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1. Introduction

In this paper we consider the 2-dimensional incompressible Euler equations on the full space R
2

⎧
⎪⎨

⎪⎩

∂tu + div(u ⊗ u) + ∇p = 0,

div u = 0,

u(·, 0) = u0,

(1)

where u : R
2 × [0, 1] → R

2 is the velocity field of some fluid and p : R
2 × [0, 1] → R is the corresponding

(scalar) pressure.
It is well known that the system (1) is globally well posed in W s,2 for s > 2, in the sense that for initial

data u0 ∈ W s,2 there is a unique solution u ∈ C([0, 1],W s,2(R2)) defined on the whole time interval [0, 1]
(more precisely on the whole time half-line [0,+∞)).

It is however of fundamental importance, both mathematically and physically, to understand what
happens in case of “rougher” initial data, and in particular if it is still possible, in case of rougher initial
data, to prove existence and uniqueness of (weak) solutions to (1).

1.1. Short Literature Overview

The starting point of this analysis is the observation that (1) can be formally rewritten as a transport
equation for the vorticity ω = curlu via

{
∂tω + u · ∇ω = 0,

u = ∇⊥Δ−1ω.
(2)

From (2) it is clear that the Lp norm of the vorticity of any smooth solution to (1) is conserved in time,
for any p ∈ [1,∞]. In the framework of weak solutions, it is thus natural to ask the following question:
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Q1: For u0 ∈ L2(R2) with curl u0 ∈ L1(R2) ∩ Lp(R2) for some p ∈ [1,∞], does there exist a unique
solution u ∈ C([0, 1], L2(R2)) to (1) with curl u ∈ C([0, 1], L1(R2) ∩ Lp(R2)) and initial datum u0?
or, more generally,

Q2: For u0 ∈ L2(R2) with curlu0 ∈ X for some Banach space X, does there exist a unique solution
u ∈ C([0, 1], L2(R2)) to (1) with curlu ∈ C([0, 1],X) and initial datum u0?

The first result in this direction is due to Yudovich [30,31] for the case p = ∞ and it states that
for any initial datum u0 ∈ L2 with ω0 ∈ L1 ∩ L∞, there exists a unique global solution u ∈ CtL

2
x with

ω ∈ L∞
t (L1

x ∩ L∞
x ) to (2). Yudovich result is based on the observation that even though a bounded

vorticity ω does not imply Lipschitz bound on the velocity field u (hence the classical “smooth” theory
can not be simply applied), nevertheless it is possible to deduce log-Lipschitz bounds on u, which are
enough to show well posedness.

For p < ∞, the question turns out to be much more delicate (and still open in its generality to this
date): indeed, an Lp bound on ω implies, in general, only bounds on u in some Cα space of Hölder
continuous functions, and this is in general not enough to apply Yudovich techniques and show well-
posedness of (2) (some partial extension of Yudovich’s result appeared in [21], where functions with
vorticity in

⋂
p<∞ Lp were considered, with strong bounds on the growth of Lp norms as p → ∞).

There have been however in the last years several important results, providing partial answers to
questions Q1 and Q2 above. We mention few of them, and in particular those concerning the problem of
non-uniqueness of weak solutions.

In [28,29] Vishik gave a negative answer to Q1, proving nonuniqueness in the class of solutions having
vorticity ω ∈ L∞

t (Lp
x), however not for the Euler system (1) (or (2)), but for the Euler system (1) with a

L1
t (L

1
x ∩ Lp

x) external force (thus allowing for an additional “degree of freedom”). Vishik’s proof is based
on a careful analysis of the linearized operator L associated to (1) and on the construction of an unstable
eigenvalue for L.

Another approach based on numerical simulations has been proposed by Bressan and Shen in [2],
where an initial profile is constructed for which there is numerical evidence of non-uniqueness, but a
rigorous proof of this result is still missing.

Very recently, in [22], Mengual proved that for any 2 < p < ∞ there exists initial data u0 ∈ L2(R2)
with initial vorticity curlu0 ∈ L1 ∩ Lp for which there are infinitely many admissible solutions u ∈ CtL

2

to (1) but with the drawback that curlu(t, ·) does not belong to Lp(R2) for any t > 0. An admissible
solution is a weak solution that does not increase the kinematic energy, i.e. 1

2‖u(t)‖2
L2 ≤ 1

2‖u(0)‖2
L2 for

a.e. t.
Concerning the more general question Q2, Bruè and Colombo address this question in [3] for the

case that X is the Lorentz space X = L1,∞. They construct a sequence (un)n of smooth “approximate”
solutions to (1), converging to an “anomalous” weak solution u of (1) (in the sense that u is nonzero,
but u|t=0 = 0, thus providing an example of non-uniqueness) and having the additional property that
the sequence of vorticities (curl un)n is a Cauchy sequence in L1,∞. An adaptation of the proof shows the
same statement for X = L1,q for q > 4, see Remark 1.3 in [3].

The construction in [3] is based on an intermittent convex integration scheme. As we shall explain in
Sect. 1.2 below, it is expected that, in general, intermittent convex integration schemes in dimension d
can provide (“anomalous”) weak solutions to the Euler equations having vorticity in Lp only if

p <
2d

d + 2
(3)

In particular, in dimension d = 2, it is not possible with the current techniques to construct solutions u
with curlu ∈ Lp, not even for p = 1. This motivated the authors in [3] to look for velocity fields with
vorticity in L1,∞, a function space which is “weaker” than L1 in terms of integrability, but which scales
as L1.

It has however to be noted that, as we mentioned before, the result in [3] shows the existence of a
sequence {un}n of approximate solutions to (1) converging strongly in L2 to an anomalous weak solution
u to (1) and whose corresponding vorticities {curlun}n build a Cauchy sequence in L1,∞ which thus has
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a limit ω in L1,∞. However, since L1,∞ is not a space of distributions (precisely, it does not embed into
D′; neither does L1,q for 1 < q < ∞), it is not clear whether and in what sense the distributional vorticity
of the solution u (or, in other words, the distributional limit of curlun) coincide with the L1,∞ limit ω.

Indeed, in general, there is no connection between distributional limit and limit in L1,q, q ∈ (1,∞].
Standard examples where this absence of connection can be explicitly seen can be constructed even in
one dimension, see, for instance, Sect. 1.4 below, where a sequence (fn) of piecewise constant maps is
constructed, with fn converging to two very different “objects” in distributions and in L1,q respectively:
a Dirac delta in D′ and the zero function in L1,q. Similar constructions can also be done for smooth (fn).

1.2. Our Result

The result by Bruè and Colombo [3] motivated us to see if the methods used in [3] could be adapted
to show non-uniqueness of weak solutions to (1) with vorticity in some other function space X that is
“weaker” than L1 in terms of integrability, but at the same time it does embed into D′, avoiding the
issues connected to the L1,∞ topology.

The real Hardy spaces Hp for p < 1 (thus matching with (3) in dimension d = 2) turns out to be a
natural choice, as Hp does embed into D′ for any p ∈ (0,∞) (see Definition 2.3 for the precise definition
of the space Hp). Precisely, we prove the following theorem.

Theorem 1.1 (Main Theorem). Let 2
3 < p < 1. For any energy profile e ∈ C∞ ([0, 1];

[
1
2 , 1
])

there exists
a solution u ∈ C([0, 1], L2(R2)) to (1) with
(i)

∫

R2 |u|2(t) dx = e(t),
(ii) curl u ∈ C([0, 1],Hp(R2)).
In particular, there exist energy dissipating solutions u ∈ CtL

2
x to (1) with curlu ∈ CtH

p
x.

Furthermore, for energy profiles e1, e2 such that e1 = e2 on [0, t0] for some t0 ∈ [0, 1], there exist two
distinct solutions u1, u2 satisfying (i), (ii) with u1(t) = u2(t) for t ∈ [0, t0].

Corollary 1.2. Let 2
3 < p < 1. There are two admissible (in the sense that the total kinetic energy is

non-increasing in time) solutions u1, u2 ∈ C([0, 1];L2(R2)) with curlu1, curl u2 ∈ C([0, 1];Hp(R2)) with
the same initial datum u1|t=0 = u2|t=0.

Proof. The proof follows immediately from Theorem 1.1, picking two non-increasing energy profiles e1, e2

which coincide on [0, 1/2] and are different from each other on [1/2, 1]. �

Remark 1.3. We add some remarks about the statement of Theorem 1.1.
(1) The solutions we construct are distributional solutions in the sense that

∫ 1

0

∫

R2
−u · ∂tϕ − u ⊗ u : ∇ϕ = 0,

∫

R2
u(t) · ∇ψ = 0 for all t ∈ [0, 1]

for any divergence-free ϕ ∈ C∞
c ((0, 1)×R

2; R2) and any ψ ∈ C∞
c (R2). Observe also that our solutions

belong to C([0, 1], L2(R2)), in particular they achieve their initial datum in a strong sense.
(2) Differently from typical results in convex integration, we work on the full space R

2 and not on the
periodic domain T

2. This is motivated by the fact that Hardy spaces are usually defined and studied
on the full space and it is quite hard to find references for Hardy spaces on T

2 (or T
d). This creates

some technical troubles we are going to discuss in Sect. 1.3.
(3) The constraint p > 2/3 comes from the fact that working in real Hardy spaces requires to treat

the moments of the involved functions up to a certain order. In this paper we are only keeping
track of the 0th order moment of the vorticity, which is sufficient for p ∈ (2/3, 1), compare with
subsection 1.3.1 and Definition 2.4 for Hardy space atoms.

(4) Differently than in [3], condition (ii) in the statement of Theorem 1.1 means precisely that the
distributional curl of u(t) belongs to Hp, for all t (with continuous dependence on time).
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We wish now to spend some words in explaining why conditions (3) plays a fundamental role (both
in [3] and in our result), and therefore why we were able to show Theorem 1.1 only under the condition
p < 1.

As in [3], we use a convex integration technique in the spirit of De Lellis and Székelyhidi works on
the 3D Euler equations in the framework of Onsager’s Theorem (see [5,11–13,19]). Meanwhile, Onsager’s
Theorem has also been proven in the 2D setting by Giri and Radu using a combination of the aforemen-
tioned convex integration technique and a Newtonian linearization of the Euler equations, see [16]. Notice
that solutions constructed in [16] are Hölder continuous and no bound on their vorticity is shown in the
mentioned paper.

The outline in all of these schemes is an iterative construction where, starting from an initial approx-
imate solution, one adds fast oscillating perturbations with a higher frequency λn → ∞ with respect
to the typical frequencies λn−1 in the previous approximation. In case of the Euler equation, given an
approximate solution (un−1, pn−1, Rn−1) with error term on the right hand side

∂tun−1 + div(un−1 ⊗ un−1) + ∇pn−1 = −div Rn−1, (4)

one makes the Ansatz

un(t, x) = un−1(t, x) + wn(t, x) + lower order corrector terms

with

wn(t, x) = an−1(t, x)Wλn
,

Wλn
(x) = W (λnx) : fast oscillating building block,

an−1 : slowly varying coefficient, an−1 ≈ |Rn−1|1/2.

The interaction of wn (having frequencies λn) with itself from the nonlinearity of the equation produces a
term having frequencies ≈ λn−1 and it allows therefore for the cancellation of the previous error, provided

a2
n−1

∫

T2
Wλn

⊗ Wλn
dx ≈ Rn−1

∫

T2
Wλn

⊗ Wλn
dx ∼ Rn−1.

In particular, this forces us to choose a building block W such that
∫

T2
W ⊗ W dx =

∫

T2
Wλn

⊗ Wλn
dx ∼ 1, (5)

which in turn implies (taking the trace in the above relations) that

‖W‖2
L2 = ‖Wλn

‖2
L2 ∼ 1. (6)

Clearly, since Wλn
is fast oscillating with frequency λn � 1 one expects very little control on the first

derivative of Wλn
(and thus also on curlun). In particular, one can not expect that ‖∇Wλn

‖L∞ or even
‖∇Wλn

‖L2 stays bounded as n → ∞.
There is however some hope in controlling ‖∇Wλn

‖Lp if p 
 2, or, more precisely, if (3) holds. Indeed,
for those p’s for which (3) does not holds, we have the embedding W 1,p ↪→ L2 and thus (6) combined
with the Sobolev inequality gives

1 ∼ ‖W‖2
L2 ≤ ‖∇W‖Lp

so that there is no hope in showing smallness of ‖∇W‖Lp . On the other side, if (3) holds, the Sobolev
inequality fails and thus it is possible to construct a sequence of building blocks Wλn

oscillating with
frequencies λn, satisfying (6) and, at the same time, having

‖∇Wλn
‖Lp → 0 as n → ∞.

This was the crucial observation of Buckmaster and Vicol in the groundbreaking work [7], where the
authors apply a convex integration scheme to the Navier–Stokes equations and need therefore to control
higher order derivatives of the perturbation, because of the presence of the dissipative term in the system.
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Similar observations were used also in [4,9,10,17,23–26] for constructing counterexamples to uniqueness
for the transport equations with Sobolev vector fields and other more recent works (see e.g. [6,8,14,15]).

As we observed before, in dimension d = 2, condition (3) corresponds to p < 1, hence preventing the
possibility of estimating curlu in L1 with the current techniques. On the other side, the key observation
in [3] is that for the Lorentz space L1,∞, the Sobolev embedding fails,

‖∇u‖L1,∞ �≥ ‖u‖L2 in general, for u ∈ C∞(T2),

and this made the construction in [3] possible.
If one were allowed to choose p < 1 in (3), the embedding

‖∇u‖Lp �≥ ‖u‖L2

would also fail. Even though Lp spaces are defined also for p < 1, they do not embed continuously into D′,
hence a construction with vorticity in Lp for p < 1 would suffer from the same issues as the construction
in Lorentz spaces.

It turns however out that a feasible subsitute for Lp in the range p ∈ (0,∞) is the Hardy space Hp.
Indeed, on one hand, we have Hp(R2) ∼= Lp(R2) for p > 1 and Hp(R2) ⊂ L1(R2) for p = 1. On the other
hand, Hp embeds into D′ for all p ∈ (0,∞) (e.g. [18], Proposition 6.4.10) and, finally, functions in Hp

scale like Lp (also for p < 1), in the sense that

‖∇lϕ(μ·)‖Hp = μl− 2
p ‖∇lϕ‖Lp(R2) (7)

for ϕ ∈ C∞
c (R2) and any 0 < p < ∞, so that one can hope to have a sequence of building blocks which

have L2 norm of order 1 (as in (6)) and, at the same time, having vorticity with Hp norm arbitrarily
small, if p < 1.

1.3. Technical Novelties

We briefly explain now the two main technical novelties of this paper compared to previous works on
convex integration. They concern

(1) how elements in Hardy spaces can be estimated and, in particular, how to exploit the scaling
properties (7) in Hardy spaces;

(2) how to do the construction on the full space, where also decay at ∞ has to be taken into account.

