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Abstract. We derive a novel thermodynamically consistent Navier–Stokes–Cahn–Hilliard system with dynamic boundary
conditions. This model describes the motion of viscous incompressible binary fluids with different densities. In contrast to
previous models in the literature, our new model allows for surface diffusion, a variable contact angle between the diffuse
interface and the boundary, and mass transfer between bulk and surface. In particular, this transfer of material is subject
to a mass conservation law including both a bulk and a surface contribution. The derivation is carried out by means of
local energy dissipation laws and the Lagrange multiplier approach. Next, in the case of fluids with matched densities, we
show the existence of global weak solutions in two and three dimensions as well as the uniqueness of weak solutions in two
dimensions.
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1. Introduction

The description of multi-phase flows is a primal topic in modern continuum fluid dynamics with enor-
mous applications in biology, chemistry and engineering. Two major approaches have been developed
according to the representation of the interface separating the different components (see [5,19,30,46]
and the references therein): Sharp Interface (SI) versus Diffuse Interface (DI) methods (see Fig. 1). In
the former, the interface is represented by a hypersurface in the surrounding domain, which leads to
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Fig. 1. Difference between the Sharp Interface (left) and Diffuse Interface (right) methods

the formulation of free boundary problems. In the latter, also called phase-field method, the interface is
represented by a layer with finite thickness, corresponding to the level sets of the concentration function
whose evolution is governed by a macroscopic equation. The main advantage of this approach is the
Eulerian formulation of the phase-field equation, which avoids tracking the interface as in free boundary
problems. Although conceptually opposites, these approaches are strictly related since a proper scaling
of DI systems approximates SI models in the so-called sharp interface limit (see, e.g., [5]).

In the context of the DI theory, the cornerstone system for the motion of two viscous and incompressible
fluids with matched (constant) densities is the model H, which was rigorously derived in [35]. The model
H consists of the following Navier–Stokes–Cahn–Hilliard system

ρ∂tv + ρdiv
(
v ⊗ v

)− div
(
2ν(φ)Dv

)
+ ∇p = −ε div

(∇φ ⊗ ∇φ
)

in Q, (1.1a)

divv = 0 in Q, (1.1b)

∂tφ + div(φv) = div
(
mΩ(φ)∇μ

)
in Q, (1.1c)

μ = −εΔφ + ε−1F ′(φ) in Q. (1.1d)

Here, Q := Ω × (0, T ), where Ω ⊂ R
d with d = 2, 3 denotes a bounded, smooth domain with boundary

Γ and T > 0 is a given final time. In (1.1), ρ is the constant density of the mixture, v is the velocity of
the mixture, p is the pressure, φ is the difference of the fluid concentrations, μ is the chemical potential.
In addition, ν is the concentration depending viscosity, D is the symmetric gradient operator, ε is a
positive parameter related to the thickness of the interface, mΩ is the (bulk) mobility function and F is
a double-well potential.

The fundamental assumption in deriving the model H is that the density of the mixture is constant,
meaning that the two fluids have the same constant density ρ (matched densities). In the past two
decades, several works investigated suitable Navier–Stokes–Cahn–Hilliard generalizations of the model H
aiming to describe both incompressible mixtures with unmatched densities and compressible two-phase
flows. Without claiming completeness, we refer the reader to [6,12,18,21,30,36,43,49,50]. Among them
is the thermodynamically consistent model for viscous incompressible mixtures with unmatched densities
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proposed by Abels, Garcke and Grün (AGG model) in the seminal work [6], which reads as follows:

∂t

(
ρ(φ)v

)
+ div

(
v ⊗ (ρ(φ)v + J)

)− div
(
2ν(φ)Dv

)
+ ∇p = −ε div

(∇φ ⊗ ∇φ
)

in Q, (1.2a)

divv = 0 in Q, (1.2b)

ρ(φ) = ρ̃1
1 + φ

2
+ ρ̃2

1 − φ

2
, J = − 1

2 (ρ̃2 − ρ̃1)mΩ(φ)∇μ in Q, (1.2c)

∂tφ + div(φv) = div
(
mΩ(φ)∇μ

)
in Q, (1.2d)

μ = −εΔφ + ε−1F ′(φ) in Q. (1.2e)

In (1.2), the novel (coupling) terms are the concentration depending density ρ(φ), where ρ̃1 and ρ̃2 are
the different (constant) densities of the two fluids, and the additional mass flux J.

In the literature, both the model H and the AGG model have mostly been supplemented with the
classical no-slip/homogeneous Neumann boundary conditions

v = 0 on Σ, (1.3a)

∂nφ = 0 on Σ, (1.3b)

∂nμ = 0 on Σ. (1.3c)

Here, Σ := Γ × (0, T ) and n denotes the outward normal vector field on Γ. The conditions (1.3a) and
(1.3c) ensure the mass conservation in the bulk, namely

∫
Ω

φ(t) dx is a conserved quantity. Sufficiently
regular solutions of the system ((1.2),(1.3)) satisfy the energy dissipation law

d
dt

E(v, φ) = −
∫

Ω

2ν(φ) |Dv|2 dx −
∫

Ω

mΩ(φ) |∇μ|2 dx, (1.4)

where the total energy E is given by

E(v, φ) := Ekin(φ,v) + Ebulk(φ), (1.5)

where

Ekin(v, φ) :=
∫

Ω

ρ(φ)
2

|v|2 dx, Ebulk(φ) :=
∫

Ω

ε

2
|∇φ|2 +

1
ε
F (φ) dx (1.6)

denote the kinetic energy and the free energy in the bulk, respectively. We point out that in this model,
the fluid concentrations on the surface do not affect the dynamics in the bulk.

Concerning the mathematical analysis, the Cauchy problems corresponding to (1.1) and (1.2), each
endowed with (1.3), have been studied in [1,11,22,33] and in [3,4,7,31,32], respectively. We also refer the
interested reader to [5] (see also [6]) for the connection between the above DI systems and the two-phase
Navier–Stokes free boundary problem.

Even though the AGG model ((1.2),(1.3)) is already very advanced and is capable of describing the
complex case where the two fluids have different specific densities, it still inherits some limitations from
the underlying (convective) Cahn–Hilliard equation with homogeneous Neumann boundary conditions.
The main limitations are:
(L1) The boundary condition (1.3b) enforces the diffuse interface separating both fluids to always intersect

the boundary Γ at a perfect angle of ninety degrees. Of course, this restrictive condition will not
always be satisfied in concrete applications as the contact angle of the interface might deviate from
ninety degrees and even change dynamically over the course of time. Moreover, as discussed in [47],
the no-slip boundary condition (1.3a) is not well-suited for describing general moving contact line
phenomena. This is because situations where the velocity field actually contributes to the motion
of the contact line of the diffuse interface in the bulk at the boundary of the domain cannot be
described.

(L2) The boundary condition (1.3c) can be regarded as a no-flux boundary condition as it already implies
J ·n = 0 on Σ. Therefore, the system ((1.2),(1.3)) can merely describe the situation where the mass
of both fluids in the bulk Ω is conserved but it is not capable of describing a transfer of material
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between bulk and surface which could, for instance, be caused by absorption or adsorption processes
as well as chemical reactions taking place on the boundary (see, e.g., [38]).

Due to these well-known limitations of the Cahn–Hilliard model, and in order to describe short-range
interactions between bulk and surface more precisely, physicists proposed that the total free energy should
contain an additional contribution on the surface being also of Ginzburg–Landau type (see, e.g., [10]):

Efree(φ, ψ) := Ebulk(φ) + Esurf(ψ) where Esurf(ψ) :=
∫

Γ

δκ

2
|∇Γψ|2 +

1
δ
G(ψ) dS, (1.7)

and Ebulk is defined as in (1.6). Here, ψ is an additional phase-field variable describing the material
distribution on the surface, the parameter δ > 0 corresponds to the width of the diffuse interface on the
surface and the constant κ ≥ 0 acts as a weight for surface diffusion effects. In most cases, ψ is just
assumed to be the trace of the phase-field φ on the boundary, i.e.,

φ|Σ = ψ on Σ. (1.8)

However, also more general relations between φ and ψ (so-called transmission conditions) have been
investigated in the literature (see, e.g., [16,39]). The function G stands for an additional potential on
the surface. If phase separating processes on the boundary are to be described, G is also chosen to be
double-well shaped.

Based on this free energy, several dynamic boundary conditions for the Cahn–Hilliard (CH) equation

∂tφ = div
(
mΩ(ψ)∇μ

)
in Q, (1.9a)

μ = −εΔφ + δ−1F ′(φ) in Q (1.9b)

have been introduced in the literature. For instance, the Allen–Cahn type dynamic boundary condition

δ∂tψ = κδΔΓψ − ε∂nφ − 1
δ
G′(ψ) on Σ, (1.10)

to replace (1.3b) was proposed in [37] and further analyzed in [15]. Here, the symbol ΔΓ denotes the
Laplace–Beltrami operator (see, e.g., [20] for differential operators on surfaces).

In recent times, dynamic boundary conditions which also exhibit a Cahn–Hilliard type structure have
become very popular, especially since they allow for a better description of the transfer of material
between bulk and surface (see, e.g., [38]). In these models, the boundary condition (1.3b) is replaced by
a Cahn–Hilliard type equation on the surface, that is

∂tψ = divΓ

(
mΓ(ψ)∇Γθ

)− βmΩ(ψ) ∂nμ on Σ, (1.11a)

θ = −δκΔΓψ + δ−1G′(ψ) + ε∂nφ on Σ. (1.11b)

Here, θ denotes the chemical potential on the boundary, the function mΓ describes the mobility and the
parameter κ ≥ 0 acts as a weight for surface diffusion effects. Furthermore, the boundary condition (1.3c)
needs to be replaced by a suitable coupling condition for the bulk chemical potential μ and the surface
chemical potential θ. Recently, for a parameter β �= 0, the following choices have been considered:

{
LmΩ(ψ) ∂nμ = βθ − μ if L ∈ [0,∞),
mΩ(ψ) ∂nμ = 0 if L = ∞.

(1.11c)

• If L = 0, (1.11c) is to be interpreted as the Dirichlet type coupling condition βθ = μ on Σ. This
means that the chemical potentials μ and θ are assumed to always remain in chemical equilibrium.
In this case, the dynamic boundary conditions (1.11) were proposed in [24] (for κ = 0) and in [34]
(for general κ ≥ 0). Sufficiently regular solutions of the system ((1.8),(1.9),(1.11)) satisfy the mass
conservation law

β

∫

Ω

φ(t) dx +
∫

Γ

ψ(t) dS = β

∫

Ω

φ0 dx +
∫

Γ

ψ0 dS (1.12)
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and the energy dissipation law
d
dt

Efree

(
φ(t), ψ(t)

)
= −

∫

Ω

mΩ(φ) |∇μ|2 dx −
∫

Γ

mΓ(ψ) |∇Γθ|2 dS (1.13)

for all t ∈ [0, T ]. In the case β > 0, the well-posedness of the system ((1.8),(1.9),(1.11)) was studied
in [34] and its long-time behavior was investigated in [29,34].

• For L = ∞, the dynamic boundary conditions (1.11) were derived in [42] by means of an energetic
variational approach based on Onsager’s law and the least action principle. Here, due to (1.11c),
the chemical potentials are not directly coupled. However, mechanical interactions of the materials
between bulk and surface are still taken into account by the trace relation (1.8). Since (1.11c)
with L = ∞ implies that the mass flux between bulk and surface is zero, the bulk mass and the
surface mass are conserved separately. To be precise, sufficiently regular solutions of the system
((1.8),(1.9),(1.11)) satisfy the mass conservation law

∫

Ω

φ(t) dx =
∫

Ω

φ0 dx and
∫

Γ

ψ(t) dS =
∫

Γ

ψ0 dS (1.14)

and the energy dissipation law (1.13) for all t ∈ [0, T ]. The well-posedness of the system ((1.8), (1.9),
(1.11)) was established in [28,42] and its long-time behavior was studied in [42,45].

