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Abstract. We give a complete proof of the classical Benjamin and Lighthill conjecture for arbitrary two-dimensional steady
water waves with vorticity. We show that the flow force constant of an arbitrary smooth solution is bounded by the flow
force constants for the corresponding conjugate laminar flows. We prove these inequalities without any assumptions on the
geometry of the surface profile and put no restrictions on the wave amplitude. Furthermore, we give a complete description
of all cases when the equalities can occur. In particular, that excludes the existence of one-sided bores and multi-hump
solitary waves. Our conclusions are new already for Stokes waves with a constant vorticity, while the case of equalities is
new even in the classical setting of irrotational waves.
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1. Introduction

In this paper we address the classical water wave problem for two-dimensional steady waves with vorticity
on water of finite depth, formulated in terms of Euler equations with a free boundary. Every steady wave
admit two non-dimensional constants of motion, which are the Bernoulli and the flow force constants. In
this paper we focus on two questions, one is related to fundamental bounds for the surface profile, and
the other one is about a possible range for values of the flow force constant. The last problem is known as
the Benjamin and Lighthill conjecture and was introduced in [2]. The property conjectured by Benjamin
and Lighthill (see also Keady and Norbury [9], Conjecture 2) can be expressed as the inequalities

S−(r) ≤ S ≤ S+(r), (1.1)

where S is the non-dimensional flow force constant of a solution, r is the corresponding Bernoulli constant,
while S−(r) and S+(r) are flow force constants of conjugate laminar flows (supercritical and subcritical
respectively) determined by the same Bernoulli constant. According to the conjecture, inequalities in
(1.1) are valid for arbitrary smooth solutions. Geometrically, it means that any steady motion realizes a
point inside the cuspidal region as in Fig. 1, where the upper boundary corresponds to subcritical flows
and the lower boundary represents supercritical flows respectively. We recall that subcritical flows are
those with Froude numbers F < 1, while supercritical flows are determined by F > 1. Every subcritical
flow allows for a local bifurcation of small-amplitude Stokes waves that correspond to the shaded region
adjacent to the upper boundary in Fig. 1. The lower boundary in Fig. 1 represents supercritical flows as
well as solitary waves. Note that every solitary wave satisfies S = S+(r).

The importance of the Benjamin–Lighthill conjecture was recently reemphasized in [21], where it
was shown that the amplitude of any irrotational Stokes wave is bounded from above by some absolute
constant times c2/g, where c is the wave speed and g is the gravitational constant. It is also shown in [21]
that there exist small-amplitude extreme waves. Both facts rely heavily on the inequality S ≤ S+, which
is the most interesting one.
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Fig. 1. The parameter region in (r, s)-variables for irrotational waves

Fig. 2. Solitary-type waves with S = S − (r)

The case of equalities in (1.1) was not originally a part of the Benjamin–Lighthill conjecture, but is a
significant problem itself. For instance, every subcritical solitary wave as in Fig. 2, if exists, must satisfy
S = S+(r). Similarly, a one-sided bore as in Fig. 2 has to be subject to S = S−(r). The non-existence
of subcritical solitary waves was recently established in [19], while the absence of supercritical bores, for
instance, was still an open problem. This shows that the possibility of equalities in (1.1) is a separate
question of interest itself. In this paper we completely settle both of the problems: the classical conjecture
(1.1) and the case of equalities.

The Benjamin–Lighthill conjecture for irrotational Stokes waves was verified by Benjamin [4]. He also
outlined a possible proof of (1.1) for sub-harmonic bifurcations of Stokes waves. The bottom bound in
(1.1) was obtained earlier by Keady & Norbury [9] (also for periodic wavetrains). Kozlov and Kuznetsov
[13,15] proved (1.1) for arbitrary solutions under weak regularity assumptions, provided the Bernoulli
constant r is close to it’s critical value Rc; it was extended to the rotational setting in [18], again for
r ≈ Rc; the latter condition guarantees that solutions are of small amplitude, that is are close to the
unperturbed shear flow. The left inequality in (1.1) for periodic waves with a favorable vorticity was
obtained by Keady & Norbury [11]. Whereas their result is valid under essential restrictions on the
vorticity, they point out that in general the statement of the conjecture is probably false: “There is no
reason to suppose that the conjectures of Benjamin and Lighthill will hold for all flows with vorticity”.
Even so this comment is probably related to flows with counter-currents, it is still surprising that (1.1)
turns out to be true for arbitrary vorticity distributions and arbitrary solutions that are unidirectional,
which is one the main results of the present paper.

The Benjamin and Lighthill conjecture is closely related to another problem about bounds for the
surface profile. If y = η(x) determines the surface of the fluid in a moving frame of reference, then the
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following inequalities are well known:

d−(r) ≤ inf
x∈R

η(x) ≤ d+(r) ≤ sup
x∈R

η(x), (1.2)

where d−(r) and d+(r) are depths of the supercritical and subcritical flows respectively. First obtained by
Keady & Norbury [10] for irrotational Stokes waves, it was extended to arbitrary solutions by Kozlov and
Kuznetsov [12,14]; see also [16]. We emphasize that Kozlov and Kuznetsov [14] obtained strict inequality
d+(r) < supx∈R

η(x) for arbitrary irrotational solutions, provided η is not a constant identically. While
for Stokes waves it can be obtained by using the Hopf lemma, the general case is much more subtle. The
argument in [14] required a careful analysis of the Fourier symbol associated with an integro-differential
operator and the irrotational nature of the problem was essential. For waves with vorticity only a weak
form of (1.2) is known; see [16,17].

In this paper we consider both problems, inequalities for the flow force (1.1) and bounds (1.2). For
an arbitrary wave with vorticity we prove (1.1) and (1.2) and provide a complete description of all cases
when equalities can occur. The case of equalities in (1.1) is new even in the irrotational setting. In fact, for
all solutions other than streams and classical solitary waves all inequalities in (1.1) and (1.2) are shown
to be strict. In particular, if a given non-laminar solution satisfies S = S−(r) (without any assumptions
on the surface profile), then it is necessarily a classical solitary wave of elevation, whose profile decays
monotonically on each side of the crest. On the other hand, the relation S = S+(r) is only valid for
subcritical laminar flows. This is a strong statement, because it, in particular, shows that subcritical
solitary waves (with the Froude number less than one) do not exist. The latter was an open problem for a
long time even in the irrotational setting; it was resolved recently in [19] by using an asymptotic analysis.
In addition we prove that any steady wave is subject to strict inequalities in (1.2), provided it is not a
parallel flow or a solitary wave. This generalizes a series of previous mentioned results.