1.3.1. Concentration in Hardy Spaces. As we mentioned before, in order to control the quantity ‖ curl w‖Hp ,
we use the mechanism of concentration or intermittency that was also used in [3] for the control of the
norm in L1,∞. The building blocks are defined via concentrated functions,

W := Wμ := ϕμ(x)ξ

where ϕ ∈ C∞
c (R2), ϕμ is the periodization of the concentrated function μϕ(μx) and ξ ∈ R

2 is some
given direction. The scaling is such that we keep (6), i.e. ‖Wμ‖L2 1. The main problem in exploiting
concentration in the framework of Hardy spaces (with p < 1) is that there is no Hölder inequality available:
in general

‖af‖Hp � ‖a‖L∞‖f‖Hp .

Hence the estimate for ‖ curl w‖Hp is more subtle and we cannot use (7) directly.
To deal with this issue, one could use the definition of Hardy norm (see (10)), but this turns out

to be extremely difficult. We use therefore the notion of atoms, which are typical functions f in Hardy
space that have support in a ball B and satisfy the cancellation property

∫

B
f dx = 0 and an L∞

estimate, see Definition 2.4. Indeed, thanks to the intermittency, one can view the perturbation w(x) =
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χκ0(x)a(x)W (x) as a finite sum of functions, each of them supported on a very small ball of radius 1
μ ,

i.e.

w =
∑

θj ,

θj = 1B 1
μ

(xj)w

for some x1, . . . , xn. The curl of each θj satisfies the cancellation property
∫

B 1
μ

(xj)
curl θj dx = 0 as a

derivative of a compactly supported function. Therefore, curlw is a linear combination of atoms and thus
curlw ∈ Hp. One can use a standard estimate for atoms (see Lemma 2.5) on each θj , balancing ‖θj‖L∞

(estimated by (7)) and the size of its support.

1.3.2. Full Spaces Versus Periodic Domain. Since we are constructing solutions in L2(R2) and not in
L2(Td), we need to implement a convex integration scheme that differs from previous ones in at least two
more ways:

(i) As fast oscillating perturbations are used to reduce the error, T
2 is the natural habitat for solu-

tions constructed by convex integration schemes. We want to keep the advantages from using fast
oscillations, while also ensuring the decay at infinity.

(ii) On a more technical side, there is no bounded right inverse

div−1 : L1(R2; R2) → L1(R2; Sym2×2(R))

(here Sym2×2(R) is the space of real symmetric 2×2 matrices) for the divergence. In order to reduce
R0, it is crucial to construct an antidivergence for functions of the form fuλ with f ∈ C∞

c (R2), u ∈
C∞

0 (T2) that takes advantage of the oscillation with an estimate of the form ‖div−1(fuλ)‖L1 ≈
1
λ‖fu‖L1 .

Non-periodic solutions to the 3D Euler equations (with Hölder regularity) were already constructed in
[20]. Compared to [20], we take here a different route, as we better explain below.

We deal with (i) by using that if R0 ∈ L1(R2)

lim
κ→∞ ‖R0‖L1(R2\ Bκ) = 0

and reduce the error only on a compact set Bκ0 such that ‖R0‖L1(R2\Bκ0 ) 
 1, using a cutoff χκ0 in our
perturbations

w(t, x) = χκ0(x)a(t, x)Wλ(x).

Therefore, the support of w consists of a (possibly very large) finite number (which is of order κ2
0) of

periodic boxes of the form [0, 1]2 + k for some k ∈ Z
2 that is fixed at the start of each iteration. This

allows us to have similar estimates as for periodic functions on T
2 with a factor depending on κ0, while

also having perturbations in L2(R2).
Concerning (ii), we gain the factor 1

λ by using integration by parts: On T
2, we have the bounded (in

L1) operator div−1 : C∞
0 (T2; R2) → C∞

0 (T2; Sym2×2(R)) that satisfies ‖div−1 uλ‖L1(T2) ≤ C
λ ‖u‖L1(T2)

(see Lemma 2.7 below or also, for instance, [8, Proposition 4]). Defining

R1(f, uλ) = f div−1 uλ,

we have ‖R1‖L1 ≤ C(supp f)
λ ‖f‖C(R2)‖u‖L1(T2) and this matrix satisfies

div R1 = fuλ + (div−1 uλ) · ∇f.

Since div−1 is not bounded from L1(R2; R2) → L1(R2; Sym2×2(R)), we can not write the last term as
a divergence of a tensor field whose L1 norm is bounded by the L1 norm of (div−1 uλ) · ∇f . Hence we
simply set

r1 = −(div−1 uλ) · ∇f



JMFM Non-uniqueness and Energy Dissipation Page 7 of 39 26

so that

r1 + div R1 = fuλ and ‖R1‖L1 , ‖r1‖L1 � 1
λ

. (8)

We therefore work with approximate solutions that satisfy

∂tun−1 + div(un−1 ⊗ un−1) + ∇pn−1 = −rn−1 − div Rn−1

instead of (4). In order to cancel this additional error term, we include in our definition of un a corrector
of the form

v(x, t) =
∫ t

0

rn−1(x, s) ds

such that ∂tv − rn−1 = 0. Since in this way rn−1 enters into the definition of the perturbation through v,
we have to make sure to control ‖ curl

∫ t

0
rn−1(x, s) ds‖Hp . We do this by carrying out the “integration

by parts” N times, yielding (rN , RN ) with

rN + div RN = fuλ and ‖∇rN‖L∞ � 1
λN−1

instead of (8). We then make sure that rN has compact support, so that we can again use the standard
estimate for atoms mentioned above (L∞ bound together with a bound on the size of the support).

This is quite different from the approach in [20]. As in the present paper, also in [20] the authors
have to deal with the absence of a bounded right inverse div−1 : L1 → L1 with values in the symmetric
matrices. This issue is solved in [20] by constructing an antidivergence operator which is defined only on
the subset of L1(R3; R3) consisting of elements which are orthogonal to translation and rotational vector
fields. Therefore, the construction in [20] becomes in a sense more complicated than in the present paper
(because one has to check every time that div−1 is applied to an vector field in the domain of definition of
div−1), but, on the other side, it allows the authors of [20] to construct solutions which have well defined
and conserved angular momentum, a property we are not at all considering in the present work.

1.4. An Explicit Example Comparing Distributional and Lorentz Space Convergence

We conclude this introduction with an example of a sequence (fn)n of 1D piecewise constant maps (but
similar constructions can be done with smooth maps) converging to different limits in L1,q, q ∈ (1,∞]
and in D′. In particular, fn → δ0 in distributions, whereas fn → 0 in L1,q for all q ∈ (1,∞]. Set

fn =
1
n

n−1∑

j=0

2n+j1[2−(n+j),2−(n+j−1)]

Then
∫

R
fn dx = 1 and it is not difficult to see that

fn → δ0 in D′(R).

On the other hand, it holds

|{|nfn| ≥ t}| ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2−n+1, t ∈ (0, 2n],
2−n, t ∈ (2n, 2n+1],
...
2−(2n−2), t ∈ (22n−2, 22n−1],
0, t > 22n−1.

This yields

‖nfn‖L1,q ≤ C(q)n
1
q
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and therefore

‖fn‖L1,q(R) ≤ C(q)n
1
q −1 → 0 for n → ∞,

as far as q ∈ (1,∞].

1.5. Notation

We fix some notation we are going to use in the paper.
• We denote by e1, e2 the standard basis vectors of R

2.
• For any vector ξ = (ξ1, ξ2) ∈ R

2, we will denote by ξ⊥ the orthogonal vector ξ⊥ = (ξ2,−ξ1).
• We denote by Symn×n(R) the set of real symmetric n × n matrices.

• For a quadratic 2 × 2 matrix T , we denote by
◦
T = T − 1

2 tr T Id its traceless part.
• For a function f ∈ C1(R2) we denote by ∇⊥f = (∂2f,−∂1f) its orthogonal gradient.
• For d1, d2 ∈ N we write f : T

d1 → R
d2 for a function f : R

d1 → R
d2 defined on the full space that is

periodic with period 1 in all variables, i.e. f(x + lek) = f(x) for all k = 1, . . . , d1, l ∈ Z.
• For a periodic function f as above, we denote

∫

Td1 f dx =
∫

[0,1]d1 f dx, i.e. the integral over just one
periodic box.

• C∞
0 (T2; Rd) = {f : T

2 → R
d smooth,

∫

T2 f dx = 0} is the space of smooth periodic functions on R
2

with zero mean value on one periodic box.
• For a function g ∈ C∞(T2) and λ ∈ N, we denote by gλ : T

2 → R the 1
λ periodic function

gλ(x) := g(λx).

Notice that for every l ∈ N, s ∈ [1,∞]

‖Dlgλ‖Ls(T2) = λl‖Dlg‖Ls(T2).

• S(R2) denotes the space of Schwartz functions.
• Hp(R2) is the real Hardy space, see Definition 2.3.
• L2

σ(R2) =
{
f ∈ L2(R2) : div f = 0 in distributions

}
is the space of divergence-free vector fields in

L2(R2).
• For a function f : [0, 1] × R

2 → R
d and s ∈ [1,∞], we write ‖ · ‖CtLs

x
for the norm ‖f‖CtLs

x
=

maxt∈[0,1] ‖f(t)‖Ls(R2).
• For any function ϕ : R → R with supp (ϕ) ⊂ (− 1

2 , 1
2 ) and μ > 1 we write ϕμ for the periodic extension

of the function μ
1
2 ϕ(μ

(
x − 1

2

)
), whose support is contained in intervalls of length 1

μ centered around
the points 1

2 + Z. Note that

‖ϕμ‖Lr(T) = μ
1
2− 1

r ‖ϕ‖Lr(R) (9)

and in particular ‖ϕμ‖L2(T) = ‖ϕ‖L2(R).
• Let λ ∈ N, f : T

2 → R
d. We will sometimes write fλ for the oscillating functions fλ(x) = f(λx).

On the other hand, for f : R → R with compact support, we will oftentimes write fμ for its
concentrated version. To avoid confusion, we will only use the parameter λ for oscillations and μ
(or μ1, μ2, respectively) for concentration.

• P denotes the Leray projector L2(Rd; Rd) → L2
σ(Rd; Rd) onto the space of divergence free (in the

sense of distributions) vector fields.

2. Preliminaries

We now provide the technicals tools that are needed for the proof of the Main Theorem 1.1 and we start
this section with two useful estimates for functions of the form fgλ, where f ∈ C∞

c (R2), g ∈ C∞(T2).
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For these estimates it is crucial that f is compactly supported. Note also that the size of supp f enters
the estimate.

Proposition 2.1 (Improved Hölder). Let k, λ ∈ N, f : R
2 → R smooth with supp f ⊂ [−k, k]2 and

g : T
2 → R smooth. Then it holds for all s ∈ [1,∞]

‖fgλ‖Ls(R2) ≤ ‖f‖Ls(R2)‖g‖Ls(T2) +
C(s)(2k)

2
s

λ
1
s

‖f‖C1(R2)‖g‖Ls(T2).

Proof. This is an adaptation of Lemma 2.1 in [24], which can be proven in the same way. �

Lemma 2.2. Let k, λ ∈ N, f : R
2 → R smooth with supp f ⊂ [−k, k]2 and g : T

2 → R smooth with∫

T2 g dx = 0. Then
∣
∣
∣
∣
∣

∫

[−k,k]2
f(x)gλ(x) dx

∣
∣
∣
∣
∣
≤ 4

√
2k2‖f‖C1(R2)‖g‖L1(T2)

λ
.

Proof. This is an adaptation of Lemma 2.6 in [24] with the same proof. �

Definition 2.3 (Hardy spaces on R
2). Let Ψ ∈ S(R2) be a Schwartz function with

∫

R2 Ψ(x) dx �= 0 and
let Ψε(x) = 1

ε2 Ψ(x
ε ). For any f ∈ S ′(R2), we define the radial maximal function

mΨf(x) = sup
ζ>0

|f ∗ Ψζ(x)|. (10)

Let 0 < p < ∞. The real Hardy space Hp(R2) is defined as the space of tempered distributions

Hp(R2) =
{
f ∈ S ′(R2) : mΨf ∈ Lp(R2)

}

and we write

‖f‖Hp(R2) = ‖mΨf‖Lp(R2).

Note that ‖ · ‖Hp(R2) is only a quasinorm. The definition of Hp(R2) does not depend on the choice
of the function Ψ and the quasinorms are equivalent. For p > 1, the space Hp(R2) coincides with
the Lebesgue space Lp(R2). For p ≤ 1, Hp(R2) is a complete metric space with the metric given by
d(f, g) = ‖f − g‖p

Hp(R2) and the inclusion Hp(R2) ↪→ S ′(R2) is continuous, see [18], Proposition 6.4.10.

Definition 2.4 (Hardy space atoms). For p ≤ 1, a Hardy space atom is a measurable function a with the
following properties:

(i) supp a ⊂ B for some ball B,
(ii) |a| ≤ |B|− 1

p

(iii)
∫

B
xβa(x) dx = 0 for all multiindices β with |β| ≤ 2(p−1 − 1).

Lemma 2.5 (Estimate for Hardy space atoms). There is a uniform constant C such that for all atoms a
it holds

‖a‖Hp(R2) ≤ C.

Proof. We refer to [27], see 2.2 in Chapter III.2. �

Remark 2.6. (1) We will use that for a function f satisfying (iii) in Definition 2.4 with support in a
ball B, we have by Lemma 2.5

‖f‖Hp(R2) ≤ C|B| 1
p ‖f‖L∞(R2).

(2) Since 2
3 < p < 1 in our case, we only need to check the 0th moment in (iii), i.e.

∫

B
a(x) dx = 0.
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Lemma 2.7 (Standard antidivergence). There exists a linear operator

div−1 : C∞
0 (T2; R2) → C∞

0 (T2; Sym2×2(R))

such that div div−1 u = u and

‖∇l div−1 u‖Ls(T2) ≤ C(s)‖∇lu‖Ls(T2),

‖∇l div−1 uλ‖Ls(T2) ≤ C(s)
λ1−l

‖∇lu‖Ls(T2) for all l, λ ∈ N, s ∈ [1,∞].

For the proof see Proposition 4 in [8].
For N ≥ 2 we inductively define

div−N u =
∑

k=1,2

div−1
(
divN−1 u · ek

)
.

With that standard antidivergence operator, we will define an improved antidivergence operator for
functions of the form fuλ, f ∈ C∞

c (R2), u ∈ C∞
0 (T2; R2), on the full space.

Lemma 2.8 (Improved antidivergence operators).

(i) For any N ∈ N, there exists a bilinear operator

SN : C∞
c (R2; R) × C∞

0 (T2; R2) → C∞
c (R2; R2) × C∞

c (R2; Sym2×2(R))

such that for SN (f, u) = (r,R) it holds

r + div R = fu

with

‖∇lr‖L∞(R2) ≤ C(supp f)‖∇l div−N u‖L∞(T2)‖f‖CN+l(R2) for all l ∈ N,

‖R‖L1(R2) ≤ C(supp f)‖div−1 u‖L1(T2)‖f‖CN−1(R2).

