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Abstract. We discuss optimal estimates of solutions to the compressible Navier–Stokes equations in Besov norms. In partic-
ular, we consider the estimate of the curl-free part of the solution to the linearised equations, in the homogeneous case. We
prove that our estimate is optimal in the L∞-norm by showing that the norm is bounded from below by the same decay
rate.

1. Introduction

This paper is concerned with the barotropic compressible Navier–Stokes system
⎧
⎪⎨

⎪⎩

∂tρ + div(ρu) = 0, in (0,∞) × R
3,

∂t(ρu) + div(ρu ⊗ u) − div(2μD(u) + λdiv(u)Id) + ∇p = 0, in (0,∞) × R
3,

(ρ, u)|t=0 = (ρ0, u0), in R
3,

(1.1)

where ρ : [0,∞)×R
3 → [0,∞), and u : [0,∞)×R

3 → R
3 are unknown functions, representing the density

and velocity of a fluid, respectively. p : [0,∞) × R
3 → R is the pressure in the fluid, and the barotropic

assumption gives us p := p(ρ), for some smooth function p(·). μ, λ are viscosity coefficients, taken such
that

μ > 0, 2μ + λ > 0.

We define the deformation tensor

D(u) :=
1
2

(
Du + DuT

)
.

In this paper, we examine the large-time behaviour, particularly time-decay estimates, of solutions
to a linearised version of the above problem. Matsumura–Nishida showed in [6,7] that (1.1) has global
solutions when equipped with data (ρ0, u0) that is a small perturbation in L1 ∩ H3 of (ρ̄, 0) for any
positive constant ρ̄, and proved the following decay result

∥
∥
∥
∥

[
ρ(t) − ρ̄

u(t)

]∥
∥
∥
∥

2

≤ C(1 + t)−3/4.

This is the decay rate of the solution to the heat equation with initial data in L1. Ponce then extended
these results to other Lp norms. In particular, for p ∈ [2,∞], k ∈ {0, 1, 2}, and dimension d = 2, 3,

∥
∥
∥
∥∇k

[
ρ(t) − ρ̄

u(t)

]∥
∥
∥
∥

p

≤ C(1 + t)− d
2 (1− 1

p )− k
2 .

Our results contribute to the theory of compressible Navier–Stokes in Besov spaces. Global existence
of strong solutions to (1.1) for initial data (ρ0, u0) in critical Besov spaces Ḃ

d/2
2,1 × Ḃ

d/2−1
2,1 was first proven
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by Danchin in [2] and large-time estimates in Besov norms for p close to 2 were proven by Danchin–Xu
in [3].

Our goal in this paper is to obtain an optimal bound of the solution to a linearised version of the
system (1.1) which isolates the curl-free part of the velocity. In particular, we prove a bound from above,
in terms of time t, of the norm of solutions over space x. We then prove that this bound from above is
optimal (sharp) via a corresponding bound from below. Our proof is entirely self-contained. The bound
from below in our main result, Theorem 1.2, is original, and is the first ever proof that the decay rate in
L∞ is optimal, or sharp. The estimates from above are analogous to those found in [4,5]. Indeed, in [4],
the following estimate is obtained.

Proposition 1.1. [4] Let m := ρu, m0 := ρ0u0. Assume that

E :=
∥
∥
∥
∥

[
a0

m0

]∥
∥
∥
∥

1

+
∥
∥
∥
∥

[
a0

m0

]∥
∥
∥
∥

H1+l

is sufficiently small, where l ≥ 3 is an integer. Then the Navier–Stokes system (1.1) with initial data ρ0, u0

has a global solution satisfying the following decay estimate for all p ∈ [2,∞] and for any multi-index α
with |α| ≤ (l − 3)/2:

∥
∥
∥
∥Dα

x

([
a(t)

m(t) − etΔPm0

])∥
∥
∥
∥

p

≤ C(l)E(1 + t)− 3
2 (1− 1

p )− 1
2 (1− 2

p )− |α|
2 . (1.2)

Note that, in the norm in the above inequality, we are removing the divergence-free part of the linear
term of m. Thus what remain are the nonlinear term and the curl-free part of the linear term.

Kobayashi–Shibata in [5] also obtain the above decay rate. In fact, they obtained a refined estimate
that requires less regularity on the initial data and separates the solution into high and low frequencies
(see Definition 1 below). The above decay rate found in [4] is associated with the low-frequency part of
solutions, while the high-frequency part decays exponentially with t.

In what follows, we shall assume that the density approaches 1 at infinity; and so we are concerned
with strong solutions which are small perturbations from a constant state (ρ, u) ≡ (1, 0). We shall also
assume that μ, λ are constant, and set a := ρ−1. Our system (1.1) can thus be rewritten into the following
linearised problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂ta + div(u) = f in (0,∞) × R
3,

∂tu − μΔu − (λ + μ)∇div(u) + P ′(1)∇a = g in (0,∞) × R
3,

(a, u)
∣
∣
∣
t=0

= (a0, u0) in R
3,

for some functions f, g. We apply the orthogonal projections P and Q onto the divergence and curl-free
fields, respectively. Then, setting α := P ′(1) and ν := λ + 2μ, we get the system

⎧
⎪⎨

⎪⎩

∂ta + div(Qu) = f in R>0 × R
3,

∂tQu − νΔQu + α∇a = Qg in R>0 × R
3,

∂tPu − μΔPu = Pg in R>0 × R
3.

(1.3)

We set

v := |D|−1div(u), where |D|su := F−1
[
|ξ|sû

]
, s ∈ R.

We note that one can obtain v from Qu by a Fourier multiplier of homogeneous degree zero. Thus,
bounding v is equivalent to bounding Qu (see [1], Lemma 2.2).

