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Abstract. We address a system of equations modeling a compressible fluid interacting with an elastic body in dimension
three. We prove the local existence and uniqueness of a strong solution when the initial velocity belongs to the space H?*t¢
and the initial structure velocity is in H1-5+¢, where € € (0,1/2).
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1. Introduction

The objective of this paper is to establish the local-in-time existence of solutions for the free boundary
fluid—structure interaction model under low regularity assumptions on the initial data. The model de-
scribes the interaction between a viscous compressible fluid and an elastic structure that is immersed in
it. Mathematically, the dynamics of the fluid are governed by the compressible Navier—Stokes equations
in the velocity and density variables (u, p), while the elastic dynamics are described by a second-order
elasticity equation (which is replaced by a wave equation for the sake of simplicity) in the vector variables
(w, w;) representing the displacement and velocity of the structure.

The interaction between the structure and the fluid is mathematically characterized by velocity and
stress matching boundary conditions at the moving interface that separates the solid and fluid regions.
Since the interface position evolves with time and is unknown a priori, this is a free-boundary problem.
The problem is challenging due to the mismatch between parabolic and hyperbolic regularity, as well as
the complexity of the stress-matching condition on the free boundary.

The local-in-time existence and well-posedness results for the fluid-structure interaction model have
been extensively studied in the literature. In 2005, the authors of [18,19] established the local-in-time
existence and well-posedness for the incompressible model, using the Lagrangian coordinate system to
fix the domain and the Tychonoff fixed point theorem to construct a solution, given an initial fluid
velocity ug € H® and structural velocity w; € H?. Subsequently, the papers [32,33] provided a priori
estimates for the local existence of solutions using direct estimates for the initial data, namely uy € H?
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and wy € H%/?*7 where r € (0,(v/2 — 1)/2). The authors relied on the hidden regularity trace theorem
for wave equations, established in [12,38,39,42,51,53], as a key ingredient to obtain their result. Several
works on wave-heat coupled systems on a non-moving domain have contributed to the understanding of
the heat-wave interaction phenomena (cf. [2-4,9,10,21,35-37,40]). Recently, Raymond and Vanninathan
[50] obtained a sharp regularity result for the case when the initial domain is a flat channel. They studied
the system in the Lagrangian coordinate setting and obtained local-in-time solutions for the 3D model,
with the initial velocity ug € H'*® and the initial structural velocity w; € H'/2++8 where a € (1/2,1)
and $ > 0. In [11], Boulakia, Guerrero, and Takahashi obtained a unique local-in-time solution for the
general domain case, given the initial data uy € H? and w; € HY/5.

The compressible model under consideration was first treated in [6], where the authors obtained the
existence and uniqueness for the initial density po belonging to H?, the velocity ug in H*, and the structure
displacement and velocity (w,w;) in H3x H?. A similar result was later obtained by Kukavica and Tuffaha
[34] with less regular initial data (pg,uo,w1) € H3?%7 x H® x H3/2*" where r € (0,(v/2 —1)/2). In
[7], the existence of a regular global solution is proved for small initial data. In a recent work [8], the
authors proved the existence of a unique local-in-time strong solution of the interaction problem between
a compressible fluid and elastic structure for initial data (pg,uo,w1) € H? x H® x H?, where the elastic
structure is modeled by the Saint-Venant Kirchhoff system. For some other works on fluid—structure
models, cf. [1,5,13-17,20,22,24-31,40,41,44-49,52, 54].

In this paper, we provide a natural proof of the existence of a unique local-in-time solution to the system
under a low regularity assumptions ug € H*T¢ and w; € H'5%¢ where € € (0,1/2), in the case of the
flat initial configuration. Our proof relies on a maximal regularity type theorem for the nonhomegeneous
linear parabolic problem with Neumann type conditions on the fluid—structure interface, in addition to
the hidden regularity theorems (cf. Lemmas 3.5-3.6) for the wave equation. The time regularity of the
solution is obtained using the energy estimates, which, combined with the elliptic regularity, yield the
spatial regularity of the solutions. An essential ingredient of the proof of the main results is a trace
inequality

”uHH" ((—00,00),L2(Tc)) ~ ||UH2/2(2(T+02)00 ), H"(Q4)) ” Hi;z{e(fﬁ;l 1) ((—00,00),L2()) + ”u”L?((—oo,oo),H"(Qf))v
for functions which are Sobolev in the time variable and square integrable on the boundary (cf. Lemma 3.1
and (3.8) below). This is used essentially in the proof of the existence for the nonlinear parabolic-wave
system, Theorem 5.4, and in the proof of the main result, Theorem 2.1. The construction of a unique
solution for the fluid—structure problem is obtained via the Banach fixed point theorem. The scheme
involves solving the nonlinear parabolic-wave system with the variable coefficients treated as a given
forcing perturbations.

One of the essential difficulties in establishing the existence of solutions is that the constants in
the inequality are inversely proportional to powers of time 7', which poses a problem for establishing
convergence of a fixed-point scheme for small time. The same issue with the growing constants also arises
in the hidden regularity inequalities in Lemmas 3.5-3.6 for the wave equation. We overcome this difficulty
by solving a modified system which is posed on the fixed time interval (0, 1]. As opposed to the velocity
matching boundary condition (2.6) in the original fluid—structure interaction problem, we impose the
integrated velocity matching boundary condition (5.13) on the unit time interval in the modified system.
These two boundary conditions agree on a small time interval and thus the modified system agrees with
the original system when restricted to a small time interval. In the integrated velocity matching boundary
condition (5.13), an important ingredient is the cutoff function in time that depends on a variable time
T, which is then chosen to be less than a fixed time T, allowing for contraction estimates on the solution
map. Another major difficulty is the handling of the normal derivative of the elastic structure on the
common boundary, which is estimated by appealing to the hidden trace regularity (see Lemma 3.6). The
main issue with proving the fixed-point theorems (for the linear and nonlinear variants) is that time
derivatives, which are frequently fractional, fall on the cutoff, showing that the constant dependence on
T needs to be treated carefully.
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Similarly, for the nonlinear system, treated in Sect.6, we also need to modify the definition of the
Lagrangian map and the variable coefficient matrix using a cutoff in time function to ensure similar
contraction-type estimates on the solution map for the system with given variable coefficients. The solution
in each iteration step is used to prescribe new variable coefficients for the next iteration step. The
contracting property of the Navier-Stokes-wave system is maintained by taking a sufficiently short time
T to ensure closeness of the Jacobian and the inverse matrix of the flow map to their initial states.

Note that the configuration we adopt, (2.8) with the periodic boundary conditions in the y; and
yo directions, is needed only in Lemma 3.6. In these estimates, Sobolev time norms pose a particular
challenge when the cutoff function is involved since they involve singular terms in T that have to be
compensated by taking sufficiently high L? norms of time derivatives of v.

The paper is structured as follows. In Sect. 2, we introduce the fluid—structure model and state our
main result. Next, in Sect. 3, we present the trace inequality, interpolation, and hidden regularity lemmas.
Section 4 provides the maximal regularity for the nonhomogeneous parabolic problem, which is a crucial
ingredient in the proof of local existence for the nonlinear parabolic-wave system, discussed in Sect. 5.
Finally, in Sect. 6, we prove our main result, Theorem 2.1, using the local existence result established in
Sect. 5 and constructing a unique solution via the Banach fixed point theorem.

2. The Model and Main Results

We consider the fluid—structure problem for a free boundary system involving the motion of an elastic
body immersed in a compressible fluid. Let Q¢(¢) and Q. (¢) be the domains occupied by the fluid and the
solid body at time ¢ in R3, whose common boundary is denoted by I'c(¢). The fluid is modeled by the
compressible Navier—Stokes equations, which in Eulerian coordinates reads

pe+ div (pu) =0in [0,T] x Q(t), (2.1)
pui + p(u - Viu— X\ div (Vu + (Vu)') — uV div u+ Vp = 0 in [0, T] x Q(t), (2.2)
where p = p(t,z) € Ry is the density, u = u(t,z) € R? is the velocity, p = p(p(t,z)) € R, is the pressure,
and A, u > 0 are physical constants. (We remark that the condition for A and x can be relaxed to A > 0
and 3\ + 2 > 0.) The system (2.1)—(2.2) is defined on Q¢(¢) which set to Q¢ = 2¢(0) and evolves in time.
The dynamics of the coupling between the compressible fluid and the elastic body are best described
in the Lagrangian coordinates. Namely, we introduce the Lagrangian flow map n(t,-): Qf — Q¢(¢) and
rewrite the system (2.1)—(2.2) as
Rt — Rakjakvj =0in [O,T] X Qf, (23)
0y — ARa 1Ok (miOmVj + GmjOmvr) — pRak; Ok (amiOmvi) + Rakjak(q(Rfl)) =0in [0,7] x ¢, (2.4)
for j = 1,2,3, where R(t,z) = p~'(t,n(t,x)) is the reciprocal of the Lagrangian density, v(t,z) =
u(t,n(t, z)) is the Lagrangian velocity, a(t,z) = (Vn(t,x))~! is the inverse matrix of the flow map and ¢
is a given function of the density. The system (2.3)—(2.4) is expressed in terms of Lagrangian coordinates
and posed in a fixed domain Q.

On the other hand, the elastic body is modeled by the wave equation in Lagrangian coordinates, which
is posed in a fixed domain {2, as

wy — Aw =0 in [0, T] x Qe, (2.5)

where (w,w;) are the displacement and the structure velocity. The interaction boundary conditions are
the velocity and stress matching conditions, which are formulated in Lagrangian coordinates over the
fixed common boundary T'. = T'¢(0) as

v; = ywj on [0,T] x T'g, (2.6)

8kwj1/k = M ag(amiOmv; + amjamvl)uk' + uJakjami(?mviuk — Jaquuk' on [0,T] x D¢, (2.7)
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0

Fic. 1. Lagrangian domain to Eulerian domain

for j = 1,2,3, where J(t,x) = det(Vn(t, x)) is the Jacobian and v is the unit normal vector to T'¢, which is
outward with respect to €).. In the present paper, we consider the reference configurations 2 = Q:UQ,UTl,
Qs, and Q. given by (see Fig. 1)

Q={y = (y1,92,53) €R®: (y1,92) € T?,0 < y3 < L3},
Qe ={y = (y1,92,y3) € R?: (y1,92) € T2,0 < ys < Ly or Ly <ys< L3}, (2.8)
Qe ={y = (Y1.y2,93) €R® : (y1,12) € T>, L1 < y3 < Lo},

where 0 < L; < Ly < L3 and T? is the two-dimensional torus with the side 27. Thus, the common
boundary is expressed as

Te={(y1,52) €R®: (y1,¥2,y3) € Lys = L1 or ys = Ly},
while the outer boundary is represented by
If={yeQ:ys=0}U{y€Q:ys= L3}
To close the system, we impose the homogeneous Dirichlet boundary condition
v=0on [0,T] xTI} (2.9)

on the outer boundary I't and the periodic boundary conditions for w, p, and u on the lateral boundary,
ie.,

w(t,-), p(t,n(t,-)),u(t,n(t,-)) periodic in the y; and yo directions. (2.10)

Note that the inverse matrix of the flow map a satisfies the ODE system
a(t,z) = —a(t,x)Vo(t, z)a(t, z) in [0,T] x O, (2.11)
a(0) =13 in Qf, (2.12)

where I3 is the three-dimensional identity matrix, while the Jacobian satisfies the ODE system
Je(t, ) = J(t, x)ag;(t, x)Opv;(t,z) in [0,T] x Q,

2.13
J(O) =1in Qf. ( )

The initial data of the system (2.3)—(2.5) is given as
(R, v,w,w)(0) = (Ro, v, wo, w1) in Q¢ Xx Qg x Qe x o, (2.14)

(Ro, v, wp,wy1) periodic in the y; and yo directions,
where wy = 0. For T' > 0, we denote
H™((0,T) x Q) = H"((0,T), L*(Q%)) N L*((0,T), H*(Q)),
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with the corresponding norm

||fH12qm((o,T)fo) = ||fH12Ln((o,T),L2(Qf)) + ||f||%2((0,T),HS(Qf))7

where 7, s > 0 are constant parameters. In Sects. 4-6, we shall work on a modified system with T'=1 to
avoid issue with dependence of constants on small time. For simplicity of notation, we write

| fllrs = N fllzrs0yxae)y and | fllapms = [1fllar0.0).825@ ¢ ))-
It is also convenient to abbreviate
K5 — HS/Q’S,

where the domain of integration is (0,1) x ¢ unless stated otherwise. Similarly, for the analogous space
of functions defined on the boundary I'., we write

| flleyms ey = 111z 0,0), 05 (r0))
and abbreviate
K¢, = HY**(T),

where the domain of integration is (0,1) x . unless stated otherwise. We emphasize that the time domain
of integration in the norms is (0,1) when not indicated.