• In the case L ∈ (0,∞), the boundary conditions (1.11) were proposed and analyzed in [38]. Here,
the chemical potentials μ and θ are coupled by a Robin type boundary condition. The constant 1/L
is related to the kinetic rate associated with adsorption/desorption processes or chemical reactions
on the boundary. Sufficiently regular solutions of the system ((1.8),(1.9),(1.11)) satisfy the mass
conservation law (1.12) and the energy dissipation law

d
dt

Efree

(
φ(t), ψ(t)

)
= −

∫

Ω

mΩ(φ) |∇μ|2 dx −
∫

Γ

mΓ(ψ) |∇Γθ|2 dS

− 1
L

∫

Γ

(βθ − μ)2 dS (1.15)

for all t ∈ [0, T ]. The weak and strong well-posedness of the system ((1.8),(1.9),(1.11)) was estab-
lished in [38]. It was further shown that the case L ∈ (0,∞) can be understood as an interpolation
between L = 0 and L = ∞ as these cases are obtained as asymptotic limits on the level of strong so-
lutions to the system ((1.8),(1.9),(1.11)) as the parameter L is sent to zero or to infinity, respectively.
For the investigation of long-time dynamics, we refer to [29].

We further point out that a nonlocal variant of the system ((1.8),(1.9),(1.11)) was proposed and investi-
gated in [41]. Recent reviews of results concerning the Cahn–Hilliard equation with dynamic boundary
conditions can be found in [44,54].

In the context of Navier–Stokes–Cahn–Hilliard models for two-phase flows, in order to overcome the
aforementioned limitation (L1), the authors in [47] proposed a variational derivation through Onsager’s
principle of maximal energy dissipation of a new class of generalized Navier slip boundary conditions for
two-phase flows

v · n = 0, 2ν(ψ) (Dv · n)τ + γvτ = L(ψ)∇Γψ on Σ, (1.16a)

∂tψ + vτ · ∇Γψ = −βL(ψ), on Σ, (1.16b)

∂nμ = 0 on Σ, (1.16c)

where ψ = φ|Σ as in (1.8), and

L(ψ) = −κΔΓψ + ε∂nψ + G′(ψ).

Here, the subscript τ denotes the tangential component of a vector w, i.e., wτ = w− (w ·n)n, ∇Γ is the
tangential gradient on Γ and ΔΓ denotes the Laplace–Beltrami operator on Γ (see, e.g., [20] for differential
operators on surfaces). The phenomenological parameters β, κ and γ are positive, and G represents a
surface double-well potential. The surface dynamic of the concentration ψ is described by (1.16b) that is a
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convective Allen–Cahn type equation on the surface. It can be understood as an adaptation of the dynamic
boundary condition (1.10) (with δ = 1) to the situation of an additional volume-averaged velocity field.
Notice that the boundary condition (1.16c) (together with either (1.1) or (1.2)) entails that

∫
Ω

φ(t) dx is
invariant (as for (1.3c)), whereas

∫
Γ

ψ(t) dΓ is not a conserved quantity. The model H (1.1) endowed with
(1.16) was first studied in [25]. The authors proved the existence of global weak solutions assuming that
both F and G are polynomial-like functions or F is a singular potential and G is polynomial function. In
the former case, they also showed the convergence of any weak solution to a stationary state. Later on, the
global existence of weak solutions for (1.2) endowed with (1.16) has been achieved in [26]. More recently,
the compressible Navier–Stokes–Cahn–Hilliard system supplemented with (1.16) has been studied in [14],
and the Navier–Stokes–Allen–Cahn and the Navier–Stokes–Voigt–Allen–Cahn systems with (1.16) have
been analyzed in [23]. For the stochastic model H with dynamic boundary conditions (1.16), we mention
the recent results in [27]. It is worth pointing out that none of the aforementioned works established any
uniqueness result for weak solutions in either two or three dimensions. In fact, the only uniqueness result
established so far concerns quasi-strong solutions for the Navier–Stokes–Voigt–Allen–Cahn systems with
(1.16) in [23].

In this paper, we derive and study a new class of thermodynamically consistent Navier–Stokes–Cahn–
Hilliard systems with dynamic boundary conditions. Our model derivation is based on local mass balance
laws in the bulk and on the surface in which the mass fluxes are still to be determined. Arguing similarly
as in [6], after considering local energy dissipation laws, we apply the Lagrange multiplier approach to
complete our model derivation by identifying the unknown mass fluxes on the macroscopic level. The
resulting Navier–Stokes–Cahn–Hilliard (NSCH) model reads as follows:

∂t

(
ρ(φ)v

)
+ div

(
v ⊗ (ρ(φ)v + J)

)− div
(
2ν(φ)Dv

)
+ ∇p = −ε div

(∇φ ⊗ ∇φ
)

in Q, (1.17a)

divv = 0, in Q, (1.17b)

ρ(φ) = ρ̃1
1 + φ

2
+ ρ̃2

1 − φ

2
, J = − 1

2 (ρ̃2 − ρ̃1)mΩ(φ)∇μ in Q, (1.17c)

∂tφ + div(φv) = div
(
mΩ(φ)∇μ

)
in Q, (1.17d)

μ = −εΔφ + ε−1F ′(φ) in Q, (1.17e)

∂tψ + divΓ(ψvτ ) = divΓ

(
mΓ(ψ)∇Γθ

)− βmΩ(ψ) ∂nμ on Σ, (1.17f)

θ = −δκΔΓψ + δ−1G′(ψ) + ε∂nφ on Σ, (1.17g)

v · n = 0, φ|Γ = ψ,

{
LmΩ(ψ) ∂nμ = βθ − μ if L ∈ [0,∞),
mΩ(ψ) ∂nμ = 0 if L = ∞ on Σ, (1.17h)

[
2ν(ψ)(Dv n) + γ(ψ)v

]
τ

=
[− ψ∇Γθ + 1

2 (J · n)v
]
τ

on Σ, (1.17i)

v|t=0 = v0, φ|t=0 = φ0 in Ω, (1.17j)

ψ|t=0 = ψ0 on Γ, (1.17k)

In this model, mΩ and mΓ are nonnegative functions respresenting the mobilities. The positive parameters
ε and δ are related to the thickness of the diffuse interfaces in the bulk and on the boundary, respectively.
The constant κ ≥ 0 acts as a weight for surface diffusion effects. Moreover, β ∈ R satisfies β |Ω|+ |Γ| �= 0,
and L ∈ [0,∞]. In contrast to the dynamic boundary conditions (1.16) which are of Allen–Cahn type,
the dynamic boundary conditions in system (1.17) are of Cahn–Hilliard type. More precisely, they can be
understood as a convective variant of the dynamic boundary conditions ((1.8), (1.11)) presented above.
The sharp interface limit corresponding to the system (1.17) is to be studied in a subsequent work.

The system (1.17) is associated with the total energy

E(v, φ, ψ) := Ekin(φ,v) + Efree(φ, ψ), (1.18)



JMFM Two-Phase Flows with Bulk Page 7 of 44 65

where Ekin is the kinetic energy introduced in (1.6) and Efree = Ebulk + Esurf is the free energy defined
in (1.7). Sufficiently regular solutions of system (1.17) satisfy the mass conservation law

⎧
⎪⎪⎨

⎪⎪⎩

β

∫

Ω

φ(t) dx +
∫

Γ

ψ(t) dS = β

∫

Ω

φ0 dx +
∫

Γ

ψ0 dS if L ∈ [0,∞),
∫

Ω

φ(t) dx =
∫

Ω

φ0 dx and
∫

Γ

ψ(t) dS =
∫

Γ

ψ0 dS if L = ∞,

(1.19)

and the energy dissipation law
d
dt

E(v, φ, ψ) = −
∫

Ω

2ν(φ) |Dv|2 dx −
∫

Γ

γ(ψ) |v|2 dS −
∫

Ω

mΩ(φ) |∇μ|2 dx

−
∫

Γ

mΓ(ψ) |∇Γθ|2 dS − h(L)
∫

Γ

(βθ − μ)2 dS, (1.20)

where

h(L) =

{
0 if L = 0 or L = ∞,

L−1 if L ∈ (0,∞),
(1.21)

as long as the solution exists.
After presenting the model derivation of the system (1.17) in Sect. 2, we will study the case of fluids

having matched densities, namely ρ ≡ ρ̃1 = ρ̃2. This means that the flux J vanishes. We rewrite the
system (1.17) as follows

ρ ∂tv + ρdiv
(
v ⊗ v

)− div
(
2ν(φ)Dv

)
+ ∇p = −ε div

(∇φ ⊗ ∇φ
)

in Q, (1.22a)

divv = 0 in Q, (1.22b)

∂tφ + div(φv) = div
(
mΩ(φ)∇μ

)
in Q, (1.22c)

μ = −εΔφ + ε−1F ′(φ) in Q, (1.22d)

∂tψ + divΓ(ψvτ ) = divΓ

(
mΓ(ψ)∇Γθ

)− βmΩ(ψ) ∂nμ on Σ, (1.22e)

θ = −δκΔΓψ + δ−1G′(ψ) + ε∂nφ on Σ, (1.22f)

v · n = 0, φ|Γ = ψ,

{
LmΩ(ψ) ∂nμ = βθ − μ if L ∈ [0,∞),
mΩ(ψ) ∂nμ = 0 if L = ∞ on Σ, (1.22g)

[
2ν(ψ)(Dv n) + γ(ψ)v

]
τ

=
[− ψ∇Γθ

]
τ

on Σ, (1.22h)

v|t=0 = v0, φ|t=0 = φ0 in Ω, (1.22i)

ψ|t=0 = ψ0 on Γ. (1.22j)

The model (1.22) can be regarded as a generalization of the model H with dynamic boundary conditions
of Cahn–Hilliard type. We will focus on the mathematical analysis of system (1.22) in the case L = 0 and
β > 0 (see system (3.12) in Sect. 3). In Theorem 3.3, we first prove the existence of global weak solutions
to system (3.12) with regular (polynomial-like) potentials F and G in bounded Lipschitz domains (cf.
(A2)–(A5) below for the specific assumptions). Weak solutions satisfy the variational formulation of the
problem (3.12) and a weak energy dissipation law (see (3.18)). A weak solution is obtained as the limit of
smooth solutions to suitably regularized problems based on a Faedo–Galerkin scheme, where appropriate
compactness properties are derived on the basis of uniform and global estimates gained from the energy
dissipation law (1.20). However, an ad hoc construction of the solution ansatz is required since both
(φ, ψ) and (μ, θ) need to be approximated in the same finite-dimensional subspace in order to show the
validity of (1.20) for such regularized solutions (cf. the change of variables (3.22)). In comparison with
the works in literature [23,25,26], our argument is rather simple and relies only on a one-level Faedo–
Galerkin approximation. Furthermore, it is shown that (μ, θ) ∈ L4(0, T ;L2), which is a novel regularity
for NSCH systems (and even CH equations) with regular potentials (cf., for instance, [11,22]). Next, in
Theorem 3.4, we then establish the uniqueness of the weak solutions in the two dimensional case. This
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is the first uniqueness result in the literature for a NSCH system with dynamic boundary conditions.
It is important to underline that the nonlinear coupling in the NSCH system with dynamic boundary
conditions (1.22) is much stronger than in the model H (1.1). Roughly speaking, this is due to the elastic
(surface) term [ψ∇θ]τ in (1.22h), in addition to the classical capillarity (bulk) term −εdiv(∇φ ⊗ ∇φ)
(also referred to as Korteweg force). More precisely, gradient terms arising from equivalent formulations
of the Korteweg force (cf. (3.11)) disappear in bulk integrals in view of the incompressibility constraint
divv = 0. Instead, surface integrals involving the product between a gradient function and v does not
vanish since divτ v �= 0 on Σ. For this reason, the term [ψ∇θ]τ cannot be handled as in [33] through dual
estimates. Therefore, the appropriate functional to control the difference of two solutions corresponds to
the total energy. This functional is capable of reproducing the same cancellation of the nonlinear terms
as in the derivation of (1.20). In order to rigorously justify this fact, two additional assumptions need to
be imposed: the domain Ω has a C3-boundary, which is needed to gain further spatial regularity of (φ, ψ)
and to recover the relations of the bulk/surface chemical potentials (μ, θ) almost everywhere; the relation
between bulk and surface potentials F (s) = βG(s) for all s ∈ R, which enables us to apply a particular
chain formula (see Appendix A).

2. Model Derivation

In this section we will derive the novel Navier–Stokes–Cahn–Hilliard system with dynamic boundary
conditions (1.17).