2. Statement of the Problem

We consider the classical water wave problem for two-dimensional steady waves with vorticity on water
of finite depth. We neglect effects of surface tension and consider a fluid of constant (unit) density. Thus,
in an appropriate coordinate system moving along with the wave, stationary Euler equations are given
by

(u − c)ux + vuy = −Px, (2.1a)

(u − c)vx + vvy = −Py − g, (2.1b)

ux + vy = 0, (2.1c)

which holds true in a two-dimensional fluid domain D, defined by the inequality

0 < y < η(x).

Here (u, v) are components of the relative velocity field, y = η(x) is the surface profile, c is the wave
speed, P is the pressure and g is the gravitational constant. The corresponding boundary conditions are

v = 0 on y = 0, (2.1d)

v = (u − c)ηx on y = η, (2.1e)

P = Patm on y = η. (2.1f)

It is often assumed in the literature that the flow is irrotational, that is vx − uy is zero everywhere in
the fluid domain. Under this assumption components of the velocity field are harmonic functions, which
allows to apply methods of complex analysis. Being a convenient simplification it forbids modeling of
non-uniform currents, commonly occurring in nature . In the present paper we will consider rotational
flows, where the vorticity function is defined by

ω = −vx + uy. (2.2)



   31 Page 4 of 20 E. Lokharu JMFM

Throughout the paper we assume that the flow is free from stagnation points and the horizontal compo-
nent of the relative velocity field does not change sign, that is

u − c < 0 (2.3)

everywhere in the fluid. We call such flows unidirectional.
In the two-dimensional case relation (2.1c) allows to reformulate the problem in terms of a stream

function ψ, defined implicitly by relations

ψy = c − u, ψx = v.

This determines ψ up to an additive constant, while relations (2.1d) and (2.1f) force ψ to be constant
along the boundaries. Thus, by subtracting a suitable constant, we can always assume that

ψ = m on y = η; ψ = 0 on y = 0.

Here m > 0 is the mass flux, defined by

m =
∫ η

0

(c − u)dy.

In what follows we will use non-dimensional variables proposed by Keady & Norbury [10], where lengths
and velocities are scaled by (m2/g)1/3 and (mg)1/3 respectively; in new units m = 1 and g = 1. For
simplicity we keep the same notations for η and ψ.

Taking the curl of Euler equations (2.1a)-(2.1c) one checks that the vorticity function ω defined by
(2.2) is constant along paths tangent everywhere to the relative velocity field (u − c, v); see [5] for more
details. Having the same property by the definition, stream function ψ is strictly monotone by (2.3) on
every vertical interval inside the fluid region. These observations together show that ω depends only on
values of the stream function, that is

ω = ω(ψ).

This property and Bernoulli’s law allow to express the pressure P as

P − Patm +
1
2
|∇ψ|2 + y + Ω(ψ) − Ω(1) = const, (2.4)

where

Ω(ψ) =
∫ ψ

0

ω(p) dp

is a primitive of the vorticity function ω(ψ). Thus, we can eliminate the pressure from equations and
obtain the following problem:

Δψ + ω(ψ) = 0 for 0 < y < η, (2.5a)
1
2 |∇ψ|2 + y = r on y = η, (2.5b)

ψ = 1 on y = η, (2.5c)

ψ = 0 on y = 0. (2.5d)

Here r > 0 is referred to as Bernoulli’s constant.
Let us define the flow force constant, another motion invariant. Following Benjamin [3], we put

S =
∫ η

0

(P − Patm + (u − c)2)dy. (2.6)

Taking x-derivative in (2.6) and using (2.1a) together with the formula for the pressure (2.4), one verifies
that S is a constant of motion independent of x. In terms of the stream function one obtains

S =
∫ η

0

( 12 (ψ2
y − ψ2

x) − y + Ω(1) − Ω(ψ) + r) dy. (2.7)
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Fig. 3. Diagrams for laminar flows

This constant is important in several ways; for instance, it plays the role of the Hamiltonian in spatial
dynamics; see [1].

2.1. Stream Solutions

Laminar flows or shear currents, for which the vertical component v of the velocity field is zero play
an important role in the theory of steady waves. Let us recall some basic facts about stream solutions
ψ = U(y) and η = d describing shear currents. It is convenient to parameterize this family by the relative
speed at the bottom. Thus, we put Uy(0) = s and find that U = U(y; s) is subject to

U ′′ + ω(U) = 0, 0 < y < d; U(0) = 0, U(d) = 1. (2.8)

Our assumption (2.3) implies U ′ > 0 on [0; d], which puts a natural constraint on s. Indeed, multiplying
the first equation in (2.8) by U ′ and integrating over [0; y], we find

U ′2 = s2 − 2Ω(U).

This shows that the expression s2 − 2Ω(p) is non-negative for all p ∈ [0; 1], which requires

s > s0 =
√

max
p∈[0,1]

2Ω(p). (2.9)

On the other hand, every s > s0 gives rise to a monotonically increasing function U(y; s) solving (2.8)
for some unique d = d(s), given explicitly by

d(s) =
∫ 1

0

1√
s2 − 2Ω(p)

.

The formula above shows that d(s) monotonically depends on s and takes values between zero and

d0 = lim
s→s0+

d(s).

This quantity can be finite or not depending on the vorticity. For instance, when ω = 0 we find s0 = 0
and d0 = +∞. On the other hand, when ω = −b for some positive constant b �= 0, then s0 = 0 but
d0 < +∞.
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Every stream solution U(y; s) determines the Bernoulli constant R(s), which can be found from the
relation (2.5c). This constant can be computed explicitly as

R(s) = 1
2s2 − Ω(1) + d(s), s ≥ s0.

Taking the derivative with respect to s we find that R′(s) = 0 only for s = sc, which is uniquely defined
from the relation ∫ 1

0

1
(s2 − 2Ω(p))3/2

dp = 1.

The corresponding value of R(s) at s = sc is denoted by

Rc = R(sc).

Thus, the function R(s) decreases from R0 to Rc when s varies from s0 to sc and increases to infinity on
(sc,+∞). This monotonicity property of R(s) shows (see Fig. 3A) that for any r ∈ (Rc;R0) the equation
R(s) = r has exactly two solutions s = s−(r) and s = s+(r), such that s0 < s−(r) < sc < s+(r). The
corresponding depths

d−(r) = d(s+(r)), d+(r) = d(s−(r))

satisfy d−(r) < d+(r) and are called supercritical and subcritical depths respectively. The flow force
constants corresponding to d±(r) are given by

S−(r) = S(s+(r)), S+(r) = S(s−(r)),

where S(s) is the flow force constant for the stream solution (U(y; s), d(s)). It is computed from (2.7) as

S(s) =
∫ d(s)

0

(
1
2 (Uy(y; s))2 + Ω(1) − Ω(U(y; s)) − y + r

)
dy.