Our main result states the local-in-time existence of solution to the system (2.3)—(2.5) with the mixed
boundary conditions (2.6)—(2.10) and the initial data (2.14).

Theorem 2.1. Let s € (2,2 + €] for eg € (0,1/2). Assume that Ry € H*(Q)), Ry' € H*(Qy), wy €
H*12(Q,), vo € H*(Qy), volr, € HsH1/2(T,), J3volr, € Hs_1/2(Ff), and wy = 0, with the compatibility
conditions

wyj = voj on I,

vo; = 0 on I'y,

A(Okvo; + ijOk)Vk + v’ — q(Ry ! =0 on T,
A0y (Orvoj + Ojvor) + 10 Okvor — Ok(q(Ry ")) = 0 on Ty,

for j =1,2,3. Then the system (2.3)—(2.5) with the coupling conditions (2.6)—(2.7), boundary conditions
(2.9)~(2.10), and the initial data (2.14) admits a unique solution

v e K*TH(0,T) x Q)

Re HY((0,T), H*(y))

w e C([0,T], H+/4=<0(Q,))
wy € C([0,T), H*3/*(Q,)),

for some constant T > 0, where the corresponding norms are bounded by a function of the norms of the
initial data.

Remark 2.2. We assume vy € H*(Q)) for s € (2,2 + €] where ¢y > 0, since the elliptic regularity for
[0l 1242 in (4.29) requires that R~' € L>((0,T), H*()). From the density equation (2.3), we deduce
that the regularity for the initial velocity must be at least in H?(), showing the optimality of the range
s > 2. It would be interesting to find whether the statement of the theorem holds for the borderline
case s = 2. U

The proof of the theorem is given in Sect. 6 below. For simplicity, we present the proof for the pressure
law ¢(R) = R, noting that the case for smooth function ¢(R) follows completely analogously using the
Sobolev and Hélder’s inequalities and (5.69). See Remark 5.5 below for necessary modifications.

T Birkhauser
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3. Space-Time Trace, Interpolation, and Hidden Regularity Inequalities

In this section, we provide several auxiliary results needed in the fixed point arguments. The first lemma
provides an estimate for the trace in a space-time norm and is an essential ingredient when constructing
solutions to the nonlinear parabolic-wave system in Sect.5 below.
Lemma 3.1. Let r > 1/2 and 6 > 0. If u € L?((—oc0,00), H"(Qy)) N H2?"/r=1((—00, 00), L*(Qy)), then
u € HY((—00,00), L3(T".)), and for all € € (0, 1], we have the inequality

[l 260 ((—00,00),L2(T)) < Elull gr2om/@r-1) (—o0,00),22(2) + CE 2 [l L2 (= 00,00), H7 () (3.1)
where C' > 0 is a constant.

The above lemma was proven in [23], where moreover, the interpolation spaces were identified. Since
in this paper, we only use the inequality (3.1), which allows a simpler proof, we provide an elementary
argument below.

First, however, we point out a consequence when restricting the above result to a finite time interval.
Corollary 3.2. Let r > 1/2, 0 > 0, and T > 0. If u € L?((0,T), H" () N H27/Cr=1((0,T), L*(Y)),
then v € H?((0,T), L*(T.)), and for all e € (0,1], we have the inequality

2r|

ull 2o (0,7,22 00y < ellull grzors e (0,1, 220020 + C€ " Ilull L2(0,1), 17 (029 (3.2)

where C' > 0 is a constant, which depends on 2y and T'.

The inequality (3.2) follows from Lemma 3.1 using the Sobolev extension operator. Clearly, the con-
stant is uniform as 7" — oo, but may increase to infinity as 7' — 0.

Proof of Lemma 3.1. Tt is sufficient to prove (3.2) for u € C§°(R x R3) with the trace taken on the set
I'= {(t,l‘hl’g,l'g) cR x R3 1x3 = 0},

the general case is settled by the partition of unity and straightening of the boundary. Since it should
be clear from the context, we usually do not distinguish in notation between a function and its trace.
Denoting by @ the Fourier transform of u with respect to (t,x1,x2,x3), we have

||u||%19((7oo7oo),L2(F)) 5/_00 /_OQ /_00(14‘72)0

Denote by

2

/ ﬁ(§17 §2a 537 T) d£3 dr dgl d§2

2r —1
= 3.3
v 59 (3.3)

the quotient between the exponents r and 260r/(2r — 1) in (3.2). Then, with A > 0 to be determined
below, we have

||u||i19((—oo,oo),L2(I‘)) S /Rs(l +72)°

2
< a0 ([ Q4 +E)7 + e + )M
- /Ra(l o </oo (1+ (& +8) + €27 +72)N? [ldes | dr déy de

5/ (1+72)° (/oo (1+ (€2 +€3) +e2¢) +T2)*|ﬁ|2d53)
R3

— 00

h g
” </00 1+ (G +&)+e27 + 7-2)A> dr dfy déz,

where we used the Cauchy-Schwarz inequality in 3. Using a substitution, we have

2
dr dfl dfg

/ (&1, 62,83, 7)dE3

— 00

- dx 1/v g1/v—2A
/MW—HWSE /’YA /’Y 5 14,€>07 (34)

) Birkhauser
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provided A satisfies 2y > 1, which is by (3.3) equivalent to
0
2r — 1

Note that 2yA > 1 implies 1/ — 2A < 0 for the exponent of A in (3.4). Now we use (3.4) for the integral
in & with A = (1 + (£ +€3)7 + 72)'/2, while noting that

(1+72)° -
A+ @+ 8y +rp 7 =
S+ (&) + e + ),

A >

(3.5)

(1 + 7_2)0]41/772)\ — (1 + 7_2)07)\+1/2'y

provided A — 1/2y < 0, i.e.,
2r6

A< . .
S5 (3.6)
Under the condition (3.6), we thus obtain
_ 0 R
lllfre (o000, 2200 S €77 /R (€ )+ ) P dey dp dey dr
X
1/~ —2/42 2 2\ 2\0+1/2v, .12
Se (e G+ G +G) +77) 7 Al dg dép déy dr
RxR

S €PNl oo 09, 1204172 00) T € Tl 0123 (oo 000, 22020

for all € € (0, 1]. Using (3.3), we get
ull370 ((—o000), £2(00)) S € 22Nl F2((—o0,00), Hr () + €2/ CT7Y [l Fr20r/2r—1) ((— 00,00), 22 (620)) (3.7)

for all € € (0, 1]. Finally, note that A = 2r/(2r — 1) satisfies (3.5)—(3.6) under the condition r > 1/2.

Optimizing € € (0, 1] in (3.7) by using

(2r—1)/2r6
_ [[ull 22 ((~o0,00), 7 (20))
lull 2 ((—o0,00),H7(2)) T [tll 267/ 2r—1) ((—00,00), L2 (20)) ’

we obtain a trace inequality

1/(2r+1 2r/(2r+1
[l e ((—o0.00).L2(0)) S HUHL/?(((foo),oo),HT(Qf))”UHH2/f9(7‘/(2'r21)((7oo,oo),L2(Qf)) + llull 22 ((~00.00). 17 (20))

(3.8)

which is a more explicit version of (3.1). Note that from (3.8), one may obtain an inequality on the
interval (0,7") with a T-dependent constant.

The second lemma provides a space-time interpolation inequality which is needed in several places in
Sects. 5 and 6 below.

Lemma 3.3. Let a, 8 > 0. If u € H*((—00,00), L*(€2)) N L?((—00, 00), HA(8Y)), then we have that u €
HO((—00,00), H*())) for all 0 € (0,c) and X € (0, 8) such that

0 A

—+—=<1.

o + 3=
In addition, for all e € (0,1], we have the inequality

_o8
[ull 70 (—00,00), 12 (@) < €llull e ((—00,00),22(0) + C€ 2> [[ull L2 ((—00,00), 17 ()

where C' > 0 is a constant.

This statement immediately implies the following one regarding the same type of interpolation in-
equality on a finite time interval.

T Birkhauser
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Corollary 3.4. Let o, 3 >0 and T > 0. If u € H*((0,7T), L*>(2)) N L?((0,T), H?(8Yy)), then we have that
u € HP((0,T), HNQy)) for all 0 € (0,) and X € (0, 3) such that

6 A

—+ =<1

o + 5=
In addition, for all € € (0,1], we have the inequality

_68
l[ullzro 0,1y, 17 0)) < €llullme(o,1),22000) + C€ = l[ullL2((0,7), 15 ().

where C' > 0 is a constant depending on Qf and T.
As above, Corollary 3.4 follows by employing a Sobolev extension operator in the t variable.

Proof of Lemma 3.3. Using a partition of unity, straightening of the boundary, and a Sobolev extension,
it is sufficient to prove the inequality in the case 2y = R? and u € C§°(R x R?). Then, using Parseval’s
identity and the definition of the Sobolev norms, we only need to prove

(L [7P) 1+ [6) < €04 |7*) + O (1+ [, (3.9)
for 7 € R and £ € R", where € € (0, 1]. Finally, (3.9) follows from the Young’s inequality.

In the last part of this section, we address the regularity for the wave equation. We first recall the
hidden regularity result for the wave equation

wy — Aw =0 in [0, T] x Qe, (3.10)
w =1 on [0,T] x T¢, (3.11)
w periodic in the y; and yo directions, (3.12)
and the initial data
(1, w0)(0,) = (19, w1) (3.13)

(cf. [42]).
Lemma 3.5. [42] Assume that (wo,w1) € H?(Q.) x H?~Y(Q,), where 8> 1, and
v € C([0,T], HOZV2(T)) 0 HP((0,T) x Te),

with the compatibility conditions ¥|i—¢g = wo|r, and Opb|i—o = w1 |r,. Then there exists a solution (w,w;) €
C([0,T], H3(2.) x HP~1(.)) of (3.10)~(3.13), which satisfies the estimate

ow
lwlleqo,r,m25@.)) + lwelleqo,m,me-1.)) + %
HO=16-1((0.T)XT")

S lwollas .y + llwillas—1 .y + ¥l He.5 0,7y xr.) s
where the implicit constant depends on Q. and T'.

In the final lemma of this section, we recall an essential trace regularity result for the wave equation
from [50].

Lemma 3.6. [50] Assume that (wo,w;) € HP () x HA1(Q,), where 0 < 8 < 5/2, and
v € L2((0,T), HP**(L o)) n HP/2H1((0,T), HP/*HH(T.)),
r.. Then there exists a solution w of (3.10)—~(3.13) such that

c

with the compatibility condition Oy)|i—o = wq

ow
ov

S ||w0HHﬁ+2(QE) + HUJlHHﬁH(Qe) + HT/)HL?((O,T),H“?(FC))
L2((0,T),HA+1(T.))

+ 1l zor2+1 0,1y, 87241 (1))

where the implicit constant depends on Q. and T'.