2.1. Considerations Based on Local Mass Balance Laws

We consider the time evolution of two fluids (indexed with i = 1, 2) in a (sufficiently smooth) domain
Ω ⊂ R

d with d ∈ {2, 3} on a time interval [0, T ] with T > 0. We write Q = Ω× (0, T ) and Σ = Γ× (0, T ),
where Γ = ∂Ω. Let ρi : Q ∪ Σ → R, i = 1, 2, denote the mass densities of these two fluids. The local mass
balance equations in the bulk read as

∂tρi + div Ĵi = 0, i = 1, 2, in Q. (2.1)

Here, Ĵi are the mass fluxes. As we want to allow for a transfer of material between bulk and surface,
the local mass balance equation on the boundary is given by

∂tρi + divΓ K̂i = βĴi · n, i = 1, 2, on Σ. (2.2)

In this relation, K̂i stand for the mass fluxes on the boundary. The right-hand side βĴi describes the
transfer of mass between bulk and surface. Here, the constant β ∈ R acts as a weight of this mass transfer.
Introducing the individual velocities vi : Q ∪ Σ → R

d, i = 1, 2, which can be expressed as

vi =
Ĵi

ρi
in Q, vi =

K̂i

ρi
on Σ, i = 1, 2,

the mass balances (2.1) and (2.2) can be rewritten as

∂tρi + div(ρivi) = 0, i = 1, 2, in Q, (2.3)

∂tρi + divΓ(ρivi) = βĴi · n, i = 1, 2, on Σ. (2.4)

Let now φi : Q → R and ψi : Σ → R, i = 1, 2, denote the volume fractions of the two fluids in the bulk
and on the boundary, respectively. Provided that each fluid has a constant density ρ̃i, i = 1, 2, the volume
fractions can be identified as

φi =
ρi

ρ̃i
in Q, ψi =

ρi

ρ̃i
on Σ, i = 1, 2. (2.5)
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In particular, this naturally entails the trace relation

φ|Σ = ψ on Σ. (2.6)

Under the assumption that the excess volume is zero, we have

φ1 + φ2 = 1 in Q, ψ1 + ψ2 = 1 on Σ. (2.7)

We further set

φ = φ2 − φ1 in Q, ψ = ψ2 − ψ1 on Σ. (2.8)

Furthermore, let v : Q∪Σ → R
d denote the volume averaged velocity field associated with the two fluids.

It can be expressed as

v = φ1v1 + φ2v2, i = 1, 2, in Q, (2.9)

v = ψ1v1 + ψ2v2, i = 1, 2, on Σ. (2.10)

We assume that both fluids cannot permeate the boundary Γ, which leads to the condition

vn = v · n = 0 on Σ. (2.11)

Hence, v is identical to its tangential component, that is, vτ = v − (v · n)n = v on Σ. We further write

Ji = Ĵi − ρiv, i = 1, 2, in Q, (2.12)

Ki = K̂i − ρiv, i = 1, 2, on Σ, (2.13)

to denote the mass fluxes relative to the volume averaged velocity. The mass balance equations (2.14)
and (2.15) can thus be expressed as

∂tρi + div(ρiv) + divJi = 0, i = 1, 2, in Q, (2.14)

∂tρi + divΓ(ρiv) + divΓ Ki = βJi · n, i = 1, 2, on Σ. (2.15)

In this context, Ji and Ki, i = 1, 2, can be regarded as diffusive flow rates. We now define the total mass
density as

ρ = ρ1 + ρ2, i = 1, 2, in Q ∪ Σ. (2.16)

This leads to the relations

∂tρ + div(ρv) + div(J1 + J2) = 0 in Q, (2.17)

∂tρ + divΓ(ρv) + divΓ(K1 + K2) = β(J1 + J2) · n on Σ. (2.18)

Next, assuming a conservation of linear momentum with respect to the velocity field v, we have

∂t(ρv) + div(ρv ⊗ v) = div T̃ in Q. (2.19)

Here, T̃ denotes the stress tensor that needs to be specified by constitutive assumptions. In the following,
we write

J = J1 + J2 in Q, K = K1 + K2 on Σ. (2.20)

Using (2.17) to rewrite (2.19), we obtain

ρ(∂tv + v · ∇v) = div T̃ + (divJ)v

= div(T̃ + v ⊗ J) − ∇v J in Q. (2.21)

This allows us to define the objective tensor

T = T̃ + v ⊗ J in Q, (2.22)

which is frame indifferent. Hence, (2.21) can be rewritten as

ρ∂tv + ∇v (ρv + J) = divT in Q. (2.23)
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We now multiply (2.14) by 1/ρ̃i, i = 1, 2, and we add the resulting equations. Recalling (2.7) and (2.9),
this yields

divv = ∂t(φ1 + φ2) + divv

= ∂t

(
ρ1

ρ̃1
+

ρ2

ρ̃2

)
+ div

(
ρ1

ρ̃1
v1 +

ρ2

ρ̃2
v2

)
= 0 in Q, (2.24)

which means that the volume averaged velocity field is divergence-free. Multiplying (2.15) by 1/ρ̃i, i = 1, 2,
and adding the resulting equations, we infer

divΓ v = ∂t(ψ1 + ψ2) + divΓ v

= ∂t

(
ρ1

ρ̃1
+

ρ2

ρ̃2

)
+ divΓ

(
ρ1

ρ̃1
v1 +

ρ2

ρ̃2
v2

)

= β

(
J1

ρ̃1
+

J2

ρ̃2

)
· n on Σ. (2.25)

We now define

J̃i =
Ji

ρ̃i
, i = 1, 2, Jφ = J̃2 − J̃1 in Q, (2.26)

K̃i =
Ki

ρ̃i
, i = 1, 2, Kψ = K̃2 − K̃1 on Σ. (2.27)

We next multiply (2.14) by 1/ρ̃i, i = 1, 2. Subtracting the resulting equations, we deduce that

∂tφ + div(φv) + divJφ = 0 in Q. (2.28)

Moreover, multiplying (2.14) by 1/ρ̃i, adding the resulting equations, and recalling (2.7) and (2.24), we
conclude that

div(J̃1 + J̃2) = ∂t(φ1 + φ2) + div
(
(φ1 + φ2)v

)
+ div(J̃1 + J̃2) = 0 in Q. (2.29)

Proceeding similarly with (2.15), and recalling (2.7) and (2.25), we obtain

∂tψ + divΓ(ψv) + divΓ Kψ = βJφ · n on Σ, (2.30)

and

divΓ(K̃1 + K̃2) = ∂t(ψ1 + ψ2) + divΓ

(
(ψ1 + ψ2)v

)

+ divΓ(K̃1 + K̃2) − β(J̃1 + J̃2) · n = 0 on Σ. (2.31)

Using (2.26) and (2.29), we infer that

divJ =
1
2

[
ρ̃2div J̃2 + ρ̃1div J̃1

]
+

1
2

[
ρ̃2div J̃2 + ρ̃1div J̃1

]

=
ρ̃2 − ρ̃1

2
div J̃2 − ρ̃2 − ρ̃1

2
div J̃1 =

ρ̃2 − ρ̃1

2
divJφ in Q. (2.32)

This means that J and 1
2 (ρ̃2 − ρ̃1)Jφ can merely differ by an additive divergence-free function. As in [6],

we thus assume that

J =
ρ̃2 − ρ̃1

2
Jφ in Q. (2.33)

In the same fashion, we derive the identity

divΓ K =
ρ̃2 − ρ̃1

2
divΓ Kψ on Σ. (2.34)

From (2.7), (2.8) and (2.16), assuming that φ and ψ only attain values in [−1, 1], we further infer that
the density ρ = ρ(φ) is given as

ρ(φ) =
ρ̃2 − ρ̃1

2
φ +

ρ̃2 + ρ̃1

2
in Q, (2.35)
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and due to (2.6), the trace ρ(φ)|Σ can be expressed as

ρ(φ)|Σ = ρ(ψ) =
ρ̃2 − ρ̃1

2
ψ +

ρ̃2 + ρ̃1

2
on Σ. (2.36)

Plugging (2.35) into (2.17), and (2.36) into (2.18), and using the identities (2.29) and (2.31), we eventually
derive the equations

∂tφ + div(φv) + divJφ = 0 i = 1, 2, in Q, (2.37)

∂tψ + divΓ(ψv) + divΓ Kψ = βJφ · n i = 1, 2, on Σ. (2.38)

2.2. Local Energy Dissipation Laws

Proceeding as in [6], we introduce the following energy density in the bulk:

eΩ(v, φ,∇φ) =
ρ(φ)

2
|v|2 + f(φ,∇φ) in Q. (2.39)

The first summand on the right-hand side stands for the kinetic energy density whereas the second
summand denotes the free energy density in the bulk. On the boundary, we introduce the additional
energy density

eΓ(ψ,∇Γψ) = g(ψ,∇Γψ) on Σ, (2.40)

where g stands for the free energy density on the surface.
We now consider an arbitrary test volume V (t) ⊂ Ω, t ∈ [0, T ], that is transported by the flow

associated with v. Let ν denote the outer unit normal vector field of V (t). In an isothermal situation, the
second law of thermodynamics leads to the dissipation inequality

0 ≥ d
dt

[∫

V (t)

eΩ(v, φ,∇φ) dx +
∫

∂V (t)∩Γ

eΓ(ψ,∇Γψ) dS

]

+
∫

∂V (t)∩Ω

Je · ν dS +
∫

∂Γ(∂V (t)∩Γ)

Ke · νΓ dSΓ. (2.41)

Here Je and Ke are energy fluxes that will be specified later. As we consider a closed system, there is
no transfer of energy over the boundary Γ and thus, the domain of the first integral in the second line is
just ∂V (t) ∩ Ω instead of ∂V (t). We further point out that ∂Γ(∂V (t) ∩ Γ) ⊆ Γ is to be understood as the
relative boundary of the set ∂V (t) ∩ Γ within the submanifold Γ, and νΓ stands for the corresponding
outer unit normal vector field. Applying Gauß’s divergence theorem on both integrals in the second line,
and recalling that ν = n on ∂V (t) ∩ Γ, we reformulate (2.41) as

0 ≥ d
dt

[∫

V (t)

eΩ(v, φ,∇φ) dx +
∫

∂V (t)∩Γ

eΓ(ψ,∇Γψ) dS

]

+
∫

V (t)

divJe dx +
∫

∂V (t)∩Γ

divΓ Ke − Je · n dS. (2.42)

Applying the Reynolds transport theorem, we find that

d
dt

∫

V (t)

eΩ(v, φ,∇φ) dx =
∫

V (t)

∂teΩ(v, φ,∇φ) + div
(
eΩ(v, φ,∇φ)v

)
dx. (2.43)

Similarly, using the transport theorem for evolving hypersurfaces (see, e.g., [9, Theorem 32]), we obtain

d
dt

∫

∂V (t)∩Γ

eΓ(ψ,∇Γψ) dS =
∫

V (t)∩Γ

∂teΓ(ψ,∇Γψ) + divΓ

(
eΓ(ψ,∇Γψ)v

)
dS. (2.44)



65 Page 12 of 44 A. Giorgini, P. Knopf JMFM

Combining (2.42), (2.43) and (2.44), we thus get

0 ≥
∫

V (t)

∂teΩ(v, φ,∇φ) + div
(
eΩ(v, φ,∇φ)v

)
+ divJe dx

+
∫

∂V (t)∩Γ

∂teΓ(ψ,∇Γψ) + divΓ

(
eΓ(ψ,∇Γψ)v

)
+ divΓ Ke − Je · n dS. (2.45)

In particular, the above inequality holds true for all test volumes V (t) ⊂ Ω with ∂V (t) ∩ Γ = ∅. We thus
infer the local dissipation law in the bulk, which reads as

0 ≥ −DΩ := ∂teΩ(v, φ,∇φ) + div
(
eΩ(v, φ,∇φ)v

)
+ divJe in Q. (2.46)

Let now α > 0 be arbitrary and suppose that V (t) ⊂ Ω is a test volume with |V (t)| being sufficiently
small such that

∫

V (t)

DΩ dx < α.

Then, we use (2.45) to infer that
∫

∂V (t)∩Γ

∂teΓ(ψ,∇Γψ) + divΓ

(
eΓ(ψ,∇Γψ)v

)
+ divΓ Ke − Je · n dS < α.