A direct computation gives

S′(s) = d(s)(s + d′(s)),

so that S(s) attains its global minimum Sc at s = sc. One also checks that two curves (R(s), S(s))
for s < sc and (R(s), S(s)) for s > sc in (r,S) plane have the same tangent line S = dcr at s = sc.
Furthermore, (R(s), S(s)) has a positive curvature for s < sc, while (R(s), S(s)) for s > sc has a negative
curvature. Taking into account that S > Sc = S(sc) for all s �= sc, we conclude

S−(r) < S+(r), r ∈ (Rc, R),

see Fig. 3B.

2.2. Formulations of Main Results

Following notations from the previous section, our main theorem is

Theorem 2.1. Let ψ ∈ C2,γ(D) and η ∈ C2,γ(R) be a solution to (2.5) for some γ ∈ (0, 1) with infD ψy > 0
and r ∈ (Rc, R0). Then the flow force constant S given by (2.7) enjoys the following properties:
(i) inequalities S−(r) ≤ S ≤ S+(r) are always true;
(ii) the equality S = S−(r) holds true only for supercritical laminar flows and symmetric solitary waves

of positive elevation supported by supercritical streams;
(iii) the equality S = S+(r) is true only for subcritical laminar flows.

The claim (i) of Theorem 2.1 is known as the classical Benjamin and Lighthill conjecture. We emphasise
that it is new even in the irrotational case since it covers all possible smooth solutions; the original proof by
Benjmain [4] deals only with Stokes waves (and small amplitude perturbations of those) and Benjmain’s
argument relies heavily on that assumption.
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The parts (ii) and (iii) of Theorem 2.1 are of separate interest and had never been considered in the
literature before. For instance, the claim (iii), in particular, forbids the existence of subcritical solitary
waves; this was an open problem for a long time and was recently proved in [19]. Both statements (ii)
and (iii) are new even for irrotational waves.

The assumption r ∈ (Rc, R0) appears naturally, since otherwise the quantity S+(r) is not defined.
Moreover, for a broad range of solutions it is fulfilled automatically. In particular when R0 = +∞. When
R0 is finite and the maximum of Ω(p) on [0, 1] is strictly positive, then r < R0 is proved to be true
for arbitrary non-laminar solutions; see [17]. The case Ω ≤ 0 is more delicate and was considered by
the author in [20]. It was shown that an arbitrary Stokes wave enjoys r < R0 − Ω(1), which is not an
optimal bound. Our conjecture is that r < R0 for all nontrivial solutions irrespective of the vorticity.
Furthermore, when r is close to R0, then the wave amplitude must be small. Such property was recently
verified in [21] in the irrotational case, when R0 = +∞. It was shown that the amplitude of an arbitrary
solution is of order r−2. As a consequence of that we obtained the inequality a < Bc2g−1 for an arbitrary
Stokes wave. Here B is an absolute constant, a is the wave amplitude in original physical variables, c is
the propagation speed, and g is the gravitational constant. It is worth mentioning that the argument in
[21] was essentially based on the inequality S ≤ S+(r) for irrotational Stokes waves, which was verified
by Benjamin in [4]. This emphasizes the importance of the Benjamin and Lighthill conjecture.
A direct consequence of Theorem 2.1 is stated below.

Corollary 2.2. Under assumptions of the theorem, the water wave profile η is subject to the following
properties:
(i’) for all x ∈ R we have d−(r) < η(x);
(ii’) denoting η̂ = sup

R
η and η̌ = infR η, we have η̌ < d+(r) < η̂, while equalities η̌ = d+(r) or d+(r) = η̂

are only possible if η̌ = η̂ = d+(r);
(iii’) the equality η̌ = d−(r) is valid only for supercritical laminar flows and supercritical solitary waves.

These statements follow from Proposition 3.2 and Theorem 2.1. The inequalities d−(r) < η(x) and
η̌ < d+(r) < η̂ for irrotational Stokes waves were first obtained by Keady & Norbury [9]. An extension to
arbitrary irrotational solutions was done by Kozlov & Kuznetsov [12,14]. For waves with vorticity only
non-strict versions of inequalities were known; see [17] and references therein. The last claim (iii’) is new
even in the irrotational setting.

Such bounds as in Corollary 2.2 are useful for further analysis of large-amplitude waves since they
define positive cones containing all solutions.

Our proofs are essentially based on the elliptic maximum principle, which is the main reason why the
inequalities S−(r) ≤ S ≤ S+(r) hold true. In order to use maximum principle arguments we introduce
flow force flux functions, generalizing a similar construction from [19].

3. Preliminaries

3.1. Reformulation of the Problem

Under assumption (2.3) we can apply the partial hodograph transform introduced by Dubreil-Jacotin [7].
Thus, we present new independent variables

q = x, p = ψ(x, y),

while new unknown function h(q, p) (height function) is defined from the identity

h(q, p) = y.

Note that it is related to the stream function ψ through the formulas

ψx = −hq

hp
, ψy =

1
hp

, (3.1)
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where

hp > 0 (3.2a)

throughout the fluid domain by (2.3). An advantage of using new variables is in that instead of two
unknown functions η(x) and ψ(x, y) with an unknown domain of definition we have one function h(q, p)
defined in a fixed strip S = R × (0, 1). An equivalent problem for h(q, p) is given by(

1 + h2
q

2h2
p

+ Ω

)

p

−
(

hq

hp

)
q

= 0 in S, (3.2b)

1 + h2
q

2h2
p

+ h = r on p = 1, (3.2c)

h = 0 on p = 0. (3.2d)

The wave profile η becomes the boundary value of h on p = 1:

h(q, 1) = η(q), q ∈ R.

Using (3.1) and Bernoulli’s law (2.4) we recalculate the flow force constant S defined in (2.7) as

S =
∫ 1

0

(
1 − h2

q

2h2
p

− h − Ω + Ω(1) + r

)
hp dp. (3.3)

Laminar flows defined by stream functions U(y; s) correspond to height functions h = H(p; s) that are
independent of the horizontal variable q. The corresponding equations are(

1
2H2

p

+ Ω
)

p

= 0, H(0) = 0, H(1) = d(s),
1

2H2
p (1)

+ H(1) = R(s).

