‖L2

t H2
x

∥∥D2ψ
∥∥ 1

2

L
2(1+δ)
1−3δ

t L2
x

∥∥D3ψ
∥∥ 1

2

L2
t L2

x

�
(

Z0 + S
1+ 2pδ

1+δ

0

) 1
4 (

Z0 + Sp+1
0

) 3
4

. (3.28)

Since we have p ≥ 1, the last term on the RHS of (3.25) is bounded using (3.1) and (3.20) as

I20 � ‖|ψ|p ψ‖L1+δ
t H2

x
�

∥∥∥‖ψ‖p+1
H2

x

∥∥∥
L1+δ

t

�
∥∥∥∥
(
‖ψ‖L2

x
+ ‖Δψ‖L2

x

)p+1
∥∥∥∥

L1+δ
t

� S
δp

2(1+δ)+
1
2

0 + Z
p+1
2

0 + S
p2
4 + p(1+3δ)

4(1+δ) + 1
2

0 . (3.29)

Putting together the estimates in (3.26)–(3.29) gives us the desired result. �

We conclude that ∂tψ,Δψ ∈ L1+δ
[0,T ]H

3
2+δ1
x , uniformly in T , and that their norms can be made small

by an appropriate choice of S0 and Z0.

3.5. Ensuring Global-in-Time Positive Density

We have now obtained all the a priori estimates needed to return to (2.13).

Proof of Theorem 2.3. Using (CPL), we have

‖Bψ‖L∞
x

� ‖Δψ‖L∞
x

+
∥∥∥|u|2 ψ

∥∥∥
L∞

x

+ ‖u · ∇ψ‖L∞
x

+ ‖|ψ|p ψ‖L∞
x

�
∥∥D2ψ

∥∥
H

3
2+δ1

x

+ ‖u‖H1
x
‖u‖H2

x
‖ψ‖H2

x
+ ‖u‖ 1

2
H1

x
‖u‖ 1

2
H2

x

∥∥D3ψ
∥∥

L2
x

+ ‖ψ‖p+1
H2

x
, (3.30)



JMFM On the mass transfer... Page 15 of 17    43 

where the second step is a consequence of Agmon’s inequality and Sobolev embedding. We now sub-
stitute (3.30) into the LHS of (2.13) and also use the Sobolev embedding ‖ψ‖L∞

x
� ‖ψ‖H2

x
. This leads

to ∫ T

0

‖ψ‖L∞
x

‖Bψ‖L∞
x

�
∫ T

0

‖ψ‖H2
x

∥∥D2ψ
∥∥

H
3
2+δ1

x

+
∫ T

0

‖u‖H1
x
‖u‖H2

x
‖ψ‖2H2

x

+
∫ T

0

‖ψ‖H2
x
‖u‖ 1

2
H1

x
‖u‖ 1

2
H2

x

∥∥D3ψ
∥∥

L2
x

+
∫ T

0

‖ψ‖p+2
H2

x

:= I21 + I22 + I23 + I24. (3.31)

We now show that each of these four terms can be made as small as required, by choosing sufficiently small
values of the data, i.e., S0 and Z0. For the first term (I21), we use Hölder’s inequality, (3.1), and (3.20)
to write

I21 =
∫ T

0

‖ψ‖H2
x

∥∥D2ψ
∥∥

H
3
2+δ1

x

≤ ‖ψ‖
L

1+ 1
δ

[0,T ]H
2
x

∥∥D2ψ
∥∥

L1+δ
[0,T ]H

3
2+δ1

x

�
(

S
1
2 (1− pδ

1+δ )
0 + Z

1
2
0

)∥∥D2ψ
∥∥

L1+δ
[0,T ]H

3
2+δ1

x

. (3.32)

The above calculation assumes that p < 1+ 1
δ (which is consistent with the definition of δ in Theorem 2.3),

so that a uniform-in-T bound can be obtained. From Lemma 3.4, we conclude the smallness (in terms of
the initial data) of the last factor in the RHS, i.e.,

∥∥D2ψ
∥∥

L1+δ
[0,T ]H

3
2+δ1

x

. Thus, I21 is independent of T , and

can be made sufficiently small by appropriate initial data.
Moving on to the remaining terms in (3.31), we have

I22 � ‖u‖L2
t H1

x
‖u‖L2

t H2
x
‖ψ‖2L∞

t H2
x
. (3.33)

All the terms are, once again, bounded in terms of the data according to (3.20) and (3.21). In the same
way, we have

I23 � ‖ψ‖L∞
t H2

x
‖u‖ 1

2
L2

t H1
x
‖u‖ 1

2
L2

t H2
x

∥∥D3ψ
∥∥

L2
t L2

x
, (3.34)

where all the terms are controlled by the data. Finally, using (3.1) and (3.20), we arrive at