(ii) For any N ∈ N, there exists a bilinear operator

S̃N : C∞
c (R2; R2) × C∞

0 (T2; Sym2×2(R)) → C∞
c (R2; R2) × C∞

c (R2; Sym2×2(R))

such that for S̃N (f, T ) = (r,R) it holds

r + div R = Tf

with

‖∇lr‖L∞(R2) ≤ C(supp f)‖∇l div−N T‖L∞(T2)‖f‖CN+l(R2) for all l ∈ N,

‖R‖L1(R2) ≤ C(supp f)‖div−1 T‖L1(T2)‖f‖CN−1(R2).

where, by a slight abuse of notation, we define

div−N T =
∑

k=1,2

div−N (Tek).

Proof. Let us inductively define

r0 : C∞
c (R2; R) × C∞

0 (T2; R2) → C∞
c (R2; R2),

r0(f, u) = fu,

R0 : C∞
c (R2; R) × C∞

0 (T2; R2) → C∞
c (R2; Sym2×2(R)),

R0(f, u) = 0
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and for N ≥ 1

rN : C∞
c (R2; R) × C∞

0 (T2; R2) → C∞
c (R2; R2),

rN (f, u) = −
∑

k=1,2

rN−1(∂kf,div−1 u · ek),

RN : C∞
c (R2; R) × C∞

0 (T2; R2) → C∞
c (R2; Sym2×2(R)),

RN (f, u) = f div−1 u −
∑

k=1,2

RN−1(∂kf,div−1 u · ek).

It is clear that

r0(f, u) + div R0(f, u) = fu.

Let us assume that

rN (f, u) + div RN (f, u) = fu

for some N ∈ N for all f ∈ C∞
c (R2), u ∈ C∞

0 (T2; R2). Then we also have

rN+1(f, u) + div RN+1(f, u) =
∑

k=1,2

rN (∂kf,div−1 u · ek)

+ div

⎛

⎝f div−1 u −
∑

k=1,2

RN (∂kf,div−1 u · ek)

⎞

⎠

= fu + (div−1 u) · ∇f

−
∑

k=1,2

rN (∂kf,div−1 u · ek) − div

⎛

⎝
∑

k=1,2

RN (∂kf,div−1 u · ek)

⎞

⎠

= fu + (div−1 u) · ∇f −
∑

k=1,2

∂kf div−1 u · ek = fu.

Therefore, we set

SN (f, u) = (rN (f, u), RN (f, u)).

For the second operator, we simply set for f ∈ C∞
c (R2; R2), T ∈ C∞

0 (T2; Sym2×2(R))

S̃N (f, T ) =
∑

k=1,2

SN (fk, T ek).

The estimates follow by induction using the estimate for div−1 from Lemma 2.7 and the standard estimate
for any f ∈ C∞

c (R2), u ∈ C∞
0 (T2; R2), s ∈ [1,∞]

‖fu‖Ls(R2) ≤ ‖u‖Ls(supp (f))‖f‖L∞(R2) ≤ C(supp f)‖u‖Ls(T2)‖f‖L∞(R2)

where in the first step we consider u as a (periodic) function on R
2. �

Remark 2.9. In particular, if (rN , RN ) = SN (f, uλ), then

‖∇lrN‖L∞(R2) ≤ C(supp f)
λN−l

‖∇lu‖L∞(T2)‖f‖CN+l(R2) for all l ∈ N,

‖RN‖L1(R2) ≤ C(supp f)
λ

‖u‖L1(T2)‖f‖CN−1(R2)

and the same holds for S̃N .
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Lemma 2.10 (A helpful computation). Let f, g ∈ C1(R). For any vector ξ �= 0 ∈ R
2 it holds

div
(

f(ξ · x)g(ξ⊥ · x)
ξ

|ξ| ⊗ ξ

|ξ|
)

= f ′(ξ · x)g(ξ⊥ · x)ξ,

div
(

f(ξ · x)g(ξ⊥ · x)
ξ

|ξ| ⊗ ξ⊥

|ξ|
)

= f(ξ · x)g′(ξ⊥ · x)ξ,

div
(

f(ξ · x)g(ξ⊥ · x)
ξ⊥

|ξ| ⊗ ξ

|ξ|
)

= f ′(ξ · x)g(ξ⊥ · x)ξ⊥,

div
(

f(ξ · x)g(ξ⊥ · x)
ξ⊥

|ξ| ⊗ ξ⊥

|ξ|
)

= f(ξ · x)g′(ξ⊥ · x)ξ⊥.

Proof. The proof is trivial. �

Definition 2.11. For ψ1, ψ2, Ψ ∈ C1(R) with Ψ′′ = ψ2 and a vector ξ �= 0 we define

A(ψ1, ψ2, ξ) = ψ1(ξ · x)Ψ′(ξ⊥ · x)
(

ξ

|ξ| ⊗ ξ⊥

|ξ| +
ξ⊥

|ξ| ⊗ ξ

|ξ|
)

− ψ′
1(ξ · x)Ψ(ξ⊥ · x)

ξ⊥

|ξ| ⊗ ξ⊥

|ξ| .

and

B(ψ1, ψ2, ξ) = ψ1(ξ · x)Ψ′(ξ⊥ · x)
ξ⊥

|ξ| ⊗ ξ⊥

|ξ| .

By Lemma 2.10, these symmetric matrices satisfy

div A = ψ1(ξ · x)ψ2(ξ⊥ · x)ξ,

div B = ψ1(ξ · x)ψ2(ξ⊥ · x)ξ⊥.

Let μ2 � μ1. It is not difficult to see that for ψ1, ψ2,Ψ ∈ C∞
c (R) with zero mean value and Ψ′′ = ψ2,

supported in (− 1
2 , 1

2 ), we have for their concentrated, fast oscillating extensions

A(ψ1,μ1(λ·), ψ2,μ2(λ·), ξ) ∈ C∞
0 (T2,Sym2×2(R)),

B(ψ1,μ1(λ·), ψ2,μ2(λ·), ξ) ∈ C∞
0 (T2,Sym2×2(R))

if ξ ∈ N
2 and the estimates

‖∇lA(ψ1,μ1(λ·), ψ2,μ2(λ·), ξ)‖Ls(T2) ≤ λl−1μ
1
2− 1

s
1 μ

l− 1
2− 1

s
2 max

j1,j2=0,1
‖ψ

(j1)
1 ‖Ls(T)‖Ψ(j2)‖Ls(T),

‖∇lB(ψ1,μ1(λ·), ψ2,μ2(λ·), ξ)‖Ls(T2) ≤ λl−1μ
1
2− 1

s
1 μ

l− 1
2− 1

s
2 max

j1,j2=0,1
‖ψ

(j1)
1 ‖Ls(T)‖Ψ(j2)‖Ls(T), (11)

where one uses μ2 � μ1.

3. Main Proposition

In this section we present the main proposition that is the key to prove Theorem 1.1. To this end, we
first introduce the Reynolds defect equation:

Definition 3.1 (Solution to the Reynolds defect equation). A solution to the Reynolds-defect-equation is
a tuple (u, p,R, r) of smooth functions

u ∈ C([0, 1], L2(R2) ∩ L3(R2)), p ∈ C([0, 1], L2(R2)), R ∈ C([0, 1], L1(R2; Sym2×2(R))),

r ∈ C([0, 1], L∞(R2)), supp (t,x)r ⊆ [0, 1] × R
2 compact,
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such that

∂tu + div(u ⊗ u) + ∇p = −r − div
◦
R,

div u = 0

is satisfied in the classical sense.

Proposition 3.2 (Main Proposition). Let e ∈ C∞ ([0, 1];
[

1
2 , 1
])

be an arbitrary given energy profile. There
exists a constant M0 > 0 such that the following holds: Choose δ, η > 0 with

0 < δ < 1, 0 < η <
1
32

δ,

and assume that there exists a (smooth) solution (u0, R0, r0, p0) to the Reynolds-Defect-equation, satisfying

3
4
δe(t) ≤ e(t) −

∫

R2
|u0|(x, t)2 dx ≤ 5

4
δe(t), (12)

40‖R0‖CtL1
x

+ ‖r0‖CtL2
x

+ 2‖u0(t)‖L2(R2)‖r0‖CtL2
x

≤ 1
32

δ. (13)

Then there exists another (smooth) solution (u1, R1, r1, p1) such that

(i)

3
8
δe(t) ≤ e(t) −

∫

R2
|u1|2(x, t) dx ≤ 5

8
δe(t),

(ii) r1 satisfies

‖r1‖CtL2
x

+ ‖u1‖CtL2
x
‖r1‖CtL2

x
≤ η

and
(iii)

‖
∫ t

0

curl r1(s) ds‖p
Hp(R2) ≤ η,

(iv) ‖R1(t)‖L1(R2) ≤ η + 4‖r0‖CtL2
x

+ 2‖r0‖CtL2
x
‖u0(t)‖L2(R2),

(v) ‖u1(t) − u0(t)‖L2(R2) ≤ M0δ
1
2 ,

(vi) ‖ curl(u1 − u0)(t)‖p
Hp(R2) ≤ η + ‖ ∫ t

0
curl r0(s) ds‖p

Hp(Rn).

Proof of the Main Theorem assuming Proposition 3.2. The solution to (1) is constructed iteratively. We
start with the trivial solution (u0, p0, R0, r0) ≡ 0 and choose δ0 = 1. Then obviously (12) and (13) are
satisfied. Let δn = 2−n for n ≥ 0 and ηn = δn+1

11584 for n ≥ −1. Assuming that the first n + 1 solutions
(uj , pj , Rj , rj)0≤j≤n are already constructed and that (un, pn, Rn, rn) satisfies (12), (13) with δn, we
obtain (un+1, pn+1, Rn+1, rn+1) by applying Proposition 3.2 with δn, ηn. We show that we can proceed
the iteration, i.e. that (un+1, pn+1, Rn+1, rn+1) satisfies (12), (13) with δn+1. First, we note that by (ii),
we have

‖rj‖CtL2
x

+ ‖uj‖CtL2
x
‖rj‖CtL2

x
≤ ηj−1 (14)

for all 0 ≤ j ≤ n + 1. Now, by (i), the new solution satisfies

3
8
δne(t) ≤ e(t) −

∫

R2
|un+1(t)|2 dx ≤ 5

8
δne(t)

and therefore
3
4
δn+1e(t) ≤ e(t) −

∫

R2
|u1(t)|2 dx ≤ 5

4
δn+1e(t),
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i.e. (12) is satisfied. Also, by (iv) and (14) we have

40‖Rn+1‖CtL1
x

+ ‖rn+1‖CtL2
x

+ 2‖un+1(t)‖L2(R2)‖rn+1‖CtL2
x

≤ 40(ηn + 4‖rn‖CtL2
x

+ 2‖rn‖CtL2
x
‖un‖CtL2

x
)

+ ‖rn+1‖CtL2
x

+ 2‖un+1(t)‖L2(R2)‖rn+1‖CtL2
x

≤ 40ηn + 160ηn−1 + 2ηn = 362ηn =
1
32

δn+1,

hence (13) holds. This shows that with our choice of (δn)n and (ηn)n we can indeed construct a sequence
(un, pn, Rn, rn)n∈N of solutions to the Reynolds-defect-equation. By (v),

sup
t∈[0,1]

‖un+1(t) − un(t)‖L2(R2) ≤ M02− n
2

for all n ∈ N, i.e. there exists u ∈ C([0, 1], L2
σ(R2)) such that un → u in C([0, 1], L2

σ(R2)). By (ii) and
(iv),

rn → 0 in C([0, 1], L1(R2)),

Rn,
◦
Rn → 0 in C([0, 1], L1(R2,Sym2×2(R))),

showing that u is a weak solution to (1). By (iii) and (vi), inductively we have

‖ curl(un+1 − un)(t)‖p
Hp(R2) ≤ ηn + ηn−1,

which shows that there exists v ∈ C([0, 1],Hp(R2)) such that

curlun → v in C([0, 1],Hp(R2)).

But since Hp(R2) ↪→ S ′(R2) is a continuous inclusion, this shows that v = curlu. �

Remark 3.3. Notice that in the statement of our Main Theorem, Theorem 1.1, by solution we mean
distributional solution, see Remark 1.3, Point (1). For this reason, in the proof of the Main Theorem we
do not carry out any estimates on the sequence (pn)n of (smooth) approximate pressures, nor we claim
that (pn)n is converging (in any suitable sense). For the same reason, Proposition 3.2 does not contain
any estimates for the pressure.

On the other hand, the solutions to the Reynolds defect equation (un, pn, Rn, rn), introduced in
Definition 3.1 and used in the iteration steps, are smooth functions and they solve the Reynolds defect
equation in the classical sense. In particular they can be differentiated in space and time infinitely many
times.

4. The Building Blocks

We fix the vectors

ξ1 = e1, ξ2 = e2, ξ3 = e1 + e2, ξ4 = e1 − e2

in R
2. In the following, we will introduce several parameters that will be fixed in the course of this paper.

They will be fixed in the order given by Table 1.

Let Φ : R → R be a smooth, odd function with support in (− 1
2 , 1

2 ), and
∫

Φdx = 0 such that ϕ := Φ
′′′

satisfies
∫

ϕ2 dx = 1. Furthermore, we denote by ϕk
μ the translated function

ϕk
μ(x) = ϕμ

(

x − k

16
|ξk|2

)

.
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Table 1. Occuring parameters and their meaning

Parameter Meaning

η, δ Parameters in the main proposition that will ensure convergence
κ size of the ball where the error is reduced, R0 is small outside Bκ

ε Smoothing of ρ (see Sect. 5)
μ1 Concentration
μ2 Very high concentration
ω Phase speed
λ Oscillation

The translation will ensure the disjointness of the supports of different building blocks, we will prove this
in Lemma 4.3. Let μ2 � μ1 � 1 and λ, ω � 1 with λ ∈ N to be fixed in Sect. 10. For k = 1, 2, 3, 4, let us
introduce

wk(x) = ϕk
μ1

(λx1)ϕμ2(λx2),

wc
k(x) = −μ1

μ2
(ϕ′)k

μ1
(λx1)(Φ′′)μ2(λx2),

wcc
k (x) = − 1

λμ2
ϕk

μ1
(λx1)(Φ′′)μ2(λx2),

qk(x) =
1
ω

(ϕk
μ1

)2(λx1)ϕ2
μ2

(λx2).

Lemma 4.1. It holds
∫

T2
w2

k dx = 1,

∫

T2
wk dx =

∫

T2
wc

k dx =
∫

T2
wcc

k dx = 0.

For any s ∈ [1,∞], we have the estimates

‖∂l1
1 ∂l2

2 wk‖Ls(T2) ≤ C(s)λl1+l2μ
l1+

1
2− 1

s
1 μ

l2+
1
2− 1

s
2 ,

‖∂l1
1 ∂l2

2 wc
k‖Ls(T2) ≤ C(s)λl1+l2μ

l1+
3
2− 1

s
1 μ

l2− 1
2− 1

s
2 ,

‖∂l1
1 ∂l2

2 wcc
k ‖Lr(T2) ≤ C(s)λl1+l2−1μ

l1+
1
2− 1

s
1 μ

l2− 1
2− 1

s
2 ,

‖∂l1
1 ∂l2

2 qk‖Ls(T2) ≤ C(s)ω−1λl1+l2μ
l1+1− 1

s
1 μ

l2+1− 1
s

2 .