We note that we can set α = ν = 1, without loss of generality, since the following rescaling

a(t, x) = ã
(α

ν
t,

√
α

ν
x
)
, u(t, x) =

√
α ũ

(α

ν
t,

√
α

ν
x
)
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ensures that (ã, ṽ) solves (1.3) with α = ν = 1. Thus we get that (a, v) solves the following system:
{

∂ta + |D|v = f in R>0 × R
3,

∂tv − Δv − |D|a = h := |D|−1div(g) in R>0 × R
3.

(1.4)

In this paper, we shall focus on the homogeneous case, where f = h = 0. Before we give our main
result, we introduce the concepts of Besov spaces, and high-frequency and low-frequency norms. We
denote by P (R3) the set of all polynomials over R

3.

Definition 1. We use the Littlewood–Paley decomposition of unity to define homogeneous Besov spaces.
Let {φ̂j}j∈Z be a set of non-negative measurable functions such that

1.
∑

j∈Z

φ̂j(ξ) = 1, for all ξ ∈ R
3\{0},

2. φ̂j(ξ) = φ̂0(2−jξ),
3. supp φ̂j(ξ) ⊆ {ξ ∈ R

3 | 2j−1 ≤ |ξ| ≤ 2j+1}.
For a tempered distribution f , we write

Δ̇jf := F−1[φ̂j f̂ ].

This gives us the homogeneous Littlewood-Paley decomposition of f :

f =
∑

j∈Z

Δ̇jf. (1.5)

This equality only holds modulo functions whose Fourier transforms are supported at 0, i.e. polynomials.
To ensure equality in the sense of distributions, we next let Ṡj denote the low-frequency cutoff function.
That is, we let χ denote the identity map on the unit disc, and then for j ∈ Z,

χj(D)f := F−1[χ(2−jξ)f̂ ],

Ṡjf :=
(
χj(D) + Δ̇j

)
f. (1.6)

Then we consider the subset S ′
h of tempered distributions f such that

lim
j→−∞

‖Ṡjf‖L∞ = 0. (1.7)

The Besov norm is then defined as follows: for 1 ≤ p, q ≤ ∞, and s ∈ R, we define

‖f‖Ḃs
p,q

:=
(∑

j∈Z

2sqj‖Δ̇jf‖q
p

) 1
q

.

The set Ḃs
p,q is defined as the set of functions, f ∈ S ′

h, whose Besov norm is finite. Finally, we also
regularly use the following notation for so-called high-frequency and low-frequency norms:

‖f‖h
Ḃs

p,q
:=

(∑

j≥3

2sqj‖Δ̇jf‖q
p

)1/q

, ‖f‖l
Ḃs

p,q
:=

(∑

j≤2

2sqj‖Δ̇jf‖q
p

)1/q

.

We now give our main result. We obtain the same decay rate as the previous proposition, and also
prove that this decay rate is optimal in the L∞-norm.

Theorem 1.2. Let s ∈ R, p ∈ [2,∞], q ∈ [1,∞], and t > 1. Then
∥
∥
∥
∥

[
a(t)
v(t)

]∥
∥
∥
∥

Ḃs
p,q

≤ Ct−
3
2 (1− 1

p )− 1
2 (1− 2

p )

∥
∥
∥
∥

[
a0

v0

]∥
∥
∥
∥

l

Ḃs
1,q

+ Ce−t

∥
∥
∥
∥

[
a0

v0

]∥
∥
∥
∥

h

Ḃs
p,q

. (1.8)

For the high-frequency norm, we also have that if the initial data satisfies a0 = −v0, then for all t > 1,
∥
∥
∥
∥

[
a(t)
v(t)

]∥
∥
∥
∥

h

Ḃs
p,q

≤ Ce−t

∥
∥
∥
∥

[
a0

v0

]∥
∥
∥
∥

h

Ḃs
1,q

. (1.9)
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Finally, there exist initial data such that, for all sufficiently large t,
∥
∥
∥
∥

[
a(t)
v(t)

]∥
∥
∥
∥

∞
≥ Ct−2. (1.10)

Remark 1.3. Inequality (1.9) comes from the fact that no derivative loss occurs when taking L1 − Lp

estimates of high frequencies for one of the two eigenvalues associated with the fundamental solution of
our problem. See Proposition 3.1 and Remark 3.2 for further discussion.

We offer some commentary on the above decay rate for the low frequency part. In Hoff–Zumbrun [4],
it is demonstrated that the curl-free part of the solution to (1.1) is approximated by a convolution of
the Green’s function for a parabolic system (whence we obtain the heat-like decay) and a function which
decays like the fundamental solution of a wave equation (whence the additional decay). To show that this
decay rate is sharp in L∞, we find that this wave-like part of the decay is slowest along |x| = t. This is a
natural result. Indeed, looking at the homogeneous case f = h = 0 for (1.4), we may write

∂2
t a − Δa − |D|3v = 0, ∂2

t v − Δv − ∂tΔv = 0.

Note that the wave propagation speed above is 1. This is a consequence of our assumption made on the
constant α.

2. Preliminaries

Definition 2. (The Fourier Transform) For a function, f , we define the Fourier transform of f as follows:

F [f ](ξ) := f̂(ξ) :=
1

(2π)3/2

∫

R3
e−ix·ξf(x) dx.

The inverse Fourier transform is then defined as

F−1[f̂ ](x) :=
1

(2π)3/2

∫

R3
eix·ξ f̂(ξ) dξ.

For the purpose of calculating inequalities, we will frequently omit the factor of 1/(2π)3/2.

Definition 3. (Orthogonal Projections on the divergence and curl-free fields) The projection mapping P
is a matrix with each component defined as follows for i, j ∈ {1, 2, 3}:

(P)i,j := δi,j + (−Δ)−1∂i∂j .

We then define Q := 1 − P. For f ∈ (Ḃs
p,q(R

3))3, with s ∈ R, and p, q ∈ [1,∞], we may write

Pf := (1 + (−Δ)−1∇div)f.

3. Proof of Main Result

We begin our analysis of (a, v) which solves the system
{

∂ta + |D|v = 0 in (0,∞) × R
3,

∂tv − Δv − |D|a = 0 in (0,∞) × R
3.