) Birkhauser
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4. The Nonhomogeneous Parabolic Problem

In this section, we consider the parabolic problem
uy — AR div (Vu + (Vu)?) — uRV div u = f in [0,1] x Q, (4.1)

with the nonhomogeneous boundary conditions and the initial data
NOpuj + Ojup)V* + pdjugr’ = hyj on [0,1] x T, (
u=0on [0,1] x Ty, (
(
(

u periodic in the y; and y- directions,

A~ s R

2)
.3)
A4)
u(0) = up in Q, .5)

for j = 1,2, 3. To state the maximal regularity for (4.1)—(4.5), we consider the homogeneous version when
(4.2)—(4.5) is replaced by

N Opuj 4 Ojup )V 4 pdpurr’ =0 on [0,1] x T, (4.6)
w=0on[0,1] x I, (4.7)
u periodic in the y; and ys directions, (4.8)
u(0) =0 in Q, (4.9)

for j =1,2,3.
Lemma 4.1. Assume that f € K*((0,1) x Q) with f(0,-) =0 on Qs and
(R, R™1) € (L>((0,1), H2()) N H'((0,1), L=(©2)))*. (4.10)

Then the parabolic problem (4.1) with the boundary conditions and the initial data (4.6)—(4.9) admits a
solution u satisfying

llullx2(0,1)x0) S [1fI1xo((0,1)%0p) (4.11)
and

[ull ke o,0)x0p) S 1 lz(0,1)x2)) (4.12)
where the implicit constants depend on the norms of R and R~ in (4.10).

Proof. Analogously to [43, Theorem 3.2], the parabolic problem (4.1) admits a solution u € K2((0,1) x Q)
if fe K°(0,1) x Q) and u € K4((0,1) x Q) if f € K2((0,1) x Q). Below, the norm of dependence on
time and space are understood as (0,1) and ¢, unless stated otherwise. In the reminder of the proof we
shall prove the regularity. Taking the L2-inner product of (4.1) with u, we arrive at

1d

—— lu|? — A Ru ;O (Okuj + Ojug) — ,u/ Ru;0;0kuy, = fu. (4.13)
2dt Jo, Qs Qs Qs

For the second and third terms on the left side of (4.13), we integrate by parts with respect to d and 0;

respectively to get

—A Rujék(akuj + 3juk) = /\/ Ru; (aku]' + (9juk)uk + A Rakuj'(aku]' + 8juk)
Qf T. Qf (414)

+ )\/ UjakR(akUj + @uk)
Qg
and

—u/ Ru;0;0kuy, = ,u/ Ru Oy’ —&-u/ RO;ju;O0kuy —i—u/ u;0; ROpuy,. (4.15)
Qf Fc Qf Qf
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Inserting (4.14)—(4.15) into (4.13) and appealing to (4.6)—(4.7), we get

1d
| 1+ )\/ ROyu;(Opuj + 0jur) + u/ ROju;Opug
2dt QO Q

Ju—X [ ujOpR(Opuj + Ojug) — u/ u;0; ROgug, (4.16)
Q¢ Qg Q

S IFIZe + lullZe + llull o[ VR Lol V| 22,

where the last inequality follows from Hélder’s and Young’s inequalities. Note that for any v € H'(£2),
using the Sobolev and Young’s inequalities, we have

1/4

ol S Tol3on ol Atan S elvllm @y + Cellvll 2@, (4.17)

for any € € (0,1], where C, > 0 denotes a constant depending on e. We integrate (4.16) in time from 0 to
t and use
3

1
(Opj + Oyun)Opuy = > (Okuy + Ojup)?, (4.18)
k=1
obtaining
u(t ||L2+Z// (Dot + Dyup)2 //R|8kuk\
k=1 Qf
4.19
S U122 + / ull3a + € / full3: + C. / Jull gl (4.19)

t t
S puz + e+ Cod) [ lull +Coe [l

for any ¢, € € (0,1], where we used (4.17) and the Young’s inequality. For the second term on the left, we
use Korn’s inequality, which reads

t 3 t t
[z s 3 [ R+ o+ [l (4.20)
0 i do e 0

From (4.19)—(4.20) it follows that

t
I + Tl 0y 5 10z + [ el (121)

by choosing suitable €, € > 0. By Gronwall’s inequality, we obtain
lu@®lze SUFIZ2L2 (4.22)

where we used €“* <1 for t < 1, and then, after using (4.22) in (4.21), we arrive at

||U||i’;‘H; S ||f‘|%ng- (4.23)

Next, we take the L2-inner product of (4.1) with u;, obtaining
ug|? — )\/ Ruy ;O (Okuj + 0jur) — u/ Ruy;0;0,uy, = Sfug. (4.24)

Qs Qs Q; Qs

Then, proceeding as in (4.14)—(4.15), we get

7)\/ Rutjak(akuj' + 3juk) = )\/ Rutj (8ku] + ajuk)l/k + )\/ Rakut]’ (8ku] + ajuk)
o L. Qf (4.25)

+ A utjakR(akUj + (9juk)
Qf
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and
. Rut;0;0kuy, = M/F Ruy;Opugt’ + p . ROjuOpuy +M/Q w05 ROguy. (4.26)
Inserting (4.25;7(4.26) into (4.24) ;ppeahng to (4.6)7(;1.7), and using f
%% /Qf ROpuj(Oruj + 0jur) = % o, Ry O,uj(Oku; + Ojur) + o, RO (Oruj + Ojuy), (4.27)

we arrive at

Ad pwd
> + = — | Ropuj(Opuj + Ojur) + = — [ ROju;Opus
o T 2dt Jo, o R 2dt Jo, 7

:/ fut—|—/\/ UtjakR(akUj—Fajuk)—‘r/.L/ utjajRak-uk
Q¢ Q¢ Q¢

A
+ = / Rtakuj (aku] + (%Uk) + L / RtajUjakuk
2 Q 2 Q

S Cellflliz + elluellis + VR LalVull palluel 22 + | Rellz Vel 72,

for any € € (0, 1], where we used Holder’s and Young’s inequalities. Integrating in time from 0 to ¢ and
using the Young, Sobolev, and Korn’s inequalities with (4.17)—(4.18), we get

el 2 s + )3
t t
S Cll Mg + il + N + [ (ellll + Cellallpluela + [ |Ral=ully
< Cullf g + (e e+ €0 urllZ o + (I3 + ellulZ ma + CecllulZam

t
[ IRl e,
0

for any €, €, € € (0, 1], where we used ||u(0)| g1 = 0 in the last inequality by (4.9). For the space regularity,
note that u is the solution of the elliptic problem

(4.28)

—Adiv (Vu+ (Vu)") — pV div u = —% + % in [0, 7] x Q, (4.29)
with the boundary conditions
N Oru; + Ojup )™ 4+ pogurr’ =0 on [0,1] x T, (4.30)
u=0on [0,1] x Iy, (4.31)
for j = 1,2,3. From the elliptic regularity for (4.29)—(4.31) it follows that
lullzrz S IR uellpe + IR™ fllzz < Nuellzz + [1£llze, (4.32)
from where
lull 2z < lluellzzrz + 1 fllpzrz - (4.33)
Combining (4.22)—(4.23), (4.28), and (4.33), we obtain
t
ez e + lu®)llzn S 1F1172 L +/O 1 Rell o< l[ull 71 (4.34)

by taking suitable €, €, € > 0. Using Gronwall’s inequality, we arrive at

¢
Ju(®) |1 < CIF 122 exp <c JLCIr dT> < CIfIBs s,
and thus (4.34) implies

||u||§1t1Lg S ||f|‘%§L3a (4.35)
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where we used e“* <1 for t < 1. From (4.33) and (4.35) it follows that
lull e < llullzzmz + llullmiee S 1 fllczce,

completing the proof of (4.11).
Differentiating (4.1) in time and taking the L2-inner product with wu;, we arrive at

1d
P |Ut|2 - >\/ Rutjak(ﬁkutj + ajutk) — ,u/ Rutjﬁjakutk
2dt Jo, Q O
(4.36)
:/ frug + /\/ Ry ;O0x (Oruj + Ojur) —|—u/ Ryuy;0;0rus,.
Qf Qf Qf

We proceed as in (4.14)—(4.15) to obtain

—-A Rutjak(akutj + Bjutk) =A Rutj (Bkutj + Bjutk)uk + )\/ utjakR(Bkutj + Bjutk)

Qf Te 2 (437)

+ /\/ R@kutj (8kutj + @utk)
Q¢
and
—u/ Ruy;0;0kuy, = y/ Rutj(?kutkuj +u/ U0 ROk +u/ ROjue;Opugy.- (4.38)
Qf I'e Qs Qf
Inserting (4.37)—(4.38) into (4.36), we get

1d

5%/ ug|? + )\/ ROy (Opusj + Ojuek) + p | ROjug;Opus
Qs Qs O

SNFell2e + lluelZe + || Rell oo luel 2wl e =+ lluell a || VR pal el a1,

where we used Young’s, Holder’s, and Sobolev inequalities. Integrating in time from 0 to ¢ and using the
Young’s and Korn’s inequalities and (4.17)—(4.18), we obtain

t t
hae (O3 + el 2 s < 1B 2 + / 1Rl lull3e + / | Rell e el + (e 4+ €Co) e 22
+ CeeluelZs 1z

for any ¢, € € (0, 1], since ||u(0)||zz = || £(0)]|z2 = 0. From (4.32) and (4.35) it follows that

t t
e ()13 + el 22 10 S 712+ laelBa e + / | Rell = el 132 + / | Rell = 11113

. (4.39)
S U rpas + liigss + | W el
by taking appropriate €, € > 0, where we also used
[fllgere < 1 f[lmp 2 (4.40)
in the last inequality. Appealing to Gronwall’s inequality, (4.39) implies
lue (@)1 72 S 11F 12 (4.41)

and then, after using (4.41) in (4.39), we arrive at

el Zz 2 S 11F 1l
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Differentiating (4.1) in time and taking the L2-inner product with wu, we obtain

Ad wd
|u \2+——/ ROy (Opusj + Ojuw) + = —
o L2t Jo, o EET EIER g dt g,

= frug — /\/ uttjakR(akutj + @utk) — ,u/ uttjﬁjRE)kutk
Qf Q¢ Q

f

Raj Utj 8kutk

A
+ 5/ Rté‘kutj(akutj + 8jutk) + %/
Qg

Rtajutjakutk + )\/ utthtak(ﬁkuj + (%uk)
Qs

Qg
+M/ Ugj Ry Ojrug,
Q¢

where we integrated by parts in spatial variables. We proceed as in (4.36)—(4.39) to get
¢ t
2 2 2 2 2 2
lweellzz e + lwe@len S Cell fllap Lz + lue(®)llze + 6/0 ([ 2| 2 +Ce/0 Bl 7o [1.f 1172

t
+ (€0 + e+ O)lunellizre + Ceelluell iz + Cé/ (1 + | RellF oo el 1,
) 0
(4.42)

for any €, € € € (0, 1], where we used the Young’s, Holder, Sobolev, and Korn’s inequalities. Note that u;
is the solution of the elliptic problem

— A div (Vug + (Vu)') — pV div ug = — R ug + R 2w Ry + R fy — R™2Ry f in [0,1] x Q,

with the boundary conditions

A(Oku; + ajutk)uk + pOug? = 0 in [0,1] x T,

u; = 01in [0,1] x T'y, (4.43)
for j = 1,2, 3. The elliptic regularity implies that

lutll ez S llueelle + lluweRellz2 + [ fell2 + [[Refll 22
S luaellze + lJuellz2 || Rellzoe + ([ fellz2 + [[Rell zoe | 1] 225

where we used Holder’s inequality. From (4.41)—(4.44), we obtain

(4.44)

t t
lueellZ2 2 + lue(®)F < 1F e + llue ()72 +/O (L + [ RellZoe) el 71 +/O 1R |70 1 £117.2

t
<l + / CER ARSI

by taking €, € € > 0 sufficiently small, where we used (4.40). Appealing to Gronwall’s inequality, we arrive
at

lue ()17 < 1%,
whence
”uttHifL?T Sl (4.45)
From the H* regularity of the elliptic problem (4.29)—(4.31) and (4.44) it follows that
[l S IR el gz + R
S lwtlle + [[Bell oo l[well e + [[Bell oo [ fllze + ([ fell 22 + ([ f 1],
since H? is an algebra. We combine (4.41) and (4.45)—(4.46) to get

(4.46)

[ull s = llull Lz s + lullmz ez

Slluetllzzre + | Rellpzpse lutllzgorz + | Rellzose 1 flmpce + [ flle S (1l k2
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completing the proof of (4.12). O
The following lemma provides a maximal regularity for the parabolic system (4.1)—(4.5).

