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Abstract. In this note, we study the long-time dynamics of passive scalars driven by rotationally symmetric flows. We
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1. Introduction

This note considers the evolution of a passive scalar f in a domain Ω ⊂ R
d, d = 2, 3, that is advected

by an external velocity field v : Ω → R
d and is undergoing molecular diffusion. Our interest is to

study quantitatively how the combined effect of diffusion and advection leads to faster time-scales of
homogenization for f compared to the case when only diffusion is present. The passive scalar satisfies the
advection–diffusion equation {

∂tf + v · ∇f = νΔf, x ∈ Ω, t > 0,

f |t=0 = f in, ∂nf |∂Ω = 0.
(1.1)

where ν > 0 is the diffusion coefficient and n is the outward unit normal to ∂Ω. We are interested in the
regime where ν � 1, in which dissipative effects are observed on large time-scales of order O(ν−1). Since
the average over the domain is conserved, we always assume that

ffl
Ω

f dx = 0. The domain Ω will either
be a disc of radius R > 0, denoted by D, or the infinite pipe D ×R, and the velocity field is respectively

v = rv(r)êθ, in D, v = v(r)êz in D × R. (1.2)

Here êθ and êz are the unit vectors in the angular direction in D and in the vertical direction in D × R,
respectively. This situation and similar have been recently studied in [6–8], in analogy with the case of
passive scalars advected by shear flows [1,3].

The purpose of this short note is twofold: on the one hand, we identify precise conditions on the
velocity field in the pipe setting that guarantee the enhanced dissipation [5] and Taylor dispersion [2,10,11]
mechanisms. On the other hand, we derive a dissipation enhancement result in the disc for a general class
of radial velocity fields. In particular, we will assume the following for the profile v(r) of the velocity field
in (1.2).

Assumption 1.1. The first m derivatives of v : [0, R] → R do not vanish simultaneously; that is,
m∑

n=1

|v(n)(r)| �= 0
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for every 0 ≤ r ≤ R.

We now state our main results, considering differently the pipe and the disc cases.

1.1. Pipe Parallel Flows

When Ω = D × R, the Eq. (1.1) can be written in cylindrical coordinates as⎧⎨
⎩∂tf + v(r)∂zf = ν

(
1
r
∂r(r∂r) +

1
r
∂2

θ + ∂2
z

)
f, (r, θ, z) ∈ [0, R] × T × R,

f |t=0 = f in, ∂nf |∂Ω = 0.
(1.3)

Taking the partial Fourier transform along the axial coordinate z on both sides of the equation, we see
then that for each k ∈ R the Fourier component

f̂k(t, r, θ) =
ˆ

R

f(t, r, θ, z)e−ikz dz

satisfies the equation

∂tf̂k + ikv(r)f̂k = ν
(
Δr,θ − k2

)
f̂k, (1.4)

where we denote

Δr,θ :=
1
r
∂r(r∂r) +

1
r2

∂2
θ . (1.5)

In particular, each Fourier mode f̂k evolves independently from all the others, so in the following, it
suffices to consider the Eq. (1.4) for a fixed parameter k. A further reduction can be made by considering
the function

gk = eνk2tf̂k

that satisfies

∂tgk + ikv(r)gk = νΔr,θgk. (1.6)

Notice that gk already incorporates the diffusion along the channel. Our first main result is the following.

Theorem 1. Let v : [0, R] → R satisfy Assumption 1.1 and let k �= 0. Then, there exist constants c1, C1 >
0, independent of ν, k, such that for all initial data gin

k ∈ L2(D) the solution to (1.6) satisfies

‖gk(t)‖L2(D) ≤ C1e−c1Λν,kt‖gin
k ‖L2(D) where Λν,k =

{
ν

m
m+2 |k| 2

m+2 , if 0 < ν ≤ |k|,
k2

ν , if 0 < |k| ≤ ν,
(1.7)

for every t ≥ 0. For the solution to (1.4) with initial data gin
k = f̂ in

k , we have the estimate

‖f̂k(t)‖L2(D) ≤ C1e−(νk2+c1Λν,k)t‖f̂ in
k ‖L2(D),

for every t ≥ 0.