Taking the Fourier transform over space x, we can write the above system as
d
dt

[
â
v̂

]

= M|ξ|

[
â
v̂

]

, with M|ξ| :=
[

0 −|ξ|
|ξ| −|ξ|2

]

. (3.1)

Then we may write the following formula for the solution to (3.1):
[
â(t)
v̂(t)

]

= etM|ξ|

[
â0

v̂0

]

.
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We obtain the following eigenvalues for M|ξ|, which differ between high and low frequencies:

λ±(ξ) :=

⎧
⎪⎨

⎪⎩

− |ξ|2
2

(
1 ± i

√
4

|ξ|2 − 1
)
, for |ξ| < 2,

− |ξ|2
2

(
1 ±

√
1 − 4

|ξ|2
)
, for |ξ| > 2,

from which we obtain the following formulas for our solution:

â(t) =
etλ−λ+ − etλ+λ−

λ+ − λ−
â0 +

(
etλ− − etλ+

)
λ+

λ+ − λ−
v̂0, (3.2)

v̂(t) =

(
etλ+ − etλ−

)
λ−

λ+ − λ−
â0 +

etλ+λ+ − etλ−λ−
λ+ − λ−

v̂0. (3.3)

We note that, for high and low frequencies away from |ξ| = 2, the eigenvalues can be bounded above by
a mere constant. However, both the numerator and the denominator approach 0 as |ξ| → 2.

We thus must consider how to deal with the L2 and L∞ norms of

etλ−λ+ − etλ+λ−
λ+ − λ−

φ̂j

and the other similar expressions in (3.2) and (3.3), for j ∈ {0, 1, 2} (i.e. |ξ| ∼ 2). For details, see
“Appendix A”. Otherwise, it suffices to prove time-decay estimates for the semigroup etλ± without
including the eigenvalues in the L∞ norm and in the L2 norm for all j /∈ {0, 1, 2}.

We will proceed with an interpolation argument after bounding the L∞ and L2 norms explicitly. The
L2 norm estimate is identical to that of the heat semigroup, as no additional decay is obtained from the
oscillation. The L∞ norm yields a faster decay, for which we now give the proof.

Proposition 3.1. (L1 − L∞ estimates for high and low frequencies) For all t > 1,
∥
∥
∥
∥F−1

[
etλ+ φ̂j

]∥∥
∥
∥

∞
≤ Ce−t, for all j ≥ 3, (3.4)

∥
∥
∥
∥F−1

[
etλ− φ̂j

]∥∥
∥
∥

∞
≤ C23je−t, for all j ≥ 3, (3.5)

∥
∥
∥
∥F−1

[
etλ± φ̂j

]∥∥
∥
∥

∞
≤ Ct−2, for all j ≤ 2. (3.6)

Remark 3.2. As we mentioned in Remark 1.3, the estimate of etλ+ in (3.4) incurs no derivative loss
even in high frequencies. Looking at (3.2) and (3.3), we see that we may thus obtain the high-frequency
estimate (1.9) for initial data satisfying

â0 + v̂0 = 0. (3.7)

The formulas for â and v̂ then simplify to

â(t) = − etλ+

λ+ − λ−
(λ−â0 + λ+v̂0), (3.8)

v̂(t) =
etλ+

λ+ − λ−
(λ−â0 + λ+v̂0). (3.9)

In this case, â and v̂ only contain the semigroup etλ+ , and no longer contain etλ− .

Proof. We start with (3.4). We have j ≥ 3, and so

supp φ̂j ⊆ {ξ ∈ R
3 | |ξ| > 2},
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and thus we are dealing with the high-frequency definitions of our eigenvalues λ±. That is, we have
∥
∥
∥
∥F−1

[
etλ+ φ̂j

]∥∥
∥
∥

∞
=

∥
∥
∥
∥F−1

[
e
−t |ξ|2

2

(
1+

√
1− 4

|ξ|2
)

φ̂j

]∥∥
∥
∥

∞

= sup
x∈R3

∣
∣
∣

∫

R3
eix·ξe

−t |ξ|2
2

√
1− 4

|ξ|2 e−t |ξ|2
2 φ̂(2−jξ) dξ

∣
∣
∣

≤ C

∫

R3

∣
∣
∣e−t |ξ|2

2 φ̂(2−jξ)
∣
∣
∣ dξ

≤ Ce−t

∫

{ξ | |ξ|>2}
e−t|ξ|2/4 dξ

≤ Ce−t, for all j ≥ 3, t > 1. (3.10)

For (3.5), the proof is slightly different. Before we continue, note that

−t
|ξ|2
2

(
1 −

√
1 − 4/|ξ|2) = −2t

(
1 +

√
1 − 4/|ξ|2)−1 = −t − 4t

|ξ|2
(
1 +

√
1 − 4/|ξ|2)−2

.

Thus, we may estimate as follows,
∥
∥
∥
∥F−1

[
e
−t |ξ|2

2

(
1−

√
1− 4

|ξ|2
)

φ̂j

]∥∥
∥
∥

∞
≤

∫

R3
e
−2t

(
1+

√
1− 4

|ξ|2
)−1

φ̂j(ξ) dξ

≤ C23je−t.

Now we consider (3.6). For frequencies near |ξ| = 2, i.e. 0 ≤ j ≤ 2, an exponential decay follows
similarly to the above. Finally, we are left with the low frequencies j ≤ −1. We start by extracting the
heat-like decay by a change of variables.

sup
x∈R3

∣
∣
∣

∫

R3
eix·ξe

±it |ξ|2
2

√
4

|ξ|2 −1
e−t |ξ|2

2 φ̂(2−jξ) dξ
∣
∣
∣

= t−3/2 sup
x∈R3

∣
∣
∣

∫

R3
ei(t−1/2x)·ξe

±it1/2 |ξ|2
2

√
4

|ξ|2 −t−1

e− |ξ|2
2 φ̂(2−jt−1/2ξ) dξ

∣
∣
∣. (3.11)

Thus it remains to extract a further decay of t−1/2 from the L∞ norm above. We may estimate (3.11) to
obtain the desired decay for all sufficiently large t:

sup
x∈R3

∣
∣
∣

∫

R3
ei(t−1/2x)·ξe

±it1/2 |ξ|2
2

√
4

|ξ|2 −t−1

e− |ξ|2
2 φ̂(2−jt−1/2ξ) dξ

∣
∣
∣ ≤ Ct−1/2.