Lemma 4.2. Let s € (2,2 + €], where €y € (0,1/2) is arbitrary. Assume the compatibility conditions

hj(0) = M(Okuo; + 3ju0k)yk + udpuorr’ on Ty, (4.47)
uoj =0 on I'y, (4.48)
for 3 =1,2,3. Suppose that
(R, R™1) € (L%((0,1), H*()) N H'((0,1), L(2)))? (4.49)
and
(uolr,, Osuolr,) € HTH/3(T,) x H*Y/3(Ty) (4.50)
with the nonhomogeneous terms satisfying
(hy £, £(0)) € K*712((0,1) x T') x K*71((0,1) x Q) x H (). (4.51)

Then the system (4.1)—(4.5) admits a solution u satisfying

[ull ko (yxay S WPl z-r2 + uolell iz, + 185uolr | gamrr2(r))

(4.52)
+ luollms + [ flls—1 (0,10 + 1 £ (0| z5-2(0p)>
where the implicit constant depends on the norms of R and R~ in (4.49).
Proof. In order to apply a lifting result in [43], we consider the boundary conditions
v = ug|p, on [0,1] x T'c, (4.53)
A(Okv; + 8jvk)1/k + popupr? = hj on [0,1] x T, (4.54)
OOmv;v* ™ =0 on [0,1] x T, (4.55)
v=0on [0,1] x 'y, (4.56)
vk = Opug;v"™ on [0,1] x Ty, (4.57)
OmOkvjvFv™ =0 on [0,1] x T, (4.58)
v periodic in the y; and yy directions, (4.59)
for j = 1,2, 3, and the initial data
v(0) = ug in Qf, (4.60)
dw(0) = ARy div (Vug + (Vug)T) + pRoV div ug + £(0) in Q. (4.61)

Below, the norm of dependence on time and space are understood as (0, 1) and {2¢, unless stated otherwise.
From [43, Theorem 2.3] and the compatibility conditions (4.47)—(4.48) and since s > 1/2 it follows that
there exists v € K*T1((0,1) x €) satisfying the boundary conditions and initial conditions (4.53)—(4.61)
with

oo S Uhlz-ve + ol s + | G|+ ool + NRoDPolaens + 15O
from where f
[llgesr S IAll gmrz + uolrellmovirzey + 10suolrellmo—srzry + lwollms + £ (O)l o2 (4.62)
Now we consider the homogeneous parabolic problem
w; — AR div (Vw + (Vw)T) — uRV div w = F in [0,1] x Q, (4.63)
with the homogeneous boundary conditions and the initial data
N Opw; + 0jwi)vF + pdpwir? = 0 on [0,1] x T, (4.64)
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w=0on [0,1] x T, (4.65)
w periodic in the y; and yy directions, (4.66)
w(0,-) = 0 in L, (4.67)
for j =1,2,3, where
F=v — f— AR div (Vv + (Vv)T) = uRV div v in [0,1] x Q. (4.68)
Note that (4.61) implies that
F(0,)) = 0 in Q. (4.69)
By (4.49), (4.69), and Lemma 4.1, there exists a solution w to the system (4.63)—(4.68) satisfying
[wllk> S [1F ]l w0 (4.70)
and
[wlks S I1F] k2, (4.71)

where the implicit constants depend on the norms of R and R™! in (4.49). From [43, Theorem 6.2] and
(4.70)—(4.71) it follows that

[wllgsrr S 1F | xe-1, (4.72)
since s ¢ 1/2+ Z and s/2 ¢ Z. From (4.68), we get
[F o1 S llico-1 + lvell ot + [[RDZ0]| geos (4.73)
For the second term on the right side of (4.73), we obtain
[vell o S Mlvell g g + Nvell yre=nre e S ollicosss
where we used Corollary 3.4. To treat the last term on the right side of (4.73), we claim that
IAB| =22 S NAlmz Lo 1Bl gre-vr2pa + [ Al poe Bl grie-vr2 2 (4.74)

on the domain (0,1) x . Using extensions, we may assume that the domain is actually R x R3. From
the Holder inequality it follows that

IAB| yre=nr2 s S WAl e-vrzap1Bllinszz + [Alleree | Bl ge—vrz -
SN AllywsraspeelIBllzszz + 1Al |1 Bll ge-nr2 2

since 2 < s < 5/2. The claim (4.74) is thus completed by appealing to the Sobolev inequality. For the
last term on the right side of (4.73), we use the Hélder’s inequality, yielding

||RD:3’U||L§H§*1 < ”RHL?H}E’HD%‘)”LfH;’I S vl gt
and
||RD92,;U||H5571>/2L§ S ”R”H}Lg"||D92cv||H§S*1)/2L32E + ||R||L§°L:°||D§U||H§Sfl>/2Li S vl ges+1s (4.75)

where we appealed to (4.74) and Corollary 3.4. Note that from (4.63)—(4.68), we infer that the difference
u=v — w is a solution of the system (4.1)—(4.5). From (4.62), (4.72)—(4.73), and (4.75) it follows that

[ull o S lwllgorr + ([0l ot

S 1l ges=172 + llwolrcllmavrrzry + 1105uolrllmra-1r2(ry) + luollme + 1 Fllo=s + £ (O] o2,

concluding the proof of (4.52). O
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5. Solution to a Parabolic-Wave System

In this section, we consider the coupled parabolic-wave system

— AR div (Vo + (Vo)T) = uRV div v + RV(R™Y) = f in [0,T] x Q, (5.1)
Ry — R dive=0in [0,T] x £,
wy — Aw =0 1in [0, 7] X Q., (5.3)

with the boundary conditions

v=wgon [0,T] x I, (5.4)
NOpvj + 0ju)V* + pdpvpr? = Opwv* + R™1w9 4+ hy on [0,T] x T, (5.5)
v,w periodic in the y; and yy directions, (5.6)
v=0on[0,T] x I', (5.7)
for j = 1,2,3, and the initial data
(v, Ryw,w)(0) = (vg, Ry, wp,w1) in Qg x Qg xQe xQo,
(vo, Ro, wg,w1) periodic in the y; and yo directions, (5.8)

wO:O.

In order to avoid issues of dependence of constants for small time, we introduce a cutoff function in
time and work on the unit time interval (0,1). Let T' € (0,1/4), and let ¢4(t) be a smooth cutoff function
valued in [0, 1] such that

o0 ={ oo, 59)

and [|¢% [ L= 0,1) S 1/ T. The following lemma provides a necessary estimate for the cutoff function.
Lemma 5.1. We have H(bTHHt(S_z)/z <1
Proof of Lemma 5.1. By the Sobolev interpolation inequality, we have

||¢THH<S e < ||¢T|| 5—2) /2||¢TH(4 5)/2 < <a +T-1/z)(s—2)/2T(4—s)/4 < T(3-5)/2 <1,
since s < 3.

To obtain the existence of solutions and avoid issues with the dependence of constants for small time,
we replace (5.1)—(5.3) and (5.4)—(5.7) with

— AR div (Vv + (Vo)T) — pRV div v + RV(R™1) = f in [0,1] x Q, (5.10)
— ¢5R div v =0in [0,1] x Q, (5.11)
wy — Aw =0 in [0, 1] X Q, (5.12)

with the boundary conditions

w(t, ) / g (T)v(T, ) dT + (t—/ O (T dT) vo(z) on [0,1] x T¢, (5.13)

ANOwvj + 0ju)V* + pdyvpr’ = Opw v + R71w9 4+ hy on [0,1] x T, (5.14)
v,w periodic in the y; and yy directions, (5.15)
v=0on [0,1] x Ty, (5.16)
for j =1,2,3, where ¢ (t) is as in (5.9). Note that from (5.13) it follows that
we(t,z) = ¢7(t)(v(t,x) — vo(x)) + vo(x) on [0,1] x T, (5.17)
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and thus the boundary condition (5.17) agrees with (5.4) on the time interval [0, T], and the solutions of
(5.10)—(5.16) agree with the solution of (5.1)—(5.7) on the time interval [0, 7], with the same initial and
boundary conditions (5.8).
To provide the maximal regularity for the system (5.10)—(5.16), we state the following necessary
a priori density estimates.
Lemma 5.2. Let s € (2,2 + €], where €y € (0,1/2) is arbitrary. Consider the ODE system
R, — Rz div v =0 in [0, 1] x Qy, (5.18)
R(0) = Ry on Q. (5.19)
Assume that (Ro, Ryt vo) € H*(Qy) x H*() x H*(Qy) and lvllxs+1(0,1)x) < M, where M > 1. Let
6 € (0,1/2). Then for a sufficiently small constant T > 0, depending on M and 8, we have
(i) IRllzere + IR Lgere + IRl n; + IR len; S 1,
(i) ||R71HH3H3/2+6 + ||R||HgH2/2+5 S
(iid) [|Rllgyms S M,
where the norm of dependence is (0,1) x Q.

We emphasize that the implicit constants in the above inequalities (i)—(iii) are independent of M
and 6.

Proof of Lemma 5.2. (i) The solution of the ODE system (5.18)—(5.19) reads
R(t,x) = Ro(x)elo o7 div o dr i1 10 1] x Q. (5.20)

Let T € (0,T] be a small time to be determined below. From Hélder’s and Sobolev inequalities it follows
that
[Rl|lLeere S HROHHseng lo7(7) div o()llee dr < oTV2M <

t xz N ~ ~

and
IR e < Ry e 19000 v elion dr < OTH20 <

t xz N ~ ~

for some sufficiently small 7' > 0. Similarly, we have

2T .
IRl s S 1 Roll e [ledo o2 dvehar oy <1

and

2T | s
IR ey S IRy s flelo™ (0 v dr| oy <1

(i) From (5.18), we use Holder’s and the Sobolev inequalities to get
IR™)ell o gzravs SNRT2Rell 2 pyavzes SN div vl oo oy, mrarzva () S 0llLe o2y, 537205 - (5:21)
Recall that for any 0 < r < 7/ and f € H" , we have the Sobolev interpolation inequality

1£ 1l S ellfllaer + €O e, (5.22)
for any € € (0, 1]. From (5.21)—(5.22) it follows that

H(R_l)tHLgHg/Hé S 6””HLz((o,QT),HHl(Qf)) + CE||UHL2((O72’]~’),L2(Qf)) SeM + CeTl/ZHUHLfCLg

- - 5.23)
< 6M+C5T1/2HU||H(S+1)/2L2 < (6+C5T1/2)Ma (

since s > 2. Taking e = 1/M in (5.23), we arrive at

N )il gzvess < 1,
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for some sufficiently small 7' > 0. Similarly, we have

IRl 2 sraes < 1.

HLZH

Thus, we conclude the proof of (ii) by combining (i).
(iii) From (5.18) and Holder’s inequality it follows that

1Rl zzrrs S 1BO7l e mre | div vllzz s S lvll pz e S M-
Therefore, we conclude the proof of (iii).

The following lemma provides necessary estimates for the structure displacement and velocity on the
boundary.

Lemma 5.3. Let s € (2,2 + o], where eg € (0,1/2) is arbitrary. Assume that [|v[|go+1((0,1)x0,) < M for
some M > 1. Suppose that v and w satisfy (5.13) and (5.15) with the initial data satisfying (v, wo, w1) €
H#(Qy) x HFY2(Q,) x H=Y2(Q,) and vo|r, € H*TY/2(T,). Then we have

( ) ||w||L%H;+1/2(FC) S Tl/QM + 17 :
(ii) HwtHH,f/2_3/4H;Z/2+1/4(FC) + Hw”Hf/2_3/4Hi/2+1/4(Fc) < (e+€C. + C€,€T1/2)M + .,
(111) ||w||Ht5/2+3/4L2 (T'.) 5 (6 + gCe + Ce,€T1/2)M + Ce;

for any €,€ € (0,1], where the implicit constants depend on the initial data.