Since α > 0 and the test volume V (t) were arbitrary (except for the above restriction on V (t)), we
conclude the following local dissipation law on the boundary:

0 ≥ −DΓ := ∂teΓ(ψ,∇Γψ) + divΓ

(
eΓ(ψ,∇Γψ)v

)
+ divΓ Ke − Je · n on Σ. (2.47)

2.3. Completion of the Model Derivation by the Lagrange Multiplier Approach

We now complete the model derivation by means of the Lagrange multiplier approach. We introduce the
functions μ and θ that will be fixed in the subsequent approach. In view of the identities (2.37) and
(2.38), the local energy dissipation laws (2.46) and (2.47) can be written as

0 ≥ −DΩ = ∂teΩ(v, φ,∇φ) + div
(
eΩ(v, φ,∇φ)v

)
+ divJe

− μ
(
∂tφ + div(φv) + divJφ

)
in Q, (2.48)

0 ≥ −DΓ = ∂teΓ(ψ,∇Γψ) + divΓ

(
eΓ(ψ,∇Γψ)v

)
+ divΓ Ke − Je · n

− θ
(
∂tψ + divΓ(vψ) + divΓ Kψ − βJφ · n) on Σ. (2.49)

Here, the functions μ and θ can be understood as Lagrange multipliers.
In the following, for brevity, we will just write ρ, f and g instead of ρ(φ), f(φ,∇φ) and g(ψ,∇Γψ). By

the definition of the energy densities eΩ and eΓ (see (2.39) and (2.40)), we rewrite (2.48) and (2.49) as

0 ≥ −DΩ = ∂t

(
1
2ρ |v|2 )+ div

(
1
2ρ |v|2 v)+ ∂tf + div(fv) + divJe

− μ
(
∂tφ + div(φv) + divJφ

)
in Q, (2.50)

0 ≥ −DΓ = ∂tg + divΓ(gv) + divΓ Ke − Je · n
− θ
(
∂tψ + divΓ(ψv) + divΓ Kψ − βJφ · n) on Σ. (2.51)

By the chain rule, the derivatives ∂tf and ∂tg can be expressed as

∂tf = ∂φf ∂tφ + ∂∇φf ∂t∇φ in Q, (2.52)

∂tg = ∂ψg ∂tψ + ∂∇Γψg ∂t∇Γψ on Σ. (2.53)

In the following, for any function h : Q → R, we use the notation

Dth = ∂th + (v · ∇)h
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to denote its material derivative. In the bulk, we proceed exactly as in [6] to reformulate (2.50) as

0 ≥ div
[
Je − 1

2 |v|2 J + T�v − μJφ + ∂∇φfDtφ
]

+
[
∂φf − div(∂∇φf) − μ

]
Dtφ

− [T + ∇φ ⊗ ∂∇φf
]

: ∇v + ∇μ · Jφ in Q. (2.54)

To ensure (2.54), we now choose the chemical potential μ and the energy flux Je as

μ = ∂φf − div
(
∂∇φf

)
in Q, (2.55)

Je = 1
2 |v|2 J − T�v + μJφ − ∂∇φfDtφ in Q. (2.56)

By these choices, the first two lines of the right-hand side in (2.54) vanish. We further assume the mass
flux Jφ to be of Fick’s type, that is

Jφ = −mΩ(φ)∇μ in Q, (2.57)

where mΩ = mΩ(φ) is a nonnegative function representing the mobility. Hence, (2.54) reduces to

0 ≥ −[T + ∇φ ⊗ ∂∇φf
]

: ∇v − mΩ(φ) |∇μ|2 in Q. (2.58)

We now define the tensor

S = T + pI + ∇φ ⊗ ∂∇φf in Q.

Here, the variable p denotes the pressure, and I denotes the identity matrix. S is the viscous stress tensor
that corresponds to irreversible changes of the energy due to friction. For Newtonian fluids, S is usually
chosen as

S = 2ν(φ)Dv (2.59)

where ν = ν(φ) is a nonnegative function representing the viscosity of the fluids, and Dv is the symmetric
gradient of v. By this choice, (2.58) is satisfied since we obtain

0 ≥ −ν(φ) |Dv|2 − mΩ(φ) |∇μ|2 in Q, (2.60)

by means of the identity pI : ∇v = p divv = 0 in Q.
We now assume that the energy density f is of Ginzburg–Landau type, that is

f(φ,∇φ) =
ε

2
|∇φ|2 +

1
ε
F (φ) in Q. (2.61)

Here, the parameter ε > 0 is related to the thickness of the diffuse interface that separates the two fluids,
and F is a potential that usually exhibits a double-well structure. Hence, the chemical potential μ reads
as

μ = −εΔφ +
1
ε
F ′(φ) in Q, (2.62)

and the total stress tensor T is given by

T = S − pI − ∇φ ⊗ ∂∇φf

= 2ν(φ)Dv − pI − ε∇φ ⊗ ∇φ in Q. (2.63)

Plugging (2.57) into (2.37), we further obtain the equation

∂tφ + div(φv) = div
(
mΩ(φ)∇μ

)
in Q. (2.64)

Eventually, recalling (2.22) and (2.63), we use (2.19) to derive the equation

∂t(ρv) + div
(
v ⊗ (ρ(φ)v + J)

)− div
(
2ν(φ)Dv

)
+ ∇p = −εdiv(∇φ ⊗ ∇φ) in Q, (2.65)

where

J = − ρ̃2 − ρ̃1

2
mΩ(φ)∇μ in Q. (2.66)
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We now consider the local energy dissipation law (2.51) on the boundary. Recalling the formulas for
Je (see (2.56)) and T (see (2.63)), we infer that

0 ≥ ∂ψg ∂tψ + divΓ

(
∂∇Γψg∂tψ

)− divΓ

(
∂∇Γψg

)
∂tψ + divΓ(gv) + divΓ Ke

− 1
2 (J · n) (v · v) + 2ν(φ)

(
Dv n

) · v − ε(∇φ ⊗ ∇φ)n · v − μJφ · n
+ (∂∇φf · n)∂tψ + (∂∇φf · n)(v · ∇Γψ) − θ∂tψ − divΓ(θψv) + ψ∇Γθ · v
− divΓ(Kψθ) + ∇ΓθKψ + βθJφ · n

= divΓ

[
Ke + ∂∇Γψg∂tψ + gv − θψv − θKψ

]

+
[
∂ψg − divΓ

(
∂∇Γψg

)
+ ∂∇φf · n − θ

]
∂tψ

+
[
2ν(ψ)(Dv n) + ψ∇Γθ − 1

2 (J · n)v
] · v

+ (∂∇φf · n)(v · ∇Γψ) − ε(∇φ ⊗ ∇φ)n · v
+ ∇ΓθKψ + (βθ − μ)Jφ · n (2.67)

on Σ. Here, we have used that

v · ∇Γψ = v · ∇Γφ = v · [∇φ − n(∇φ · n)
]

= v · ∇φ on Σ (2.68)

due to the definition of the surface gradient and the boundary condition (2.11). In order to ensure that
the inequality (2.67) is fulfilled, we choose the chemical potential θ, the mass flux Kψ, and the energy
flux Ke as follows:

θ = ∂ψg − divΓ

(
∂∇Γψg

)
+ ∂∇φf · n on Σ, (2.69)

Kψ = −mΓ(ψ)∇Γθ on Σ, (2.70)

Ke = −∂∇ΓψgDtψ + θψv + θKψ − gv on Σ. (2.71)

In (2.70), mΓ = mΓ(ψ) is a nonnegative function representing the mobility. This means that the first two
lines of the right-hand side in (2.67) vanish. Moreover, since vn = 0 (see (2.11)), we have v = vτ and
thus,

[
2ν(ψ)(Dv n) + ψ∇Γθ − 1

2 (J · n)v
] · v

=
[
2ν(ψ)(Dv n) + ψ∇Γθ − 1

2 (J · n)v
]
τ

· vτ .

Therefore, in order to ensure that (2.67) is satisfied, we make the constitutive assumption
[
2ν(ψ)(Dv n) + ψ∇Γθ − 1

2 (J · n)v
]
τ

= −γ(ψ)vτ , (2.72)

where γ = γ(ψ) is a nonnegative function. This equation can be regarded as an inhomogeneous Navier
slip boundary condition. We now assume that the energy density g is also of Ginzburg–Landau type, that
is

g(ψ,∇Γψ) =
κδ

2
|∇Γψ|2 +

1
δ
G(ψ) on Σ. (2.73)

Here, δ > 0 is related to the thickness of the diffuse interface on the boundary, κ ≥ 0 acts as a weight
for surface diffusion effects, and G is a potential that usually exhibits a double-well structure. Hence,
recalling the definition of the energy density f (see (2.61)), the chemical potential θ is given as

θ = −κδΔΓψ +
1
δ
G′(ψ) − ε∂nφ on Σ. (2.74)

Thanks to (2.68), we further have

(∂∇φf · n)(v · ∇Γψ) = ε(∇φ · n)(v · ∇φ) = ε(∇φ ⊗ ∇φ)n · v on Σ. (2.75)

Hence, (2.67) reduces to

0 ≥ −γ(ψ) |v|2 − mΓ(ψ) |∇Γθ|2 − (βθ − μ)mΩ(φ)∇μ · n on Σ. (2.76)
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The first two terms on the right-hand side are clearly nonpositive as γ(ψ) and mΓ(ψ) are nonnegative.
This means that (2.76) is fulfilled if one of the following boundary conditions holds:

βθ − μ = 0 on Σ, (2.77a)

mΩ(φ)∇μ · n = 1
L (βθ − μ) on Σ for a constant L ∈ (0,∞), (2.77b)

mΩ(φ)∇μ · n = 0 on Σ. (2.77c)

Finally, by substituting (2.57) and (2.70) into (2.38), we obtain

∂tψ + divΓ(ψv) = divΓ(mΓ(ψ)∇Γθ) − βmΩ(ψ)∇μ · n on Σ. (2.78)

Collecting (2.65), (2.24), (2.66), (2.64), (2.62), (2.78), (2.74), (2.11), (2.6), (2.77) and (2.72), and
imposing the initial conditions

v|t=0 = v0, φ|t=0 = φ0 in Ω, ψ|t=0 = ψ0 on Σ, (2.79)

for prescribed initial data v0, φ0 and ψ0, we have thus derived the system (1.17).

3. Mathematical Analysis: The Case of Matched Densities

3.1. Notation and Preliminaries

We fix some notation and assumptions that are supposed to hold throughout the remainder of this paper.

Notation.

(N1) The set of natural numbers excluding zero is denoted by N, and we write N0 = N ∪ {0}.
(N2) Let Ω be a bounded Lipschitz domain in R

d with d ∈ {2, 3}. We write Γ := ∂Ω. For any real numbers
k ≥ 0 and p ∈ [1,∞], the Lebesgue and Sobolev spaces for functions defined on Ω with values in
R are denoted as Lp(Ω) and W k,p(Ω). We write ‖ · ‖Lp(Ω) and ‖ · ‖W k,p(Ω) to denote the standard
norms on these spaces. If p = 2, we use the notation Hk(Ω) = W k,2(Ω). We point out that H0(Ω)
can be identified with L2(Ω). Analogously, the Lebesgue and Sobolev spaces on Γ are denoted by
Lp(Γ) and W k,p(Γ) with corresponding norms ‖ · ‖Lp(Γ) and ‖ · ‖W k,p(Γ), respectively. In the case of
vector fields on Ω with values in R

n for some n ∈ N with n > 1, we use the notation Lp(Ω), Wk,p(Ω)
and Hk(Ω). For simplicity, their norms are denoted as in the scalar case by ‖ · ‖Lp(Ω), ‖ · ‖W k,p(Ω)

and ‖ · ‖Hk(Ω), respectively.
Let I be a closed interval in R and X be a Banach space. The space C(I;X) denotes the set of

continuous functions from I to X and, for k ∈ N, Ck(I;X) denotes the space of k-times continuously
differentiable functions from I to X. In particular, we simply write C(I) and Ck(I) if X = R.
Moreover, Cw(I;X) denotes the space of functions mapping from I to X which are continuous on I
with respect to the weak topology on X. This means that for any function f ∈ Cw(I;X) and every
sequence (tk)k∈N in I with tk → t in I as k → ∞, it holds f(tk) → f(t) weakly in I as k → ∞.
Furthermore, for any real numbers k ≥ 0 and p ∈ [1,∞], the Bochner spaces of functions defined on
an interval I in R with values in X are denoted by Lp(I;X) and W k,p(I;X).