We explicitly write the proof of the above in “Appendix B”.

Proposition 3.3. Let s ∈ R, p ∈ [2,∞], and q ∈ [1,∞]. Then, for all t > 1,
∥
∥
∥
∥F−1

[
etλ+ f̂

]∥∥
∥
∥

Ḃs
p,q

≤ Ct−
3
2 (1− 1

p )− 1
2 (1− 2

p )‖f‖l
Ḃs

1,q
+ Ce−t‖f‖h

Ḃs
1,q

,

∥
∥
∥
∥F−1

[
etλ− f̂

]∥∥
∥
∥

Ḃs
p,q

≤ Ct−
3
2 (1− 1

p )− 1
2 (1− 2

p )‖f‖l
Ḃs

1,q
+ Ce−t‖f‖h

Ḃ
s+3(1−1/p)
1,q

.

Proof. We start with the L∞ norm. Note that, by Proposition 3.1, we have for all j ≥ 3
∥
∥
∥
∥F−1

[
etλ+ φ̂j f̂

]∥∥
∥
∥

∞
≤ Ce−t‖Δ̇jf‖1,

∥
∥
∥
∥F−1

[
etλ− φ̂j f̂

]∥∥
∥
∥

∞
≤ C23je−t‖Δ̇jf‖1.
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Next, for j ≤ 2,
∥
∥
∥
∥F−1

[
etλ± φ̂j f̂

]∥∥
∥
∥

∞
≤

∥
∥
∥
∥F−1

[
etλ±Φ̂j

]∥∥
∥
∥

∞
‖Δ̇jf‖1

≤ Ct−
3
2− 1

2 ‖Δ̇jf‖1,

where Φ̂j := φ̂j−1 + φ̂j + φ̂j+1.
Next the L2 norm for j ≤ 2 follows simply from Young’s convolution inequality and heat kernel

estimates:
∥
∥
∥
∥F−1

[
etλ± φ̂j f̂

]∥∥
∥
∥

2

≤
∥
∥
∥
∥F−1

[
etλ±Φ̂j

]∥∥
∥
∥

2

‖Δ̇jf‖1

≤ Ct−
3
4 ‖Δ̇jf‖1.

For j ≥ 2, we get
∥
∥
∥
∥F−1

[
etλ+ φ̂j f̂

]∥∥
∥
∥

2

≤
∥
∥
∥
∥F−1

[
etλ+Φ̂j

]∥∥
∥
∥

2

‖Δ̇jf‖1

≤ Ce−t‖Δ̇jf‖1,
∥
∥
∥
∥F−1

[
etλ− φ̂j f̂

]∥∥
∥
∥

2

≤
∥
∥
∥
∥F−1

[
etλ−Φ̂j

]∥∥
∥
∥

2

‖Δ̇jf‖1

≤ C2
3
2 je−t‖Δ̇jf‖1.

We use Hölder interpolation for 2 < p < ∞ to obtain Lp norm estimates. Multiplying both sides by
2s and taking the �q norm completes the proof. �

Proposition 3.4. (Lp − Lp estimates for high frequencies) There exists a constant C such that, for all
p ∈ [1,∞] and t > 0,

∥
∥
∥
∥F−1

[
etλ± φ̂j f̂

]∥∥
∥
∥

p

≤ Ce−t‖f‖p, for all j ≥ 3.

Proof. First, we make use of the same equalities as in Proposition 3.1. That is,

−t
|ξ|2
2

(
1 ±

√
1 − 4/|ξ|2) = −2t

(
1 ∓

√
1 − 4/|ξ|2)−1 = −t − 4t

|ξ|2
(
1 ∓

√
1 − 4/|ξ|2)−2

.

Thus, we can rewrite
∥
∥
∥
∥F−1

[
etλ± φ̂j f̂

]∥∥
∥
∥

p

= e−t

∥
∥
∥
∥F−1

[
e
− 4t

|ξ|2
(
1∓

√
1− 4

|ξ|2
)−2

φ̂j f̂
]∥∥
∥
∥

p

≤ e−t

∥
∥
∥
∥F−1

[
e
− 4t

|ξ|2
(
1∓

√
1− 4

|ξ|2
)−2

φ̂j

]∥∥
∥
∥

1

‖f‖p. (3.12)

We note that, for all j ≥ 3,
∥
∥
∥
∥F−1

[
e
− 4t

|ξ|2
(
1+

√
1− 4

|ξ|2
)−2

φ̂j

]∥∥
∥
∥

1

=
∥
∥
∥
∥F−1

[
e
− 4t

22j |ξ|2
(
1+

√
1− 4

22j |ξ|2
)−2

φ̂0

]∥∥
∥
∥

1

≤ C

∥
∥
∥
∥e

− 4t
22j |ξ|2

(
1+

√
1− 4

22j |ξ|2
)−2

φ̂0

∥
∥
∥
∥

W 2,2

≤ C.

�
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We now discuss the optimality of the estimates in the previous section. In particular, we will prove
that the low-frequency bound obtained is optimal. First, we denote

ξt := (ξ1, t
+1/4ξ2, t

+1/4ξ3),

ξt−1 := (ξ1, t
−1/4ξ2, t

−1/4ξ3).

We also take a nonnegative nonzero function Ψ̂ ∈ C∞
0 such that

supp Ψ̂ ⊆ {ξ ∈ R
3 | |ξ| ∈ (1/2, 1), |ξ1| ≥ 1/2}, Ψ̂(−ξ) = Ψ̂(ξ), for all ξ ∈ R

3.