Proof. We have
∫

T2
w2

k(x) dx =
∫ 1

0

(ϕk
μ1

)2(λx1) dx1 ·
∫ 1

0

ϕ2
μ2

(λx2) dx2 = 1

by (9) and since
∫

ϕ2 dx = 1. Similarly, one gets the zero mean values of wk, wc
k and wcc

k by noting that
∫

T
ϕ dx = 0 since ϕ = Φ

′′′
is a derivative. The estimates can also be proven using (9). �

For k = 1, 2, 3, 4 we define the linear maps

Λk : R
2 → R

2,

x �→ (ξk · x, ξ⊥
k · x). (15)
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Our main building block is now defined as

W p
k (x, t) = wk

(

Λk

(

x − ωt
ξk

|ξk|2
))

ξk

|ξk|
= wk (Λkx − ωte1)

ξk

|ξk| ,

i.e.

W p
k (x, t) := W p

ξk,μ1,μ2,λ,ω(x, t) = ϕk
μ1

(λ(ξk · x − ωt))ϕμ2(λξ⊥
k · x)

ξk

|ξk| ,

which means that we first rotate wk and move in time in the direction of ξk. This vector field is not
divergence free. We define the corrector W c

k by

W c
k (x, t) := W c

ξk,μ1,μ2,λ,ω(x, t) = wc
k

(

Λk

(

x − ωt
ξk

|ξk|2
))

ξ⊥
k

|ξk|

= −μ1

μ2
(ϕ′)k

μ1
(λ(ξk · x − ωt))(Φ′′)μ2(λξ⊥

k · x)
ξ⊥
k

|ξk|

and observe that div(W p
k + W c

k ) = 0, see Proposition 4.2. We introduce further building blocks by

W
cc,‖
k (x, t) := W

cc,‖
ξk,μ1,μ2,λ,ω(x, t) = wcc

k

(

Λk

(

x − ωt
ξk

|ξk|2
))

ξk

|ξk|
= − 1

λμ2
ϕk

μ1
(λ(ξk · x − ωt))(Φ′′)μ2(λξ⊥

k · x)
ξk

|ξk| ,

W cc,⊥
k (x, t) := W cc,⊥

ξk,μ1,μ2,λ,ω(x, t) = wcc
k

(

Λk

(

x − ωt
ξk

|ξk|2
))

ξ⊥
k

|ξk|

= − 1
λμ2

ϕk
μ1

(λ(ξk · x − ωt))(Φ′′)μ2(λξ⊥
k · x)

ξ⊥
k

|ξk| .

Finally, we introduce the building blocks for our time-corrector

Yk(x, t) := Yξk,μ1,μ2,λ,ω(x, t) = qk

(

Λk

(

x − ωt
ξk

|ξk|2
))

ξk

=
1
ω

(ϕk
μ1

)2(λ(ξk · x − ωt))(ϕμ2)
2(λξ⊥

k · x)ξk

We note that our building blocks are again periodic functions on R
2 with period 1 in both variables since

ξk ∈ N
2.

Proposition 4.2 (Building blocks). The building blocks are λ-periodic and satisfy

(i) div(W p
k ⊗ W p

k ) = ∂tYk,
(ii)

∫

T2 W p
k ⊗ W p

k (x, t) dx = ξk

|ξk| ⊗ ξk

|ξk| ,
(iii) ‖W p

k (·, t)‖Ls(T2) = ‖wk‖Ls(T2) for all s ∈ [1,∞],
(iv)

∫

T2 W p
k (x, t) dx =

∫

T2 W c
k (x, t) dx =

∫

T2 W
cc,‖
k (x, t) dx =

∫

T2 W cc,⊥
k (x, t) dx = 0,

(v)
∫

T2 Yk dx = 1
ω ξk.
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Furthermore, for all k ∈ N, l ∈ N they satisfy the following estimates:

‖∇lW p
k ‖Ls([−k,k]2) ≤ C(s)k

2
s λlμ

1
2− 1

s
1 μ

l+ 1
2− 1

s
2 ,

‖∇lW c
k‖Ls([−k,k]2) ≤ C(s)k

2
s λlμ

3
2− 1

s
1 μ

l− 1
2− 1

s
2 ,

‖∇lW
cc,‖
k ‖Ls([−k,k]2) ≤ C(s)k

2
s λl−1μ

1
2− 1

s
1 μ

l− 1
2− 1

s
2 ,

‖∇lW cc,⊥
k ‖Ls([−k,k]2) ≤ C(s)k

2
s λl−1μ

1
2− 1

s
1 μ

l− 1
2− 1

s
2 ,

‖∇lYk‖Ls([−k,k]2) ≤ C(s)k
2
s ω−1λlμ

1− 1
s

1 μ
l+1− 1

s
2

Proof. For (i), we have by Lemma 2.10 with f(x) = (ϕk
μ1

)2(λ(x − ωt)) and g(x) = ϕ2
μ2

(λx)

div(W p
k ⊗ W p

k ) = div
(

(ϕk
μ1

)2(λ(ξk · x − ωt))ϕ2
μ2

(λξ⊥
k · x)

ξk

|ξk| ⊗ ξk

|ξk|
)

= λ
(
(ϕk

μ1
)2
)′

(λ(ξk · x − ωt))ϕ2
μ2

(λξ⊥
k · x)ξk

= ∂tYk.

For (ii), this is immediate for k = 1, since by Lemma 4.1
∫

T2
W p

k ⊗ W p
k dx =

∫

T2
w2

k(x − ωte1) dx · ξk

|ξk| ⊗ ξk

|ξk| =
ξk

|ξk| ⊗ ξk

|ξk| .
The same is true for k = 2 by switching the roles of x1 and x2 in the definition of wk. For k = 3, we
calculate with the transformation rule by rotating the cube [− 1

2 , 1
2 ]2 by Λk

∫

T2
W p

k ⊗ W p
k dx =

∫

[− 1
2 , 12 ]2

w2
k(Λkx − ωte1) dx · ξk

|ξk| ⊗ ξk

|ξk|

=
1

|det DΛk|
∫

Q

w2
k(x − ωte1) dx · ξk

|ξk| ⊗ ξk

|ξk|
where Q = Λk([− 1

2 , 1
2 ]2) is the by 90 degress rotated and scaled cube with vertices {±e1,±e2}. It is not

difficult to see that, by a geometric argument, it holds
∫

Q
w2

k dx = 2
∫

T2 w2
k dx because wk is periodic.

Since |det DΛk| = 2 for k = 3, we have
∫

T2
W p

k ⊗ W p
k dx =

∫

T2
w2

k(x − ωte1) dx · ξk

|ξk| ⊗ ξk

|ξk| =
ξk

|ξk| ⊗ ξk

|ξk| ,

and the same reasoning holds for k = 4. For (iii), we do a similar calculation and obtain

‖Wk(·, t)‖s
Ls(T2) =

∫

T2
|W p

k |s dx =
∫

T2
|wk(x − ωte1)|s dx = ‖wk‖s

Ls(T2)

for any s ∈ [1,∞), and the same calculations show (iv) and (v). The estimates follow directly from
Lemma 4.1 and exploiting the fact that μ2 � μ1. �
Lemma 4.3 (Disjointness of supports). We have

suppW p
k = suppW c

k = suppW
cc,‖
k = suppW cc,⊥

k = suppYk

and for large enough μ1 (independent of λ, μ2) it holds

suppW p
k1

∩ suppW p
k2

= ∅
for k1 �= k2.

Proof. Looking at the definition, we see that the function wk (and also wc
k, wcc

k , qk) is supported in small
balls of radius 1

λμ1
around the points 1

λ

(
( 1
2 , 1

2 ) + k
16 |ξk|2e1 + Z

2
)
, i.e.

suppwk ⊂ B 1
λμ1

(0) +
1
λ

((
1
2
,
1
2

)

+
k

16
|ξk|2e1 + Z

2

)

.
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Therefore, for a fixed time t, we have since W p
k (x, t) = wk

(
Λk

(
x − ωt ξk

|ξk|2
))

ξk

|ξk|

suppW p
k (·, t) ⊂ B 1

λμ1
(0) +

1
λ

Λ−1
k

((
1
2
,
1
2

)

+
k

16
|ξk|2e1 + Z

2

)

+ ωt
ξk

|ξk|2 ,

i.e. we calculate, using Λ−1
k = 1

2Λk,

suppW p
1 (·, t) ⊂ B 1

λμ1
(0) +

1
λ

(
1
2
,
1
2

)

+
1
λ

1
16

ξ1 +
1
λ

Z
2 + ωt(1, 0),

suppW p
2 (·, t) ⊂ B 1

λμ1
(0) +

1
λ

(
1
2
,
1
2

)

+
1
λ

1
8
ξ2 +

1
λ

Z
2 + ωt(0, 1),

suppW p
3 (·, t) ⊂ B 1

λμ1
(0) +

1
λ

(
1
2
, 0
)

+
1
λ

3
16

ξ3 +
1
λ

(
1
2

Z

)2

+ ωt

(
1
2
,
1
2

)

,

suppW p
4 (·, t) ⊂ B 1

λμ1
(0) +

1
λ

(

0,−1
2

)

+
1
λ

1
4
ξ4 +

1
λ

(
1
2

Z

)2

+ ωt

(
1
2
,−1

2

)

.

One can now check by hand that the supports are disjoint. We do this for W p
2 and W p

4 as an example.
Assume there is an x ∈ suppW p

2 (·, t)∩W p
4 (·, t). Then there exists y1, y2 ∈ B 1

λμ1
(0) and k ∈ Z

2, l ∈ ( 1
2Z)2

such that

y1 +
1
λ

(
1
2
,
1
2

)

+
1
λ

1
8
ξ2 +

1
λ

k + ωt(0, 1) = x = y2 +
1
λ

(

0,−1
2

)

+
1
λ

1
4
ξ4 +

1
λ

l + ωt

(
1
2
,−1

2

)

or equivalently

y1 − y2
︸ ︷︷ ︸

∈B 2
λμ1

(0)

= − 1
λ

(
1
2
, 1
)

+ λ

(
2
8
,−3

8

)

+
1
λ

(l − k) + ωt

(
1
2
,−3

2

)

= − 1
λ

(
1
2
, 1
)

+
1
λ

(l − k)
︸ ︷︷ ︸

∈ 1
λ ( 1

2Z)2

+
1
λ

(
1
8
, 0
)

+
1
λ

(
1
8
,−3

8

)

+ ωt

(
1
2
,−3

2

)

︸ ︷︷ ︸
∈{s(1,−3):s∈R}

.

But it is not difficult to see that 0 /∈ 1
λ ( 1

2Z)2 + 1
λ

(
1
8 , 0
)
+ {s(1,−3) : s ∈ R}. Therefore, we can choose μ1

large enough such that B 2
λμ1

(0)∩( 1
λ ( 1

2Z)2 + 1
λ

(
1
8 , 0
)

+ {s(1,−3) : s ∈ R}) = ∅. This shows suppW p
2 (·, t)∩

suppW p
4 (·, t) = ∅. �

5. The Perturbations

Before we can define the perturbations, let us decompose the error
◦

R0 in the following way. There are
smooth functions Γk with |Γk| ≤ 1 such that for any matrix A with |A − I| < 1

8

A =
∑

k

Γ2
k(A)

ξk

|ξk| ⊗ ξk

|ξk| , (16)

see Section 5 in [3]. Let κ ∈ N such that

‖
◦

R0(t)‖L1(R2\Bκ) ≤ η

2
(17)
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for all t ∈ [0, 1]. With condition (17), our choice of κ is set. For ε > 0 we further define

γ(t) =
e(t)(1 − δ

2 ) − ∫
R2 |u0|2(x, t) dx

2‖χκ‖2
L2(R2)

,

ρ(x, t) = 10
√

ε2 + |
◦

R0(x, t)|2 + γ(t),

ak(x, t) = χκ(x)ρ
1
2 (x, t)Γk

⎛

⎝I +

◦
R0(x, t)
ρ(x, t)

⎞

⎠ ,

noting that the decomposition (16) exists for I +
◦

R0
ρ . The function χκ is a smooth cutoff with χκ ≡ 1 on

Bκ and χκ ≡ 0 on R
2 \ Bκ+1. For later use, we note that

χ2
κ(x)ρ(x, t)I + χ2

κ(x)
◦

R0(x, t) =
∑

k

a2
k(x, t)

ξk

|ξk| ⊗ ξk

|ξk| . (18)

We define

Hk(x, t) =
ak(x, t)

|ξk| wcc
k

(

Λk

(

x − ωt
ξk

|ξk|2
))

.

Let us define the perturbations as follows.

w(x, t) =
4∑

k=1

∇⊥Hk(x, t),

ut(x, t) = −
4∑

k=1

P
(
a2

k(x, t)Yk(x, t)
)
,

v(x, t) = P

∫ t

0

r0(x, s) ds.

We note that

div w = 0, (19)

being an orthogonal gradient. We set

u1 = u0 + w + ut + v.

By a simple calculation, we see that

∇⊥Hk(x, t) = ak(x, t)W p
k (x, t) + ak(x, t)W c

k (x, t) + wcc
k

(

Λk

(

x − ωt
ξk

|ξk|2
)) ∇⊥ak(x, t)

|ξk|
= ak(x, t)W p

k (x, t) + ak(x, t)W c
k (x, t)

+
〈∇⊥ak(x, t) · ξk〉

|ξk|2 W
cc,‖
k (x, t) +

〈∇⊥ak(x, t) · ξ⊥
k 〉

|ξk|2 W cc,⊥
k (x, t)

and we set w = up + uc with

up(x, t) =
4∑

k=1

ak(x, t)W p
k (x, t),

uc(x, t) =
4∑

k=1

ak(x, t)W c
k (x, t) + b1

k(x, t)W cc,‖
k (x, t) + b2

k(x, t)W cc,⊥
k (x, t) (20)



26 Page 20 of 39 M. Buck, S. Modena JMFM

where we denote

b1
k(x, t) =

〈∇⊥ak(x, t) · ξk〉
|ξk|2 ,

b2
k(x, t) =

〈∇⊥ak(x, t) · ξ⊥
k 〉

|ξk|2 .

Remark 5.1. We note several things:
(1) ak(x, t): Decomposition of the old error R0, also pumping energy into the system.
(2) P denotes the Leray projector.
(3) Note that div(w + ut + v) = 0 and thus also div u1 = 0.
(4) We will sometimes use w =

∑
k ∇⊥Hk as a whole and use estimates on Hk, whereas on other

occasions we have to decompose w = up + uc and use certain properties of the individual parts.

Lemma 5.2. The function u1 is smooth with u1 ∈ C([0, 1], L2(R2) ∩ L3(R2)), i.e. u1 has the desired
regularity.