(N3) For any Banach space X, we write X ′ to denote its dual space. The associated duality pairing of
elements φ ∈ X ′ and ζ ∈ X is denoted as 〈φ, ζ〉X . If X is a Hilbert space, we write (·, ·)X to denote
its inner product.

(N4) For any bounded Lipschitz domain Ω, we define

〈u〉Ω :=

{
1

|Ω| 〈u, 1〉H1(Ω) if u ∈ H1(Ω)′,
1

|Ω|
∫
Ω

u dx if u ∈ L1(Ω),
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to denote the (generalized) spatial mean of u. Here, |Ω| denotes the d-dimensional Lebesgue measure
of Ω. The spatial mean of a function v ∈ H1(Γ)′ (or v ∈ L1(Γ), respectively) is denoted as 〈v〉Γ and
defined analogously.

(N5) For any bounded Lipschitz domain Ω and d ∈ {2, 3}, we introduce the space

L2
div(Ω) :=

{
v ∈ L2(Ω;Rd) : divv = 0 in Ω, v · n = 0 on Γ

}
= C∞

0,σ(Ω;Rd)
L2(Ω)

,

where C∞
0,σ(Ω;Rd) :=

{
v ∈ C∞

c (Ω;Rd) : divv = 0 in Ω
}
. Moreover, we define

H1
div(Ω) = H1(Ω) ∩ L2

div(Ω).

Assumptions. To prove the existence of weak solutions in the case of matched densities, we make the
following assumptions:

(A1) We consider a bounded domain Ω ⊂ R
d with d ∈ {2, 3} with Lipschitz boundary Γ = ∂Ω and a final

time T > 0. We further use the notation

Q := Ω × (0, T ), Σ := Γ × (0, T ).

(A2) The constants occurring in the system (1.22) satisfy ε, δ, β, κ > 0 and L = 0. Since the choice of δ,
ε and κ has no impact on the mathematical analysis, we will simply set δ = ε = κ = 1 without loss
of generality.

(A3) The potentials F : R → [0,∞) and G : R → [0,∞) are twice continuously differentiable and there
exist two exponents p and q satisfying

p ∈
{

[2,∞), if d = 2,

[2, 6], if d = 3,
and q ∈ [2,∞)

as well as constants cF ′′ , cG′′ ≥ 0 such that the second-order derivatives satisfy the growth conditions

|F ′′(s)| ≤ cF ′′(1 + |s|p−2), (3.1)

|G′′(s)| ≤ cG′′(1 + |s|q−2), (3.2)

for all s ∈ R.
These assumptions already entail that there exist constants cF , cG, cF ′ , cG′ ≥ 0 such that F ′,

G′, F and G satisfy the growth conditions

|F ′(s)| ≤ cF ′(1 + |s|p−1), (3.3)

|G′(s)| ≤ cG′(1 + |s|q−1), (3.4)

F (s) ≤ cF (1 + |s|p), (3.5)

G(s) ≤ cG(1 + |s|q), (3.6)

for all s ∈ R.
(A4) The mobility functions mΩ : R → R and mΓ : R → R are continuous, bounded and uniformly

positive. This means that there exist positive constants m∗
Ω, M∗

Ω, m∗
Γ, M∗

Γ such that for all s ∈ R,

0 < m∗
Ω ≤ mΩ(s) ≤ M∗

Ω and 0 < m∗
Γ ≤ mΓ(s) ≤ M∗

Γ. (3.7)

(A5) The viscosity of the mixture ν : R → R and the friction parameter γ : R → R are continuous,
bounded and uniformly positive. This means that there exist positive constants ν0, ν1, γ0, γ1 such
that for all s ∈ R,

0 < ν0 ≤ ν(s) ≤ ν1, and 0 < γ0 ≤ γ(s) ≤ γ1. (3.8)

Remark 3.1. We point out that the polynomial double-well potential

Wdw(s) = 1
4 (s2 − 1)2, s ∈ R,
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is a suitable choice for F and G as it satisfies (A3) with p = 4 and q = 4. However, singular potentials
like the logarithmic Flory–Huggins potential or the double-obstacle potential are not admissible in this
setting as they do not even satisfy (3.1)–(3.2).

Preliminaries. We next introduce several function spaces, inner products, norms and operators that
will be used throughout this paper.
(P1) For any real numbers k ≥ 0 and p ∈ [1,∞], we set

Lp := Lp(Ω) × Lp(Γ), and Hk := Hk(Ω) × Hk(Γ),

and we identify L2 with H0. Note that Hk is a Hilbert space with respect to the inner product
(
(φ, ψ), (ζ, ξ)

)
Hk :=

(
φ, ζ
)
Hk(Ω)

+
(
ψ, ξ

)
Hk(Γ)

for all (φ, ψ), (ζ, ξ) ∈ Hk,

and its induced norm ‖ · ‖Hk := (·, ·)1/2

Hk .
(P2) For β > 0, we introduce the subspace

Dβ :=
{
(φ, ψ) ∈ H1

∣
∣ φ|Γ = βψ a.e. on Γ

} ⊂ H1,

endowed with the inner product (·, ·)Dβ
:= (·, ·)H1 and its induced norm. The space Dβ is a Hilbert

space. Moreover, we define the product
〈
(φ, ψ), (ζ, ξ)

〉
Dβ

:= (φ, ζ)L2(Ω) + (ψ, ξ)L2(Γ)

for all (φ, ψ), (ζ, ξ) ∈ L2. By means of the Riesz representation theorem, this product can be extended
to a duality pairing on D′

β × Dβ , which will also be denoted as 〈·, ·〉Dβ
.

In particular, the spaces
(Dβ ,L2,D′

β

)
form a Gelfand triplet, and the operator norm on D′

β is
given by

‖(φ, ψ)‖D′
β

:= sup
{ ∣
∣〈(φ, ψ), (ζ, ξ)〉Dβ

∣
∣
∣
∣
∣ (ζ, ξ) ∈ Dβ with ‖(ζ, ξ)‖Dβ

= 1
}

,

for all (φ, ψ) ∈ D′
β .

(P3) We further recall the following bulk–surface Poincaré inequalities:
(P3.1) For any α > 0, there exists a constant CP depending only on α and Ω such that

‖(φ, ψ)‖L2 ≤ CP ‖(∇φ,∇Γψ)‖L2 (3.9)

for all (φ, ψ) ∈ Dα with α |Ω| 〈φ〉Ω + |Γ| 〈ψ〉Γ = 0.
This bulk–surface Poincaré inequality is a special case of the one established in [40, Lemma A.1]
(with the parameters therein being chosen as K = 0 and α, β > 0).

(P3.2) There exists a constant C ′
P depending only on Ω such that

‖u‖L2(Ω) ≤ C ′
P

(‖∇u‖L2(Ω) + ‖u‖L2(Γ)

)
(3.10)

for all u ∈ H1(Ω).
This bulk–surface Poincaré inequality is established in [53, Chapter II, Sect. 1.4].

3.2. Existence and Uniqueness of Weak Solutions

In this section, we consider the case of matched densities, that is ρ ≡ ρ̃1 = ρ̃2. This means we consider the
system (1.22) supplemented with the boundary condition (1.22g) with L = 0 and β > 0. For the analysis,
without loss of generality, we set ρ = κ = ε = δ = 1. We further employ the usual decomposition

−div
(∇φ ⊗ ∇φ

)
= −∇

(
1
2

|∇φ|2 + F (φ)
)

+ μ∇φ. (3.11)

Hence, replacing the pressure p by

p := p +
(

1
2

|∇φ|2 + F (φ)
)

,
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the system (1.22) can be restated as follows

∂tv + (v · ∇)v − div
(
2ν(φ)Dv

)
+ ∇p = μ∇φ in Q, (3.12a)

divv = 0, in Q, (3.12b)

∂tφ + div(φv) = div
(
mΩ(φ)∇μ

)
in Q, (3.12c)

μ = −Δφ + F ′(φ) in Q, (3.12d)

∂tψ + divΓ(ψvτ ) = divΓ

(
mΓ(ψ)∇Γθ

)− βmΩ(ψ) ∂nμ on Σ, (3.12e)

θ = −ΔΓψ + G′(ψ) + ∂nφ on Σ, (3.12f)

v · n = 0, φ|Γ = ψ, μ|Γ = βθ on Σ, (3.12g)
[
2ν(ψ)(Dv n) + γ(ψ)v

]
τ

=
[− ψ∇Γθ

]
τ

on Σ, (3.12h)

v|t=0 = v0, φ|t=0 = φ0 in Ω, (3.12i)

ψ|t=0 = ψ0 on Γ. (3.12j)

Here, we recall that in the case of matched densities, the term J vanishes. Therefore, in the Navier–
Stokes equation (3.12a) and in the corresponding boundary condition (3.12h), the terms related to J do
not appear any more. The total energy associated with this system is

E(v, φ, ψ) =
∫

Ω

1
2

|v|2 dx +
∫

Ω

1
2

|∇φ|2 + F (φ) dx +
∫

Γ

1
2

|∇Γψ|2 + G(ψ) dS. (3.13)

The notion of weak solutions to system (3.12) is defined as follows:

Definition 3.2. (Weak solutions of system (3.12)) Suppose that the assumptions (A1)–(A5) hold. Let
v0 ∈ L2

div(Ω) and (φ0, ψ0) ∈ D1 be arbitrary. The quintuplet (v, φ, ψ, μ, θ) is called a weak solution of
the system (3.12) on [0, T ] if the following properties hold:

(i) The functions v, φ, ψ, μ and θ have the following regularity:

v ∈ L∞(0, T ;L2
div(Ω)

) ∩ L2
(
0, T ;H1

div(Ω)
)
, (3.14a)

{
v ∈ W 1,2

(
0, T ;H1

div(Ω)′) ∩ C
(
[0, T ];L2

div(Ω)
)

if d = 2,

v ∈ W 1, 4
3
(
0, T ;H1

div(Ω)′) ∩ Cw

(
[0, T ];L2

div(Ω)
)

if d = 3,
(3.14b)

(φ, ψ) ∈ C([0, T ];L2) ∩ H1(0, T ;D′
β) ∩ L∞(0, T ;D1), (3.14c)

(μ, θ) ∈ L4(0, T ;L2) ∩ L2(0, T ;Dβ). (3.14d)

(ii) The functions v, φ and ψ satisfy the initial conditions

v|t=0 = v0, φ|t=0 = φ0 a.e. in Ω, and ψ|t=0 = ψ0 a.e. on Γ. (3.15)

(iii) The functions v, φ, ψ, μ and θ satisfy the weak formulation

〈∂tv,w〉H1
div(Ω) −

∫

Ω

(v ⊗ v) : ∇w dx +
∫

Ω

2ν(φ)Dv : Dw dx

=
∫

Ω

μ∇φ · w dx −
∫

Γ

γ(ψ)v · w + ψ∇Γθ · w dS,

(3.16a)

〈
(∂tφ, ∂tψ), (ζ, ξ)

〉
Dβ

−
∫

Ω

φv · ∇ζ dx −
∫

Γ

ψv · ∇Γξ dS

= −
∫

Ω

mΩ(φ)∇μ · ∇ζ dx −
∫

Γ

mΓ(ψ)∇Γθ · ∇Γξ dS,

(3.16b)

∫

Ω

μ η dx +
∫

Γ

θ ϑ dS

=
∫

Ω

∇φ · ∇η + F ′(φ)η dx +
∫

Γ

∇Γψ · ∇Γϑ + G′(ψ)ϑ dS

(3.16c)
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for all test functions w ∈ H1
div(Ω), (ζ, ξ) ∈ Dβ , (η, ϑ) ∈ D1.