Solving equations for H(p; s) explicitly, we find

H(p; s) =
∫ p

0

1√
s2 − 2Ω(τ)

dτ.

Given a height function h(q, p) and a stream solution H(p; s), we define

w(s)(q, p) = h(q, p) − H(p; s). (3.4)

This notation will be frequently used in what follows. In order to derive an equation for w(s) we first
write (3.2b) in a non-divergence form as

1 + h2
q

h2
p

hpp − 2
hq

hp
hqp + hqq − ω(p)hp = 0.

Now using our ansatz (3.4), we find

1 + h2
q

h2
p

w(s)
pp − 2

hq

hp
w(s)

qp + w(s)
qq − ω(p)w(s)

p +
(w(s)

q )2Hpp

h2
p

− w
(s)
p (hp + Hp)Hpp

h2
pH

2
p

= 0. (3.5)

Thus, w(s) solves a homogeneous elliptic equation in S and is subject to a maximum principle; see [22] for
an elliptic maximum principle in unbounded domains. The boundary conditions for w(s) can be obtained
directly from (3.2c) and (3.2d) by inserting (3.4) and using the corresponding equations for H. This gives

(w(s)
q )2

2h2
p

− w
(s)
p (hp + Hp)

2h2
pH

2
p

+ w(s) = r − R(s) for p = 1, (3.6a)

w(s) = 0 for p = 0. (3.6b)
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For s = s±(r), we have r − R(s±(r)) = 0 and (3.6a) turns into

w
(s±)
p

H3
p

− w(s±) =
(w(s±)

q )2

2h2
p

+
(w(s±)

p )2(2hp + Hp)
2H3

ph2
p

, p = 1. (3.7)

This shows that w
(s±)
p (q; 1) is positive whenever w(s±)(q; 1) is positive. This property will be used in what

follows.
In many formulas, such as (3.6a), it is often convenient to omit the dependence on s in the notation of

H. The right choice of s will be always clear from the context and is the same as for w(s). Furthermore,
since the Bernoulli constant r will remain unchanged, we will often omit it from notations, such as for
s± or S±.

3.2. Subsequence Solutions

Let h ∈ C2,γ(S) be a solution to (3.2) for some r > 0 and let S be the corresponding flow force constant.
For an arbitrary sequence {qj}∞

j=1 ⊂ R, possibly unbounded, we consider horizontal shifts

hj(q, p) = h(q + qj , p), j ≥ 1.

Thus, every function hj solve the same problem (3.2) with the same Bernoulli constant. Now let γ′ ∈ (0, γ)
be given. Then the embedding C2,γ(K) ↪→ C2,γ′

(K) is compact for any compact subset K ⊂ S. Because
the norms ‖hj‖C2,γ(S) are uniformly bounded in j, we can find a subsequence {hjk

}∞
k=1 and a function

h̃ ∈ C2,γ′
(S) with the following property: for any compact K ⊂ S restrictions of functions hjk

to K

converge to h̃|K in C2,γ′
(K). Then it is straightforward to show that h̃ has the same regularity as h,

that is h̃ ∈ C2,γ(S). It is also clear that h̃ solves the same elliptic problem (3.2) with the same Bernoulli
constant r and has the same flow force constant S. Note that if the convergence takes place for some γ′

then it is true for all γ′ ∈ (0, γ) by the interpolation. Such function h̃ will be referred to as a subsequence
solution of h. This terminology will be useful in order to avoid multiple repetitions of the argument with
subsequences as above. Let us give an explicit definition.

Definition 3.1. Given two functions h, h̃ ∈ C2,γ(S) we say that h̃ is a subsequence solution of h if there
exists a sequence {qj}∞

j=1 ⊂ R such that functions hj(q, p) = h(q + qj , p) converge to h̃ in C2,γ′
(K) for

all compact K ⊂ S and all γ′ ∈ (0, γ).

Note that the definition is symmetric: h̃ is a subsequence solution of h if and only if h is a subsequence
solution of h̃. The following property of subsequence solutions will be useful in what follows.

Proposition 3.1. Let h̃ ∈ C2,γ(S) be a subsequence solution of h ∈ C2,γ(S) and ĥ ∈ C2,γ(S) is a subse-
quence solution of h̃. Then ĥ is a subsequence solution of h.

Proof. Let us fix ε > 0 and a bounded closed interval I. Then, because ĥ is a subsequence solution of h̃

and one finds q̂ ∈ R such that the function h̃(q + q̂) is close to ĥ(q) on I in C2,γ′
(I × [0, 1]), that is

‖h̃(· + q̂) − ĥ(·)‖C2,γ′ (I×[0,1]) < ε/2.

Now we consider functions h̃(· + q̂) and h. It is clear that h is a subsequence solution of h̃(· + q̂) and a
similar argument gives q̃ ∈ R such that

‖h(· + q̃) − h̃(· + q̂)‖C2,γ′ (I×[0,1]) < ε/2.

Combining two inequalities together, we conclude that for any ε > 0 and any interval I there exists q̃ ∈ R

such that

‖h(· + q̃) − ĥ(·)‖C2,γ′ (I×[0,1]) < ε.

This shows that ĥ is a subsequence solutions of h. �



   31 Page 10 of 20 E. Lokharu JMFM

3.3. General Bounds for Solutions

Let us recall a precise statement about bounds for the surface profile, mainly borrowed from [17], that
will be used in our proofs.

Proposition 3.2. Let (ψ, η) be as in Theorem 2.1 with r ∈ (Rc, R0). Then the following is true:

(i) for all x ∈ R we have η(x) > d−(r); furthermore, if η̌ = d−(r), then S = S−(r);
(ii) η̂ ≥ d+(r) and if the equality holds true, then S = S+(r);
(iii) η̌ ≤ d+(r) and η̌ = d+(r) implies S = S+(r).

Proof. The inequalities for the profile η(x) > d−(r), η̂ ≥ d+(r) and η̌ ≤ d+(r) are well known and were
obtained in [17]. Here we only need to prove the remaining claims about the flow force constant.