Proof. The function u0 is smooth and in C([0, 1], L2(R2)∩L3(R2)) by assumption. For w this is also clear
since it is smooth with compact support. For ut, we note that P : Ls(R2) → Ls(R2) is a bounded operator
for all 1 < s < ∞, see for example Lemma 1.16 in [1]. Since the function inside P in the definition of ut

is smooth and compactly supported and therefore in C([0, 1], L2(R2)∩L3(R2)), this also holds for ut. By
assumption, r0 is smooth and r0 ∈ C([0, 1], L∞(R2)) with compact support in space, in particular also
r0 ∈ C([0, 1], L2(R2) ∩ L3(R2)) and therefore also v ∈ C([0, 1], L2(R2) ∩ L3(R2)) by the boundedness of
P. �

6. Estimates of the Perturbations

In this section, we provide the necessary estimates on the perturbations. We start with a preliminary
estimate on the coefficients ak and then estimate the individual parts of the perturbations separately. After
that, we obtain an estimate on the energy increment and conclude the section by fixing the parameter ε.

Lemma 6.1 (Preliminary estimates I). It holds

‖ak‖Cl(R2×[0,1]) ≤ C(R0, u0, e, δ, κ, ε, l), (21)

and

‖ak(·, t)‖L2(R2) ≤
√

10π
(
(κ + 1)ε

1
2 + δ

1
2

)
(22)

uniformly in t.

Proof. For the first part, we only note that by (12)

0 ≤ e(t)
(

1 − δ

2

)

−
∫

R2
|u0|2(x, t) dx ≤ 3

4
δ,

so we have 0 ≤ γ(t) ≤ 3
4δ/(2|Bκ|). This together with the definition of ak implies the L∞-estimates. For

the second part, we calculate using |Γk| ≤ 1
∫

R2
a2

k(x, t) dx =
∫

R2
χ2

κ(x)ρ(x, t)Γ2
k

⎛

⎝I +

◦
R0(x, t)
ρ(x, t)

⎞

⎠ dx ≤
∫

Bκ+1

10
√

ε2 + |
◦

R0(t)|2(x, t) + γ(t) dx

≤ 10π(κ + 1)2ε + 20‖R0‖CtL1
x

+ 10π(κ + 1)2γ

≤ 10π(κ + 1)2ε + 20‖R0‖CtL1
x

+ 5π
(κ + 1)2

‖χκ‖2
L2(R2)

(

e(t)(1 − δ

2
) −

∫

R2
|u0|2(x, t) dx

)

.
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Using again (12) and

5π
(κ + 1)2

‖χκ‖2
L2(R2)

≤ 5
(κ + 1)2

κ2
≤ 20,

and also that 20‖R0‖CtL1
x

≤ δ by assumption, we obtain
∫

R2
a2

k(x, t) dx ≤ 10π(κ + 1)2ε + 16δ. (23)

From this (22) follows. �

Lemma 6.2 (Estimate of the principal perturbation). It holds

‖up(t)‖Ls(R2) ≤ C(R0, u0, e, δ, κ, ε)μ
1
2− 1

s
1 μ

1
2− 1

s
2

and for p = 2 more refined

‖up(t)‖L2(R2) ≤
√

10π
(
(κ + 1)ε

1
2 + δ

1
2

)
+

C(R0, u0, e, δ, κ, ε)
λ

1
2

(24)

uniformly in t.

For the first estimate, we use Proposition 4.2, (21) and the fact that up is supported in Bκ+1. For the
second estimate, we use Proposition 2.1, noting again that supp ak(·, t) ⊂ [−κ − 1, κ + 1]2, Lemma 4.1,
Proposition 4.2 and (22)

‖
4∑

k=1

ak(·, t)W p
k (·, t)‖L2(R2) =

4∑

k=1

‖ak(·, t)W p
k (·, t)‖L2([−κ−1,κ+1]2)

≤ ‖ak(·, t)‖L2(R2)‖W p
k (·, t)‖L2(T2)

+ C
2κ + 2

λ
1
2

‖ak(·, t)‖C1(R2)‖W p
k (·, t)‖L2(T2)

≤
√

10π
(
(κ + 1)ε

1
2 + δ

1
2

)
+

C(R0, u0, e, κ, δ, κ, ε)
λ

1
2

. �
.

Lemma 6.3 (Estimates of the correctors). We have

‖uc(t)‖Ls(R2) ≤ C(R0, u0, e, δ, κ, ε)μ
3
2− 1

s
1 μ

− 1
2− 1

s
2

and

‖ut(t)‖L2(R2) ≤ C(R0, u0, e, δ, κ, ε)
μ

1
2
1 μ

1
2
2

ω

uniformly in t.

Proof. This proof follows by using Proposition 4.2 together with (21) and the fact that uc is supported
in [−κ − 1, κ + 1]2. For ut, we also use that P is bounded from L2 to L2 and the argument inside P in
the definition of ut is supported in [−κ − 1, κ + 1]2. �

Lemma 6.4. It holds

‖∇lHk(t)‖Ls(T2) ≤ C(R0, u0, e, δ, κ, ε, l)λl−1μ
1
2− 1

s
1 μ

l− 1
2− 1

s
2

uniformly in t.

Proof. This follows immediately from Lemma 4.1, (21) and the definition of Hk, exploiting also the fact
that μ2 � μ1. �
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Lemma 6.5. It holds for all s ∈ (1,∞)

‖v(t)‖Ls(R2) ≤ ‖P‖L(Ls(R2))‖r0‖CtLs
x

and for s = 2

‖v(t)‖L2(R2) ≤ ‖r0‖CtL2
x

uniformly in t.

Proof. This follows using Minkowski’s inequality and the fact that P : Ls(R2) → Ls(R2) for all s ∈ (1,∞).
For s = 2, P is an orthogonal projection, therefore ‖P‖L(L2(R2)) ≤ 1. �

Lemma 6.6 (Estimate of the energy increment). We have
∣
∣
∣
∣e(t)

(

1 − δ

2

)

−
∫

R2
|u1|2(x, t) dx

∣
∣
∣
∣ ≤

1
32

δ + 20π(κ + 1)2ε

+ C(R0, r0, u0, e, δ, κ, ε)

(

μ
− 1

6
1 μ

− 1
6

2 +
μ

1
2
1 μ

1
2
2

ω
+

μ1

μ2
+

1
λ

)

. (25)

Looking at (18), we consider

up ⊗ up − χ2
κ

◦
R0 = χ2

κρI +
4∑

k=1

a2
k

(

W p
k ⊗ W p

k − ξk

|ξk| ⊗ ξk

|ξk|
)

.

We take the trace and use that
◦

R0 is traceless, hence we get

|up|2 − 2χ2
κγ(t) = 20χ2

κ

√

ε2 + |
◦

R0|2 +
4∑

k=1

a2
k

(|W p
k |2 − 1

)

Integrating this and using
√

ε2 + |x|2 ≤ ε + |x|, we get
∣
∣
∣
∣

∫

R2
|up|2(x, t) dx −

(

e(t)
(

1 − δ

2

)

−
∫

R2
|u0|2(x, t) dx

)∣
∣
∣
∣ ≤ 20π(κ + 1)2ε + 40‖R0‖CtL1

x

+
∑

k

∣
∣
∣
∣

∫

R2
a2

k(x, t)
(|W p

k |2(x, t) − 1
)

dx

∣
∣
∣
∣ .

(26)

We can estimate each summand in the second line with Lemma 2.2, using that ak is supported in
[−κ − 1, κ + 1]2, (21) and Proposition 4.2 by

∣
∣
∣
∣

∫

R2
a2

k(x, t)
(|W p

k |2(x, t) − 1
)

dx

∣
∣
∣
∣ ≤

4
√

2(κ + 1)2‖a2
k(·, t)‖C1(R2)‖|W p

k (·, t)|2 − 1‖L1(T2)

λ

≤ C(R0, u0, e, δ, κ, ε)
λ

. (27)

Writing u1 = u0 + up + uc + ut + v, we have
∫

R2
|u1|2(x, t) dx = ‖u0(t)‖2

L2(R2) + ‖up(t)‖2
L2(R2) + ‖v(t)‖2

L2(R2) + 2
∫

R2
u0 · v(x, t) dx

+ 2
∫

R2
u0 · (up + uc + ut)(x, t) dx + 2

∫

R2
up · (uc + ut + v)(x, t) dx

+ 2
∫

R2
v · (uc + ut)(x, t) dx +

∫

R2
|uc + ut|2(x, t) dx,
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where by Lemma 6.2, Lemma 6.3 and Lemma 6.5

2
∣
∣
∣
∣

∫

R2
u0 · (up + uc + ut)(x, t) dx

∣
∣
∣
∣ ≤ 2‖u0(t)‖L2(R2)

(‖uc(t)‖L2(R2) + ‖ut(t)‖L2(R2)

)

+ 2‖u0(t)‖L3(R2)‖up(t)‖
L

3
2 (R2)

≤ C(R0, u0, e, δ, κ, ε)

(
μ1

μ2
+ μ

− 1
6

1 μ
− 1

6
2 +

μ
1
2
1 μ

1
2
2

ω

)

,

2
∣
∣
∣
∣

∫

R2
up · (uc + ut + v)(x, t) dx

∣
∣
∣
∣ ≤ 2‖up(t)‖L2(R2)

(‖uc(t)‖L2(R2) + ‖ut(t)‖L2(R2)

)

+ 2‖P‖L(L3(R2))‖up(t)‖
L

3
2 (R2)

‖r0‖CtL3
x
,

≤ C(R0, r0, u0, e, δ, κ, ε)

(
μ1

μ2
+ μ

− 1
6

1 μ
− 1

6
2 +

μ
1
2
1 μ

1
2
2

ω

)

,

2
∣
∣
∣
∣

∫

R2
v · (uc + ut)(x, t) dx

∣
∣
∣
∣ ≤ 2‖v(t)‖L2(R2)

(‖uc(t)‖L2(R2) + ‖ut(t)‖L2(R2)

)

≤ C(R0, r0, u0, e, δ, κ, ε)

(
μ1

μ2
+

μ
1
2
1 μ

1
2
2

ω

)

,

∫

R2
|uc + ut|2(x, t) dx ≤ 2

(
‖uc(t)‖2

L2(R2) + ‖ut(t)‖2
L2(R2)

)

≤ C(R0, u0, e, δ, κ, ε)

⎛

⎝

(
μ1

μ2

)2

+

(
μ

1
2
1 μ

1
2
2

ω

)2
⎞

⎠ . (28)

This yields
∣
∣
∣
∣e(t)

(

1 − δ

2

)

−
∫

R2
|u1|2(x, t) dx

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

R2
|up|2(x, t) dx −

(

e(t)
(

1 − δ

2

)

−
∫

R2
|u0|2(x, t) dx

)∣
∣
∣
∣

+ ‖v(t)‖2
L2(R2) + 2‖u0(t)‖L2(R2)‖v(t)‖L2(R2)

+ C(R0, r0, u0, e, δ, κ, ε)

(

μ
− 1

6
1 μ

− 1
6

2 +
μ

1
2
1 μ

1
2
2

ω
+

μ1

μ2

)

≤
∣
∣
∣
∣

∫

R2
|up|2(x, t) dx −

(

e(t)(1 − δ

2
) −

∫

R2
|u0|2(x, t) dx

)∣
∣
∣
∣

+ ‖r0‖2
CtL2

x
+ 2‖u0(t)‖L2(R2)‖r0‖CtL2

x

+ C(R0, r0, e, u0, δ, κ, ε)

(

μ
− 1

6
1 μ

− 1
6

2 +
μ

1
2
1 μ

1
2
2

ω
+

μ1

μ2

)

.

Let us combine the previous inequality with (26) and (27) and then use our assumptions (13) and
e(t) ≥ 1

2 , this yields
∣
∣
∣
∣e(t)

(

1 − δ

2

)

−
∫

R2
|u1|2(x, t) dx

∣
∣
∣
∣ ≤ 40‖R0‖CtL1

x
+ ‖r0‖2

CtL2
x

+ 2‖u0(t)‖L2(R2)‖r0‖CtL2
x

+ 20π(κ + 1)2ε

+ C(R0, r0, u0, e, δ, κ, ε)

(

μ
− 1

6
1 μ

− 1
6

2 +
μ

1
2
1 μ

1
2
2

ω
+

μ1

μ2
+

1
λ

)
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≤ 1
32

δ + 20π(κ + 1)2ε

+ C(R0, r0, u0, e, δ, κ, ε)

(

μ
− 1

6
1 μ

− 1
6

2 +
μ

1
2
1 μ

1
2
2

ω
+

μ1

μ2
+

1
λ

)

. �

At this point, we fix ε and choose this parameter so small such that

20π(κ + 1)2ε <
1
32

δ,
√

10π((κ + 1)ε
1
2 + δ

1
2 ) ≤ 10δ

1
2 ,

therefore (24) becomes

‖up(t)‖L2(R2) ≤ 10δ
1
2 +

C(R0, u0, e, δ, κ, ε)
λ

1
2

and (25) reduces to
∣
∣
∣
∣e(t)

(

1 − δ

2

)

−
∫

R2
|u1|2(x, t) dx

∣
∣
∣
∣ <

1
16

δ + C(R0, r0, u0, e, δ, κ, ε)

(

μ
− 1

6
1 μ

− 1
6

2 +
μ

1
2
1 μ

1
2
2

ω
+

μ1

μ2
+

1
λ

)

≤ 1
8
δe(t) + C(R0, r0, u0, e, δ, κ, ε)

(

μ
− 1

6
1 μ

− 1
6

2 +
μ

1
2
1 μ

1
2
2

ω
+

μ1

μ2
+

1
λ

)

.

(29)

7. Estimates of the Curl in Hardy Space

In the following Lemmas, we prove that the curls of the perturbations are in the real Hardy space Hp(R2)
for 2

3 < p < 1 and estimate their Hardy space seminorms in terms of λ, μ1 and μ2. We will use Remark 2.6;
therefore, we decompose the perturbations into finitely many functions that are supported on disjoint,
very small balls of radius 1

λμ1
.

Lemma 7.1 (Curl of w). It holds curlw(t) ∈ Hp(R2) and

‖ curl w(t)‖Hp(R2) ≤ C(R0, u0, e, δ, κ, ε)λμ
1
2− 2

p

1 μ
3
2
2 for all t ∈ [0, 1].

By definition of Hk, suppHk = suppW p
k . As seen in the proof of Lemma 4.3, for a fixed time t, the

perturbations are supported in small, disjoint balls of radius 1
λμ1

around the points in the finite set

Mk(t) =
{

1
λ

Λ−1
k

((
1
2
,
1
2

)

+
k

16
|ξk|2e1 + Z

2

)

+ ωt
ξk

|ξk|2 , k = 1, 2, 3, 4
}

∩ Bκ+1.

Let us abbreviate Bx0 = B 1
λμ1

(x0) for x0 ∈ M(t), and let us decompose w as

w(x, t) =
∑

x0∈M(t)

θx0(x, t)

where

θx0(x, t) = 1B(x0)(x)w(x, t).