Here and below, when not indicated, the time and space domains are understood to be (0,1) and €,

respectively.
2 1/2
dt
Hs+1/2 (Fc)

(5.24)

Proof of Lemma 5.3. (i) Using (5.13) we get

9 1/2 L
||wHL%H;+1/2(FC) Sx < 0 dt) + (/
Hs+1/2(T,) 0

S T1/2||U||LfH;;+1 +1STY2M +1,

([

FUdT

since vo|r, € H*+t1/2(T), where we also used that for every ¢ € [0, 1] we have

¢ 2 27 2 er
(/ ¢T—||v||Hs+m<rc>dT) = ([ onlellnwadr ) ST [ folBiensr, o
0 0 0

(ii) We use the Sobolev interpolation and Young inequalities to write

s/2—3/4 T/4—s/2
o S w227 e || 74

HthHS/2 3/4ps/2Ht/4 HIH:™3/%(T,) t L2H(*432+165—7)/2(7725)(F)

(5.25)
6||wt||H1Ha 3/2(1,) + Ce ||wt||LzH< 4s2+163—7)/2(7=28) (_y =1 + 1,

for any € € (0,1].
Note that the implicit constant in the first inequality is independent of T' since the interpolation is

applied on a fixed domain (0, 1) x T'.. For the term Z;, we use (5.17), the trace inequality, and the Leibniz
rule, to obtain

Ty S el (v —vo)ll g2 pgz—1 + €llv'll 21 + €lldz (v — vo) + ol p2gz-1 =t Ta1 + Taz + Tis. (5.26)

The term 77 is estimated using the Sobolev and Hélder inequalities as

t
0

< GHU/HLfH;—l S eM, (5.27)
L2((0,2T),H>—1(Qy)) ’

T S T = vollzo,27),m1e- 102y S €T ‘
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2T 2T
g/ / [0s ()|l grer ds | dt
L2((0,2T),H==1(Q)) 0 0

t
|1,
0
~ 2T 2 ~ 2T
= 92T </ llvs (s)|| o1 ds) < T2/ ||vt(s)\|%1571 ds
0 0

in the second inequality and Corollary 3.4 in the last. Next, the terms Z15 and 73 are estimated as
Tio SeM (5.29)

(5.28)

and
Tis = ellégv + (L= 62 )voll aps s S ellvllpages + (1 = dp)voll oa s S M + 1. (5.30)
For the term Zo, we use (5.17), (5.22), and the trace inequality to get
I CE||v‘|L2((O,Q’f),H(*452+165*7)/(14*45)+1/2(Qf)) + Cellvo(1 — ¢’f)||L2((O,Q’f),H(*‘lsz+165*7)/(14*4S)+1/2(Qf))
S Cellvll p2 (0,27, 10 (0)) T Cellvoll 20,27, e (1))

where the last inequality follows from the identity (—4s%+16s—7)/(14—4s)+1/2 = s. Using the Sobolev
interpolation inequality, we get

IQ S gCE||UHL2((O)2T)7HS+1(Qf)) 4+ Cgve||v||L2((0,2T),L2(Qf)) + Ce S gOGM + C€7ET1/2M + C€7 (5.31)
for any € € (0,1]. Combining (5.25)—(5.31), we arrive at

HthHs/z 8/4ps/243/4p ) <eM + éC.M + C: TY?>M + C.. (5.32)
For the second term on the left side of (ii), we proceed as in (5.25), obtaining
5/2—3/4 7/4—5/2
H’w||H:/2—3/41LI;/2+1/4(F )y~ || H};IHu/z || ||L/2H(2€+o)/2(7 2”(1“ )

= ”wHHtlHiv/Q(FC) + ||wHL%H£25+5)/2(772s)(FC)
Sllozvllzzm + 11 = éz)vollzzmy + 1wl 1z ests/aa-an gy

since 1/2 < (2s+5)/(14 —4s). Note that (2s+5)/(14 —4s) < s+1/2 for 2 < s < 5/2. Thus, using (5.22)
and (5.24), we obtain

||w||Hf/273/4H;/2+1/4(FC) S (6 + CET1/2)M + ]., (533)
for any € € (0, 1].
(ili) First, we write
H’UJHH:/Q‘*’W“L%(FC) S HthHtS/2_l/4L2(F ) + Hw”LQLg(FC)

s/2—1/4 5/4—s/2
S el pa i el oty + el o gy (5.34)
S ellwellLzra oy + CeHthLng(rc) +TY2M +1,

for any € € (0,1], where the last inequality follows from (5.24). Note that the implicit constant in the
second inequality is independent of T" since the interpolation is performed on (0,1) x I'.. From (5.17) it
follows that

wii(t) = ¢z (t) (v(t) — vo) + ¢7(t)ve(t, x) on [0, 1] x T. (5.35)
For the first term on the far right side of (5.34), we use (5.35) and obtain
eHwttHLfLQ(F )~ €H¢T V=10 HL2L2 re) T €H¢Tvt||L2L2 Te)

(5.36)
Sel v~ Voll p2 (0,27, 11 (o)) T Ellvell 2 S €M,
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where the last inequality follows from (5.27) and Corollary 3.4. For the second term on the far right side
of (5.34), we use (5.17) to arrive at

Cellwill 2z S Celldzvllzzra gy + Cellvo(l = )l 22 ry) S (ECe + CeeTV?)M + C, (5.37)

for any € € (0,1], where we used the trace inequality and (5.22). The proof of (iii) is concluded by
combining (5.34) and (5.36)—(5.37).

The following theorem provides the local existence for the parabolic-wave system (5.10)—(5.16).
Theorem 5.4. Let s € (2,2 + €], where eg € (0,1/2). Assume the compatibility conditions
wyj = vo; on I,
vg; = 0 on Iy,
A(Orvo; + (‘%ng)l/]~C + pdivgi? — Rall/j — 8kw0juk = h;(0) on T, (5.38)
ARoOy (Ovo; + Ojv0k) + pRo0;Okvor — Rodj(Ry ) = — f;(0) on T,
for j =1,2,3. Suppose that the initial data satisfy
(vo, wo, wy, Ry, Ro, £(0)) € H* () x H*T/2(Q) x H™M2(Q,) x H*(Qy) x H* () x H* (%)
and
(volr., zvolr,) € HTVA(T,) x Ho2(Ty)
with the nonhomogeneous terms satisfying
(f,h) € K*71((0,1) x Q) x K*7Y2((0,1) x T',).
Then there exists a unique solution
(v, Ryw,wy) € K5TH((0,T) x Q) x H((0,T), H*()) x C([0,T), H+Y/4=<0(Q,))
x C([0,T], H* =217 (Q)),

to the system (5.10)~(5.16), where T > 0 is a constant and the corresponding norms are bounded by a

function of the initial data and the nonhomogeneous terms.
Let
Z={ve K™ ((0,1) x Q) :v(0)=vp in Q¢,v=00n[0,1]xT¢, (5.39)
v periodic in the y1 and y, directions, and [[v]|gs+1(0,1)x0 ) < M}, '

where M > 1 is a constant to be determined below. For v € Z, define R by (5.20). Next, we solve the
wave equation (5.12) for w with the boundary condition (5.13) and the initial data (w,w;)(0) = (wg, w1)
in Q.. With (R, w) constructed this way, we define a mapping

A:v(e Z2)— 1,
where v is the solution of the nonhomogeneous parabolic problem
vy — AR div (Vo + (V0)T) — uRV div o = f — RVR™ ! in [0,1] x Q, (5.40)
with the boundary conditions and the initial data
A(OkT; + 8j17k)1/k + o = 8kwj1/k +R YW+ hjon[0,1] xT',
2=0on[0,1] x ¢,
v

5.41
v periodic in the y; and y, directions, ( )

(0) =wvp in Q ¢,

for j = 1,2,3. We shall prove below that A is a contraction mapping and then use the Banach fixed-point
theorem.
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5.1. Uniform Boundedness of the Iterative Sequence

In this section, we show that the mapping A is well-defined from Z to Z, for some sufficiently large
constant M > 1. Let T € (0,1/4) be a constant. We emphasize that the implicit constants in this section
below depend on the initial data but are independent of M and T. Denote the right side of (5.41); by ﬁj.
One may easily verify that

1 (0) = X(xvo; + djvor)v* + pdsveir’ on T, (5.42)
by (5.38)3. From (5.38)2, (5.42), Lemma 4.2, and Lemma 5.2, it follows that
[ll e+t S WAll sz + volrllmssarzry) + 19500l a2 + lvolls + 11|k
+ | RTVR| e + [ f (Ol o=z + [|1RoV RG |17
from where
ow
81/ K;—l/

+ llvolr o7z + 105v0lrellre-1/2og) + £ (O) | re-2 + 1RV Roll -2

ol 5 | IR R germs 4 IR e Bl ge-a7s + [ Flicems + ol

(5.43)

Here and below, when not indicated, the time and space domains are understood to be (0,1) and ,
respectively.

For the space component of the first term on the right side of (5.43), we appeal to Lemma 3.6 to
obtain

ow

o < ol o2+ N0tll o3y + 10l g a0l orasnss arosaage,

L2H;TY2(T.)

S ”wHLfH;Jrl/z(FC) + ||wt||Hts/273/4H;/2+1/4(FC) + ||w||Hf/273/4H;/2+1/4(FC) + 1.

(5.44)
From (5.44) and Lemma 5.3 it follows that
0 ~
H 7 <(e+EC, + C . TVA)M + C., (5.45)
W llzmzr2)

for any €, € € (0, 1]. For the time component of the first term on the right side of (5.43), we use Lemma 3.5
to get

|5 < ol + +
- N 0|l Frs/2+3/4(Q, 1 Hs/2-1/4(Q, 2 pys/2+3/4
o H/P Y2 (1) () () Ll (Te) (5.46)
+ Hw”Hf/?JrS/‘lLi(FC)-
For the third term on the right side of (5.46), we appeal to (5.24) to get
||wHL$H;/2+3/4(FC) < V2 M + 1, (5.47)
since s/2 4 3/4 < s+ 1/2. Applying Lemma 5.3 and (5.47) in (5.46), we get
0 .
H“’ < (e+éC. + C. V)M + C., (5.48)
ov Hts/271/4Lz(FC)

for any €, ¢ € (0,1].
For the space component of the second term on the right side of (5.43), we use the Holder’s and the
Sobolev inequalities to obtain

IRT'VER 2 -1 S IR Lgo

VRl S 1, (5.49)
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where we appealed to Lemma 5.2. For the time component, we use Holder’s and the Sobolev inequalities
with Lemma 5.2 to obtain

||R71VRHHt(571>/2Li SIR'VR| g2 SIRVRI 22 + VRl 222 + VR 212 (5.50)
SR 2o VR Lgers + | Rell 2 + 1Rl L2 S 1.

For the space component of the third term on the right side of (5.43), we use the trace inequality to
obtain

HRilnL%H;*l/Q(FC) S HR71||L,2Hg S 1, (551)

where the last inequality follows from Lemma 5.2. For the time component, we proceed analogously to

(5.50), obtaining
||R_1||Hf/2—1/4L2(pc) SIR Mmm S 1 (5.52)

since s < 5/2.
For the last term on the right side of (5.43), we proceed analogously as in (5.49), obtaining

1Rg "V Roll -2 < || Rg |72+ |V Rollsr—= < 1. (5.53)
Combining (5.43), (5.45), and (5.48)—(5.53), we arrive at
8]l o1 S (€ + ECe + C cTY?)M + C,

for any €, € € (0,1]. Taking appropriate €, €, and T > 0 (first e sufficiently small, then ¢ sufficiently small
depending on €, and then T sufficiently small, depending on € and €), we get

5]l seerr < M, (5.54)

by allowing M > 1 sufficiently large.
Thus, we have shown that the mapping A: v — 0 is well-defined from Z to Z and satisfies (5.54) for
some M > 1, which depends on the size of the initial data and nonhomogeneous terms.

5.2. Contracting Property

In this section, we prove
1
IA@) = A@)licens < 5llor = vallgeers,  wv2 € Z, (5.55)

where M > 1 is fixed as in (5.54) and T > 0 is a sufficiently small constant as in the previous section,
which is further restricted below. We emphasize that the implicit constants below are allowed to depend
on M.