Proposition 3.5. (Optimality of Low-Frequency Linear Estimate) There exists a constant C such that,
for all t sufficiently large,

∥
∥
∥
∥F−1

[
etλ±Ψ̂(t1/2ξt)

]∥∥
∥
∥

∞
≥ Ct−2.

Remark 3.6. We note that this bound from below on the low-frequency estimate is sufficient to prove
that for all t sufficiently large,

∥
∥
∥
∥F−1

[∑

j≤2

φ̂je
tλ±

]∥∥
∥
∥

∞
≥ Ct−2.

Indeed, for all t ≥ 1, we get by a simple application of Young’s convolution inequality:
∥
∥
∥
∥F−1

[
etλ±Ψ̂(t1/2ξt)

]∥∥
∥
∥

∞
≤

∥
∥
∥
∥F−1

[
Ψ̂(t1/2ξt)

]∥∥
∥
∥

1

∥
∥
∥
∥F−1

[∑

j≤2

φ̂je
tλ±

]∥∥
∥
∥

∞

=
∥
∥
∥
∥F−1

[
Ψ̂(ξ)

]∥∥
∥
∥

1

∥
∥
∥
∥F−1

[∑

j≤2

φ̂je
tλ±

]∥∥
∥
∥

∞

≤ ‖Ψ̂(ξ)‖W 2,2

∥
∥
∥
∥F−1

[∑

j≤2

φ̂je
tλ±

]∥∥
∥
∥

∞

≤ C

∥
∥
∥
∥F−1

[∑

j≤2

φ̂je
tλ±

]∥∥
∥
∥

∞
.

Proof. First, note that

sup
x∈R3

∣
∣
∣

∫

R3
eix·ξe

±it |ξ|2
2

√
4

|ξ|2 −1
e−t |ξ|2

2 Ψ̂(t1/2ξt) dξ
∣
∣
∣

≥ t−3/2
∣
∣
∣

∫

R3
e±it1/2

(
ξ1+|ξ|

√

1− |ξ|2
4t

)

e− |ξ|2
2 Ψ̂(ξt) dξ

∣
∣
∣

≥ t−3/2
∣
∣
∣

∫

R3∩{ξ1<0}
e±it1/2

(
ξ1+|ξ|

√

1− |ξ|2
4t

)

e− |ξ|2
2 Ψ̂(ξt) dξ

∣
∣
∣

− t−3/2
∣
∣
∣

∫

R3∩{ξ1>0}
e±it1/2

(
ξ1+|ξ|

√

1− |ξ|2
4t

)

e− |ξ|2
2 Ψ̂(ξt) dξ

∣
∣
∣,

where in the above, we chose the specific value x = (±t, 0, 0), and have split the integral into two parts:
one with ξ1 < 0, which we shall bound from below; and one with ξ1 > 0, which will decay at a slightly
faster rate.

We consider the ξ1 < 0 part. The key step is rewriting the exponent of our oscillation function. Note
that in this case, ξ1 = −|ξ1|.

it1/2
(
ξ1 + |ξ|

√
1 − |ξ|2/4t

)
= it1/2

(
ξ1 + |ξ| − |ξ|3

4t + 4t
√

1 − |ξ|2/4t

)

= it1/2
(−ξ2

1 + |ξ|2
|ξ1| + |ξ| − |ξ|3

4t + 4t
√

1 − |ξ|2/4t

)
.
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Then, by the substitution ξ → ξt−1 , we obtain
∣
∣
∣

∫

R3∩{ξ1<0}
e±it1/2

(
ξ1+|ξ|

√

1− |ξ|2
4t

)

e− |ξ|2
2 Ψ̂(ξt) dξ

∣
∣
∣

= t−1/2
∣
∣
∣

∫

R3∩{ξ1<0}
e
±it1/2

(
−ξ21+|ξ

t−1 |2
|ξ1|+|ξ

t−1 | − |ξ
t−1 |3

4t+4t
√

1−|ξ
t−1 |2/4t

)

e− |ξ
t−1 |2
2 Ψ̂(ξ) dξ

∣
∣
∣,

and thus, by the Lebesgue dominated convergence theorem, we have the following convergence as t → ∞:

t+1/2
∣
∣
∣

∫

R3∩{ξ1<0}
e±it1/2

(
ξ1+|ξ|

√

1− |ξ|2
4t

)

e− |ξ|2
2 Ψ̂(ξt) dξ

∣
∣
∣

→
∣
∣
∣

∫

R3∩{ξ1<0}
e±i(ξ2

2+ξ2
3)/2|ξ1|e− ξ21

2 Ψ̂(ξ) dξ
∣
∣
∣, as t → ∞,

where the final integral is a positive constant, by the restriction to the support of Ψ̂. We thus conclude
that there exists some constant C such that, for all sufficiently large t,

∣
∣
∣

∫

R3∩{ξ1<0}
e±it1/2

(
ξ1+|ξ|

√

1− |ξ|2
4t

)

e− |ξ|2
2 Ψ̂(ξt) dξ

∣
∣
∣ ≥ Ct−1/2.

It remains to show that the ξ1 > 0 part decays at a faster rate. The proof is similar to that of
Proposition B in the “Appendix”, and so we skip the details. The key difference is that ξ1 > 0 prevents
the cancellation of ξ1 in the exponent which we exploited above for the ξ1 < 0 case. In fact, in the
ξ1 > 0 case, we may extract an extra decay of t−1/4 compared to the normal bound from above proven
in Proposition B. (See also Remark 3.10).

We lastly must find some suitable initial data (u0, a0) such that
∥
∥
∥
∥

[
a(t)
v(t)

]∥
∥
∥
∥

∞
≥ Ct−2.

Recall that

v0 = |D|−1div(u0).