Since θx0 is smooth and has compact support, curl θx0 ∈ Hp(R2) since, as a derivative of a compactly
supported function, it satisfies

∫

R2 curl θx0 dx = 0. We estimate the Hp-seminorm for each curl θx0 . We
have

curl θx0(x, t) = 1B(x0)(x) curl w(x, t) = −1B(x0)(x)
4∑

k=1

ΔHk(x, t).
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As already said, each θx0 is supported on one ball of measure C
λμ1

. By Lemma 6.4,

‖ curl θx0(t)‖L∞(R2) ≤
4∑

k=1

‖∇2Hk(t)‖L∞(R2) ≤ C(R0, u0, e, δ, κ, ε)λμ
1
2
1 μ

3
2
2

This gives us by Remark 2.6

‖ curl θx0(t)‖Hp(R2) ≤ C(R0, u0, e, δ, κ, ε)λ1− 2
p μ

1
2− 2

p

1 μ
3
2
2 .

Since |M(t)| is of order κ2λ2, curlw is made up of ≈ λ2κ2- many functions curl θx0 , and we obtain

‖ curl w(t)‖p
Hp(R2) ≤

∑

x0∈M(t)

‖ curl θx0(t)‖p
Hp(R2) ≤ C(R0, u0, e, δ, κ, ε)λ2λp−2μ

p
2 −2
1 μ

3p
2

2

= C(R0, u0, e, δ, κ, ε)λpμ
p
2 −2
1 μ

3p
2

2 . �

Lemma 7.2 (Curl of ut). It holds curlut(t) ∈ Hp(R2) and

‖ curl ut(t)‖Hp(R2) ≤ C(R0, u0, e, δ, κ, ε)ω−1λμ
1− 2

p

1 μ2
2 for all t ∈ [0, 1].

We write again

ut(x, t) =
∑

x0∈M(t)

θx0(x, t)

with the same decomposition as in the previous Lemma. Since curl(Pf) = curl f for all smooth f : R
2 →

R
2, we have

curl θx0(x, t) = 1B(x0)

4∑

k=1

a2
k(x, t)

λ

ω
(ϕk

μ1
)2(λ(ξk · x − ωt))(ϕ2

μ2
)′(λξ⊥

k · x)|ξk|2

= 1B(x0)

4∑

k=1

a2
k(x, t)(∂2qk)(Λkx − ωte1).

Arguing in the same way as before, we just need to estimate with Lemma 4.1

‖ curl θx0(t)‖L∞(R2) ≤ C(R0, u0, e, δ, κ, ε)ω−1λμ1μ
2
2,

hence

‖ curl ut(t)‖Hp(R2) ≤ C(R0, u0, e, δ, κ, ε)ω−1λμ
1− 2

p

1 μ2
2. �

Lemma 7.3 (Curl of v). It holds

‖ curl v(t)‖Hp(R2) = ‖
∫ t

0

curl r0(s) ds‖Hp(R2).

This is true since curl(Pf) = curl f for all smooth f : R
2 → R

2, which gives

curl v(t) =
∫ t

0

curl r0(s) ds. �

8. The New Error

This section is devoted to the definition of the new error (r1, R1), which will be estimated in the next
section.
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8.1. The New Reynolds-Defect-Equation

Plugging u1 into the new Reynolds-defect-equation and writing u1 = u0 + w + ut + v, we need to define
(r1, R1, p1) such that

− r1 − div
◦

R1

= div(u0 ⊗ (u1 − u0) + (u1 − u0) ⊗ u0)

+ div((u1 − u0 − up) ⊗ up) + div(up ⊗ (u1 − u0 − up))

+ div((u1 − u0 − up) ⊗ (u1 − u0 − up))

+ ∂tu
t + div(up ⊗ up −

◦
R0)

+ ∂t(up + uc)
+ ∂tv − r0

+ ∇(p1 − p0). (30)

We will analyse each line in (30) in separate subsections.

8.2. Analysis of the First Three Lines of (30)

Let us define

Rlin,1 = u0 ⊗ (u1 − u0) + (u1 − u0) ⊗ u0,

Rlin,2 = (u1 − u0 − up) ⊗ up + up ⊗ (u1 − u0 − up),

Rlin,3 = (u1 − u0 − up) ⊗ (u1 − u0 − up),

i.e.

div(u0 ⊗ (u1 − u0) + (u1 − u0) ⊗ u0)

+ div((u1 − u0 − up) ⊗ up) + div(up ⊗ (u1 − u0 − up))

+ div((u1 − u0 − up) ⊗ (u1 − u0 − up))

= div(Rlin,1 + Rlin,2 + Rlin,3).

8.3. Analysis of the Fourth Line of (30)

8.3.1. Rewriting the Fourth Line of (30). Using that

ut(x, t) = −
4∑

k=1

P
(
a2

k(x, t)Yk(x, t)
)

= −
4∑

k=1

a2
k(x, t)Yk(x, t) − ∇pt

for some pt and (18), let us start by calculating

∂tu
t + div(up ⊗ up −

◦
R0) = −

4∑

k=1

∂ta
2
kYk −

4∑

k=1

a2
k∂tYk

+ div

(
4∑

k=1

a2
kW p

k ⊗ W p
k

)

+ div

(

−
∑

k

a2
k

ξk

|ξk| ⊗ ξk

|ξk|

)
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+ div(χ2
κ

◦
R0 −

◦
R0) − ∇(∂tp

t) + ∇(χ2
κρ)

We consider the second and third summand on the right hand side of the previous calculation. By
Proposition 4.2, we have

−
4∑

k=1

a2
k∂tYk + div

(
4∑

k=1

a2
kW p

k ⊗ W p
k

)

=
4∑

k=1

a2
k (div (W p

k ⊗ W p
k ) − ∂tYk)

︸ ︷︷ ︸
=0

+
4∑

k=1

(W p
k ⊗ W p

k ) · ∇a2
k

Also, we have

div

(

−
∑

k

a2
k

ξk

|ξk| ⊗ ξk

|ξk|

)

= −
4∑

k=1

(
ξk

|ξk| ⊗ ξk

|ξk|
)

· ∇a2
k.

Putting together the previous two calculations, the fourth line in (30) equals

∂tu
t + div(up ⊗ up −

◦
R0) = −

4∑

k=1

∂ta
2
kYk +

4∑

k=1

(

W p
k ⊗ W p

k − ξk

|ξk| ⊗ ξk

|ξk|
)

· ∇a2
k

+ div(χ2
κ

◦
R0 −

◦
R0) − ∇(∂tp

t) + ∇(χ2
κρ)

= rY + div RY + rquad + div Rquad + div Rκ − ∇π1,

where we can directly define

Rκ = χ2
κ

◦
R0 −

◦
R0,

π1 = ∂tp
t − χ2

κρ.

8.3.2. Definition of Rquad and rquad. We define Rquad, rquad as

(rquad, Rquad) =
4∑

k=1

S̃N

(

∇a2
k,W p

k ⊗ W p
k − ξk

|ξk| ⊗ ξk

|ξk|
)

,

with an N ∈ N to be chosen in Sect. 10. Hence, by construction

rquad + div Rquad =
4∑

k=1

(

W p
k ⊗ W p

k − ξk

|ξk| ⊗ ξk

|ξk|
)

· ∇a2
k.

8.3.3. Definition of RY and rY . We add and subtract

−
4∑

k=1

∂ta
2
k(x, t)Yk(x, t) = −

4∑

k=1

∂ta
2
k(x, t)

(

Yk(x, t) − 1
ω

ξk

)

−
4∑

k=1

1
ω

∂ta
2
k(x, t)ξk.

Noting that
∫

T2 Yk dx = 1
ω ξk, see Proposition 4.2, we can define

(rY,1, RY ) = −
4∑

k=1

SN (∂ta
2
k, Yk − 1

ω
ξk)

so that by definition

rY,1 + div RY = −
4∑

k=1

∂ta
2
k

(

Yk − 1
ω

ξk

)

.
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We further define

rY,2 = −
4∑

k=1

1
ω

∂ta
2
k(x, t)ξk

and set

rY = rY,1 + rY,2,

hence

rY + div RY = −
4∑

k=1

∂ta
2
kYk.

8.4. Analysis of the Fifth Line of (30)

We will write the third line in the form

∂t(up + uc) = rtime + div Rtime.

We will use the operators from Definition 2.11. Calculating, we see that

∂tu
p(x, t) =

4∑

k=1

∂tak(x, t)W p
k (x, t) +

4∑

k=1

ak(x, t)∂tW
p
k (x, t)

=
4∑

k=1

∂tak(x, t)W p
k (x, t) + ωλμ1

4∑

k=1

ak(x, t)(ϕ′)k
μ1

(λ(ξk · x − ωt))ϕμ2(λξ⊥
k · x)

ξk

|ξk|

=
(
rtime,1 + div Rtime,1

)
+ div

(
ωλμ1

|ξk|
4∑

k=1

akA((ϕ′)k
μ1

(λ(· − ωt)), ϕμ2(λ·), ξk)

)

− ωλμ1

|ξk|
4∑

k=1

A((ϕ′)k
μ1

(λ(· − ωt)), ϕμ2(λ·), ξk) · ∇ak

= (rtime,1 + div Rtime,1) + div R̃time,2 + (rtime,2 + div Rtime,2).

with

(rtime,1, Rtime,1) =
4∑

k=1

SN (∂tak,W p
k ),

R̃time,2 =
ωλμ1

|ξk|
4∑

k=1

akA((ϕ′)k
μ1

(λ(· − ωt)), ϕμ2(λ·), ξk),

(rtime,2, Rtime,2) = −ωλμ1

|ξk|
4∑

k=1

S̃N (∇ak, A((ϕ′)k
μ1

(λ(· − ωt)), ϕμ2(λ·), ξk)).

Analogously, let us write, using (20)

∂tu
c(x, t) =

4∑

k=1

∂tak(x, t)W c
k (x, t) + ak(x, t)∂tW

c
k (x, t)

+
4∑

k=1

∂tb
1
k(x, t)W cc,‖

k (x, t) + b1
k(x, t)∂tW

cc,‖
k (x, t))

+
4∑

k=1

∂tb
2
k(x, t)W cc,⊥

k (x, t) + b2
k(x, t)∂tW

cc,⊥
k (x, t). (31)
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The first line of (31) can be written as

4∑

k=1

∂tak(x, t)W c
k (x, t) +

4∑

k=1

ak(x, t)∂tW
c
k (x, t)

=
4∑

k=1

∂tak(x, t)W c
k (x, t) +

ωλμ2
1

μ2

4∑

k=1

ak(x, t)(ϕ′′)k
μ1

(λ(ξk · x − ωt))(Φ′′)μ2(λξ⊥
k · x)

ξk

|ξk|

=
(
rtime,3 + div Rtime,3

)
+ div

(
ωλμ2

1

μ2|ξk|
4∑

k=1

akB((ϕ′′)k
μ1

(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

)

− ωλμ2
1

μ2|ξk|
4∑

k=1

B((ϕ′′)k
μ1

(λ(· − ωt)), (Φ′′)μ2(λ·), ξk) · ∇ak

=
(
rtime,3 + div Rtime,3

)
+ div R̃time,4 + (rtime,4 + div Rtime,4)

with

(rtime,3, Rtime,3) =
4∑

k=1

SN (∂tak,W c
k ),

R̃time,4 =
ωλμ2

1

μ2|ξk|
4∑

k=1

akB((ϕ′′)k
μ1

(λ(· − ωt)), (Φ′′)μ2(λ·), ξk),

(rtime,4, Rtime,4) = − ωλμ2
1

μ2|ξk|
4∑

k=1

S̃N

(∇ak, B((ϕ′′)k
μ1

(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)
)
.

For the second line of (31), we write

4∑

k=1

∂tb
1
k(x, t)W cc,‖

k (x, t) +
4∑

k=1

b1
k(x, t)∂tW

cc,‖
k (x, t)

=
4∑

k=1

∂tb
1
k(x, t)W cc,‖

k (x, t) +
ωμ1

μ2

4∑

k=1

b1
k(x, t)(ϕ′)k

μ1
(λ(ξk · x − ωt))(Φ′′)μ2(λξ⊥

k · x)
ξk

|ξk|

= (rtime,5 + div Rtime,5) + div

(
ωμ1

μ2|ξk|
4∑

k=1

b1
kA((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

)

− ωμ1

μ2|ξk|
4∑

k=1

A((ϕ′)k
μ1

(λ(· − ωt)), (Φ′′)μ2(λ·), ξk) · ∇b1
k

= (rtime,5 + div Rtime,5) + div R̃time,6 + (rtime,6 + div Rtime,6)

with

(rtime,5,div Rtime,5) =
4∑

k=1

SN (∂tb
1
k,W

cc,‖
k ),

R̃time,6 =
ωμ1

μ2|ξk|
4∑

k=1

b1
kA((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk),

(rtime,6,div Rtime,6) = − ωμ1

μ2|ξk|
4∑

k=1

S̃N

(∇b1
k, A((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

)
.
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Similarly, we have for the third line of (31)
4∑

k=1

∂tb
2
k(x, t)W cc,⊥

k (x, t) +
4∑

k=1

b2
k(x, t)∂tW

cc,⊥
k (x, t)

=
4∑

k=1

∂tb
2
k(x, t)W cc,⊥

k (x, t) +
ωμ1

μ2

4∑

k=1

b2
k(x, t)(ϕ′)k

μ1
(λ(ξk · x − ωt))(Φ′′)μ2(λξ⊥

k · x)
ξ⊥
k

|ξk|

= (rtime,7 + div Rtime,7) + div

(
ωμ1

μ2|ξk|
4∑

k=1

b2
kB((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

)

− ωμ1

μ2|ξk|
4∑

k=1

B((ϕ′)k
μ1

(λ(· − ωt)), (Φ′′)μ2(λ·), ξk) · ∇b2
k

= (rtime,7 + div Rtime,7) + div R̃time,8 + (rtime,8 + div Rtime,8)

with

(rtime,7,div Rtime,7) =
4∑

k=1

SN (∂tb
2
k,W cc,⊥

k ),

R̃time,8 =
ωμ1

μ2|ξk|
4∑

k=1

b2
kB((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk),

(rtime,8,div Rtime,8) = − ωμ1

μ2|ξk|
4∑

k=1

S̃N

(∇b2
k, B((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

)
.

Finally, we set

Rtime =
8∑

i=1

Rtime,i +
4∑

i=1

R̃time,2i

rtime =
8∑

i=1

rtime,i.

8.5. Analysis of the Sixth and Seventh Line of (30)

Since Pr0 = r0 − ∇pr for some pr, we see that

∂tv − r0 = −∇pr,

i.e. it only remains a part that can be put into the new pressure and we define

π2 = pr.

8.6. Definition of the New Error

Altogether, we define

R1 = − (Rlin,1 + Rlin,2 + Rlin,3 + Rκ + Rquad + RY + Rtime
)
,

r1 = − (rquad + rY + rtime
)
,

p1 = p0 + π1 + π2 +
1
2

tr R1.
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9. Estimates of the New Error

We will now estimate the different parts of R1 and r1 that were defined in the previous section.