I24 �
∫ T

0

⎛
⎜⎜⎝ S

p
2+1
0(

1 + S
p
2
0 t

)1+ 2
p

+ Z
p
2+1
0 e− t

C +
S

(p+2)2

4
0(

1 + S
p
2
0 t

) (p+2)2
2p

⎞
⎟⎟⎠ dt

� S0 + Z
p
2+1
0 + S

(p+1)2+3
4

0 , (3.35)

and this calculation holds for all values of p ≥ 1. From the analysis in (3.32)–(3.35), we conclude that
the LHS of (3.31) can be made sufficiently small to satisfy the constraint given by (2.13), for all values of
time T > 0. This implies that the density always remains bounded below, and thus solutions are global
in time for p < 1 + 1

δ . No matter how large (but finite) p is, it is possible to choose δ small enough so
that the constraint in (2.13) is met. �
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[35] Jüngel, A.: Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J. Math. Anal.

42(3), 1025–1045 (2010)
[36] Kazhikov, A.V.: Solvability of the initial and boundary value problem for the equations of motion of an inhomogeneous

viscous incompressible fluid. Sov. Phys. Dokl. 19(6), 331–332 (1974)
[37] Khalatnikov, I.M.: Absorption and dispersion of sound in a superfluid liquid near the lambda point. Zh. Eksp. Teor.

Fiz. 57, 489–497 (1969)
[38] Kim, J.U.: Weak solutions of an initial boundary value problem for an incompressible viscous fluid with non-negative

density. SIAM J. Math. Anal. 18(1), 89–96 (1987)
[39] Lions, P.-L.: Mathematical Topics in Fluid Mechanics, vol. 1. Oxford University Press, Oxford (1996)
[40] Ladyzhenskaya, O.A., Solonnikov, V.A.: Unique solvability of an initial- and boundary-value problem for viscous in-

compressible nonhomogeneous fluids. J. Sov. Math. 9(5), 697–749 (1978)
[41] Lu, Y.: Sharp embedding between Besov-Triebel-Sobolev spaces and modulation spaces. arXiv:2108.12106, (2021)
[42] Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, 1st edn. Cambridge University Press, Cambridge (2002)
[43] Pitaevskii, L.P.: Phenomenological theory of superfluidity near the Lambda point. Sov. Phys. JETP 8(2), 282–287

(1959)
[44] Paoletti, M.S., Lathrop, D.P.: Quantum turbulence. Annu. Rev. Condens. Matter Phys. 2(1), 213–234 (2011)
[45] Pruss, J., Schnaubelt, R.: Solvability and maximal regularity of parabolic evolution equations with coefficients continuous

in time. J. Math. Anal. Appl. 256, 405–430 (2001)
[46] Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J. Math.

Anal. 21(5), 1093–1117 (1990)
[47] Sohinger, V.: Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations. PhD thesis,

Massachusetts Institute of Technology, (2011)
[48] Su, Y., Yao, L., Zhu, M.: Exponential decay for 2D reduced gravity two-and-a-half layer model with quantum potential

and drag force. Discrete Contin. Dyn. Syst. Ser. B 27(12), 7207–7226 (2022)
[49] Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. American Mathematical Society, Providence (2006)
[50] Vinen, W.F.: An introduction to quantum turbulence. J. Low Temp. Phys. 145(1–4), 7–24 (2006)
[51] Wang, G., Guo, B.: A new blow-up criterion of the strong solution to the quantum hydrodynamic model. Appl. Math.

Lett. 119, 107045 (2021)

Juhi Jang, Pranava Chaitanya Jayanti and Igor Kukavica
Department of Mathematics
University of Southern California
Los Angeles CA90089
USA
e-mail: juhijang@usc.edu

Pranava Chaitanya Jayanti
e-mail: pjayanti@usc.edu

Igor Kukavica
e-mail: kukavica@usc.edu

(accepted: April 11, 2024)

https://doi.org/10.1007/s00332-020-09666-1
https://doi.org/10.1007/s00332-020-09666-1
http://arxiv.org/abs/2108.12106

	On the Mass Transfer in the 3D Pitaevskii Model
	Abstract
	1. Introduction and Mathematical Model
	1.1. Notation

	2. Main Result and Discussion
	2.1. Weak Solutions and the Existence Theorem
	2.2. The Strategy
	2.3. Elliptic Operators and Maximal Parabolic Regularity

	3. A Priori Estimates
	3.1. Superfluid Mass Estimate
	3.2. Energy Estimate
	3.3. Higher-Order Energy Estimate
	3.3.1. The Schrödinger Equation
	3.3.2. The Navier–Stokes Equation

	3.4. Maximal Parabolic Regularity for ψ
	3.5. Ensuring Global-in-Time Positive Density

	Acknowledgements
	References