Proposition 3.7. Let

u0 := e−|x|2
⎡

⎣
1
1
1

⎤

⎦ ,

and let a0 ∈ L1 ∩ Ḃ0
∞,1. Then there exist constants C, δ > 0 such that, if ‖a0‖L1∩Ḃ0

∞,1
≤ δ, then for all

sufficiently large t,
∥
∥
∥
∥F−1

[
â(t)
v̂(t)

]∥
∥
∥
∥

∞
≥ Ct−2.

Proof. Firstly, we note that the smallness of a0 is required to distinguish between v0 and a0 via the
following reverse triangle inequality

∥
∥
∥
∥

[
a(t)
v(t)

]∥
∥
∥
∥

∞
≥ ‖a(t)‖∞

=
∥
∥
∥
∥F−1

[etλ−λ+ − etλ+λ−
λ+ − λ−

â0 +

(
etλ− − etλ+

)
λ+

λ+ − λ−
v̂0

]∥∥
∥
∥

∞

≥
∥
∥
∥
∥F−1

[(
etλ− − etλ+

)
λ+

λ+ − λ−
v̂0

]∥∥
∥
∥

∞
− Cδt−2.
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Next, focusing on the norm with v̂0, we note that, due to our choice of u0,

v̂0 =
iC1(ξ1 + ξ2 + ξ3)e−C2|ξ|2

|ξ| .

Now, we inspect the L∞-norm above. As in the proof of the previous proposition, we insert the function
Ψ̂ to restrict our function to the low-frequency case.

∥
∥
∥
∥F−1

[(
etλ− − etλ+

)
λ+

λ+ − λ−
v̂0

]∥∥
∥
∥

∞
≥ C

∥
∥
∥
∥F−1

[(
etλ− − etλ+

)
λ+

λ+ − λ−
v̂0Ψ̂(t1/2ξt)

]∥∥
∥
∥

∞

= C sup
x∈R3

∣
∣
∣

∫

R3
eix·ξ v̂0(ξ)Ψ̂(t1/2ξt)

(
e
−t |ξ|2

2

(
1−i

√
4

|ξ|2 −1
)

− e
−t |ξ|2

2

(
1+i

√
4

|ξ|2 −1
))

2 − (|ξ|2/2) + (i|ξ|/2)
√

4 − |ξ|2 dξ
∣
∣
∣

≥ Ct−3/2
∣
∣
∣

∫

R3
e− |ξ|2

2 v̂0(t−1/2ξ)Ψ̂(ξt)

(
e−it1/2

(
ξ1−|ξ|

√

1− |ξ|2
4t

)

− e−it1/2
(
ξ1+|ξ|

√

1− |ξ|2
4t

))

2 − (|ξ|2/2t) + (i|ξ|/2t1/2)
√

4 − t−1|ξ|2 dξ
∣
∣
∣.

where, for the last step, we set x = (−t, 0, 0) and made the substitution ξ → t−1/2ξ, as we did in the
previous proposition. The differing signs in our two exponential functions must be addressed. We separate
the two terms into two integrals, and make the substitution ξ → −ξ for one of them. Then, since our v̂0

is antisymmetric, we get

∣
∣
∣

∫

R3
e− |ξ|2

2 v̂0(t−1/2ξ)Ψ̂(ξt)

(
e−it1/2

(
ξ1−|ξ|

√

1− |ξ|2
4t

)

− e−it1/2
(
ξ1+|ξ|

√

1− |ξ|2
4t

))

2 − (|ξ|2/2t) + (i|ξ|/2t1/2)
√

4 − t−1|ξ|2 dξ
∣
∣
∣

=
∣
∣
∣

∫

R3
e− |ξ|2

2 v̂0(t−1/2ξ)Ψ̂(ξt)

(
e+it1/2

(
ξ1+|ξ|

√

1− |ξ|2
4t

)

+ e−it1/2
(
ξ1+|ξ|

√

1− |ξ|2
4t

))

2 − (|ξ|2/2t) + (i|ξ|/2t1/2)
√

4 − t−1|ξ|2 dξ
∣
∣
∣

= 2
∣
∣
∣

∫

R3
e− |ξ|2

2 v̂0(t−1/2ξ)Ψ̂(ξt)
cos(t1/2

(
ξ1 + |ξ|√1 − |ξ|2/4t

)
)

2 − (|ξ|2/2t) + (i|ξ|/2t1/2)
√

4 − t−1|ξ|2 dξ
∣
∣
∣.

We may then follow the same steps as the previous proof, as cos(·) is sufficiently similar to ei· for our
purposes. �

Proof of Theorem 1.2. We prove (1.8) using Proposition 3.3, Proposition 3.4, and Proposition 3.8. Indeed,
we have for all s ∈ R, p ∈ [2,∞], and q ∈ [1,∞],

∥
∥
∥
∥

[
a(t)
v(t)

]∥
∥
∥
∥

Ḃs
p,q

=

(
∑

j≤−1

2sjq

∥
∥
∥
∥Δ̇j

[
a(t)
v(t)

]∥
∥
∥
∥

q

p

+
2∑

j=0

2sjq

∥
∥
∥
∥Δ̇j

[
a(t)
v(t)

]∥
∥
∥
∥

q

p

+
∑

j≥3

2sjq

∥
∥
∥
∥Δ̇j

[
a(t)
v(t)

]∥
∥
∥
∥

q

p

)1/q

≤ Ct−
3
2 (1− 1

p )− 1
2 (1− 2

p )

∥
∥
∥
∥

[
a0

v0

]∥
∥
∥
∥

l

Ḃs
1,q

+ Ce−t

∥
∥
∥
∥

[
a0

v0

]∥
∥
∥
∥

h

Ḃs
p,q

.