The bounds in the theorem above are analogous to the ones obtained in [7] for multi-dimensional
shear flows. In fact, they also proved the same result as in Theorem 1 for the velocity field v(r) = 1 − rm

in the disc of radius 1. However, a general condition analogous to that required in Assumption 1.1 was
not identified. The proof of Theorem 1, given in Sect. 2, is inspired by the arguments in [7]. In particular,
we obtain (1.7) as a consequence of a pseudospectral lower bound and the application of a result of Wei
[12]*Theorem 1.3, see also Theorem 3 below.

Having at hand the k by k estimate (1.7), we are also able to quantify precisely the time-decay for
the solution to the original problem (1.3).
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Theorem 2. Let f in ∈ L1
zL

2
r,θ, and let v : [0, R] → R satisfy Assumption 1.1. Then, there exist constants

c2, C2 > 0, independent of ν, such that the solution to (1.3) satisfies

‖f(t)‖L∞
z L2

r,θ
≤ C2

(√
ν

t
+

e−c2νt

(ν
m

m+2 t)
m+2

2

)
‖f in‖L1

zL2
r,θ

. (1.8)

for every t ≥ 0.

With (1.8) we have a precise quantification of the Taylor dispersion mechanism for the problem at hand,
see also [4] where these types of bounds were obtained in another context. The factor

√
ν/t is analogous

to the standard heat equation with diffusivity coefficient ν−1 and it is related to low frequencies. On
the other hand, the presence of the advection allows us to prove the algebraic decay on a time-scale
O(ν− m

m+2 ), which is related to the enhanced dissipation mechanism.
The choice of the norms on which to quantify the decay is rather natural from the available k by k

bounds. From a physical point of view, the flow is stretching the concentration towards spatial infinity in
the z-direction. Combining this with enough integrability in z, the stretching generated by the flow makes
the concentration intersect smaller sets in the discs orthogonal to z, so that a decay can be effectively
quantified even if the diffusion is still not efficient on the time-scale under consideration.

1.2. Circular Flows in a Disc

When we consider the Eq. (1.1) with Ω = D and v = rv(r)êθ, the problem we have at hand is{
∂tf + v(r)∂θf = νΔr,θf, (r, θ) ∈ [0, R] × T,

f |t=0 = f in, ∂nf |∂Ω = 0,
(1.9)

where we recall that Δr,θ is defined in (1.5). If we now take a partial Fourier transform in the angular
direction, namely

f̂� =
1
2π

ˆ

T

f(t, r, θ)e−i�θ dθ

the Fourier coefficients f̂� of a solution f to Eq. (1.9) satisfy

∂tf̂� + i�v(r)f̂� = ν

(
1
r
∂r(r∂r) − �2

r2

)
f̂� (1.10)

for each � ∈ Z. The analogy with (1.6) is the following: if we take the angular Fourier transform in (1.6),
we get

∂tĝk,� + ikv(r)ĝk,� = ν

(
1
r
∂r(r∂r) − �2

r2

)
ĝk,�. (1.11)

Hence, (1.10) is the Eq. (1.11) for the choice of parameters � = k. We can therefore recover the bounds
on f̂� from the ones we have for g�,� in Theorem 1. Observing that |�| ≥ 1 > ν, we obtain the following.