First we assume that η̌ = d−(r). Let h be the height function corresponding to ψ; see Section 3.1.
Then there exists a sequence {qj}∞

j=1 such that η(qj) → d−(r) (recall that d−(r) = d(s+(r))) and so

w(s+)(qj , 1) → 0

as j → +∞, where w(s+) is defined by (3.4) with s = s+(r). Let w̃ be any subsequence solution of w,
corresponding to the sequence {qj}∞

j=1. Then w̃(0, 1) = 0 by the construction, while w̃ ≥ 0 in S. The
latter is because w(s+) ≥ 0 in S, which follows from the inequality η̌ ≥ d−(r) and the maximum principle.
Next, we claim that w̃ = 0 identically in S. Indeed, if it is not the case, then the Hopf lemma would give
w̃p(0, 1) < 0. But this is in a contradiction with the relation (3.7), which holds for w̃ instead of w(s±).
The identity computed at q = 0 then would give w̃p(0, 1) ≥ 0, since w̃(0, 1) = w̃q(0, 1) = 0. Thus, we
have proved that w̃ = 0 in S so that its flow force constant equals to S−(r). But functions w̃ and w(s+)

have same flow force constants and then S = S−(r).
A similar argument with subsequence solutions works for the cases η̂ = d+(r) and η̌ = d+(r). �

Proposition 3.3. Let h ∈ C2,γ(S) be a solution to (3.2) with r ∈ (Rc, R0). Then there exists a stream
solution H(p; s) with s ∈ (s0, s−(r)) such that supq∈R

hp(q, 0) < Hp(0; s).

Proof. If s0 = 0, then the statement is trivial, since then Hp(0; s) = 1/s → +∞ as s → s0. If d0 = +∞,
then we choose s ∈ (s0, s−(r)) sufficiently close to s0 so that d(s) is large enough to ensure w(s) < 0 on
p = 0. Then w(s) < 0 everywhere in S by the maximum principle and so w

(s)
p < 0 on p = 0 by the Hopf

lemma as desired. The remaining case is when s0 > 0 and d0 < +∞. Then

max
[0,1]

Ω(p) = Ω(1) > 0.

Here we used the inequality d0 < +∞, which ensures that the maximum of Ω can not be attained at an
inner point of the interval. Indeed, otherwise we would find

d0 =
∫ 1

0

1√
2Ω(p0) − 2Ω(p)

dp = +∞.

Therefore, we can conclude that

Hp(1; s) =
1√

s2 − 2Ω(1)
→ +∞

as s → s0+ =
√

2Ω(1). Then we can choose s ∈ (s0, s−(r)) for which w
(s)
p < 0 on p = 1. In particular,

the maximum of w(s) in S can not be attained on p = 1. Thus, it is attained at the bottom and then
w

(s)
p < 0 on p = 0 as desired. This finishes the proof. �
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3.4. Flow Force Flux Functions

Our aim is to extract some information by comparing the flow force constant S of a given solution with
different flow force constants S(s) of stream solutions. We start by computing the difference

S − S(s) =
∫ 1

0

(
1 − h2

q

2h2
p

− h − Ω + Ω(1) + r

)
hp dp

−
∫ 1

0

(
1

2H2
p

− H − Ω + Ω(1) + R

)
Hp dp

=
∫ 1

0

(
1 − h2

q

2h2
p

− 1
2H2

p

− h + H + r − R

)
Hp

+
∫ 1

0

(
1 − h2

q

2h2
p

− h − Ω + Ω(1) + r

)
wp

=
∫ 1

0

(
−wp(hp + Hp)

2h2
pHp

− wHp + (r − R)Hp − w2
qHp

2h2
p

)
dp

+
∫ 1

0

(
wp − h2

qwp

2h2
p

− hwp − Ωwp + Ω(1)wp + rwp

)
dp

=
∫ 1

0

(
− wp

2hpHp
− w2

q

2hp

)
dp

+
∫ 1

0

(−hwp − Ωwp + Ω(1)wp + rwp − wHp + (r − R)Hp) dp

=
∫ 1

0

(
w2

p

2hpH2
p

− w2
q

2hp

)
dp

+
∫ 1

0

(
− wp

2H2
p

− hwp − Ωwp + Ω(1)wp + rwp − wHp + (r − R)Hp

)
dp

= I1 + I2

Note that
1

2H2
p

+ Ω = s2,

so that we can integrate all terms in I2. This gives

I2 =
[−ws2 − dw − 1

2w2 + Ω(1)w + rw + (r − R)d
]
p=1

=
[− 1

2w2 + (r − R)w + (r − R)d
]
p=1

.

Here we used the Bernoulli equation for H, which reads as
1
2s2 − Ω(1) + d = R.

Therefore, we obtained the identity

S − S(s) = − 1
2w2|p=1 + (r − R)w|p=1 + (r − R)d +

∫ 1

0

(
w2

p

2hpH2
p

− w2
q

2hp

)
dp,

which is valid for an arbitrary stream solution H = H(p; s). Let us move the term (r − R)d to the left,
so that the right-hand side consists only of terms with w. Thus, denoting

σ(s; r) = S(s) + (r − R(s))d(s),
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we conclude

2(S − σ(s; r)) = 2(r − R(s))w(s)(q, 1) − (w(s)(q, 1))2 +
∫ 1

0

(
(w(s)

p )2

hpH2
p

− (w(s)
q )2

hp

)
dp. (3.8)

Now we can define the flow force function

Φ(s)(q, p) =
∫ p

0

(
(w(s)

p (q, p′))2

hp(q, p′)(Hp(p′; s))2
− (w(s)

q (q, p′))2

hp(q, p′)

)
dp′. (3.9)

One of the key ideas of the proof is that every function Φ(s) solves an elliptic problem and therefore is
subject to the maximum principle, while its boundary values are related to the quantity S − σ(s; r) via
(3.8). Together with certain properties of σ(s; r) this will allow us to prove Theorem 2.1.
Let us compute the first derivatives of Φ(s). For this purpose we find

Φ(s)
qp =

2w
(s)
p w

(s)
qp

hpH2
p

− (w(s)
p )2w(s)

qp

h2
pH

2
p

− 2

(
w

(s)
q

hp

)

q

w(s)
q − (w(s)

q )2w(s)
qp

h2
p

= −wqp

(
1 + (w(s)

q )2

h2
p

− 1
H2

p

)
− 2

(
w

(s)
q

hp

)

q

w(s)
q .

Now we use the identity

2

(
w

(s)
q

hp

)

q

=

(
1 + (w(s)

q )2

h2
p

− 1
H2

p

)
,

which follows directly from (3.2b) if one take the difference of two equations for h and H respectively.
Thus, we conclude

Φ(s)
qp = −

[
w(s)

q

(
1 + (w(s)

q )2

h2
p

− 1
H2

p

)]

p

and so

Φ(s)
q = −w(s)

q

(
1 + (w(s)

q )2

h2
p

− 1
H2

p

)
, Φ(s)

p =
(w(s)

p )2

hpH2
p

− (w(s)
q )2

hp
. (3.10)

The same computation was made in [19] for s = s−(r).