We prove (1.9) using Proposition 3.3 and Remark 3.2. Indeed, if a0 = −v0, there exists a constant C
such that, for all p ∈ [2,∞], t > 1, and j ≥ 3,

∥
∥
∥
∥Δ̇j

[
a(t)
v(t)

]∥
∥
∥
∥

p

=
∥
∥
∥
∥F−1

[
φ̂j

etλ+

λ+ − λ−

[−(λ−â0 + λ+v̂0),
(λ−â0 + λ+v̂0)

] ]∥∥
∥
∥

p

≤ Ce−t

∥
∥
∥
∥Δ̇j

[
a0

v0

]∥
∥
∥
∥

1

.
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We thus obtain

∥
∥
∥
∥

[
a(t)
v(t)

]∥
∥
∥
∥

h

Ḃs
p,q

≤ Ce−t

∥
∥
∥
∥

[
a0

v0

]∥
∥
∥
∥

h

Ḃs
1,q

.

Lastly, (1.10) is proven by Proposition 3.7. �
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A Behaviour of Solutions near |ξ| = 2

In this section, we give a detailed proof for decay of the solution for frequencies near |ξ| = 2, as mentioned
in the discussion of (3.2), (3.3).

Proposition 3.8. Let p ∈ {2,∞}, j ∈ {0, 1, 2}. Then there exist constants C, c > 0 such that, for all t > 0,

∥
∥
∥
∥Δ̇j

[
a(t)
v(t)

]∥
∥
∥
∥

p

≤ Ce−ct

∥
∥
∥
∥

[
a0

v0

]∥
∥
∥
∥

1

.

Proof. Taking directly the L2 norm of Δ̇ja, Δ̇jv, for j ∈ {0, 1, 2}, we use Plancherel’s theorem to take
the Fourier transform inside the norm. Looking at

etλ−λ+ − etλ+λ−
λ+ − λ−

and the other similar expressions in (3.2) and (3.3), we see that the numerator and denominator both
approach 0 as |ξ| → 2. First, we may rewrite

etλ−λ+ − etλ+λ−
λ+ − λ−

=
(etλ− − etλ+)λ+

λ+ − λ−
+

etλ+(λ+ − λ−)
λ+ − λ−

.

http://creativecommons.org/licenses/by/4.0/
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The second term is of course just etλ+ . Focusing on the first term, we inspect the L2 norm around |ξ| = 2.
∥
∥
∥
∥

(etλ− − etλ+)λ+

λ+ − λ−
(φ̂j−1 + φ̂j + φ̂j+1)

∥
∥
∥
∥

2

2

≤ C

∫

{ 1
4≤|ξ|≤2}

∣
∣
∣
∣
∣

e−t |ξ|2
2

(
e
+it |ξ|2

2

√
4

|ξ|2 −1 − e
−it |ξ|2

2

√
4

|ξ|2 −1)

√
4/|ξ|2 − 1

∣
∣
∣
∣
∣

2

dξ

+ C

∫

{2≤|ξ|≤8}

∣
∣
∣
∣
∣

e−t |ξ|2
2

(
e
+t |ξ|2

2

√
1− 4

|ξ|2 − e
−t |ξ|2

2

√
1− 4

|ξ|2
)

√
1 − 4/|ξ|2

∣
∣
∣
∣
∣

2

dξ

=: I1 + I2.

Looking at I1 first, for all t > 0, we have

I1 ≤ Ce−t/32

∫

{ 1
4≤|ξ|≤2}

∣
∣
∣
∣
∣

(
e
+it |ξ|2

2

√
4

|ξ|2 −1 − e
−it |ξ|2

2

√
4

|ξ|2 −1)

√
4/|ξ|2 − 1

∣
∣
∣
∣
∣

2

dξ

≤ Ct2e−t/32

∫

{ 1
4≤|ξ|≤2}

∣
∣
∣
∣
∣

sin(t |ξ|2
2

√
4

|ξ|2 − 1)

t |ξ|2
2

√
4/|ξ|2 − 1

∣
∣
∣
∣
∣

2

dξ

≤ Ce−ct.

For I2, values of |ξ| away from 2 are handled as in Proposition 3.1. It remains only to consider the integral
over |ξ| ∈ (2, 2 + ε), for some small ε > 0. To that end, we first extract our time decay

∫

{2≤|ξ|≤2+ε}

∣
∣
∣
∣
∣

e−t |ξ|2
2

(
e
+t |ξ|2

2

√
1− 4

|ξ|2 − e
−t |ξ|2

2

√
1− 4

|ξ|2
)

√
1 − 4/|ξ|2

∣
∣
∣
∣
∣

2

dξ

≤ e−4t

∫

{2≤|ξ|≤2+ε}

∣
∣
∣
∣
∣

e
+t |ξ|2

2

√
1− 4

|ξ|2 − e
−t |ξ|2

2

√
1− 4

|ξ|2

√
1 − 4/|ξ|2

∣
∣
∣
∣
∣

2

dξ,

and consider the Taylor expansion of the remaining integrand:

e
+t |ξ|2

2

√
1− 4

|ξ|2 − e
−t |ξ|2

2

√
1− 4

|ξ|2

√
1 − 4/|ξ|2

=
1

√
1 − 4/|ξ|2

∞∑

n=1

(t |ξ|2
2 )n

(
(1 − 4/|ξ|2)n/2 − (−1)n(1 − 4/|ξ|2)n/2

)

n!

=
2

√
1 − 4/|ξ|2

∑

n≥1,odd

(t |ξ|2
2 )n(1 − 4/|ξ|2)n/2

n!

≤ t|ξ|2
∑

n≥0,even

(t |ξ|2
2 )n(1 − 4/|ξ|2)n/2

n!

≤ t|ξ|2e+t |ξ|2
2

√
1− 4

|ξ|2 ,

for all |ξ| > 2, t > 0. We thus obtain for all t > 0 and any ε sufficiently small

I2 ≤ Ce−4t

∫

{2≤|ξ|≤2+ε}

∣
∣
∣t|ξ|2e+t |ξ|2

2

√
1− 4

|ξ|2
∣
∣
∣
2

dξ + Ce−ct

≤ Ce−ct,
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and so we have obtained the result for p = 2.
Using the inequality

‖F−1[f̂ ]‖∞ ≤ ‖f̂‖1,

the same result is proven similarly for the L∞ norm.