Corollary 1.2. Let v : [0, R] → R satisfy Assumption 1.1 and � �= 0. Then, there exist constants c3, C3 > 0,
independent of ν, �, such that for all initial data f̂ in

� ∈ L2(0, R) the solution to (1.10) satisfy

‖f̂�(t)‖L2(0,R) ≤ C3e−c3ν
m

m+2 |�|
2

m+2 t‖f̂ in
� ‖L2(0,R),

for every t ≥ 0.
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The bound in the physical space for f now it directly follows by Parseval’s identity. Namely, if
ˆ

T

f in(r, θ) dθ = 0,

we obtain that

‖f(t)‖L2(D) ≤ C4e−c3ν
m

m+2 t‖f in‖L2(D),

for a suitable constant C4 > 0. Therefore we capture the enhanced dissipation mechanism, telling us
that the solution is decaying on a time-scale O(ν− m

m+2 ), which is always faster than O(ν−1). When the
angular average, corresponding to f̂0, is not zero, we would obtain that f is converging towards its angular
average on the fast time-scale. Notice that f̂0 is not conserved but it satisfies a standard 1d heat equation,
therefore we cannot expect to have decay on a faster time-scale for it.

2. Semigroup Decay via Resolvent Estimates

The main tool we will employ in the proof of Theorem 1 is a quantitative version of the Gearhart–Prüss
obtained by Wei in [12, Theorem 1.3] (see also [9]), which we reproduce below for the reader’s convenience.

Theorem 3. Let X be a Hilbert space and H : D(H) → X be an m-accretive operator on X. Then

‖e−tH‖X→X ≤ e−tΨ(H)+π/2 (2.1)

in which the quantity Ψ(H) is the pseudospectral abscissa of H, defined as

Ψ(H) = inf{‖(H − z)f‖X | z ∈ iR, f ∈ D(H), ‖f‖X = 1}.

We rewrite the Eq. (1.6) as

∂tgk + Hgk = 0,

where the operator H : D(H) → L2(D) is defined as

H = −νΔr,θ + ikv(r), D(H) = H2(D) (2.2)

which is indeed m-accretive [8]. Thus, by the Lumer-Phillips theorem, the unique mild solution to Eq. (1.6)
is given by a strongly continuous semigroup in L2(D), namely, for the initial datum gin

k ∈ L2(D),

gk(t) = e−tHgin
k

solves Eq. (1.6). Moreover, by Theorem 3, the operator e−tH satisfies the estimate (2.1). Hence, the proof
of Theorem 1 is reduced in proving a pseudospectral bound for the operator H defined in (2.2).

2.1. Pseudospectral Bounds

Being k a fixed parameter from now on, let us write

Hλ = H − ikλ = −νΔr,θ + ik(v(r) − λ). (2.3)

To prove Theorem 1, it suffices to show that

‖Hλg‖L2(D) ≥ c1Λν,k‖g‖L2(D), (2.4)

for every g ∈ D(H), where the constant c1 needs to be chosen uniformly in λ ∈ R.
In the computations that follow, we frequently omit the subscripts on the notation for norms and

inner products in L2(D), where no ambiguity can occur as to the relevant function space.
The strategy for proving (2.4) is as follows: we choose, for each λ ∈ R, a neighbourhood Eλ ⊆ [0, R] of

the level set Eλ = v−1(λ), and split the domain of integration

‖g‖2 =
ˆ

|x|∈[0,R]\Eλ

|g|2 dx +
ˆ

|x|∈Eλ

|g|2 dx. (2.5)
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in order to get upper bounds for each of the two integrals on the right-hand side. The motivation behind
this is that, away from the annulus {x ∈ D : |x| ∈ Eλ}, the convection term v−λ in (2.3) is bounded away
from zero, which allows us to recover a bound on the L2 norm in terms of Hλ thanks to the invertibility
of v −λ. On the other hand, in the integral over the region where |x| ∈ Eλ, we exploit some Poincaré-type
inequality where we can gain smallness parameters from the measure of the set Eλ. That the latter set is
indeed small is consequence of Assumption 1.1. We thus choose the sets Eλ as follows.

Definition 2.1. Let m ∈ N be the one in Assumption 1.1. Define

• Eλ,δ to be the preimage under v of the interval (λ − δm, λ + δm), that is, Eλ,δ = {r ∈ [0, R] |
|v(r) − λ| < δm}.