(iv) The functions φ and ψ satisfy the mass conservation law

β

∫

Ω

φ(t) dx +
∫

Γ

ψ(t) dS = β

∫

Ω

φ0 dx +
∫

Γ

ψ0 dS =: m for all t ∈ [0, T ]. (3.17)

(v) The functions v, φ, ψ, μ and θ satisfy the weak energy dissipation law

E
(
v(t), φ(t), ψ(t)

)
+
∫ t

0

∫

Ω

2ν(φ) |Dv|2 dx dt +
∫ t

0

∫

Γ

γ(ψ) |v|2 dS dt

+
∫ t

0

∫

Γ

mΓ(ψ) |∇Γθ|2 dS dt +
∫ t

0

∫

Ω

mΩ(φ) |∇μ|2 dx dt ≤ E(v0, φ0, ψ0) (3.18)

for all t ∈ [0, T ].

The existence of such a weak solution is ensured by the following theorem.

Theorem 3.3. Suppose that the assumptions (A1)–(A5) hold and let v0 ∈ L2
div(Ω) and (φ0, ψ0) ∈ D1

be arbitrary. Then, there exists a weak solution of system (3.12) in the sense of Definition 3.2. If we
additionally suppose that the domain Ω is of class Ck with k ∈ {2, 3}, and in the case d = 3, we further
assume that assumption (A3) holds with p < 6, then (φ, ψ) ∈ L2(0, T ;Hk) as well as

μ = −Δφ + F ′(φ) a.e. in Q, (3.19a)

θ = −ΔΓψ + G′(ψ) + ∂nφ a.e. on Σ. (3.19b)

In two dimensions, we show the uniqueness of the weak solutions under additional assumptions on the
domain Ω, the viscosity ν, the mobilities mΩ and mΓ and the potentials F and G.

Theorem 3.4. Suppose that the assumptions (A1)–(A5) hold with d = 2. We additionally assume that Ω
is of class C3, γ is differentiable and γ′ is locally bounded, the functions ν, mΩ and mΓ are constant, and
the potentials F and G satisfy the relation

F (s) = βG(s) for all s ∈ R. (3.20)

Then, the weak solution of system (1.22) given by Theorem 3.3 is unique. In addition, given two weak solu-
tions (v1, φ1, ψ1, μ1, θ1) and (v2, φ2, ψ2, μ2, θ2) corresponding to the initial data (v1

0, (φ
1
0, ψ

1
0)), (v2

0, (φ
2
0, ψ

2
0)) ∈

L2
div(Ω) × D1, the following continuous dependence estimate

‖v1(t) − v2(t)‖2
L2(Ω) + ‖φ1(t) − φ2(t)‖2

H1(Ω) + ‖ψ1(t) − ψ2(t)‖2
H1(Γ)

≤ CeC
∫ T
0 F(t) dt

(
‖v1

0 − v2
0‖2

L2(Ω) + ‖φ1
0 − φ2

0‖2
H1(Ω) + ‖ψ1

0 − ψ2
0‖2

H1(Γ)

)
,

(3.21)

holds for all t ∈ [0, T ], where

F := 1 + ‖v1‖4
L4(Ω) + ‖v2‖2

H1(Ω) + ‖μ2‖2
H1(Ω) + ‖θ2‖2

H1(Γ) + ‖φ1‖2
W 1,4(Ω),

and the constant C > 0 depends only on Ω, the parameters of the system and the norms of the initial
data.

3.3. Proofs

Proof of Theorem 3.3. We construct a weak solution to system (3.12) by discretizing the weak formulation
(3.16) through a Faedo–Galerkin scheme.

In order to obtain suitable uniform estimates for the Galerkin approximation, it is necessary that the
phase-fields (φ, ψ) and the chemical potentials (μ, θ) are approximated in the same finite-dimensional
subspace. In turn this is only possible if the phase-fields and the chemical potentials are coupled by the
same Dirichlet type boundary condition (cf. (3.12g)), which is not the case for general β > 0. However, by
a change of variables, we can reformulate system (3.12) in such a way that the Dirichlet type boundary
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conditions for the redefined variables are exactly the same. To this end, we set α :=
√

β > 0, and we
introduce the functions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ψ := α−1ψ, i.e., ψ = αΨ,

Ψ0 := α−1ψ0, i.e., ψ0 = αΨ0,

Θ := αθ, i.e., θ = α−1Θ,

nΓ(Ψ) := α−2mΓ(αΨ) = α−2mΓ(ψ).

(3.22)

By this change of variables, system (3.12) is equivalent to

∂tv + (v · ∇)v − div
(
2ν(φ)Dv

)
+ ∇p = μ∇φ in Q, (3.23a)

divv = 0 in Q, (3.23b)

∂tφ + div(φv) = div
(
mΩ(φ)∇μ

)
in Q, (3.23c)

μ = −Δφ + F ′(φ) in Q, (3.23d)

∂tΨ + divΓ(Ψvτ ) = divΓ

(
nΓ(Ψ)∇ΓΘ

)− α mΩ(αΨ) ∂nμ on Σ, (3.23e)

Θ = −α2 ΔΓΨ + αG′(αΨ) + α∂nφ on Σ, (3.23f)

v · n = 0, φ|Γ = αΨ, μ|Γ = αΘ on Σ, (3.23g)
[
2ν(αΨ)(Dv n) + γ(αΨ)v

]
τ

=
[− Ψ∇ΓΘ

]
τ

on Σ, (3.23h)

v|t=0 = v0, φ|t=0 = φ0 in Ω, (3.23i)

Ψ|t=0 = Ψ0 on Γ. (3.23j)

In view of Definition 3.2, a weak solution (v, φ,Ψ, μ,Θ) of system (3.22) needs to have the regularity

v ∈ L∞(0, T ;L2
div(Ω)

) ∩ L2
(
0, T ;H1

div(Ω)
)
, (3.24a)

{
v ∈ W 1,2

(
0, T ;H1

div(Ω)′) ∩ C
(
[0, T ];L2

div(Ω)
)

if d = 2,

v ∈ W 1, 4
3
(
0, T ;H1

div(Ω)′) ∩ Cw

(
[0, T ];L2

div(Ω)
)

if d = 3,
(3.24b)

(φ,Ψ) ∈ C([0, T ];L2) ∩ H1(0, T ;Dα) ∩ L∞(0, T ;Dα), (3.24c)

(μ,Θ) ∈ L4(0, T ;L2) ∩ L2(0, T ;Dα), (3.24d)

and satisfy the weak formulation which reads as

〈∂tv,w〉H1
div(Ω) −

∫

Ω

(v ⊗ v) : ∇w dx +
∫

Ω

2ν(φ)Dv : Dw dx

=
∫

Ω

μ∇φ · w dx −
∫

Γ

γ(αΨ)v · w + Ψ∇ΓΘ · w dS,

(3.25a)

〈
(∂tφ, ∂tΨ), (ζ, ξ)

〉
Dα

−
∫

Ω

φv · ∇ζ dx −
∫

Γ

Ψv · ∇Γξ dS

= −
∫

Ω

mΩ(φ)∇μ · ∇ζ dx −
∫

Γ

ηΓ(Ψ)∇ΓΘ · ∇Γξ dS,

(3.25b)

∫

Ω

μ η dx +
∫

Γ

Θϑ dS

=
∫

Ω

∇φ · ∇η + F ′(φ)η dx +
∫

Γ

α2∇ΓΨ · ∇Γϑ + αG′(αΨ)ϑ dS

(3.25c)

for all test functions w ∈ H1
div(Ω) and (ζ, ξ), (η, ϑ) ∈ Dα.

We now prove the existence of a weak solution of system (3.23) (in the aforementioned sense) and
afterwards, we use the change of variables (3.22) to infer the existence of a weak solution to the original
model (3.12). The weak formulation (3.25) can indeed be discretized by a suitable Faedo–Galerkin scheme.
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Step 1: Discretization via a bulk–surface Faedo–Galerkin scheme. It has already been established in
[40, Theorem 4.4] that the second-order elliptic eigenvalue problem

⎧
⎪⎨

⎪⎩

−Δζ = λζ in Ω,

−ΔΓξ + α∂nζ = λξ on Γ,

ζ|Γ = αξ on Γ
(3.26)

has countably many eigenvalues {λi}i∈N with λi ≥ 0 for all i ∈ N, and the corresponding eigenfunctions
{(ζk, ξk)}k∈N ⊂ Dα can be chosen such that they form an orthonormal basis of L2. Here, we fix the
eigenfunction associated with the first eigenvalue λ1 = 0 as

(ζ1, ξ1) =
1

√
α2|Ω| + |Γ| (α, 1). (3.27)

Moreover, in view of their construction (see [40]), the eigenfunctions (ζk, ξk) with k ≥ 2 satisfy the mean
value constraint

α|Ω|〈ζk〉Ω + |γ|〈ξk〉Γ = 0. (3.28)

For any k ∈ N, we introduce the finite dimensional subspace

Zk := span {(ζ1, ξ1), . . . , (ζk, ξk)} ⊂ Dα, (3.29)

and we write

PZk
(ζ, ξ) =

(
P

Ω
Zk

(ζ, ξ),PΓ
Zk

(ζ, ξ)
)

for any (ζ, ξ) ∈ Dα,

to denote the L2-orthogonal projection onto Zk.
Next, we consider the Stokes operator with Navier boundary conditions (see, e.g., [2, Appendix A])

A : D(A) ⊂ L2
div(Ω) → L2

div(Ω) : v �→ Av := −Pdiv(2Dv), (3.30)

where P is the Leray projection operator, with domain

D(A) =
{
v ∈ H2(Ω) ∩ L2

div(Ω) :
[
2(Dv n) + v

]
τ

= 0 on Γ
}

. (3.31)

Since A is a positive and self-adjoint operator on L2
div(Ω) with compact inverse, and

(
L2

div(Ω),D(A)
)

1
2 ,2

= H1
div(Ω),

there exists a sequence of countably many positive eigenvalues
{
λ̃i

}
i∈N

and the corresponding eigenfunc-
tions {wi}i∈N ⊂ H1

div(Ω), which are determined by
∫

Ω

2Dwi : ∇v dx +
∫

Γ

wi · v dS = λ̃i

∫

Ω

wi · v dx for all v ∈ H1
div(Ω), (3.32)

can be chosen in such a way that they form an orthonormal basis of L2
div(Ω). For any k ∈ N, we define

the finite dimensional subspace

Uk = span {w1, . . . ,wk} ⊂ H1
div(Ω),

and the L2
div(Ω)-orthogonal projection onto Uk is denoted by PUk

.
Next, for any k ∈ N and t ∈ [0, T ], we make the ansatz

vk(t) :=
k∑

i=1

ak
i (t)wi, a.e. in Ω, (3.33a)

(
φk(t),Ψk(t)

)
:=

k∑

i=1

bk
i (t) (ζi, ξi), a.e. in Ω × Γ, (3.33b)

(
μk(t),Θk(t)

)
:=

k∑

i=1

ck
i (t) (ζi, ξi), a.e. in Ω × Γ. (3.33c)
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Here, the scalar, time-dependent coefficients ak
i , bk

i and ck
i , i = 1, . . . , k are assumed to be continuously

differentiable functions that are still to be determined. They need to be designed in such a way that the
discretized weak formulation

〈∂tvk,w〉H1
div(Ω) −

∫

Ω

(vk ⊗ vk)∇w dx +
∫

Ω

2ν(φk)Dvk : Dw dx

=
∫

Ω

μk∇φk · w dx −
∫

Γ

γ(αΨk)vk · w + Ψk∇ΓΘk · w dS,

(3.34a)

〈
(∂tφk, ∂tΨk), (ζ, ξ)

〉
Dα

−
∫

Ω

φkvk · ∇ζ dx −
∫

Γ

Ψkvk · ∇Γξ dS

= −
∫

Ω

mΩ(φk)∇μk : ∇ζ dx −
∫

Γ

nΓ(Ψk)∇ΓΘk : ∇Γξ dS,

(3.34b)

∫

Ω

μk · ζ dx +
∫

Γ

Θk · ξ dS

=
∫

Ω

∇φk · ∇ζ + F ′(φk)ζ dx +
∫

Γ

α2∇ΓΨk · ∇Γξ + αG′(αΨk)ξ dS

(3.34c)

holds for all w ∈ Uk and all (ζ, ξ) ∈ Zk, supplemented with the initial conditions

vk|t=0 = PUk
(v0) ∈ Uk in Ω, (3.35)

(φk,Ψk)|t=0 = PZk
(φ0,Ψ0) ∈ Zk in Ω × Γ, (3.36)

where Ψ0 := α−1ψ0.
Let now ak := (ak

1 , . . . , ak
k), bk := (bk

1 , . . . , bk
k) and ck := (ck

1 , . . . , ck
k) denote the coefficient vectors.