9.1. Estimates of the Symmetric Tensor R1

Lemma 9.1 (Estimate of Rlin,1). It holds

‖Rlin,1(t)‖L1(R2) ≤ C(R0, u0, e, δ, κ, ε)

(

μ
− 1

6
1 μ

− 1
6

2 +
μ

1
2
1 μ

1
2
2

ω

)

+ 2‖r0‖CtL2
x
‖u0(t)‖L2(R2).

Using Hölder’s inequality and Lemma 6.2, Lemma 6.3 and Lemma 6.5, we have

‖Rlin,1(t)‖L1(R2) ≤ 2‖u0(t)‖L2(R2)

(‖uc(t)‖L2(R2) + ‖ut(t)‖L2(R2) + ‖v(t)‖L2(R2)

)

+ 2‖u0(t)‖L3(R2)‖up(t)‖
L

3
2 (R2)

≤ C(R0, u0, e, δ, κ, ε)

(
μ1

μ2
+ μ

− 1
6

1 μ
− 1

6
2 +

μ
1
2
1 μ

1
2
2

ω

)

+ 2‖r0‖CtL2
x
‖u0(t)‖L2(R2). �

Lemma 9.2 (Estimate of Rlin,2). It holds

‖Rlin,2(t)‖L1(R2) ≤ C(R0, r0, e, δ, κ, ε)

(
μ1

μ2
+ μ

− 1
6

1 μ
− 1

6
2 +

μ
1
2
1 μ

1
2
2

ω

)

.

Proof. We have

‖Rlin,2(t)‖L1(R2) ≤ 2‖up(t)‖L2(R2)

(‖uc(t)‖L2(R2) + ‖ut(t)‖L2(R2)

)

+ 2‖up(t)‖
L

3
2 (R2)

‖v(t)‖L3(R2)

and this was already estimated in (28). �
Lemma 9.3 (Estimate of Rlin,3). It holds

‖Rlin,3(t)‖L1(R2) ≤ C(R0, u0, e, δ, κ, ε)

⎛

⎝

(
μ1

μ2

)2

+

(
μ

1
2
1 μ

1
2
2

ω

)2
⎞

⎠+ 4‖r0‖2
CtL2

x
.

Proof. Since

Rlin,3 = (u1 − u0 − up) ⊗ (u1 − u0 − up) = (uc + ut + v) ⊗ (uc + ut + v),

we have

‖Rlin,3(t)‖L1(R2) ≤ 4
(
‖uc(t)‖2

L2(R2) + ‖ut(t)‖2
L2(R2) + ‖v(t)‖2

L2(R2)

)
,

hence the assertion follows from Lemma 6.3 and Lemma 6.5. �
Lemma 9.4 (Estimate of Rκ). It holds

‖Rκ(t)‖L1(R2) ≤ η

2
.

Proof. This holds because of our choice of κ in (17). �
Lemma 9.5 (Estimate of Rquad). It holds

‖Rquad(t)‖L1(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
λ

.

Proof. This follows directly from Remark 2.9, the scaling of W p
k (see Proposition 4.2) and the estimates

on ak in (21). �



26 Page 32 of 39 M. Buck, S. Modena JMFM

Lemma 9.6 (Estimate of RY ). It holds

‖RY (t)‖L1(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
ωλ

.

Proof. As for Rquad, this is a direct application of Remark 2.9. �
Lemma 9.7 (Estimate of Rtime). It holds

‖Rtime(t)‖L1(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
(
λ−1μ

− 1
2

1 μ
− 1

2
2 + ωμ

1
2
1 μ

− 3
2

2

)
.

By Remark 2.9 and the estimates for the operators A and B in (11), Proposition 4.2 and (21) we have

‖Rtime,1‖L1(R2) ≤ C(κ)‖∂tak‖CN−1(R2)
1
λ

‖W p
k ‖L1(T2)

≤ C(R0, u0, e, κ, δ, ε,N)λ−1μ
− 1

2
1 μ

− 1
2

2 ,

‖R̃time,2‖L1(R2) ≤ C(κ)ωλμ1‖ak‖C(R2)‖A((ϕ′)k
μ1

(λ(· − ωt)), ϕμ2(λ·), ξk)‖L1(T2)

≤ C(R0, u0, e, κ, δ, ε,N)ωμ
1
2
1 μ

− 3
2

2 ,

‖Rtime,2‖L1(R2) ≤ C(κ)ωλμ1‖ak‖CN (R2)‖div−1 A((ϕ′)k
μ1

(λ(· − ωt)), ϕμ2(λ·), ξk)‖L1(T2)

≤ C(R0, u0, e, κ, δ, ε,N)ωλ−1μ
1
2
1 μ

− 3
2

2 ,

‖Rtime,3‖L1(R2) ≤ C(κ)‖∂tak‖CN−1(R2)
1
λ

‖W c
k‖L1(T2)

≤ C(R0, u0, e, κ, δ, ε,N)λ−1μ
1
2
1 μ

− 3
2

2 ,

‖R̃time,4‖L1(R2) ≤ C(κ)
ωλμ2

1

μ2
‖ak‖C(R2)‖B((ϕ′′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)‖L1(T2)

≤ C(R0, u0, e, κ, δ, ε,N)ωμ
3
2
1 μ

− 5
2

2 ,

‖Rtime,4‖L1(R2) ≤ C(κ)
ωλμ2

1

μ2
‖ak‖CN (R2)

∥
∥div−1 B((ϕ′′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥

≤ C(R0, u0, e, κ, δ, ε,N)ωλ−1μ
3
2
1 μ

− 5
2

2 ,

‖Rtime,5‖L1(R2) ≤ C(κ)‖∂tb
1
k‖CN−1(R2)

1
λ

‖W
cc,‖
k ‖L1(T2)

≤ C(R0, u0, e, κ, δ, ε,N)λ−2μ
− 1

2
1 μ

− 3
2

2 ,

‖R̃time,6‖L1(R2) ≤ C(κ)
ωμ1

μ2
‖b1

k‖C(R2)

∥
∥A((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥

L1(T2)

≤ C(R0, u0, e, κ, δ, ε,N)ωλ−1μ
1
2
1 μ

− 5
2

2 ,

‖Rtime,6‖L1(R2) ≤ C(κ)
ωμ1

μ2
‖b1

k‖CN (R2)

∥
∥div−1 A((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥

L1(T2)

≤ C(R0, u0, e, κ, δ, ε,N)ωλ−2μ
1
2
1 μ

− 5
2

2 ,

‖Rtime,7‖L1(R2) ≤ C(κ)‖∂tb
2
k‖CN−1(R2)

1
λ

‖W cc,⊥
k ‖L1(T2)

≤ C(R0, u0, e, κ, δ, ε,N)λ−2μ
− 1

2
1 μ

− 3
2

2 ,

‖R̃time,8‖L1(R2) ≤ C(κ)
ωμ1

μ2
‖b2

k‖C(R2)

∥
∥B((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥

L1(T2)

≤ C(R0, e, κ, δ, ε)ωλ−1μ
1
2
1 μ

− 5
2

2 ,

‖Rtime,8‖L1(R2) ≤ C(κ)
ωμ1

μ2
‖b2

k‖CN (R2)

∥
∥div−1 B((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥

L1(T2)
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≤ C(R0, u0, e, κ, δ, ε,N)ωλ−2μ
1
2
1 μ

− 5
2

2 . �
Putting those estimate together yields the claim.

9.2. Estimates of the Vector r1

In this subsection, we estimate the new error r1. Since r1 also enters into the next iteration (see the
definition of v in Sect. 5), we need an estimate on

∫ t

0
curl r1(x, s) ds in Hp(R2) as well. The operators SN

and S̃N guarantee that all parts of r1 have compact supports, therefore one can use Remark 2.6, and we
control the quantity

∥
∥
∥
∫ t

0
curl r1(·, s) ds

∥
∥
∥

Hp(R2)
by ‖r1‖L∞(R2).

Lemma 9.8 (Estimate of rquad). The function rquad has compact support and satisfies

‖rquad(t)‖L∞(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
μ1μ2

λN

‖
∫ t

0

curl rquad(s) ds‖Hp(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
μ1μ

2
2

λN−1
.

Proof. The compact support follows from the properties of S̃N . By Remark 2.9, Proposition 4.2 and (21),
we can estimate

‖rquad(s)‖L∞(R2) ≤ C(κ)
1

λN
‖a2

k‖CN+1(R2)

∥
∥
∥
∥W

p
k ⊗ W p

k − ξk

|ξk| ⊗ ξk

|ξk|
∥
∥
∥
∥

L∞(T2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ1μ2

λN
.

For the curl, we use again Remark 2.9 and obtain

‖ curl rquad(s)‖L∞(R2) ≤ C(κ)‖a2‖CN+2(R2)

∥
∥
∥∇div−N (W p

k ⊗ W p
k )
∥
∥
∥

L∞(T2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ1μ

2
2

λN−1
for all s ∈ [0, 1]

and therefore also

‖
∫ t

0

curl rquad(s) ds‖L∞(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
μ1μ

2
2

λN−1
.

Using that
∫ t

0
curl rquad(s) ds is supported in Bκ+1, we can apply Remark 2.6 and obtain

‖
∫ t

0

curl rquad(s) ds‖Hp(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
μ1μ

2
2

λN−1
.

�
Lemma 9.9 (Estimate of rY ). The function rY has compact support and satisfies

‖rY (t)‖L∞(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
(

μ1μ2

ωλN
+

1
ω

)

,

‖
∫ t

0

curl rY (s) ds‖Hp(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
(

μ1μ
2
2

ωλN−1
+

1
ω

)

.

The compact support follows from the properties of SN for rY,1 and the compact support of ak for
rY,2, respectively. By Remark 2.9, Proposition 4.2 and (21), we can estimate

‖rY,1(s)‖L∞(R2) ≤ C(κ)
1

λN
‖∂ta

2
k‖CN+1(R2)

∥
∥
∥
∥Yk − 1

ω
ξk

∥
∥
∥
∥

L∞(T2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ1μ2

ωλN
.
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For the curl, we use again Remark 2.9 and obtain

‖ curl rY,1(s)‖L∞(R2) ≤ C(κ)‖∂ta
2‖CN+2(R2)‖∇div−N Yk‖L∞(T2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ1μ

2
2

ωλN−1
for all s ∈ [0, 1]

and therefore also

‖
∫ t

0

curl rY,1(s) ds‖L∞(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
μ1μ

2
2

ωλN−1
.

Using that
∫ t

0
curl rquad(s) ds is supported in Bκ+1, we can apply Remark 2.6 and obtain

‖
∫ t

0

curl rY,1(s) ds‖Hp(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
μ1μ

2
2

ωλN−1
.

For rY,2 we immediately get

‖rY,2(s)‖L∞(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
1
ω

and also

‖
∫ t

0

curl rY,2(s) ds‖L∞(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
1
ω

so that since supp
(∫ t

0
curl rY,2(s) ds

)
⊂ Bκ+1, we have by Remark 2.6

‖
∫ t

0

curl rY,2(s) ds‖HpR2) ≤ C(R0, u0, e, δ, κ, ε,N)
1
ω

. �

Lemma 9.10 (Estimate of rtime). The function rtime has compact support and satisfies

‖rtime(t)‖L∞(R2) ≤ C(R0, u0, e, δ, κ, ε,N)

(
μ

1
2
1 μ

1
2
2

λN
+

ωμ
3
2
1 μ

− 1
2

2

λN

)

,

‖
∫ t

0

curl rtime(s) ds‖Hp(R2) ≤ C(R0, u0, e, δ, κ, ε,N)

(
μ

1
2
1 μ

3
2
2

λN−1
+

ωμ
3
2
1 μ

1
2
2

λN−1

)

.

We estimate the different parts of rtime separately. Again, by Remark 2.9, Proposition 4.2 and (21)
we have

‖rtime,1(t)‖L∞(R2) ≤ C(κ)
1

λN
‖∂tak‖CN (R2)‖W p

k ‖L∞(T2) ≤ C(R0, u0, e, δ, κ, ε,N)
μ

1
2
1 μ

1
2
2

λN

and

‖ curl rtime,1(t)‖L∞(R2) ≤ C(κ)‖∂ta‖CN+1(R2)

∥
∥
∥∇div−N W p

k

∥
∥
∥

L∞(T2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ

1
2
1 μ

3
2
2

λN−1
for all t ∈ [0, 1]

and therefore also
∥
∥
∥
∥

∫ t

0

curl rtime,1(s) ds

∥
∥
∥
∥

Hp(R2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ

1
2
1 μ

3
2
2

λN−1

by Remark 2.6. For rtime,2, we have, using (11)

‖rtime,2(t)‖L∞(R2) ≤ C(κ)ωλμ1‖ak‖CN+1

∥
∥
∥div−N A((ϕ′)k

μ1
(λ(· − ωt)), ϕμ2(λ·), ξk)

∥
∥
∥

L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)ωλμ1
μ

1
2
1 μ

− 1
2

2

λN+1
= C(R0, e, δ, κ, ε)

ωμ
3
2
1 μ

− 1
2

2

λN
,
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‖ curl rtime,2(t)‖L∞(R2) ≤ C(κ)ωλμ1‖ak‖CN+2

∥
∥
∥∇div−N A((ϕ′)k

μ1
(λ(· − ωt)), ϕμ2(λ·), ξk)

∥
∥
∥

L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)ωλμ1
μ

1
2
1 μ

1
2
2

λN
= C(R0, e, δ, κ, ε)

ωμ
3
2
1 μ

1
2
2

λN−1

and therefore also

‖
∫ t

0

curl rtime,2(s) ds‖Hp(R2) ≤ C(R0, u0, e, δ, κ, ε,N)
ωμ

3
2
1 μ

1
2
2

λN−1
.