B Bounds from Above for Low Frequencies

Proposition 3.9. Let j ≤ −1. Then, for all sufficiently large t,

sup
x∈R3

∣
∣
∣

∫

R3
ei(t−1/2x)·ξe

±it1/2 |ξ|2
2

√
4

|ξ|2 −t−1

e− |ξ|2
2 φ̂(2−jt−1/2ξ) dξ

∣
∣
∣ ≤ Ct−1/2.

Proof. First note that, by radial symmetry, we can assume without loss of generality that x = (x1, 0, 0).
We then split the frequency space into four subsets:

B1 := {ξ ∈ R
3 | |ξ2|, |ξ3| ≤ t−1/4}

B2 := {ξ ∈ R
3 | |ξ2| ≥ t−1/4, |ξ3| ≤ t−1/4}

B3 := {ξ ∈ R
3 | |ξ2| ≤ t−1/4, |ξ3| ≥ t−1/4}

B4 := {ξ ∈ R
3 | |ξ2|, |ξ3| ≥ t−1/4}

R
3 = B1 ∪ B2 ∪ B3 ∪ B4.

We shall estimate our integral over each of the four subsets. We start with B1.

sup
x∈R3

∣
∣
∣

∫

ξ∈B1

eit−1/2x1ξ1e
±it1/2 |ξ|2

2

√
4

|ξ|2 −t−1

e− |ξ|2
2 φ̂(2−jt−1/2ξ) dξ

∣
∣
∣

≤
∫

R

∫

{|ξ3|≤t−1/4}

∫

{|ξ2|≤t−1/4}
e− |ξ|2

2 dξ2 dξ3 dξ1 ≤ Ct−1/2.

For B2, we first note that

e
it1/2 |ξ|2

2

√
4

|ξ|2 −t−1

=
(
∂je

it1/2 |ξ|2
2

√
4

|ξ|2 −t−1)
|ξ|2
2

√
4

|ξ|2 − t−1

2ξjit1/2(2 − |ξ|2t−1)
,

and thus,

sup
x∈R3

∣
∣
∣

∫

ξ∈B2

eit−1/2x1ξ1e
±it1/2 |ξ|2

2

√
4

|ξ|2 −t−1

e− |ξ|2
2 φ̂(2−jt−1/2ξ) dξ

∣
∣
∣

≤
∫

{|ξ1|<t1/2}

∫

{|ξ3|≤t−1/4}

∣
∣
∣

∫

{|ξ2|≥t−1/4}

(
∂2e

it1/2 |ξ|2
2

√
4

|ξ|2 −t−1) |ξ|2
2

√
4

|ξ|2 − t−1φ̂(2−jt−1/2ξ)e− |ξ|2
2

2ξ2it1/2(2 − |ξ|2t−1)
dξ2

∣
∣
∣ dξ3 dξ1

≤
∫

{|ξ1|<t1/2}

∫

{|ξ3|≤t−1/4}
(

Ct−1/4 + Ct−1/2

∫ ∞

t−1/4

∣
∣
∣∂2

(
|ξ|2
2

√
4

|ξ|2 − t−1φ̂(2−jt−1/2ξ)e− |ξ|2
2

2ξ2i(2 − |ξ|2t−1)

)∣
∣
∣ dξ2

)

dξ3 dξ1.
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The above is accomplished by a simple integration by parts. Routine checks verify that

∫ ∞

t−1/4

∣
∣
∣∂2

(
|ξ|2
2

√
4

|ξ|2 − t−1

2ξ2i(2 − |ξ|2t−1)
φ̂(2−jt−1/2ξ)e− ξ22

2

)∣
∣
∣ dξ2 ≤ Ct+1/4.

An additional time decay of t−1/4 is obtained from the integral over ξ3, and boundedness of the integral
over ξ1 is assured by the presence of the Gauss function e−ξ2

1/2. Thus

sup
x∈R3

∣
∣
∣

∫

ξ∈B2

eit−1/2x1ξ1e
±it1/2 |ξ|2

2

√
4

|ξ|2 −t−1

e− |ξ|2
2 φ̂(2−jt−1/2ξ) dξ

∣
∣
∣ ≤ Ct−1/2.

The process for bounding the integral over B3 is identical to that of B2. We are thus left with the
integral over B4.

We note that

e
it1/2 |ξ|2

2

√
4

|ξ|2 −t−1

=
∂3∂2e

it1/2 |ξ|2
2

√
4

|ξ|2 −t−1

4ξ2ξ3it1/2

|ξ|6
2

√
4

|ξ|2 − t−1
3

4it1/2|ξ|2
√

4
|ξ|2 − t−1 − it−1/2|ξ|6

√
4

|ξ|2 − t−1
3

− 4
,

=: (A)

and thus, by integration by parts,

sup
x∈R3

∣
∣
∣

∫

ξ∈B4

eit−1/2x1ξ1e
±it1/2 |ξ|2

2

√
4

|ξ|2 −t−1

e− |ξ|2
2 φ̂(2−jt−1/2ξ) dξ

∣
∣
∣

≤
∫ 1

−1

∣
∣
∣

∫

{|ξ3|≥t−1/4}

∫

{|ξ2|≥t−1/4}
(A) φ̂(2−jt−1/2ξ)e− |ξ|2

2 dξ2 dξ3

∣
∣
∣ dξ1

≤ Ct−1/2,

by some longer but still routine calculations similar to the integral over B2. Therefore, we have obtained
for all j ≤ −1, and all t > t0,

sup
x∈R3

∣
∣
∣

∫

R3
eix·ξe

±it |ξ|2
2

√
4

|ξ|2 −1
e−t |ξ|2

2 φ̂(2−jξ) dξ
∣
∣
∣ ≤ Ct−2.

This completes the proof.

Remark 3.10. When we limit ourselves to the ξ1 > 0 case, as in the proof of Proposition 3.5, we may
obtain an extra decay of t−1/4 by performing an additional integration by parts over ξ1.
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