Testing (3.34a) with w1, . . . ,wk and (3.34b) with (ζ1, ξ1), . . . , (ζk, ξk), we conclude that (ak,bk)� is
determined by a system of 2k ordinary differential equations whose right-hand side depends continuously
on ak, bk and ck. Due to (3.35) and (3.36), this ODE system is subject to the initial condition

[ak]i(0) = ak
i (0) =

(
v0,wi

)
L2(Ω)

, i ∈ {1, . . . , k},

[bk]i(0) = bk
i (0) =

(
(φ0,Ψ0), (ζi, ξi)

)
L2 , i ∈ {1, . . . , k}.

Moreover, testing (3.34c) with (ζ1, ξ1), . . . , (ζk, ξk), we infer that ck is explicitly given by a system of k
algebraic equations whose right-hand side depends continuously on bk. We now replace the variable ck

appearing in the right-hand side of the aforementioned ODE system to obtain a closed 2k-dimensional
ODE system describing (ak,bk)� whose right-hand side depends continuously on (ak,bk)�. We can
thus apply the Cauchy–Peano theorem to infer the existence of at least one local solution (ak,bk)� :
[0, T ∗

k )∩[0, T ] → R
2k with T ∗

k > 0 to the corresponding initial value problem. Without loss of generality, we
assume that T ∗

k ≤ T and that (ak,bk)� is right-maximal, meaning that T ∗
k is chosen as large as possible.

Now, we can reconstruct ck : [0, T ∗
k ) → R

k by the aforementioned system of k algebraic equations. In
view of (3.33), we thus obtain functions

vk ∈ C1
(
[0, T ∗

k );H1
div(Ω)

)
, (φk,Ψk) ∈ C1

(
[0, T ∗

k );Dα

)
, (μk,Θk) ∈ C1

(
[0, T ∗

k );Dα

)
,

which fulfill the discretized weak formulation (3.34) on the time interval [0, T ∗
k ).

Step 2: Uniform estimates. We establish suitable estimates for each approximate solution
(vk, φk, ψk, μk, θk) which are uniform with respect to the index k. In particular, let Tk < T ∗

k be ar-
bitrary. In the following, let C denote generic positive constants depending only on the initial data and
the constants introduced in (A2)–(A5) including the final time T , but is independent of k and Tk.

Testing (3.34a) with vk, (3.34b) with (μk, θk), and (3.34c) with −(∂tφk, ∂tΨk), adding the resulting
equations, and integrating with respect to time from 0 to t, we derive the discretized energy identity

E
(
vk(t), φk(t), αΨk(t)) +

∫ t

0

∫

Ω

2ν(φk) |Dvk|2 dx dt +
∫ t

0

∫

Γ

γ(αΨk) |vk|2 dS dt
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+
∫ t

0

∫

Ω

mΩ(φk) |∇μk|2 dx dt +
∫ t

0

∫

Γ

nΓ(ψk) |∇ΓΘk|2 dS dt

= E
(
vk(0), φk(0), αΨk(0)) (3.37)

for all t ∈ [0, Tk]. Here, E stands for the total energy introduced in (3.13). Due to the growth conditions
on F and G (see (A3)), the Sobolev embeddings H1(Ω) ↪→ L6(Ω) and H1(Γ) ↪→ Lp(Γ) for any 1 ≤ p < ∞,
and the properties of the projections PUk

and PZk
, we use the initial conditions (3.35) and (3.36) to infer

that

E
(
vk(0), φk(0), αΨk(0))

≤ 1
2
‖PUk

(v0)‖2
L2(Ω) +

1
2
‖∇P

Ω
Zk

(φ0,Ψ0)‖2
L2(Ω) +

α2

2
‖∇P

Γ
Zk

(φ0,Ψ0)‖2
L2(Γ)

+ cF

(
|Ω| + ‖PΩ

Zk
(φ0,Ψ0)‖p

Lp(Ω)

)
+ cG

(
|Γ| + ‖PΓ

Zk
(φ0,Ψ0)‖q

Lq(Γ)

)

≤ 1
2
‖v0‖2

L2(Ω) + C‖(φ0,Ψ0)‖2
H1

+ C
(
1 + ‖PΩ

Zk
(φ0,Ψ0)‖p

H1(Ω)

)
+ C

(
1 + ‖PΓ

Zk
(φ0,Ψ0)‖q

H1(Γ)

)

≤ 1
2
‖v0‖2

L2(Ω) + C‖(φ0,Ψ0)‖2
H1

+ C
(
1 + ‖(φ0,Ψ)‖p

H1

)
+ C

(
1 + ‖(φ0,Ψ0)‖q

H1

)
,

which, in turn, entails that

E
(
vk(0), φk(0), αΨk(0)) ≤ C. (3.38)

Recalling that F,G ≥ 0 and that the functions ν, γ, mΩ and mΓ (and thus also nΓ) are uniformly positive
(see (A4)–(A5)), we conclude the uniform bounds

‖vk‖L∞(0,Tk;L2(Ω)) + ‖∇vk‖L2(0,Tk;L2(Ω)) + ‖vk‖L2(0,Tk;L2(Γ)) ≤ C, (3.39)

‖∇φk‖L∞(0,Tk;L2(Ω)) + ‖∇ΓΨk‖L∞(0,Tk;L2(Γ)) ≤ C, (3.40)

‖∇μk‖L2(0,Tk;L2(Ω)) + ‖∇ΓΘk‖L2(0,Tk;L2(Γ)) ≤ C. (3.41)

Testing (3.34a) with the first eigenfunction (ζ1, ξ1) (see (3.27)), we obtain

d
dt

(
α

∫

Ω

φk(t) dx +
∫

Γ

Ψk(t) dS

)
= 0,

which implies

α

∫

Ω

φk(t) dx +
∫

Γ

Ψk(t) dS = α

∫

Ω

φ0 dx +
∫

Γ

Ψ0 dS, (3.42)

for all t ∈ [0, Tk]. Here, we have used that

α |Ω| 〈PΩ
Zk

(φ0,Ψ0)〉Ω + |Γ| 〈PΓ
Zk

(φ0,Ψ0)〉Γ =
(
PZk

(φ0,Ψ0), (α, 1)
)
L2

=
(
(φ0,Ψ0), (α, 1)

)
L2 = α |Ω| 〈φ0〉Ω + |Γ| 〈Ψ0〉Γ,

which follows by means of (3.27) and (3.28). Defining the constant

cm :=
α |Ω| 〈φ0〉Ω + |Γ| 〈Ψ0〉Γ

α2 |Ω| + |Γ| ,

we have (αcm, cm) ∈ Dα and invoking (3.42), a straightforward computation yields
(
φk(t) − αcm,Ψk(t) − cm

) ∈ Dα and α |Ω| 〈φk(t) − αcm〉Ω + |Γ| 〈Ψk(t) − cm〉Γ = 0

for all t ∈ [0, Tk]. Hence, applying the bulk–surface variant of the Poincaré inequality (3.9) (with β = α2),
we deduce that

‖(φk,Ψk)‖L2 ≤ ‖(φk − αcm,Ψk − cm)‖L2 + ‖(αcm, cm)‖L2
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≤ CP ‖(∇φk,∇ΓΨk)‖L2 + C

for all t ∈ [0, Tk]. In view of (3.40), we thus conclude

‖φk‖L∞(0,Tk;H1(Ω)) + ‖Ψk‖L∞(0,Tk;H1(Γ)) ≤ C. (3.43)

Next, we derive a uniform estimate for (μk,Θk) in the full H1-norm. For this aim, we test (3.34c) by
(ζ, ξ) := PZk

(ζ∗, ξ∗), where (ζ∗, ξ∗) ∈ Dα is an arbitrary test function. By the growth conditions (3.3)–
(3.4) from (A3) and the Sobolev embeddings H1(Ω) ↪→ L6(Ω) and H1(Γ) ↪→ Lp(Γ) for any 1 ≤ p < ∞,
we have

∣
∣
∣
〈
(μk,Θk), (ζ∗, ξ∗)

〉
Dα

∣
∣
∣ =

∣
∣
∣
〈
(μk,Θk), (ζ, ξ)

〉
Dα

∣
∣
∣

≤ ‖∇φk‖L2(Ω)‖∇ζ‖L2(Ω) + ‖F ′(φk)‖
L

6
5 (Ω)

‖ζ‖L6(Ω)

+ α2‖∇ΓΨk‖L2(Γ)‖∇Γξ‖L2(Γ) + α‖G′(αΨk)‖L2(Γ)‖ξ‖L2(Γ)

≤ C
(
1 + ‖∇φk‖L2(Ω) + ‖φk‖5

L6(Ω)

)
‖(ζ∗, ξ∗)‖H1

+ C
(
1 + ‖∇ΓΨk‖L2(Γ) + ‖Ψk‖q

L2q(Γ)

)
‖(ζ∗, ξ∗)‖H1

≤ C
(
1 + ‖φk‖5

H1(Ω) + ‖Ψk‖q
H1(Γ)

)
‖(ζ∗, ξ∗)‖H1 ,

(3.44)

for all t ∈ [0, Tk]. Taking the supremum over all (ζ∗, ξ∗) ∈ Dα with ‖(ζ∗, ξ∗)‖Dα
≤ 1, and exploiting

(3.43), we find that

‖(μk,Θk)‖L∞(0,Tk;D′
α) ≤ C. (3.45)

By a duality argument, we infer the existence of a positive constant CDα
such that

‖(ζ̄, ξ̄)‖2
L2 =

〈
(ζ̄ , ξ̄), (ζ̄ , ξ̄)

〉
Dα

≤ CDα
‖(ζ̄ , ξ̄)‖D′

α
‖(∇ζ̄ ,∇Γξ̄)‖L2 + CDα

‖(ζ̄ , ξ̄)‖2
D′

α
(3.46)

for all (ζ̄, ξ̄) ∈ Dα. Hence, applying (3.46) with (ζ̄ , ξ̄) = (μk,Θk) and using (3.41) and (3.45), we arrive
at

‖(μk,Θk)‖L4(0,Tk;L2) ≤ C. (3.47)

In addition, we infer from (3.41) and (3.47) that

‖(μk,Θk)‖L2(0,Tk;H1) ≤ C. (3.48)

Lastly, we derive uniform estimates on the time derivatives. Therefore, let w∗ ∈ H1
div(Ω) and (ζ∗, ξ∗) ∈

Dα be arbitrary test functions. We now test (3.34a) with w := PUk
(w∗).