Now we can state

Proposition 3.4. There exist functions b1, b2 ∈ L∞(S) such that

1 + h2
q

h2
p

Φ(s)
pp − 2

hq

hp
Φ(s)

qp + Φ(s)
qq + b1Φ(s)

q + b2Φ(s)
p = 0 in S. (3.11)

Furthermore, Φ(s) satisfies the boundary conditions

Φ(s) = 2(S − σ(s; r)) − 2(r − R(s))w(s)(q, 1) + (w(s)(q, 1))2 for p = 1, (3.12a)

Φ(s) = 0 for p = 0. (3.12b)

In the irrotational case b1, b2 = 0 and (3.11) is equivalent to the Laplace equation.

A proof of this fact was given in [19, Proposition 3.1], where functions b1 and b2 were computed
explicitly.
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3.5. Auxiliary Functions σ and κ

For a given r > Rc and s > s0 we already defined

σ(s; r) =
∫ 1

0

(
1

2H2
p (p; s)

− H(p; s) − Ω(p) + Ω(1) + r

)
Hp(p; s) dp. (3.13)

This expression coincides with the flow force constant for H(p; s), but with the Bernoulli constant R(s)
replaced by r. We also note that

σ(s∓(r); r) = S±(r).

The key property of σ(s; r) is stated below.

Lemma 3.5. For a given r ∈ (Rc, R0) the function s �→ σ(s; r) increases for s ∈ (s0, s−(r)), decreases for
s ∈ (s−(r), s+(r)) and increases to infinity for s ∈ (s+(r),+∞).

Proof. Because

Hp(p; s) =
1√

s2 − 2Ω(p)
, ∂sHp(p; s) = −sH3

p (p; s),

we can compute the derivative

σs(s; r) =
∫ 1

0

(
1

2H2
p (p; s)

− H(p; s) − Ω(p) + Ω(1) + r

)
∂sHp(p; s) dp

+
∫ 1

0

(
−∂sHp(p; s)

H3
p (p; s)

− ∂sH(p; s)
)

Hp(p; s) dp

=
∫ 1

0

(
− 1

2H2
p (p; s)

− Ω(p) + Ω(1) + r

)
∂sHp(p; s) dp − d(s)d′(s)

=
∫ 1

0

(− 1
2s2 + Ω(1) + r

)
∂sHp(p; s) dp − d(s)

∫ 1

0

∂sHp(p; s)

= −s(r − R(s))
∫ 1

0

H3
p (p; s) dp.

Finally, because R(s) < r for s−(r) < s < s+(r) and R(s) > r for s > s+(r) or s < s−(r) we obtain the
statement of the lemma. �

Our function σ(s; r) and it’s role is similar to the function σ(h) introduced by Keady and Norbury in
[9]. The main purpose of the latter is to be used for a comparison with the flow force constant S.
The following functional will be also involved in our analysis.

κ(s; r) = 2(S − σ(s; r)) − (r − R(s))2. (3.14)

A direct computation gives

∂sκ(s; r) = −2∂sσ(s; r) + 2(r − R(s))R′(s)

= 2s(r − R(s))
∫ 1

0

H3
p (p; s) dp + 2(r − R(s))(s + d′(s))

= 2s(r − R(s)).

Thus, we obtain

Lemma 3.6. For a given r ∈ (Rc, R0) the function s �→ κ(s; r) decreases for s ∈ (s0, s−(r)), increases for
s ∈ (s−(r), s+(r)) and decreases to minus infinity for s ∈ (s+(r),+∞).

The meaning of κ is explained below.
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Fig. 4. Graphs of functions σ(s; r) and κ(s; r)

Proposition 3.7. Let h ∈ C2,γ(S) be a solution to (3.2) with r > Rc. Assume that the flow force flux
function Φ(s) for some s > s0 satisfies infq∈R Φ(s)(q; 1) ≤ 0. Then

inf
q∈R

Φ(s)(q; 1) = κ(s; r) (3.15)

and there exists a minimizing sequence {qj}∞
j=1 for which Φ(s)(qj ; 1) → κ(s; r) as j → +∞ and

lim
j→+∞

w(s)(qj , 1) = r − R(s). (3.16)

Here κ(s; r) is defined by (3.14).

A similar property was proved in [20, Proposition 2.3] but without claim about the minimizing se-
quence. Therefore, we give a complete argument here.

Proof. First, we assume that the infimum is attained at some point (q0; 1), where Φ(s)
q (q0; 1) = 0. Differ-

entiating the boundary condition (3.12a), we find

Φ(s)
q (q0, 1) = 2w(s)

q (q0, 1)(w(s)(q0, 1) − (r − R(s))) = 0. (3.17)

Because Φ(s) attains it’s global minimum at (q0, 1), then the maximum principle and the Hopf lemma
give Φ(s)

p (q0, 1) < 0. In particular, we find that w
(s)
q (q0, 1) �= 0 by the second formula (3.10). Thus, we

necessarily obtain from (3.17) that w(s)(q0, 1) = (r − R(s)). Using this equality in (3.12a), we conclude
(4.1) and (3.16) as required.

Now we assume that the infimum is attained over a sequence {qj}∞
j=1. Let ĥ be any subsequence

solution of h corresponding to {qj}∞
j=1. Then we put ŵ = ĥ − H and define Φ̂ by (3.9), where h and w

are replaced by ĥ and ŵ respectively. Then Φ̂ is a subsequence solution of Φ(s) and so

inf
S

Φ̂ = Φ̂(0, 1) ≤ 0.

Then the same argument as before gives

Φ̂(0, 1) = κ(s; r), ŵ(0, 1) = (r − R(s)).

This immediately gives (4.1), while (3.16) follows from Definition 3.1. �

4. Proof of Theorem 2.1

Throughout this section we assume that given functions ψ and η satisfy assumptions of the theorem.
Let h be the corresponding height function defined in Section 3.1. Furthermore, let r and S be the
corresponding Bernoulli and flow force constants respectively. Our aim is to prove the inequalities

S−(r) ≤ S ≤ S+(r)
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and investigate when they turn into equalities. First we will prove the lower bound by applying some
maximum principle arguments to properly chosen flow force flux functions. In a similar way we will argue
when proving the upper bound. The case S = S+(r) is simpler and will be included there. Finally we
will deal with the most interesting case S = S−(r). It is more delicate and more technical. Our argument
there is essentially based on an application of Lemma 4.2, which is the key point of the proof.