• Eλ,δ to be the neighbourhood of the set Eλ,δ with thickness δ, that is, Eλ,δ = {r ∈ [0, R] |
dist(x,Eλ,δ) < δ}.

We collect in the next two propositions the bounds we have for the two integrals on the right-hand
side of (2.5). Away from the level sets we have the following result.

Proposition 2.2. Let Eλ,δ be the set defined in Definition 2.1. Then, for any g ∈ D(H) the following holds
true

ˆ

|x|∈[0,R]\Eλ,δ

|g|2 dx ≤ 1
4
‖g‖2 +

(
1

|k|δm
+

ν

|k|2δ2m+2

)
‖Hλg‖‖g‖. (2.6)

Near the level sets, we can prove the result below.

Proposition 2.3. Let Eλ,δ be the set defined in Definition 2.1. Then there exists a constant C̃ > 0 such
that, for any g ∈ D(H), the following holds true

ˆ

|x|∈Eλ,δ

|g|2 dx ≤ 1
2
‖g‖2 +

C̃δ2

ν
‖Hλg‖‖g‖. (2.7)

We postpone the proof of Propositions 2.2–2.3 to the end of this section. With the bounds (2.6) and
(2.7) at hand, we are ready to present the proof of Theorem 1.

Proof of Theorem 1. Summing together (2.6) and (2.7) and rearranging, we have for all λ ∈ R and δ > 0
that

‖g‖2 ≤ 4

(
1

|k|δm
+

ν

|k|2δ2m+2
+

C̃δ2

ν

)
‖Hλg‖‖g‖.

We now make a choice of δ depending on the parameters ν and k:

• If 0 < ν ≤ |k|, then the sharpest bound we can recover is by choosing δ = δ0ν
1

m+2 |k|− 1
m+2 , resulting

in ‖g‖2 ≤ c1ν
− m

m+2 |k|− 2
m+2 ‖Hλg‖‖g‖ with the constant c1 = 4(δ−m

0 + δ
−(2m+2)
0 + C̃δ2

0) where δ0 is
the one given in Lemma 2.5.

• If instead 0 < |k| ≤ ν, observing that

1
|k|δm

+
ν

|k|2δ2m+2
+

C̃δ2

ν
=

ν

k2

(
|k|
ν

1
δm

+
1

δ2m+2
+

k2

ν2
C̃δ2

)
.

Since |k|/ν ≤ 1, we choose δ = δ0, and find that ‖g‖2 ≤ c1
ν
k2 ‖Hλg‖‖g‖, with the same constant c1

as in the previous case.

Altogether we recover inequality (2.4), thanks to which we can apply Theorem 3 and conclude the
proof of Theorem 1. �

It thus remains to show the proofs of Proposition 2.2-2.3, which we present in the next two sections.
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2.2. Bounds Away from Level Sets

In this section, we aim at proving Proposition 2.2. To this end, we follow the strategy in [7], and we
introduce the function

χ(r) = ϕ(sign(v(r) − λ)dist(r, Eλ,δ)/δ),

in which

ϕ(s) =

{
s, if|s| ≤ 1,

sign(s), otherwise.

We are now ready to prove Proposition 2.2.

Proof of Proposition 2.2. By the definition of χ, we know that χ(v −λ) ≥ 0. Moreover, in the set Eλ,δ we
have |v − λ| ≥ δm. Therefore

ˆ

|x|∈[0,R]\Eλ,δ

|g|2 dx ≤
ˆ

T

ˆ R

0

(v(r) − λ)χ(r)
δm

|g(r, θ)|2r dr dθ =
1

δm
〈(v − λ)χg, g〉. (2.8)

