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Abstract. We present recent results in study of a mathematical model of the sea-breeze flow, arising from a general model of
the ’morning glory’ phenomena. Based on analysis of the Dirichlet spectrum of the corresponding Sturm–Liouville problem
and application of the Fredholm alternative, we establish conditions of existence/uniqueness of solutions to the given
problem.
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1. Introduction

Morning glory is a fascinating seasonal cloud formation, composed of a (train of) low roll cloud(s),
stretching through horizon. This phenomenon is frequently observed in coastal regions, but is also occa-
sionally occurring over the land and the sea (see Fig. 1). Even though one finds the most mentions of this
phenomenon in Australia (in particular, in the Gulf of Carpentaria, [3,6]), it has been also reported over
the English Channel, Central USA, Germany, Eastern Russia, Canada, Mexico, Brazil and Uruguay. The
morning glory is usually observed in the early morning and its appearance is connected to a particular
thermal structure of the lower atmosphere over the land and the sea [10].

There is an extended amount of literature addressing the mechanism of this cloud formation. To align
with observations scientists construct mathematical models that are able to capture main properties of
this atmospheric flow. They mainly originate from analogies of the nonlinear shallow-water flows with
stratification (see among others discussions in [3,6,11,12,21,23]). One of the latest results in this direction
is due to Constantin, Johnson who applied asymptotic analysis to the Navier–Stokes governing equations
and equations of mass conservation in order to obtain a physically reliable and properties preserving
model of the morning glory clouds [9,10]. Derivatives from their model are boundary value problems
(BVPs) modeling the bore- and breeze-like flows [5,10]. The last ones fall under the focus of this paper.

When talking about the breeze-like flows one should distinguish between the sea and the land breeze
(Fig. 2).

Sea breeze is an atmospheric flow that develops due to a strong temperature contrast between the land
and sea surfaces. This flow is caused by the heating of the boundary layer over land, that results in the
movement of low-level air from the sea to land [22,23,25]. Land breeze, on the contrary, is a local wind
system characterized by a flow from land to water and is often referred to as a return flow. It is typically
shallower than the sea breeze since the cooling of the atmosphere over land is confined to a shallower
layer at night than the heating of the air during the day [15,26].

The layout of this paper is as follows. In Sect. 2 we present a mathematical model of the sea-breeze
flow adapted to the Gulf of Carpentaria, and make a connection between the model and the corresponding
Sturm–Liouville problem [1,13]. The last one is the key for our solvability analysis, since knowing the
spectrum of the eigenvalue problem answers the question of existence/uniqueness of solutions to the
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Fig. 1. The morning glory cloud formation formation, https://www.couriermail.com.au/news/queensland/warwick/
morning-glory-clouds-go-viral-as-world-looks-to-our-skies/news-story/2d5950ae8e55c6ffa090cfb985396111

Fig. 2. The breeze flow formation, https://www.britannica.com/science/sea-breeze

original inhomogeneous BVP (see [2,4,7,18,19]). These results are presented in Sect. 3 of the paper, and
they complement and generalize contributions published in [10,20]. And last but not least, in Sect. 4 we
formulate our conclusions and give possible directions for future research on this topic.

Note that the results we discuss in this paper are also relevant for the study of atmospheric undular
bores (see the discussions in [8,14,16]).

https://www.couriermail.com.au/news/queensland/warwick/morning-glory-clouds-go-viral-as-world-looks-to-our-skies/news-story/2d5950ae8e55c6ffa090cfb985396111
https://www.couriermail.com.au/news/queensland/warwick/morning-glory-clouds-go-viral-as-world-looks-to-our-skies/news-story/2d5950ae8e55c6ffa090cfb985396111
https://www.britannica.com/science/sea-breeze
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2. Mathematical Model and the Associated Sturm–Liouville Problem

In this section we briefly introduce a mathematical model of the breeze-like flow, derived from the gov-
erning equations describing the ’morning glory’ phenomenon (see results of Constantin, Johnson in [10]),
and give connection between the physical and the associated eigenvalue problems [10,20].