4.1. Proof of the Lower Bound

Note that the first claim of Proposition 3.2 allows us to assume η̌ > d−(r), because otherwise S = S−(r)
and we have nothing to prove. In fact we are going to prove a stronger statement given below.

Proposition 4.1. Under assumptions of Theorem 2.1 and assuming that η̌ > d−(r), we have S > S−(r).

Proof. Assume the contrary, that S ≤ S−(r). In this case we have

inf
R

Φ(s+(r))(q, 1) > 0. (4.1)

If the latter is not true, then the infimum above is nonpositive and Proposition 3.7 gives a sequence of
points {qj}∞

j=1 for which

lim
j→+∞

w(s+(r))(qj , 1) = r − R(s+(r)) = 0,

which contradicts to the assumption η̌ > d−(r).
Now we show that for some s ∈ (s−(r), s+(r)) the function Φ(s) attains negative values somewhere

along the upper boundary p = 1. Indeed, by Proposition 3.2 we have d−(r) < η̌ ≤ d+(r) and then we can
find s� ∈ [s−(r), s+(r)) such that

H(1; s�) = inf
R

h(q, 1).

Note that we necessarily have s� > s−(r) because otherwise η̌ = d+(r) and S = S+(r) by Proposition 3.2
(iii), which is impossible, since S ≤ S−(r) < S+(r).

The choice of s� and the boundary relation (3.12a) show that infR Φ(s�)(q, 1) ≤ S − σ(s�; r). But ac-
cording Lemma 3.5 (see Fig. 4) we have σ(s�; r) > σ(s+(r); r) = S−(r) and S−(r) ≥ S by the assumption.
Thus, infR Φ(s�)(q, 1) < 0. Finally, by the continuity we find s† ∈ (s−(r), s+(r)) such that

inf
R

Φ(s†)(q, 1) = 0.

Then κ(s†; r) = 0 by Proposition 3.7 and the definition of κ gives S − σ(s†; r) ≥ 0. But σ(s†; r) > S−(r)
by Lemma 3.5 and we arrive to a contradiction with the assumption S−(r) ≥ S. Therefore, we proved
that S > S−(r). �

4.2. Proof of the Upper Bound

We aim to prove the strict inequality S < S+(r), provided h defines a non-laminar solution. Assume the
contrary, that S ≥ S+(r). Then for any s ∈ (s0, s+(r)) the function Φ(s) is nonnegative in S. Indeed, if
for some s ∈ (s0, s+(r)) we assume that

inf
R

Φ(s)(q, 1) < 0,

then κ(s; r) < 0 by Proposition 3.7. On the other hand, Lemma 3.6 (see Fig. 4) shows that κ ≥ 0 for
all s ∈ (s0, s+(r)), since S ≥ S+(r) by the assumption. Thus, all functions Φ(s) are nonnegative for all
s ∈ (s0, s+(r)).
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Note that since w(s+(r)) is nonnegative by Proposition 3.2, then the Hopf lemma ensures w(s+(r))(q, 0) >
0 for all q ∈ R. Now by using Proposition 3.3 we can find s� ∈ (s0, s+(r)) such that

w(s�)
p (q�, 0) = 0.

for some q� ∈ R. But we already know that Φ(s�) is nonnegative and then

Φ(s�)
p (q�, 0) =

[w(s�)
p (q�, 0)]2

hpH2
p (0; s�)

> 0

by the Hopf lemma, leading to a contradiction, until h is not a laminar solution. Thus, we have proved
the strict inequality S < S+(r) for any non-laminar solution.

4.3. Analysis of the Case S = S−(r)

Here we assume that S = S−(r) and so η̌ = d−(r) by Proposition 4.1. Our aim is to prove that

lim
q→+∞ h(q, 1) = d−(r). (4.2)

Assume this is not true. Then we show the following.

Lemma 4.2. There exists δ > 0 such that for any 0 < ε < δ there is an interval [a, b] such that
(1) the functions w(s+)(q, 1) and Φ(s+)(q, 1)(q, 1) are strictly positive on [a, b], while also

min
[a,b]

Φ(s+)(q, 1) < ε;

(2) we have

Φ(s+)(a, p), Φ(s+)(b, p) ≥ δp

for all p ∈ [0, 1],
where the constant δ is independent of ε, while the interval [a, b] depends ε.

If the statement of the lemma is true, then we can find s0 < s < s+(r) sufficiently close to s+(r) so
that the function Φ(s) is non-negative on [a, b] × [0, 1], while

min
[a,b]

Φ(s)(q, 1) = 0.

Let q0 ∈ [a, b] be the point where the minimum is attained. If ε is sufficiently smaller than δ, then in view
of (2) we must have q0 ∈ (a, b). In this case

Φ(s)
q (q0, 1) = 2w(s)

q (q0, 1)(w(s)(q0, 1) − (r − R(s))) = 0.

By the Hopf lemma we have Φ(s)
p (q0, 1) < 0, which in view of (3.10) guarantees that w

(s)
q (q0, 1) �= 0 and

so

w(s)(q0, 1) = (r − R(s)).

Thus, the boundary relation (3.8) now implies that

min
[a,b]

Φ(s)(q, 1) = κ(s; r) = 0.

But Lemma 3.6 gives

0 = κ(s; r) < κ(s+(r); r) = S − S−(r) = 0,

leading to a contradiction.
This argument shows that (4.2) is true for an arbitrary solution with S = S−(r). In particular, (4.2) is

valid for h(−q, p). Then by [8, Theorem 3.1] we have that h defines a solitary wave of positive elevation,
symmetric around the crest and monotone on the sides. Thus, it is left to prove Lemma 4.2. This is a
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technical result that requires some additional facts about half-solitary waves. An exact statement will be
given in the next section. Then we will complete our proof of Lemma 4.2 in Section 4.5.

4.4. Asymptotics for Solitary Waves

A one-sided solitary wave solution to (2.5) is defined by an asymptotic relation

lim
x→+∞ η(x) = d. (4.3)

Note that here we do not require any monotonicity property. For unidirectional waves (4.3) guarantees
that the corresponding height function h has a subsequence solution, which is a laminar flow with the
depth d. In particular, this requires

d = d−(r) or d = d+(r),

where r is the Bernoulli constant. It was recently proved in [19] that the assumption (4.3) requires
d = d−(r); that is all solitary waves are subcritical (supported by subcritical laminar flows H(p; s) with
s > sc). Furthermore, one verifies that

h(q, p) → H(p; s+(r)), hq(q, p) → 0, q → ±∞ (4.4)

in C2,γ′
([0, 1]) and C1,γ′

([0, 1]) respectively for all γ′ ∈ (0, γ), provided h ∈ C2,γ(S). Asymptotics (4.4)
show that S = S−(r), which follows from (3.3) by passing to the limit q → +∞.