In the same manner, we estimate

‖rtime,3(t)‖L∞(R2) ≤ C(κ)
1

λN
‖∂tak‖CN (R2)‖W c

k‖L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ

3
2
1 μ

− 1
2

2

λN
,

‖rtime,4(t)‖L∞(R2) ≤ C(κ)
ωλμ2

1

μ2
‖ak‖CN+1(R2)

∥
∥
∥div−N B((ϕ′′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥
∥

L∞(T2)
,

≤ C(R0, u0, e, δ, κ, ε,N)
ωλμ2

1

μ2

μ
1
2
1 μ

− 1
2

2

λN+1
= C(R0, e, δ, κ, ε)

ωμ
5
2
1 μ

− 3
2

2

λN
,

‖rtime,5(t)‖L∞(R2) ≤ C(κ)
1

λN
‖∂tb

1
k‖CN (R2)‖W

cc,‖
k ‖L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ

1
2
1 μ

− 1
2

2

λN+1
,

‖rtime,6(t)‖L∞(R2) ≤ C(κ)
ωμ1

μ2
‖b1

k‖CN+1(R2)

∥
∥
∥div−N A((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥
∥

L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)
ωμ1

μ2

μ
1
2
1 μ

− 1
2

2

λN+1
= C(R0, e, δ, κ, ε)

ωμ
3
2
1 μ

− 3
2

2

λN+1
,

‖rtime,7(t)‖L∞(R2) ≤ C(κ)
1

λN
‖∂tb

2
k‖CN (R2)‖W cc,⊥

k ‖L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ

1
2
1 μ

− 1
2

2

λN+1
,

‖rtime,8(t)‖L∞(R2) ≤ C(κ)
ωμ1

μ2
‖b2

k‖CN+1(R2)

∥
∥
∥div−N B((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥
∥

L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)
ωμ1

μ2

μ
1
2
1 μ

− 1
2

2

λN+1
= C(R0, e, δ, κ, ε)

ωμ
3
2
1 μ

− 3
2

2

λN+1
,

and

‖
∫ t

0

curl rtime,3(s) ds‖Hp(R2) ≤ C(κ)‖∂tak‖CN+1(R2)

∥
∥
∥∇div−N W c

k

∥
∥
∥

L∞(T2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ

3
2
1 μ

1
2
2

λN−1
,

‖
∫ t

0

curl rtime,4(s) ds‖Hp(R2) ≤ C(κ)
ωλμ2

1

μ2
‖ak‖CN+2(R2)

·
∥
∥
∥∇div−N B((ϕ′′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥
∥

L∞(T2)
,

≤ C(R0, u0, e, δ, κ, ε,N)
ωλμ2

1

μ2

μ
1
2
1 μ

1
2
2

λN
= C(R0, e, δ, κ, ε)

ωμ
5
2
1 μ

− 1
2

2

λN−1
,
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‖
∫ t

0

curl rtime,5(s) ds‖Hp(R2) ≤ C(κ)‖∂tb
1
k‖CN+1(R2)‖∇div−N W

cc,‖
k ‖L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ

1
2
1 μ

1
2
2

λN
,

‖
∫ t

0

curl rtime,6(s) ds‖Hp(R2) ≤ C(κ)
ωμ1

μ2
‖b1

k‖CN+2(R2)

·
∥
∥
∥∇div−N A((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥
∥

L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)
ωμ1

μ2

μ
1
2
1 μ

1
2
2

λN
= C(R0, e, δ, κ, ε)

ωμ
3
2
1 μ

− 1
2

2

λN
,

‖
∫ t

0

curl rtime,7(s) ds‖Hp(R2) ≤ C(κ)‖∂tb
2
k‖CN+1(R2)‖∇div−N W cc,⊥

k ‖L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)
μ

1
2
1 μ

1
2
2

λN
,

‖
∫ t

0

curl rtime,8(s) ds‖Hp(R2) ≤ C(κ)
ωμ1

μ2
‖b2

k‖CN+2(R2)

·
∥
∥
∥∇div−N B((ϕ′)k

μ1
(λ(· − ωt)), (Φ′′)μ2(λ·), ξk)

∥
∥
∥

L∞(R2)

≤ C(R0, u0, e, δ, κ, ε,N)
ωμ1

μ2

μ
1
2
1 μ

1
2
2

λN
= C(R0, u0, e, δ, κ, ε,N)

ωμ
3
2
1 μ

− 1
2

2

λN
. �

10. Proof of the Main Proposition

Proposition 3.2 is proved by choosing all the parameters appropriately, which we do in this section. Let
us set

• μ1 = λα,
• μ2 = λμ1 = λ1+α,
• ω = λβ

for some α, β > 0 to be chosen below. We collect the estimates from Sect. 6 and 7 where the parameters
μ1, μ2 and ω need to be balanced in Table 2.

We choose α, β and N such that all the exponents in the fourth column of the previous table are
negative. This is clear for the first and the third row. Since 2− 2

p < 0, we can choose α � 1 so large such
that

5
2

+ α(2 − 2
p
) < 0

i.e. we have negative exponents in Line 4. Furthermore, since 3 − 2
p < 1, let us choose α large enough

such that

3 + α(3 − 2
p
) < α +

1
2
.

With this choice of α, we only need β to satisfy

3 + α(3 − 2
p
) < α +

1
2

< β < α +
3
2
.

With such a β, Line 1–6 in Table 2 have negative exponents of λ. Having α and β fixed, it only remains
to choose N . Since N enters all the remaining exponents with a negative sign, we can simply pick N ∈ N
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Table 2. All quantities that have to be controlled in terms of oscillation and concentration parameters and the phase
speed

Lemma Term Order =

6.3 uc in L2(R2) μ1μ−1
2 λ−1

6.3 ut in L2(R2) ω−1μ
1
2
1 μ

1
2
2 λ−β+α+ 1

2

6.6 Energy increment μ
− 1

6
1 μ

− 1
6

2 λ− 1
3

α− 1
6

7.1 curl w in Hp(R2) λμ
1
2

− 2
p

1 μ
3
2
2 λ

5
2
+α(2− 2

p
)

7.2 curl ut in Hp(R2) ω−1λμ
1− 2

p

1 μ2
2 λ

3−β+α(3− 2
p
)

9.7 Rtime in L1(R2) ωμ
1
2
1 μ

− 3
2

2 λβ−α− 3
2

9.8 rquad in L∞(R2) λ−N μ1μ2 λ2α+1−N

9.9 rY in L∞(R2) ω−1λ−N μ1μ2 λ−β+2α+1−N

9.10 rtime in L∞(R2) λ−N μ
1
2
1 μ

1
2
2 + ωλ−N μ

3
2
1 μ

− 1
2

2 λα+ 1
2

−N + λβ+α− 1
2

−N

9.8
∫ t
0 curl rquad(s) ds in Hp(R2) λ1−N μ1μ2

2 λ3α+3−N

9.9
∫ t
0 curl rY (s) ds in Hp(R2) ω−1λ1−Nμ1μ2

2 λ−β+3α+3−N

9.10
∫ t
0 curl rtime(s) ds in Hp(R2) λ1−N μ

1
2
1 μ

3
2
2 + ωλ1−N μ

3
2
1 μ

1
2
2 λ2α+ 5

2
−N

+λβ+2α+ 3
2

−N

large enough such that all exponents are negative. Let

γ0 = exponent in the table with the smallest magnitude

which satisfies γ0 < 0 by our choice of α, β,N . We can now verify the claims of Proposition 3.2. For (i),
we have by (29)

∣
∣
∣
∣e(t)

(

1 − δ

2

)

−
∫

R2
|u1|2 dx

∣
∣
∣
∣ <

1
8
δe(t) + C(R0, r0, u0, e, δ, κ, ε)λγ0

and we can choose λ large enough such that (i) is satisfied. For (v), we use Lemma 6.2, Lemma 6.3 and
Lemma 6.5

‖(u1 − u0)(t)‖L2(R2) ≤ ‖up(t)‖L2(R2) + ‖uc(t)‖L2(R2) + ‖ut(t)‖L2(R2) + ‖v(t)‖L2(R2)

≤ 10δ
1
2 +

C(κ, ε)
λ

1
2

+ C(R0, u0, e, δ, κ, ε)λγ0 + ‖r0‖CtL2
x

Using that ‖r0‖CtL2
x

≤ 1
32δ by assumption, we can choose λ large enough such that

‖u1 − u0(t)‖L2(R2) ≤ 11δ
1
2 ,

i.e. (v) is satisfied with M0 = 11. For (vi), we use Lemmas 7.1, 7.2 and 7.3

‖ curl(u1 − u0)(t)‖p
Hp(R2) ≤ ‖ curl w(t)‖p

Hp(R2) + ‖ curl ut(t)‖p
Hp(R2) + ‖ curl v(t)‖p

Hp(R2)

≤ C(R0, u0, e, δ, κ, ε)λpγ0 + ‖
∫ t

0

curl r0(s) ds‖p
Hp(R2)

and we can choose λ large enough such that (vi) is satisfied. For (iv), we have by Lemma 9.1, 9.2, 9.3,
9.4, 9.5, 9.6 and 9.7

‖R1(t)‖L1(R2) ≤ ‖Rlin,1(t)‖L1(R2) + ‖Rlin,2(t)‖L1(R2) + ‖Rlin,3(t)‖L1(R2)

+ ‖Rκ(t)‖L1(R2) + ‖Rquad(t)‖L1(R2) + ‖RY (t)‖L1(R2) + ‖Rtime(t)‖L1(R2)

≤ η

2
+ 4‖r0‖2

CtL2
x

+ 2‖r0‖CtL2
x
‖u0(t)‖L2(R2) + C(R0, u0, e, δ, κ, ε,N)λγ0 .

Noting that ‖r0(t)‖2
L2(R2) ≤ ‖r0(t)‖L2(R2) since ‖r0(t)‖L2(R2) ≤ 1 by assumption, we can choose λ large

enough to obtain (iv). For (ii), we have because of the compact support of r1

‖r1(t)‖L2(R2) ≤ C(κ)‖r1(t)‖L∞(R2)
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≤ C(κ)
(‖rquad(t)‖L∞(R2) + ‖rY (t)‖L∞(R2) + ‖rtime(t)‖L∞(R2)

)

≤ C(R0, u0, e, δ, κ, ε,N)λγ0 ,

and by the previous estimate on ‖u1(t) − u0(t)‖L2(R2)

‖u1‖CtL2
x
‖r1(t)‖L2(R2) ≤ ‖u0‖CtL2

x
‖r1(t)‖L2(R2) + ‖u1 − u0‖CtL2

x
‖r1(t)‖L2(R2)

≤ C(R0, r0, u0, δ, κ, ε,N)λγ0 .

Finally, we also have

‖
∫ t

0

curl r1(s) ds‖p
Hp(R2) ≤ ‖

∫ t

0

curl rquad(s) ds‖p
Hp(R2) + ‖

∫ t

0

curl rY (s) ds‖p
Hp(R2)

+ ‖
∫ t

0

curl rtime(s) ds‖p
Hp(R2)

≤ C(R0, u0, e, δ, κ, ε,N)λpγ0 .

Again, λ can be chosen large enough such that (iii) is satisfied. Assume we have given two energy profiles
e1, e2 with e1 = e2 on [0, t0] for some t0 ∈ [0, 1]. The values that we add with w(t), uc(t), ut(t) depend
only on pointwise (in time) values of the previous steps, while v(t) depends only on values of the previous
steps on [0, t]. Therefore, one can do the construction for e1 and e2 simultaneously, choosing the same
values for all the parameters in each iteration step, thereby producing two solutions u1, u2 to (1) that
satisfy u1 = u2 on [0, t0].
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[3] Bruè, E., Colombo, M.: Nonuniqueness of solutions to the euler equations with vorticity in a lorentz space. Commun.
Math. Phys. (2023). https://doi.org/10.1007/s00220-023-04816-4
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[25] Modena, S., Székelyhidi, L.: Non-renormalized solutions to the continuity equation. Calc. Var. Partial. Differ. Equ. 58,
208 (2019). https://doi.org/10.1007/s00526-019-1651-8

[26] Pitcho, J., Sorella, M.: Almost everywhere non-uniqueness of integral curves for divergence-free sobolev vector fields.
https://doi.org/10.48550/arXiv.2108.03194. arXiv preprintarXiv:2108.03194, (2022)

[27] Stein, E. M., Murphy, T. S.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, vol. 3.
Princeton University Press (1993). https://doi.org/10.1515/9781400883929

[28] Vishik, M.: Instability and non-uniqueness in the cauchy problem for the euler equations of an ideal incompressible
fluid. Part i. https://doi.org/10.48550/arXiv.1805.09426. arXiv preprintarXiv:1805.09426, (2018)

[29] Vishik, M.: Instability and non-uniqueness in the cauchy problem for the Euler equations of an ideal incompressible
fluid. Part ii. https://doi.org/10.48550/arXiv.1805.09440. arXiv preprintarXiv:1805.09440, (2018)

[30] Yudovich, V.I.: Some bounds for solutions of elliptic equations. Matematicheskii Sbornik 101, 229–244 (1962)
[31] Yudovich, V.I.: Non-stationary flows of an ideal incompressible fluid. Zhurnal Vychislitel’noi Matematiki i Matematich-

eskoi Fiziki 3(6), 1032–1066 (1963)

Miriam Buck
Department of Mathematics
Technische Universität Darmstadt
64285 Darmstadt
Germany
e-mail: mbuck@mathematik.tu-darmstadt.de

Stefano Modena
Gran Sasso Science Institute
67100 L’Aquila
Italy

e-mail: stefano.modena@gssi.it

(accepted: January 27, 2024; published online: March 28, 2024)

https://doi.org/10.4007/annals.2019.189.1.3
https://doi.org/10.1007/s00220-021-04231-7
https://doi.org/10.1007/s40818-020-00091-x
https://doi.org/10.48550/arXiv.2204.08950
https://doi.org/10.1007/s00222-012-0429-9
https://doi.org/10.1007/s00222-012-0429-9
https://doi.org/10.4007/annals.2009.170.1417
https://doi.org/10.4171/JEMS/466
https://doi.org/10.48550/arXiv.2305.18509
https://doi.org/10.48550/arXiv.2305.18142
https://doi.org/10.48550/arXiv.2305.18105
http://arxiv.org/abs/2305.18105
https://doi.org/10.57262/die035-0708-411
https://doi.org/10.57262/die035-0708-411
https://doi.org/10.57262/die035-0708-411
https://doi.org/10.57262/die035-0708-411
https://doi.org/10.4007/annals.2018.188.3.4
https://doi.org/10.4007/annals.2018.188.3.4
https://doi.org/10.1007/s00205-016-0973-3
https://doi.org/10.1016/j.matpur.2006.01.005
https://doi.org/10.48550/arXiv.2304.09578
https://doi.org/10.48550/arXiv.2304.09578
https://doi.org/10.1016/J.ANIHPC.2020.03.002
https://doi.org/10.1016/J.ANIHPC.2020.03.002
https://doi.org/10.1007/s40818-018-0056-x
https://doi.org/10.1007/s00526-019-1651-8
https://doi.org/10.48550/arXiv.2108.03194
https://doi.org/10.1515/9781400883929
https://doi.org/10.48550/arXiv.1805.09426
https://doi.org/10.48550/arXiv.1805.09440

	Non-Uniqueness and Energy Dissipation for 2D Euler Equations with Vorticity  in Hardy Spaces
	Abstract
	1. Introduction
	1.1. Short Literature Overview
	1.2. Our Result
	1.3. Technical Novelties
	1.3.1. Concentration in Hardy Spaces
	1.3.2. Full Spaces Versus Periodic Domain

	1.4. An Explicit Example Comparing Distributional and Lorentz Space Convergence
	1.5. Notation

	2. Preliminaries
	3. Main Proposition
	4. The Building Blocks
	5. The Perturbations
	6. Estimates of the Perturbations
	7. Estimates of the Curl in Hardy Space
	8. The New Error
	8.1. The New Reynolds-Defect-Equation
	8.2. Analysis of the first three lines of the iteration equation
	8.3. Analysis of the fourth line of the iteration equation
	8.3.1. Rewriting the fourth line of the iteration equation
	8.3.2. Definition of the quadratic error 
	8.3.3. Definition of the error from the time corrector

	8.4. Analysis of the fifth line of the iteration equation
	8.5. Analysis of the sixth and seventh line of the iteration equation
	8.6. Definition of the New Error

	9. Estimates of the New Error
	9.1. Estimates of the matrix error
	9.2. Estimates of the scalar error

	10. Proof of the Main Proposition
	References