2.1. Physical Problem

In [10] Constantin and Johnson derive a non-dimensional model of the breeze-like flow, expressed in terms
of a horizontal velocity profile V0(z,Φ) as

ρ0σSV0 +
1

Re

∂

∂z

(
m(z)

∂V0

∂z

)
= −

{
cos2(α) +

sin2(α)
C

}
K(z,Φ), (1)

where
- z is the thickness of the flow;
- ρ0(z) is the density function;

- S, α, C and σ = 2(sin2 α+C cos2 α)
(1−C) sinα cosα are characteristics of the flow in a specific region;

- Re ≈ 105 is the Reynolds number;
- m(z) is the viscosity function;
- Φ is a parameter, corresponding to the direction of the flow propagation and
- K(z,Φ) is the forcing term in the model.

In addition, authors specify physically relevant boundary conditions that read

V0(0,Φ) = 0, (2)

V0(z0,Φ) = 0, (3)

with (2) standing for a no-slip condition at the surface of the Earth, and (3) indicating level of the
temperature inversion.
By fixing parameter values S, α, C and σ one can focus on a particular zone, where the breeze is observed.
One of those regions is the Gulf of Carpentaria that corresponds to

C ≈ 0.97, S ≈ −0.24, σ ≈ 133 and α =
5π

4
,

which localize a flow propagating in the south-west direction. In this case BVP (1)–(3) can be rewritten
as
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)
= k0(s,Φ), 0 < s < 1, (4)
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where functions ρ0(z) and K(z,Φ) are assumed to be continuous (with Φ being a parameter), while m(z)
is continuously differentiable.

In order to derive existence results for the inhomogeneous problem (4), (5) we aim to use spectral
theory, applied to the corresponding Sturm–Liouville problem [1,2].

2.2. Eigenvalue Problem Arising in the Sea-Breeze Flow Model

Let us associate with the BVP (4), (5) an eigenvalue problem of the form:

βV0 − ∂

∂s

(
m̂(s)

∂V0

∂s

)
= λV0(s), 0 < s < 1, (7)

V0(0) = V0(1) = 0, (5)

where function m̂(s) is given by formula (6) and does not change its sign at [0, 1].
We seek for spectrum of the problem (7), (5) that will lead to existence and uniqueness of solutions to
the original BVP (4), (5).

Some of the already known results in this direction were published by Constantin, Johnson and
Marynets (see discussions in [10,20]), where authors considered particular cases of the mass-density func-
tion m̂(s) to derive an explicit Dirichlet spectrum of the Sturm–Liouville problem (7), (5). In particular,
in [10] it was shown that if

m̂(s) ≡ m0,

one obtains a sequence of eigenvalues

λk = β + m0π
2k2, k ≥ 1

that for a particular value of β admits a zero value in the sequence λk. This means that the original
BVP (4), (5) has a unique solution, if its right hand-side k0(s,Φ) is orthogonal to the corresponding
eigenfunction fk(z). Later this result was extended to polynomial profiles of (6), such as

m̂(t) = (at + b)2

and
m̂(t) = (1 − t2),

that in turn also enabled construction of the Dirichlet spectrum in an explicit form (see [20]).
In the next section we extend the aforementioned results by deriving general conditions on m̂(s) that

admit non-zero eigenvalues of the Sturm–Liouville problem (7), (5).

3. Main Results

Let us rewrite the eigenvalue problem (4), (5) as follows:

V ′′
0 (s) + μ(s)V ′

0(s) + γν(s)V0(s) = 0, 0 < s < 1, (8)

V0(0) = V0(1) = 0, (5)

where μ(s) = m̂′(s)
m̂(s) , ν(s) = 1

m̂(s) and γ = λ − β.
By a change of variables

W (s) = exp
(

1
2
A(s)

)
V0(s), μ(s) =

dA

ds

we eliminate the first-order term from Eq. (8) and reduce the whole problem (8), (5) to the one below:

W ′′(s) + Q(s)W (s) = 0, 0 < s < 1, (9)
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W (0) = W (1) = 0, (10)

with Q(s) = −1
2

dμ
ds − 1

4μ2(s) + γν(s).
We prove the following existence/uniqueness results.

Theorem 1. For the BVP (4), (5) the following statements hold:

1. If the mass density function m̂(s) in (4) satisfies a differential inequality

m̂′′(s)m̂(s) − 1
2
m̂′2 ≥ 0, (11)

then there exists a unique solution to the BVP (4), (5), for all s ∈ [0, 1].
2. If for the mass density profile m̂(s) it holds that

m̂′′(s)m̂(s) − 1
2
m̂′2 < 0, (12)

then the BVP (4), (5) has at least one solution. In addition, the inhomogeneous BVP(4), (5) admits
a unique solution, if for the eigenfunction Vk(s), corresponding to a zero-eigenvalue λk of the Sturm–
Liouville BVP (7), (5), the orthogonality property∫ 1

0

k0(s,Φ)Vk(s)ds = 0

holds.