In order to obtain higher order asymptotics for h, we need to introduce the following eigenvalue
problem:

−
(

ϕp

H3
p

)
p

= μ
ϕ

Hp
, p ∈ [0, 1], (4.5a)

where H = H(p; s+(r)) and the eigenfunction ϕ(p) is subject to the boundary conditions

ϕ(0) = 0, ϕp(1) = H3
p (1)ϕ(1). (4.5b)

This Sturm-Liouville problem arises as a form of the dispersion relation; see [6]. The first eigenvalue
μ1 = λ2

1 > 0 is always positive, provided H = H(p; s+(r)) is a supercritical stream solution. This
suggests that the difference h − H must decay as e−λ1q as q → +∞. A precise statement is given below.

Proposition 4.3. Let h ∈ C2,γ(S) be a non-laminar solution to (3.2) and satisfy limq→+∞ h(q, 1) = d−(r).
Then

h(q, p) = H(p; s+(r)) + ξϕ1(p)e−λ1q + f(q, p)e−λ′
1q, (q, p) ∈ S,

where ξ �= 0, λ′
1 > λ1 and f ∈ C2,γ(S).

These asymptotics were proved in [8], under an additional assumption limq→−∞ h(q, 1) = d−(r).
However this is not essential and proofs from [8] are applicable with minor modifications, so we omit
it here. The coefficient ξ is always positive because the function h(q, p) − H(p; s+(r)) is positive in S.
Indeed, if ξ = 0 then the leading order asymptotics is determined by another eigenfunction φj , j > 1
of (4.5) that must change sign on [0, 1], leading to a contradiction. Note that some exponential decay is
always available due to Harnack principle and positivity of h(q, p) − H(p; s+(r)).

4.5. Proof of Lemma 4.2

Assuming (4.2) is violated we will prove that there is a non-laminar subsequence solution for which (4.2)
is fulfilled. Throughout this section we use the notation

w(q, p) = h(q, p) − H(p; s+(r)).

We first will prove the following auxiliary fact.
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Lemma 4.4. If (4.2) is not true there exists a non-laminar subsequence solution ŵ of w corresponding to
a sequence {q̂j}∞

j=1 accumulating at the positive infinity and such that ŵ(q, 1) → 0 as q → +∞.

Proof. First we note that even so (4.2) is violated there exists a sequence qj → +∞ such that

w(qj , 1) → 0, j → +∞. (4.6)

This is because we have η̌ = d−(r). On the other hand, by the assumption there is ρ > 0 such that

lim sup
q→+∞

w(q, 1) > ρ. (4.7)

Furthermore, we can assume that ρ is small enough so that every small-amplitude subsequence solution
h̄ with ‖h̄ − d−(r)‖∞ ≤ ρ is trivial. We also assume that w(0, 1) > ρ and w(qj , 1) < ρ for all j ≥ 1.
Otherwise we can consider a function of the form w(q − q0, p) for which this is true. Now let

Ij = (aj , bj), aj < qj < bj

be the largest interval containing qj and such that w(q; 1) < ρ for all q ∈ Ij . Note that each Ij is bounded
in view of rho and our assumptions. Furthermore, by the definition we find

w(q; 1) < ρ, q ∈ Ij , w(aj , 1) = w(bj , 1) = ρ

for all j ≥ 1. On the other hand, we have

|Ij | = bj − aj → +∞, j → +∞.

If this is not true, and the lengths |Ijk
| are bounded for some subsequence, then we can consider some

subsequence solution w† corresponding to the sequence {qjk
}∞

k=1. Then w† has to be a non-zero and
nonnegative solution with w†(0, 1) = 0 by (4.6). But this is impossible by Proposition 3.2 part (i).

Thus, |Ij | → +∞ as j → +∞ and we can consider a subsequence solution ŵ corresponding to the
sequence {aj}∞

j=1, where aj is the left endpoint of Ij . Then ŵ must be nonnegative in S and ŵ(0, 1) = ρ,
so it is not zero identically. Moreover, because |Ij | → +∞ as j → +∞ and w(q, 1) ≤ ρ on each Ij , we
conclude that

ŵ(q, 1) ≤ ρ, q > 0.

If (4.2) is not valid for ŵ, then we can find a non-zero subsequence solution w̄ of ŵ such that |w̄(q, 1)| ≤ ρ
for all q ∈ R. But that would be in a contradiction with the choice of ρ. This finishes the proof of
Lemma 4.4. �

Now we are ready to give a proof of Lemma 4.2. Let ŵ be the decaying subsequence solution provided
by Lemma 4.4. Then by Proposition 4.3 we have

ŵ(q, p) = ξϕ1(p)e−λ1q + f(q, p)e−λ′
1q. (4.8)

Let Φ̂ be the flow force flux function corresponding to ŵ. Then using (4.8) in (3.9) we obtain

Φ̂(q, p) = ξ2
ϕ′
1(p)ϕ1(p)

H3
p (p; s+(r))

e−2λ1q + g(q, p)e−(λ1+λ′
1)q,

where g is smooth and bounded. Thus, we can choose q0 > 0 such that

Φ̂(q0, p) ≥ Ape−2λ1q0 (4.9)

for all p ∈ [0, 1]. Here A > 0 is a constant that depends only on ξ and φ1 and is independent of q0. Now
we put

δ = 1
2Ae−2λ1q0 .

Let qj → +∞ be the sequence such that functions h(q + qj , p) converge to ĥ = ŵ + H on every compact
subset of S. In particular, functions Φ(q+qj , p) converge to Φ̂(q, p) to C2([−2q0, 2q0]× [0, 1]) as j → +∞.
This together with (4.9) allow us to choose some large enough j1 so that

Φ(q0 + qj1 , p) ≥ δp, p ∈ [0, 1].
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Now let ε > 0 be given. Then because η̌ = d−(r) we can find some q� > q0 + qj1 such that w(q�, 1) <
√

ε.
After that we choose another integer j2 so that q0 + qj2 > q� and

Φ(q0 + qj2 , p) ≥ δp, p ∈ [0, 1].

This is possible because qj → +∞, provided (4.2) is violated. Finally, it is left to put a = q0 + qj1 and
b = q0 + qj2 . Then the claim (2) of Lemma 4.2 is true by the construction. Furthermore, the second claim
(2) holds true since Φ = w2 on p = 1 by (3.8) . This finishes our proof of Lemma 4.2.
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