Proof of Theorem 5.4. Let v1,vy € Z. Let (R1,&1,&11,01) and (Ra, &2, o, U2) be the corresponding solu-
tions of (5.18)-(5.19), (5.12)-(5.13), and (5.40)~(5.41) with the same initial data (Ro,wo,w1,vo) and the

same nonhomog~eneous terms (f, h). We denote V =01 — 0y, 0 = v —va, R =Ry — Ro, and E=¢& —&.
The difference V satisfies

Vi — ARy div (VV + (VV)T) = uR,V div V = g in [0,1] x Q,
with the boundary conditions and the initial data
MNORVj + 0; Vi)V + o Vi’ = 0p&v* — Ry Ry 'Ry? on [0,1] x T (.,
V=0onl[0,1]xT¢,
1% periodic in the y; and yy directions,

V(0)=0inQy,
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for j =1,2,3, where

g=—Ri\VR{ '+ RyVR;' + AR div (Vi + (V12)T) + pRV div 7s. (5.56)
Note that g(0) = 0. We proceed as in (5.43) to obtain
” ¢ Bp—1p—1 —1o P P2
Vg < |5, +RRY Ry "V Rl geo—r + | Ry VER| geomr + | RD s o1
KpoM? (5.57)

IR RS Rl e,
C

where the last inequality follows from (5.56) and =Ry VR; ' + RyVR; ' = Ry 'VR— R, 'Ry ' RVR,. The
difference ¢ satisfies the wave equation
€ — AE=01in [0,1] x Q,

with the boundary condition and the initial data

t
§(t, o) :/ ¢70(T,z)dr on [0,1] x T'g,
0
(£,€)(0,2) = (0,0) in Q.
For the first term on the right side of (5.57), we proceed as in (5.44)—(5.48) to obtain

3

™ S (64 EC + CeT?)[0] o1, (5.58)

Ks—1/2([‘c)

for any €, € € (0,1].
Since the difference R satisfies the ODE system

R; — ¢z R div vag = Ry div @ in [0,1] x Q, (5.59)
R(0) = 0 in Q, (5.60)
the solution is given by
t
R(t,z) = / elr ¢z div 205 (T)R1(7) div 0(7) d7 in [0,1] x Q. (5.61)
0

For the second term on the right side of (5.57), we obtain
IRR Ry 'V Roll 2 a1 S I Rll a1 Ryl e

Rz s | Rellson: S | RllLeens, (5.62)

where we used Holder’s inequality and Lemma 5.2, and then from (5.61) it follows that
IRRT Ry 'V Rs| 2 ot S | Rllnemy S T8l 2500, (5.63)

where we used the Cauchy-Schwarz inequality. For the time component (note that s/2 —1/4 < 1), we
have

I(RR, 'Ry 'V R 212
SR VRy | p2r2 + |RRuV R 212 + |[RR2VRal| 212 + 1RV Raell 212
N ||1j3|\~L§°L;°H div vall 2 pa IVR2 |l g s + HRQ\L%L;cH div 0| p2((0,27), L (o) IV R2 | Lo L2 (5.64)
+ | Rllrgoreell div villpzpa[VRe| e rs + [|Rl Lgonee || div vl pzra [V Rl e ra
+ B g | VRl 212

S (e+ CTV) oo,
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for any e € (0, 1], where we used Holder’s inequality, Lemma 5.2, (5.59), and (5.61), as well as HRHL?"HI <
T1/2||17HL$H;+1. Note that ||RR;1R51VR2||L?L3 does not need to be estimated since it is dominated
by (5.63). Similarly, the third term on the right side of (5.57) is estimated as

IRV R 2 S IR e s | Bll gz S T2 0] g1, (5.65)

x

and for the time component
[(B1VR)ill 222 S |RuV R 202 + RV R 1212
SRl VR o2 + [ Rall oo e VRl 212 S (€ + CeTY2)|[6]| geosn

~

(5.66)

Again, the term ||R1VR||L5L2 is dominated by (5.65). Regarding the fourth term on the right side of
(5.57), we use Corollary 3.4 to obtain

IRD s 12 s S IR Lo mg

ol g2 pzer S T2 scosn (5.67)

To treat HRD?CT)QHH(SA)/Q we claim that for any o > 1/2 and ¢ > 0, we have
t

L2’
[ABll gLz S 1Al o gravess | Bll gz (5.68)
on the domain (0,1) x €. Using extensions, we may assume that the domain is actually R x R®. Then

1ABllrp 12 = 1Bl L2 e < || Allarg | Bl |

S Allpemp1Bllezag < 1Al garees o 1Bl 2 mp (5.69)
Al gz | Bl .
since a > 1/2, and (5.68) follows. Using (5.68), we then write
||RD§@2||H5571>/2L3 N HR”H}Hg||D925@2||H§5*1)/2Lg SR p2pz + 1Rl 2 g2 (5.70)

where we used Corollary 3.4 in the last inequality. From (5.22) and (5.59), it follows that

I1Bill 22 S RN gz l0all 2 revr + 1R || oo b2 | 678l 22 122

S TI/QH@HL?Hi“ + €lloll z gzt + CeT1/2||77HH§“+1>/2Lg S (e 4+ CTY2)|[0] geer, (571
for any € € (0, 1], since s > 2. Combining (5.70) and (5.71), we arrive at
IRDZ 02| o2y S (€4 CT2) 0] o, (5.72)
For the last term on the right side of (5.57), we use the trace inequality and arrive at
BT Ry Rll ey S 1Rl S T2 6o (5.73)
and
IRT Ry Rl yoramsraps o) SIBT Ry Rllpmy S IR Ry R)ell gy + IRy Ry Rl s, (5.74)
since s < 5/2. For the first term on the right side of (5.74), we proceed as in (5.64) to obtain
1B B Ry S WRuloemy + | BarBlzi + 1 Bilzm S (4 G len. (5.75)
The second term on the right side of (5.74) is estimated analogously to (5.73), and we get
IR Ry Rl S T6]| s (5.76)

Applying the above estimates in (5.57), we obtain
IVikerr S (4 E+T2Ce )|l o1,

for any ¢, € € (0, 1]. Taking appropriate €, €, and T>0 (first € sufficiently small, then € sufficiently small
depending on ¢, and then T sufficiently small, depending on € and €), we conclude the proof of (5.55).
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Thus, the mapping A is a contraction from Z to Z. Using the Banach fixed point theorem, there exists
a unique solution v € Z such that A(v) = v and which also satisfies (5.54) for some M > 1.
Now we fix the constant T' > 0 as above. Using Lemma 3.5, we have the interior regularity estimate

lwllego,n,me+1/4-<0(@0)) + 1wellooa,me-3/4-<0 (00)) (5.77)
S ”wOHHS*l/“*ﬁO(Qe) + will gro-sra—co () + 1wl get1/a—co o174 () -
For the last term on the right side, we appeal to (5.17), yielding
llsress72-aressrsmearyy Nl ge-srs-en gy e + 0l g geiniaeor,
<00l en gy 11 = 020000 5750y ) 0l v
(5.78)

For the first term on the far right side of (5.78), we appeal to Corollary 3.2 and Sobolev inequality to get

o0l ge-sra-capa ey S ollgo-siacaga ey S Iollggerrags + ol 2o, (5.79)
since s < 2+ 2¢p. From (5.24) and (5.77)—(5.79), it follows that

lwlleqo,11, 1541740 (0)) + Welle(ro,1), 153740 (20)) < O (5.80)

where C' > 0 is a constant. By (5.80) and Lemma 5.2, there exists a unique solution

(v, Ryw,wy) € K5T1((0,T) x Q) x H'((0,T), H*(Q))

x C([0,T], H*F/47<0(Q)) x C([0, T, H*~%/47%0(Q))

to the system (5.10)—(5.16), with the corresponding norms bounded by a function of the initial data and

the nonhomogeneous terms. (I

Remark 5.5. As pointed out at the end of Sect. 2, the approach extends to more general pressure laws.
For general equation of state ¢(r), we assume that ¢(r) is smooth such that ¢(0) = 0 and ¢(r1) — q(r2) =
(r1—72)q(r1,r2) for any 1 and ro, where ¢ is a smooth function. We shall briefly outline the modifications
needed for this general pressure law. In Sect.5.1, we have ||[RV(q(R™!))| x+-1 instead of the second term
on the right side of (5.43). For the space component, we use the Hélder and Sobolev inequalities to get

IRV (a(R™) 2522 S lla"(BTHRTIVR| o ppe-a S Nl (R )z mz IR VR g2 S 1,
where the last inequality follows from (5.49). For the time component, we appeal to (5.69), yielding
||RV<Q(R_1))||H§S*1>/2L2 ~ ||q ( )||H1H3/2+5HR 1VR||H(b 1)/2L2 5 1

where we used Lemma 5.2 and (5.50) in the last inequality. The third term on the right side of (5.43) is

replaced by [|g(R™1)|| KoV which can be estimated in a similar fashion. In Sect. 5.2, the first two terms

on the right side of (5.56) are replaced by —R;V(q(R;")) + RV (¢(Ry ")) and the K*~! norm can be
estimated using the structural assumption on ¢(r). O

6. Solution to the Navier—Stokes-Wave System

In this section, we provide the local existence for the coupled Navier-Stokes-wave system (2.3)—(2.5) with
the boundary conditions (2.6)—(2.10) and the initial data (2.14). Let v € Z where Z is as in (5.39), with
constant M > 1 to be determined below. Let ¢4 (t) be a smooth cutoff function as defined in Sect. 5;
here, T € (0,1/4) is a constant to be determined below; it is assumed to be smaller than the constant T
from the previous section, which we from here on denote by T,. We allow all constants to depend on T}
(but not on 7).

We again modify the system to be able to construct a solution on a unit time interval. Let

tx—x+/¢T o(1,z)dr in [0,1] X Q¢ (6.1)
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be a modified Lagrangian flow map and a(t,z) = (Vn(t,z))~! its inverse matrix, while we denote by
J(t,x) = det(Vn(t,x)) the corresponding Jacobian. The density equations we consider is

Ry — Rpqar;Opv; = 01in [0, 1] x Q, (6.2)
R(0) = Ry on O,
with the solution given by
R(t,z) = Ro(z)elo o7 (Mari(ro)dkv;(ro)dr i 1 1] x Q.
Next, we consider the solution w to the wave equation (5.12) with the boundary condition (5.13)—(5.16)
and the initial data (w,w:)(0) = (wg,w1) in Q.. With (n,a, J, R, w) constructed, we define
II:ve Z—1,
where v is the solution of the nonhomogeneous parabolic problem
010 — AROR(0;0) + Ok;) — pRO; O, = f; in [0, 1] x €, (
A(Ok0; + ﬁj@k)l/k + oyt = 8kwj1/k + h; in [0,1] x T, (
v periodic in the y; and yy directions, (
7(0) = vp in Q; (
in (6.4)—(6.5), we set
fi = ARk bk O0m¥; + bijOm k) + AR Ok (6110 U5 + by j O 01) + ARbgi Ok (0,05 + 0,01)
+ RO (b1iOm ;) + 11ROk (bimiOm ;) + Ry ;0r0;0; — Rby;0p R~ — RO; R™* (6.8)
=L+ I+ I3+ 1+ I5+ I+ Iy + Is
and
hj = A1 — J)(Okv; + 0;06)0" + (1 — J)O0p1? — AT by (b1 O ~+ by O 0y )"
+ I RWF 4+ (T = )R — AT (b O 4 by O 03 )V — AT by (9,95 4 0;0)vF
— ,ukajbmiamﬁiuk — by O i — ukajai@il/k +R YW
= K1+ Ky + K3 + K4+ K5 + K¢ + K7 + Kg + K9 + Kio + K1,
for j =1,2,3, where
b=a—1Is,
and I3 is the three-dimensional identity matrix.

Before we bound the terms in (6.8)—(6.9) and prove the contracting property, as in Sect. 5, we provide
some necessary estimates on the variable coefficients.

6.1. The Lagrangian Flow Map, Jacobian Matrix, and Density Estimates

We start with estimates on the Jacobian and the inverse matrix of the flow map.

Lemma 6.1. Suppose that |[v|gs+1(0,1)x0,) < M, where M > 1, and let § € (0,1/5). Then for T>0
sufficiently small depending on M and §, the following statements hold:

(@) bl s + 1Bl g gyavees S T30,

(i) [blagms S M.