Proof. Let us prove the first statement of the theorem. Multiplying (9) by W (s) and integrating its left
hand-side by parts over the interval [0, 1] yields

−
∫ 1

0

W ′2(s)ds = −
∫ 1

0

Q(s)W 2(s)ds ≤ 0.

For the inequality above to hold function Q(s) has to be nonnegative, that leads to a differential
inequality:

−1
2

dμ

ds
− 1

4
μ2(s) + γν(s) ≥ 0.

This relation, expressed in terms of the mass-density function, reads as follows:

m̂′′(s)m̂(s) − 1
2
m̂′2 − 2γm̂(s) ≤ 0, (13)

wherefrom we deduce that

γ ≥ sup
s

m̂′′(s)m̂(s) − 1
2m̂′2

m̂(s)
, (14)

�

which, recalling that γ = λ − β, results in the following conclusions:

(i) all eigenvalues of the Sturm–Liouville BVP (9), (10) are positive if

m̂′′(s)m̂(s) − 1
2
m̂′2 ≥ 0; (15)

(ii) there exists a zero eigenvalue to the Sturm–Liouville BVP (9), (10) if

m̂′′(s)m̂(s) − 1
2
m̂′2 < 0. (16)
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Based on (14), (15), the Fredholm alternative insures existence of a unique solution to the BVP (4),
(5). If, on the contrary, (18) holds, then the BVP (4), (5) admits at least one solution, and it has a
unique solution if the eigenfunction Vk(s), corresponding to a zero eigenvalue λk, is orthogonal to the
right hand-side k0(s,Φ) of the differential equation (4) (see [2]).

This completes the proof. �
We can generalize the result above in the following theorem.

Theorem 2. Assume that Vk(s) is an eigenfunction, corresponding to the eigenvalue λk of the Sturm–
Liouville problem (7), (5). The original BVP (4), (7) admits a unique solution if

∫ 1

0

k0(s,Φ)Vk(s)ds = 0. (17)

Proof. Multiplying (7) by Vk(s) and introducing a notation γk = β − λk yields

Vk(s) [m̂(s)V ′
k(s)]′ = γnV 2

k (s), (18)

where Vk(0) = Vk(1) = 0.
Integrating (18) by parts and taking into account the homogeneous boundary conditions (5) we get a

relation between the eigenvalues λk of the problem (7), (5) and the corresponding eigenfunctions which
reads:

λk = β −
∫ 1

0
m̂(s)V ′2

k (s)ds∫ 1

0
V 2

k (s)ds
. (19)

Since the expression
∫ 1
0 m̂(s)V ′2

n (s)ds∫ 1
0 V 2

n (s)ds
is positive and β is a given parameter (positive by assumption), we

conclude that some mass density profiles and parameter values β might lead to a zero eigenvalue λk of the
analyzed eigenvalue problem (7), (5). This means that by the Fredholm alternative the inhomogeneous
problem (4), (5) admits a unique solution if the orthogonality condition (17) holds. This completes the
proof. �

Remark 1. Note, that all eigenvalues of the BVP (7), (5) can be ordered in a ascending sequence as
λ0 < λ1 < λ2 < · · · , with the ground state eigenvalue

λ0 = β − min
V0(s)

∫ 1

0
m̂(s)V 2′

0 (s)ds∫ 1

0
V 2
0 (s)ds

.

For more details we refer the reader to [17,18].

4. Conclusions and Future Developments

In this paper we used spectral analysis approach to prove existence and uniqueness of solutions to one
inhomogeneous BVP modeling the sea-breeze flow of the Gulf of Carpentaria. These results contain
sufficient conditions applied to the mass density function of a general form. As we have pointed out
in Sect. 2.2 of the paper, one could also think of special cases of the mass density profile that enable
construction of the Dirichlet spectrum in an explicit form [1]. For example, in [24] Rahbar analyzed
periodic potentials that by a sequence of substitutions enabled identification of all eigenvalues of the
given Sturm–Liouville problem. On the other hand, a different choice of parameters C,R, σ and α in (1)
would lead to a different region for the sea-breeze, where our model is still valid. One of such examples
is taking C ≈ 0.62, S ≈ 0.77, σ ≈ 8.5 and α = π

4 that correspond to the Calgary area.
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