To estimate the term 〈(v − λ)χg, g〉, observe that

‖Hλg‖‖g‖ ≥ Im〈Hλg, χg〉
= νIm〈Δr,θg, χg〉 + Im〈ik(v − λ)g, χg〉
= −νIm〈∂rg, (∂rχ)g〉 + k〈(v − λ)g, χg〉,

(2.9)

in which we recognise the relevant term on the final line. Noting that |∂rχ| < δ−1, it then follows from
(2.9) and the triangle inequality that

〈(v − λ)χg, g〉 ≤ 1
|k|

(
‖Hλg‖‖g‖ +

ν

δ
‖∇g‖‖g‖

)
. (2.10)

Observe also that

ν‖∇g‖2 = Re〈Hλg, g〉 ≤ ‖Hλg‖‖g‖. (2.11)

Thus, combining (2.8) with (2.10) and (2.11), we have
ˆ

|x|∈[0,R]\Eλ,δ

|g|2 dx ≤ 1
δm

〈(v − λ)χg, g〉

≤ 1
|k|δm

(
‖Hλg‖‖g‖ +

ν

δ
‖∇g‖‖g‖

)

≤ 1
|k|δm

(
‖Hλg‖‖g‖ +

ν
1
2

δ
‖Hλg‖ 1

2 ‖g‖ 3
2

)

≤
(

1
|k|δm

+
ν

|k|2δ2m+2

)
‖Hλg‖‖g‖ +

1
4
‖g‖2,

where we also applied the Young’s inequality on the product ν
1
2 δ−(m+1)‖Hλg‖ 1

2 ‖g‖ 1
2 on the penultimate

line. �

2.3. Bounds Near Level Sets

To prove Proposition 2.3, we use two results from [7]. The first of these is a Poincaré-type bound which
appears in [7, Lemma B.1]:
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Lemma 2.4. For all g ∈ H1(D) and all R ≥ R2 ≥ R1 ≥ 0, we have
ˆ

R1≤|x|≤R2

|g|2 dx ≤ 2(R2 − R1)‖g‖‖∇g‖.

The second result is that Eλ,δ(v) is covered by a finite union of intervals whose total length is in O(δ)
as δ −→ 0.

Lemma 2.5. Let v ∈ Cm([0, R]) satisfy Assumption ’1.1. Then there exist constants C0, δ0 > 0 and, for
each λ ∈ R and δ > 0, a choice of a finite family Vm

λ,δ of intervals such that

Eλ,δ(v) ⊆
⋃

Vm
λ,δ ⊆ [0, R]

and such that for all λ ∈ R and 0 < δ ≤ δ0 we have that

∑
V ∈Vm

λ,δ

|V | < C0δ. (2.12)

Proof. This Lemma can be extracted from the proof of [7, Lemma 2.6], where such coverings by intervals
are constructed in order to bound the measure |Eλ,δ| of the level set neighbourhoods.

Observe first that it suffices to prove this result with Eλ,δ in place of Eλ,δ, since one may enlarge by
δ each interval in a covering of Eλ,δ to produce one for Eλ,δ that still satisfies (2.12) but with a worse
constant C0. Moreover, since Eλ,δ is empty for λ outside of a compact neighbourhood of v([0, R]) ⊆ R, it
suffices to be able to choose C0 locally constant near each λ0 in this neighbourhood.

Fix now λ0 ∈ R. The idea is to use the fact that Eλ,δ is a union of level sets Eλ with λ close to λ0:

Eλ,δ =
⋃

|λ−λ0|<δm

Eλ

and by the continuity of the function v, we expect the level set Eλ not too change to much when λ is
perturbed away from λ0. Indeed, using Assumption 1.1, Eλ0 = v−1(λ0) consists of finitely many elements
r1, . . . , rNλ0