(iid) |1 = J|pen: STV,

)
)
(iv) [llzere + 1T iegeree + 1 llLgem; + 117 ey S 1,
)
)

~

i
(v ||J_1||Ht1H2/2+6 + |‘J||H}H§/2+‘§ <1,
(vi ||J||H,}H; S M,
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where the region of dependence is understood to be (0,1) x Q.

We emphasize that the implicit constants in the above inequalities (i)—(vi) are independent of M
and 4.

Proof of Lemma 6.1. (i) From (2.11) and (6.1) it follows that
by = —¢47(bVb + bV + Vob 4+ Vo) in [0,1] x Q, (6.10)

while b(0) = 0. By the Fundamental Theorem of Calculus, it follows that for ¢ € (0,27) we have

t t t
16C) | s S/O 16117+ 17022+ d7+/0 [bll 22+ [[ V0| 72+ dT+/O Vol ze dr

t
S [ Vol 013 + le) d + 2,
0
where we appealed to the Cauchy-Schwarz inequality in the last step. Using Gronwall’s inequality, we
obtain
161l oo ((0,27), 15 (020)) S T2 < T2,

for T >0 sufficiently small; the choice of the power 1/20 is apparent in (6.12) below. Since also by = 0
on (27,1), we then infer that

1Bl gy S T2 (6.11)

Applying (6.11) in (6.10) and using (5.22), we obtain

1 0 —2:
“btllLfH§/2+5 5 Hv||L2((0,2T),H5/2+5(Qf)) g €||U||L?H;+1 + 6(5+2 )/(3+2 29)”1}“

< €M + €5+20)/B+25-25)F1/2

L2((0,27),L2(S2))

for any € € (0,1]. Letting e = TV/2°M 1, we get
< FL/20 | A1/24(5425)/20(34+25—2s) § r1+(5+26)/(2s—3—25) < F71/20
N0c]l ;2 pyaers ST+ T M T/ (6.12)

for T > 0 sufficiently small. Combining (6.11)~(6.12), we conclude the proof of (i).
(ii) From (6.10) and Hdlder’s inequality it follows that

10l 2ms < ||VU||L§H;Hb||2L;?°H; + IVl gz s 0l oo mrs + [Vl p2s S M,

which gives (ii).
(iii) From (2.13) and (6.1) we infer that J satisfies the ODE system

Jy = QﬁTJakjak’Uj in [0, 1] x Qg,

J(0) = 1 in Q. (6.13)

The solution is given by
J(t,x) = elo 07(T)an; (T.2)0kv;(T.x) dT 5 [0,1] x Q.
Using the nonlinear Sobolev estimate, we have
1T = Ulzpny S CTM -1 STV,

for T > 0 sufficiently small.
The proofs of (iv), (v), and (vi) are analogous to the proof of Lemma 5.2, and thus we omit the details.

The following lemma provides the necessary a priori density estimates.
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Lemma 6.2. Assume that

(Ro, Ry *,b) € H* () x H* () x L=((0,T), H*($y))
and [[v]| got1 (0,10 < M, where M > 1. Let 6 € (0,1/2). Then for T > 0 sufficiently small depending
on M and 6, the solution to the ODE system (6.2)—-(6.3) satisfies

(i) IRlzzre + IR igeree + IRl Lsemrs + [|R™logems ST,
(11) ||R71HH751H2/2+5 + ”]%||].]t1].1§f/2'*"S S 1,
(iti) Rl gpms S M,

where the norm of dependence is (0,1) x €.

We emphasize that the implicit constants in the above inequalities (i)—(iii) are independent of M
and §. The proof of Lemma 6.2 is analogous to the proof of Lemma 5.2. Thus we omit the details.

6.2. Uniform Boundedness of the Iterative Sequence

In this section we shall prove that the mapping II is well-defined from Z to Z, for a sufficiently large
constant M > 1 and a sufficiently small constant 7" > 0. From Lemmas 4.2 and 6.2, it follows that

ow H

(91/ Klizl/

+ llvolr | zrs+1/2(r,) + [103v0lrell o172 1y s

lollers < H e+ el + 1500 + ol

(6.14)

where f and h are as in (6.8)—(6.9). Here and below, the time and space domains in the norms are
understood to be (0,1) and Qf, respectively, unless indicated otherwise. We emphasize that the implicit
constants in this section are independent of M.

For the first term on the right side of (6.14), we proceed as in (5.44)—(5.48) to obtain

‘aw

v
for any ¢, € € (0,1]. Next, we estimate the K*~! norm of the terms on the right side of (6.8) for j = 1,2, 3.
For the space component of the term I; in (6.8), we use Holder’s inequality and Lemmas 6.1-6.2 to get

S(e+eC 4+ TY2C: )M + C., (6.15)

K1/ (T)

1ll g g1 S IRVOVO| 1o st + IRODZ0 2 prs—1 S Bll e sz 101l 2 s S T 200 s (6.16)
For the time component, we have
H11||Ht(571)/2Li hS HRV()V’UHHEsq)/zLi + HRbDi’EHHt(S*”“Lg' (6.17)

To treat the first term on the right side, we claim that for any a > 1/2 we have
[ABll gz S | Allag gl Bl go e (6.18)

on the domain (0,1) x Q. Using extensions, we may assume that the domain is actually R x R3. We
proceed as in (5.69) and estimate

IABlmpz2 = |AB| 2y S [ Al 1Bl g || 2
S AlemelIBllisme < 1 Alazae 1Bl gz go

= || Al s £ 1Bl g 12+
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since a > 1/2, and (6.18) follows. For the first term on the right side of (6.17), we now use (6.18) and
write

HRva@”Ht(s—l)/QLi < ||V’L_)||Ht(s—1)/2Hi HRVbHH,}Hi/Q
S ollkoer (1ROl o i + 1RV 2 e + 1RV 5 p71/2) (6.19)
STV 0 e,

for any € € (0, 1], where we used Corollary 3.4 and Lemmas 6.1-6.2. For the second term on the right

side of (6.17), we appeal to (5.68) to get
HRbDi17||Ht(571)/2L§ S ||RbHHt(571>/2H§’,/2+5 ||l)32517HHt(sfl)/zLg ,S ||Rb||Ht1Hg/2+5 ||17HK5+1 (6 20)
S T2 0| o, '

for 6 € (0,1/2), where we used Corollary 3.4 and Lemmas 6.1-6.2. Combining (6.16)—(6.17) and (6.19)—
(6.20), we obtain

1l e S T2 0 o
The terms Io, I3, 14, I5, and I are estimated analogously to 1, and we get
HEallsco—s + 1Bl o1 + Hall s + [ sllicos + Mol o S TV 0l ot
For the term I, we use Holder’s inequality and obtain

17l 2 s+ S IRV R -1 S IR oo bz 1Bl oo 1

RlLeny S1
and
17 ll gy e-v72 2 S IRTIOVRI g2 S IRTOVR| 2
S IR Mmoo 0l g VR Lgo £z + Rl nge Lo [1bll Lo oo [V Rl 13 2
+ HR71HL?°L$°”bHH}L;OHVR”L;”Li S,
where we appealed to Lemmas 6.1-6.2. The term Iy is estimated analogously to I7, leading to
[ 28] rcs-1 S 1.
Using the estimates on I1—Is in (6.8), we conclude that

£ o S T2l cenn + 1. (6.21)

Next, we bound the K*~/2(I'.) norm of the terms on the right side of (6.9), for every fixed j = 1,2, 3.
For K, we use Holder’s and trace inequalities along with Lemma 6.1 to obtain

KL 2 g2y S N = D)VOlpzag S 11 = Tl nzlll g prger S TY20] g (6.22)
For the time component, we appeal to Corollary 3.2, obtaining
1 o210 2 0y S €1l = T)VON o o + 7211 = J) V|2
S €1||V17||H§‘/2L2 11— J||H3Hg/2+6 + €1HV?7HHt<s—1)/2H1 1 - J||H5/2H;/z (6.23)

+er 1= Jllpge s

Vol L2 =t K11 + K2 + Kus,

for any €; € (0, 1], where § € (0,1/5). For the term K1, we use Corollary 3.4 and Lemma 6.1 and obtain
K S allo] g+ (6.24)

Similarly, the term K5 is estimated as

K2 S ellvllgeer 1 = Jll ez e (6.25)
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From (6.13), Corollary 3.4, and Lemma 6.1, it follows that
||Jt||H1(,572)/2Hi/2 5 |‘¢T||H§S’2)/2 ||JGV’U||Ht(571)/2H;/2
S HQST”Ht(sfz)/z ||JHHt(sf1)/2Hg/2+5 ||ClHHt(sf1)/2Hg/2+5 ||VU||H5571)/2H; (6.26)
S o7l 22 M,

since 1/2 < (s —1)/2 < 1 and ¢ € (0,1/5). Using Lemma 5.1 in (6.26) and applying the resulting
inequality in (6.25), we get

Ko S eullolleser (1 ell -2z gz + 1| 22 grse) S el e (M +1) S €lol[ g, (6.27)
where € € (0,1], by taking e; = eM 1. For the term K3, we have
Kz S C M 71TV 205 o, (6.28)
for T > 0 sufficiently small. Combining (6.22)—(6.24) and (6.27)-(6.28), we arrive at
1Kl e S el (6.29)

for any € € (0, 1], by taking T > 0 sufficiently small. The term K is estimated analogously to K7, and
we obtain

12l g2 S ellollicosn (6.30)
For the space component of the term K3, we use Holder’s and trace inequalities to obtain
1551l 2 gy 172 S N Nlzge e N8l Tge g 191 2 prsvr S T20]| o1, (6.31)
where we appealed to Lemma 6.1. For the time component, using Corollary 3.2, we have
Vsl o180 ) S €1l TOBTT e/ 0+ b2 TODV T 3,
S el gz g2l VOl ge—vrz g + €xllbll ez e[V vz g (6.32)

+ €1HVTJHH§/2L2 e 17||L3H;+1 =: K31 + K33 + K33 + K34,

16 5=

for any €; € (0,1]. The term K3; is estimated analogously to (6.25)—(6.27), and we obtain
Ks1 < €]|vll o+,

by taking €; = eM~! in (6.32), where ¢ € (0,1] is a constant. The term Hb||Hts/z is estimated

analogously to (6.25)—(6.27), and we get

HL/?

[bll g2y S M +1.
Therefore, we infer that

Kso < €0 g1
The term K33 is estimated using Corollary 3.4 as

K33 S €|t o1,
while the term K34 is estimated analogously to (6.28) as

Ky S €| g1,

by taking T > 0 sufficiently small. Combining (6.31)(6.32) and the estimates on K31 K34, we conclude
that

K3l o2 < eloll o, (6.33)
for any ¢ € (0, 1]. Regarding the term K, we proceed as in (5.51)—(5.52) to obtain
[Kallgam1r2 S IJR™ 2 gs + [JOR g S 1+ [ Jellzzm + el 2 + [ Rell 2 S 1, (6.34)
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where we used Lemmas 6.1-6.2. The term K3 is estimated in a similar fashion as K4, and we arrive at
15 | /2 S 1. (6.35)

The terms Kg, K7, Kg, Kg, and Ko are estimated analogously to K3, and we have

”KGHKS 1/2 + ||K7||Ks 1/2 + ||K7||Ks 1/2 + ||K8||KS 1/2 + HKQ”Ke 1/2 + HKlO”KS 1/2 3 < €||’U||Ks+1
(6.36)
for any € € (0, 1]. For the term K, we proceed as in (5.51)—(5.52) using Lemma 6.2 to obtain
K 1 (6.37)
Collecting the estimates (6.29)—(6.30) and (6.33)—(6.37), we conclude
< €|0]| gs+1
hll g1z S ellOllreerr +1, (6.38)
for any € € (0, 1]. For the fourth term on the right side of (6.14), we have
1£©O) a2 < | Rg "V Roll o2 S 1. (6.39)

From (6.14)—(6.15), (6.21), and (6.38)—(6.39) it follows that
18] s S (€4 TY20)||0]| gotr + (€ + ECe + TY2C )M + C,

for any €, € € (0, 1]. We first take € sufficiency small, and € sufficiently small depending on €, and then T
sufficiently small depending on e, €, yielding

0] o1 < M, (6.40)

by allowing M > 1 sufficiently large. Thus, the mapping II: v — v is well-defined from Z to Z, for some
constant M > 1, which depends on the size of the initial data.