. Near each ri, the function v is approximated by its Taylor series

v(r) ≈ λ + ai(r − ri)ni where ai =
v(n1)(ri)

ni!
,

in which ni ∈ N is the order of the lowest-order derivative of v which does not vanish at ri; again by
Assumption 1.1 we have that 1 ≤ ni ≤ m. For small δ > 0, the function v then approximately maps the
interval Bδ(ri) ⊆ [0, R] to the interval Baiδni (λ) ⊆ R. Conversely, one is able to choose R0 > 0 such that

v−1(Bδm(λ)) ⊆
⋃

ri∈Eλ

BR0δ(ri) (2.13)

for all sufficiently small δ > 0. Once again we refer to the reference [7] for the details of this computation.
Choose now Vi = BR0δ(ri) for i = 1, . . . , Nλ0 . Then (2.13) is precisely the statement that the collection

{Vi}Nλ0
i=1 covers Eλ,δ for all λ in a small neighbourhood around near λ0. Finally, choosing C0 = 2Nλ0R0,

we find that (2.12) is satisfied:
∑Nλ0

i=1 |Vi| = 2Nλ0R0δ = C0δ. �

With the covering by intervals Vm
λ,δ just obtained in Lemma 2.5, we are to prove Proposition 2.3.

Proof of Proposition 2.3. First, we observe that for any V ∈ Vm
λ,δ, thanks to Lemma 2.4 we have

ˆ

|x|∈V

|g|2 dx ≤ 2|V |‖g‖‖∇g‖.
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Therefore,
ˆ

|x|∈E
|g|2 dx ≤

∑
V ∈Vm

λ,δ

ˆ

|x|∈V

|g|2 dx ≤ ‖g‖‖∇g‖
∑

V ∈Vm
λ,δ

2|V |

≤ 2C0δ‖g‖‖∇g‖ ≤ 1
2
‖g‖2 + 2C0

2δ2‖∇g‖2,

where we have used Lemma 2.5, followed by Young’s inequality on the final line. Combining this with
(2.11) we find that

ˆ

|x|∈E
|g|2 dx ≤ 1

2
‖g‖2 +

2C2
0δ2

ν
‖Hλg‖‖g‖.

3. Estimates in Physical Space

In this Section we prove Theorem 2, which gives a decay estimate on the L∞
z L2

r,θ norm of a solution to
(1.3) when the initial datum belongs to L1

zL
2
r,θ.

Proof of Theorem 2. Using that the Fourier transform is a continuous map between L1 and L∞ together
with Hölder’s inequality, thanks to Theorem 1 we have that

‖f(t)‖L∞
z L2

r,θ
� ‖f̂(t)‖L1

kL2
r,θ

�
ˆ

R

e−c1Λν,kt‖f̂ in
k ‖L2

r,θ
dk

� ‖f̂ in‖L∞
k L2

r,θ

ˆ

R

e−c1Λν,kt dk

� ‖f in‖L1
zL2

r,θ

ˆ

R

e−c1Λν,kt dk.

Then, we control the integral above by splitting the domain of integration in two regions, namely
|k| ≤ ν and |k| > ν which is where the definition of Λν,k changes. In particular, we have

ˆ

R

e−c1Λν,kt dk =
ˆ

|k|≤ν

e−c1ν−1k2t dk +
ˆ

|k|>ν

e−c1ν
m

m+2 |k|
2

m+2 t dk := I≤ν + I>ν .

For the low-frequency region, a change of variables shows that

I≤ν =
√

ν

c1t

ˆ

|η|≤√
c1νt

e−η2
dη

�
√

ν

t
. (3.1)

For the second integral, since ν
m

m+2 |ν| 2
m+2 = ν, we estimate as follows:

I>ν ≤ e− 1
2 c1νt

ˆ

|k|>ν

e− 1
2 c1ν

m
m+2 |k|

2
m+2 t dk

= e− 1
2 c1νtν− m

2

(
1
2
c1t

)− m+2
2
ˆ

|η|>( 1
2 c1νt)

m+2
2

e−η
2

m+2 dη

� e− 1
2 c1νt

(ν
m

m+2 t)
m+2

2

,

which combined with (3.1) proves the desired result.
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