6.3. Contracting Property
In this section, we prove
1
HH(UI) _H(U2)||Ks+1 S §||’U1 —1}2HK5+1, V1, U2 S Z, (641)

where M > 1 is fixed as in (6.40) and T sufficiently small. Note that the implicit constants below are
allowed to depend on M. Let T > 0 be a sufficiently small constant such that Lemmas 6.1-6.2 hold.

Let v1,v3 € Z and (n1,72) be the corresponding Lagrangian flow maps as in (6.1). Denote by (.J1,a1)
and (Ja,az2) the Jacobians and the inverse matrices of the corresponding flow map. First we solve for
(R1, R2) from (6.2)—(6.3) with the same initial data Ry. Then we solve for (£, &1+) and (€2, &2¢) from (5.12)
with the boundary conditions (5.13)—-(5.16) and the same initial data (wg,w;). To obtain the next iterate
(01,72), we solve (5.40) with the boundary conditions and the initial data (5. 41) Denote by = ay — I3,
bQZGQ_]Ig,b—bl_bQ,V—'Ul_UQ,U—Ul_U27R R1 R2,£ 51 §2,ﬁ ng,andj:Jl—Jz.
The difference V satisfies

D¢V — ARy (9;Vi, + O V;) — pRO;OLV), = f; in [0,1] x Q¢ ,
NORVj 4 0;Vi)VF + o Vi’ = 9% 4+ hy; in [0,1] x T ¢,
1% periodic in the y; and y, directions,

V(0)=0in Qy,

(6.42)
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where
fi = AROL(D;Tay, + Onaj) + pRI;0kTak + ARk (b1mkOm¥1j + b1mjOmik)
+ AR (b11mkOm Vi + b1 0 Vie) + ARk (b OmT2; + b j O Ty,
+ ARb111 0k (D110 015 + b1 OmT11) + ARk Ok (b1m1Om 15 + b1mjOm 1)
+ AR2bok10k (brmiOn 015 + bmjOm011) + AR2bogi Ok (b2m10m Vi 4 b2 Om Vi)
+ ARD1 110k (01715 + 0j011) + ARobpiOn (9171, + 0j011) + ARabor k(31 V; 4 0; 1)
+ R; (b1miOm01s) + R20; (bmiOm 1) + pR20; (bamiOpm V)
+ 1RD11j O (b1miOm017) + f1R2bkj O (D1miOm01:) + 11R2b21; Ok (bniOpm 017
+ tRobok Ok (b2miOm Vi) + j1Rb1 10k 0iTr; + p1RabyjOk0iT1i + (1 R2boy ;00 Vi
— RUYRy ' Rb11;0k Ry + Ry 'brjO Ry + Ry 'borjOL R — R Ry ' RO; Ry
+ Ry 'O,R

(6.43)

and

hj = —=AJ (001 + 0501)VF + M1 — Jo)(OkVj + 0;Vi)V® — pJ oo’ + pu(1 — Jo)op Vir?
+ ATb141 (D110 81 + b1 Om 01 )VF + Aobit (D11 OmT15 + b1 O 1)
+ Aabogt (D1 1j + b Om®10)0* 4+ Aobai (2miOm Vi + bam;Om Vi)V
+ Jbi; RTWF + Joby; RTWE — Jobor; Ry Ry 'RVF — TR — (Jy — 1)Ry 'Ry 'Ry
— AN (1m0 01 + b1 O T1)V* — Ao (b D015 + by O 11 )" (6.44)
— Mo (b2mk O Vi 4 b2 O Vir W — ATb131 (91515 + 0501)WF — AJabpy (801 + 9;01,)v"
— AMabori OV + ;V)VF — 11k jb1miOm 01" — 11J2bgjb1miOm 10"
— 112621 b Oy 017% — 11T2bog jbomi O Vir® — 1T b1miOm 01317 — 1Jobumi O 01
— (192 Om Vi’ — T by 0it1i" — pJabyj0i1,0% — pJaboy;0iVir® — R Ry ' R17,
for j=1,2,3.

Before we bound the terms on the right sides of (6.43) and (6.44), we provide necessary a priori
estimates for the differences of densities, Jacobians, and inverse matrices of the flow map.

Lemma 6.3. Let vi,v2 € Z. Suppose |[vi]|gor1(0,1)x0) < M and |[v2||gs+1(0,1)xq) < M, where M > 1
is fired as in (5.54). Let 6 € (0,1/5). Then, for T > 0 sufficiently small depending on 6, we have

() 10l s + 110l gy gravavs S TH20[Bll o,
(i) ||R||L?OH; + ”R”H}Hg’/“‘; < T1/20”1~}HKS+17
(iii) ||j||L‘;°H; + HjHHtng/z-m < T1/20||1~)||K8+1’
(v) |1Razms + M0l aras + 1 mras S N0l ws+rs
for any 6 € (0,1), where the norm of dependence is (0,1) x Q.
Proof of Lemma 6.3. (i) From (6.10) it follows that the difference b satisfies
—Et = (257: (B(V’Lh)bl + bQ(Vf})bl + bg(va)B + (Vf})ln + (VUQ)B + i)(vvﬁ

(6.45)
+ba (VD) + w) in [0,1] x Q,
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with the initial data b(0) = 0. Using the fundamental theorem of calculus, we obtain that for ¢ € (0, 27)

t t
1B(0) - < / 1] bl e + / ool

Vol s

Vi s b1 e

t t t
+ / el a5l e + / 161 e 2= + / IV

t t
4 / |0 2= [Bll 2+ + / 1]
0 0

t t
< / 6o + / 1Bl (
0 0

where the last inequality follows from Lemma 6.1. Using Gronwall’s inequality, we arrive at

10l e 0,27y, 220y S T/ M1l s (6.46)

t
Vorllge + / el V5 -
0

villzrser + [[o2]l o),

Therefore, we have
1ol e iz S T2 |10 g1, (6.47)
since b; = 0 on (27,1). From (6.45) and Hélder’s and the Sobolev inequalities it follows that

Hbt”LgHgﬁ+5 S Hb||L;>ng/2+fs IVl L2 (0,27), 137245 ()

- (6.48)
. - 3+425)/(3+26—2s) || ~
ST ol sees + ealloll g s + 672 161 2 0,27, 200
for any €; € (0,1], where we used Corollary 3.4 and Lemma 6.1. Letting ¢; = T1/20 we obtain
el g psrovs < T2l ges + TH3HERD20GE2 gy STV e, (6.49)

Combining (6.47) and (6.49), we conclude the proof of (i).

(ii) Since the difference R satisfies the ODE system
Rt — QST?R( div vg + blkjak’ulj) = QbT(Rl div o + RQBM&WU =+ Rgbgkjﬁkf/j) in [O, 1] X Qf, (6.50)
R(0) = 0 in Q, (6.51)
the solution is given by
t
R(l(:7 x) — ej[)t ¢T( div 'U2+b1kj3kvlj) dr / e~ j(;r ¢7:( div ’L)Q—‘rblkjak’l)lj)
0
X ¢T(R1 div v + Rg?)kjak’ulj + Rgbgkjakf}j) dr in [0, 1] x €.

From Hdélder’s inequality, it follows that

~

2T
1Rl 5o S / (ol zresr + 10901 [lzr:) dr < T2 0 e, (6.52)

where we used (6.47) in the last inequality. Using (6.50) and Hoélder’s and Sobolev inequalities, we obtain
||§t||LgHg/2+6 S HRHLgng/M V02l 2 pyaravs + ||1§||L§OH3/2+6 10111 e grarz+s V01l 2 graravs
191 20,28y, 1572 +5 020y T+ HBHLgng/QHHVWHLgHg/ZH + 1101l L2 0,27), 157245 (1))
(6.53)
We proceed analogously to Lemma 6.2 to get
IRy

||L§H2/2+8 5 T1/20H6”K3+1 .

By combining (6.52)—(6.53), we conclude the proof of (ii)
The proofs of (iii) and (iv) are analogous to the proofs of (i)—(iii), and thus we omit the details.
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Proof of Theorem 2.1. From Lemmas 4.2 and 6.2, it follows that the solution V of (6.42) satisfies

b3 - .
a9, + ”h”KS*l/?((O,l)XFC) + ||f||KS*1((O,1)><Qf)7 (6.54)
K==1/2((0,1)xT)
where f; and h; are as in (6.43)(6.44), for j = 1,2, 3.

For the first term on the right side of (6.54), we proceed as in (5.44)—(5.48) to obtain

9
ov

IVIlks+1(0,1y%00) S

S (e + &0, + TY2C: )0 o1, (6.55)
Ks—l/z(rc)

for any €, ¢ € (0,1].
Next we estimate the K*~! norm of terms on the right side of (6.43) for j = 1,2,3. The space
component of the term Rb1y;0k(b11miOm01;) is bounded as

“Rblkjak(blmiamﬁli)HL%H;*l SR g ms
while for the time component, we have

||Rb1kj8k(b1m¢6m17u)||Ht<s_1)/2Lg S, ||Rb1(9kb1V171||Ht(s—1)/2L% + ||Rb1b1Dil[_}1||Ht(S_l)/2Lg

bl”%?"Hg 771HL3H;:+1 ST o,

5 HR”Hﬁ“””Hﬁ”” HV771 HHt(“*I)mH; + HRHHt(/sfl)/ZHg/Z{»J HD725771 HH},“””L%
STV 8] o,
where we used Corollary 3.4 and Lemmas 6.1-6.3. Similarly, the term uRngkjakaiVi is estimated as

11 RaborjOkO:Vill 3 - S |1 Rall e DV pags-r S TV s

ba|| L ms
and
HNRQb%jakaiVi||H§S*1>/2Li S ||szHt<571>/2Hg/2+6||D§V||H5371>/2L3 STV | ot
Other terms on the right side of (6.43) are treated analogously as in the proof of Theorem 5.4 using
Lemmas 6.1-6.3, and we arrive at
1 Fllice=s S T2 Bl covs + T2 V]| ot (6.56)

Next we estimate the Kii:l/Q norm of the terms on the right side of (6.44), for j = 1,2, 3. The term

A1 — Jg)@kf/juk is estimated using the trace inequality and Lemma 6.1 as
IML = J2) 0V + 03V M | o gy 12 e
5 ||(1 - J2>V‘7||L§H; 5 ||1 - J2||L§°H£HVHL3H;;+1 f, Tl/QOHf/HKsH.

For the time component, we proceed analogously to (6.23)—(6.28), obtaining

A1 — J2)(ak‘7j + ajvk)VkHHf/?*l/‘ng(rc) S (e + 061T1/30)||VHKS+17

for any €; € (0, 1]. Other terms on the right side of (6.44) are treated analogously to Theorem 5.4 using
Lemmas 6.1-6.3, and we arrive at

1l o2 S T2 0 o + (2 + Coy TV |V || o, (6.57)
for any ¢ € (0, 1].
Since the terms involving ||V|| gs+1 on the right side of (6.56)—(6.57) are absorbed to the left side
(6.54) by taking €; and T > 0 sufficiently small, we obtain from (6.54)—(6.57) that

- 1., .
Vg < 510l g,
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by taking suitable €, €, and T > 0. Thus the mapping IT is contracting from Z to Z. Using the Banach
fix point theorem, there exists a unique solution v € Z such that II(v) = v.
Fix the constant T' > 0. We proceed as in (5.77)—(5.80) to obtain the interior regularity estimate

lwlleqomer/s=on) + 1welle o, mesri-o@ < G, (6.58)

where C' > 0 is a constant. From (6.58) and Lemma 6.2 it follows that the system (2.3)—(2.10) admits a
unique solution

('UaR7wawt) € KS+1((OaT) X Qf) X Hl((O’T)aHS(Qf))
x C([0,T], H/47(Q)) x C([0, T], H*~*/*~0(Q)),

for some constant 7' > 0, with the corresponding norms bounded by a function of the initial data. (I
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