In three dimensions, recalling that the functions ν and γ are bounded, we use Hölder’s inequality,
the continuous embeddings H1(Ω) ↪→ L6(Ω) and H1(Ω) ↪→ L4(Γ) as well as the Gagliardo-Nirenberg
interpolation inequality to obtain the estimate

∣
∣
∣
〈
∂tvk,w∗〉

H1
div(Ω)

∣
∣
∣ =

∣
∣
∣
〈
∂tvk,w

〉
H1

div(Ω)

∣
∣
∣

≤ ‖vk‖2
L4(Ω)‖∇w‖L2(Ω) + C‖∇vk‖L2(Ω)‖∇w‖L2(Ω)

+ ‖μk‖L6(Ω)‖∇φk‖L2(Ω)‖w‖L3(Ω) + C‖vk‖L2(Γ)‖w‖L2(Γ)

+ ‖Ψk‖L4(Γ)‖∇Θk‖L2(Γ)‖w‖L4(Γ)

≤ C‖vk‖ 1
2
L2(Ω)‖vk‖ 3

2
H1(Ω)‖w∗‖H1(Ω) + C‖∇vk‖L2(Ω)‖w∗‖H1(Ω)

+ C‖μk‖H1(Ω)‖∇φk‖L2(Ω)‖w∗‖H1(Ω) + C‖vk‖H1(Ω)‖w∗‖H1(Ω)

+ ‖Ψk‖H1(Γ)‖Θk‖H1(Γ)‖w∗‖H1(Ω)
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for all t ∈ [0, Tk]. Taking the supremum over all w∗ ∈ H1
div(Ω) with ‖w∗‖H1

div(Ω) ≤ 1, taking the power
4
3 and integrating over [0, Tk], we now deduce that

‖∂tvk‖ 4
3

L
4
3 (0,Tk;H1

div(Ω)′)
≤ C‖vk‖ 2

3
L∞(0,Tk;L2(Ω))‖vk‖2

L2(0,Tk;H1(Ω))

+ C T
1
3

k ‖vk‖ 4
3
L2(0,Tk;H1(Ω))

+ C T
1
3

k ‖φk‖ 4
3
L∞(0,Tk;H1(Ω))‖μk‖ 4

3
L2(0,Tk;H1(Ω))

+ C T
1
3

k ‖Ψk‖ 4
3
L∞(0,Tk;H1(Γ))‖Θk‖ 4

3
L2(0,Tk;H1(Γ)).

By exploiting (3.39), (3.43) and (3.48), and recalling that Tk ≤ T , we simply reach

‖∂tvk‖
L

4
3 (0,Tk;H1

div(Ω)′)
≤ C, if d = 3. (3.49)

In two dimensions, arguing as above and using the Ladyzhenskaya inequality for the convective term, we
first obtain

∣
∣
∣
〈
∂tvk,w∗〉

H1
div(Ω)

∣
∣
∣ =

∣
∣
∣
〈
∂tvk,w

〉
H1

div(Ω)

∣
∣
∣

≤ C‖vk‖L2(Ω)‖vk‖H1(Ω)‖w∗‖H1(Ω) + C‖∇vk‖L2(Ω)‖w∗‖H1(Ω)

+ C‖μk‖H1(Ω)‖∇φk‖L2(Ω)‖w∗‖H1(Ω) + C‖vk‖H1(Ω)‖w∗‖H1(Ω)

+ ‖Ψk‖H1(Γ)‖Θk‖H1(Γ)‖w∗‖H1(Ω).

Thus, after taking the supremum over all w∗ ∈ H1
div(Ω) with ‖w∗‖H1

div(Ω) ≤ 1, taking the square and
integrating over [0, Tk], we find

‖∂tvk‖2
L2(0,Tk;H1

div(Ω)′) ≤ C‖vk‖2
L∞(0,Tk;L2(Ω))‖vk‖2

L2(0,Tk;H1(Ω)) + C‖vk‖2
L2(0,Tk;H1(Ω))

+ C‖φk‖2
L∞(0,Tk;H1(Ω))‖μk‖2

L2(0,Tk;H1(Ω))

+ C‖Ψk‖2
L∞(0,Tk;H1(Γ))‖Θk‖2

L2(0,Tk;H1(Γ)),

which immediately entails that

‖∂tvk‖L2(0,Tk;H1
div(Ω)′) ≤ C, if d = 2. (3.50)

Concerning the bulk and surface phase-fields, we test (3.34b) with (ζ, ξ) := PZk
(ζ∗, ξ∗). Recalling that

the functions mΩ and mΓ (and thus also nΓ) are bounded, we use Hölder’s inequality along with the
continuous embeddings H1(Ω) ↪→ L4(Ω), H1(Γ) ↪→ L4(Γ) and H1(Ω) ↪→ L4(Γ) to infer that

∣
∣
∣
〈
(∂tφk, ∂tΨk), (ζ∗, ξ∗)

〉
Dα

∣
∣
∣ =

∣
∣
∣
〈
(∂tφk, ∂tΨk), (ζ, ξ)

〉
Dα

∣
∣
∣

≤ ‖φk‖H1(Ω)‖vk‖H1(Ω)‖(ζ∗, ξ∗)‖H1 + C‖μk‖H1(Ω)‖(ζ∗, ξ∗)‖H1

+ ‖Ψk‖H1(Γ)‖vk‖H1(Ω)‖(ζ∗, ξ∗)‖H1 + C‖Θk‖H1(Γ)‖(ζ∗, ξ∗)‖H1 .

Hence, after taking the supremum over all (ζ∗, ξ∗) ∈ Dα with ‖(ζ∗, ξ∗)‖Dα
≤ 1, we take the square of the

resulting inequality and integrate over [0, Tk]. This yields

‖(∂tφk, ∂tΨk)‖2
L2(0,Tk;D′

α) ≤ ‖φk‖2
L∞(0,T ;H1(Ω))‖vk‖2

L2(0,T ;H1(Ω)) + C‖μk‖2
L2(0,T ;H1(Ω))

+ ‖Ψk‖2
L∞(0,T ;H1(Γ))‖vk‖2

L2(0,T ;H1(Ω)) + C‖Θk‖2
L2(0,T ;H1(Γ)).

In view of the uniform estimates (3.39), (3.43) and (3.48), we thus conclude

‖(∂tφk, ∂tΨk)‖L2(0,Tk;D′
α) ≤ C. (3.51)

Step 3: Extension of the approximate solution onto [0, T ]. We recall from Step 1 that the coefficient
vector (ak,bk)� is determined as a solution of a nonlinear ODE system. Using the definition of the
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approximate solutions given in (3.33) as well as the uniform a priori estimates (3.39) and (3.43), we
obtain that for any Tk ∈ [0, T ∗

k ), all t ∈ [0, Tk], and all i ∈ {1, . . . , k},

|ak
i (t)| + |bk

j (t)| =
∣
∣ (vk(t),wi)L2(Ω)

∣
∣+
∣
∣ ((φk(t),Ψk(t)

)
, (ζi, ξi)

)
L2

∣
∣

≤ ‖vk‖L∞(0,Tk;L2(Ω)) + ‖(φk,Ψk)‖L∞(0,Tk;L2) ≤ C.

This means that the solution (ak,bk)� is bounded on the time interval [0, T ∗
k ) by a constant that does

neither depend on Tk nor on k. Consequently, by the classical ODE theory, the solution can thus be
extended beyond the time T ∗

k . However, as (ak,bk)� was assumed to be a right-maximal solution, meaning
that Tk was assumed to be chosen as large as possible, this is a contradiction. We thus conclude that
the solution (ak,bk)� actually exists on the whole time interval [0, T ]. As the coefficients ck can be
reconstructed from (ak,bk)� via the vector-valued algebraic equation mentioned in Step 1, we further
infer that the vector-valued coefficient function (ck)� also exists on [0, T ]. This directly entails that
the approximate solution (vk, φk,Ψk, μk,Θk) actually exists on [0, T ] and satisfies the discretized weak
formulation (3.34) everywhere in [0, T ]. Moreover, as the choice of Tk did not play any role in the derivation
of the uniform estimates, we further conclude that the estimates (3.39), (3.42), (3.43), (3.47), (3.48),
(3.49), (3.50) and (3.51) remain true when Tk is replaced by T . In summary, we thus know that the
approximate weak solution (vk, φk,Ψk, μk,Θk) satisfies the uniform estimates

‖∂tvk‖
L

4
3 (0,T ;H1

div(Ω)′)
+ ‖vk‖L∞(0,T ;L2(Ω)) + ‖vk‖L2(0,T ;H1(Ω)) + ‖vk‖L2(0,T ;L2(Γ))

+ ‖(∂tφk, ∂tΨk)‖L2(0,T ;D′
α) + ‖(φk,Ψk)‖L∞(0,T ;Dα)

+ ‖(μk,Θk)‖L4(0,T ;L2) + ‖(μk,Θk)‖L2(0,T ;H1) ≤ C, if d = 3,

(3.52a)

‖∂tvk‖L2(0,T ;H1
div(Ω)′) + ‖vk‖L∞(0,T ;L2(Ω)) + ‖vk‖L2(0,T ;H1(Ω)) + ‖vk‖L2(0,T ;L2(Γ))

+ ‖(∂tφk, ∂tΨk)‖L2(0,T ;D′
α) + ‖(φk,Ψk)‖L∞(0,T ;Dα)

+ ‖(μk,Θk)‖L4(0,T ;L2) + ‖(μk,Θk)‖L2(0,T ;H1) ≤ C, if d = 2.

(3.52b)

Step 4: Convergence to a weak solution. In view of the uniform estimates (3.52a) and (3.52b), the
Banach–Alaoglu theorem and the Aubin–Lions–Simon lemma (see, e.g., [13, Theorem II.5.16]) imply the
existence of functions v, φ, Ψ, μ and θ such that

∂tvk → ∂tv weakly in L
4
3 (0, T ;H1

div(Ω)′) if d = 3, (3.53)

weakly in L2(0, T ;H1
div(Ω)′) if d = 2, (3.54)

vk → v weakly-star in L∞(0, T ;L2
div(Ω)),

weakly in L2(0, T ;H1(Ω)) ∩ L2(0, T ;L2(Γ)),

strongly in L2(0, T ;L2
div(Ω)) ∩ C([0, T ];H1

div(Ω)′), (3.55)

(∂tφk, ∂tΨk) → (∂tφ, ∂tΨ) weakly in L2(0, T ;D′
α), (3.56)

(φk,Ψk) → (φ,Ψ) weakly-star in L∞(0, T ;Dα),

strongly in C([0, T ];Hs) for all s ∈ [0, 1), (3.57)

(μk,Θk) → (μ,Θ) weakly in L4(0, T ;L2) ∩ L2(0, T ;Dα), (3.58)

as k → ∞, along a non-relabeled subsequence. In view of (3.22), we set ψ := αΨ and θ := α−1Θ. Using
Sobolev’s embedding theorem, we infer from (3.57) that

φk → φ strongly in C([0, T ];Lr(Ω)) for all r ∈ [2, 6), and a.e. in Q, (3.59)

Ψk → Ψ strongly in C([0, T ];Lr(Γ)) for all r ∈ [2,∞), and a.e. on Σ, (3.60)

as k → ∞, after another subsequence extraction. Recalling the growth assumptions on G and G′ imposed
in (A3), we use the above convergences along with Lebesgue’s general convergence theorem (see [8,
Sect. 3.25]) to deduce that

G(αΨk) → G(αΨ) strongly in L1(Σ), and a.e. on Σ, (3.61)
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G′(αΨk) → G′(αΨ) strongly in L2(Σ), and a.e. on Σ, (3.62)

as k → ∞. Moreover, using the growth assumptions on F ′ from (A3), the uniform estimate (3.43) and
the continuous embedding H1(Ω) ↪→ L6(Ω), we infer that F ′(φk) is bounded in L6/5(Q) uniformly in
k ∈ N. Hence, there exists a function f ∈ L6/5(Q) such that F ′(φk) → f weakly in L6/5(Q) as k → ∞.
In view of (3.59), we also have F ′(φk) → F ′(φ) a.e. in Q as k → ∞. By a convergence principle based on
Egorov’s theorem (see [17, Proposition 9.2c]), we infer f = F ′(φ). We have thus shown that

F ′(φk) → F ′(φ) weakly in L6/5(Q), and a.e. in Q, (3.63)

as k → ∞. Furthermore, it follows from (3.59) and (3.60) that

ν(φk) → ν(φ) and mΩ(φk) → mΩ(φ) a.e. in Q, (3.64)

γ(αΨk) → γ(αΨ) and nΓ(Ψk) → nΓ(Ψ) a.e. in Σ, (3.65)

as k → ∞. Moreover, we also have from (A4) and (A5) that

ν(φk) → ν(φ) and mΩ(φk) → mΩ(φ) in Lr(Q), (3.66)

γ(αΨk) → γ(αΨ) and nΓ(Ψk) → nΓ(Ψ) in Lr(Σ), (3.67)

for all r ∈ [2,∞), as k → ∞. Lastly, by (A4) and (A5), the weak–strong convergence principle and the
Lebesgue convergence theorem, we infer that

ν(φk) Dvk → ν(φ) Dv weakly in L2(Q), (3.68)

mΩ(φk) ∇φk → mΩ(φ) ∇φ weakly in L2(Q), (3.69)

γ(αΨk) vk → γ(αΨ) v weakly in L2(Σ), (3.70)

nΓ(Ψk) ∇ΓΨk → nΓ(Ψ) ∇ΓΨ weakly in L2(Σ), (3.71)

as k → ∞.
We now multiply all equations of the discretized weak formulation (3.34) by an arbitrary test func-

tion σ ∈ C∞
0 ([0, T ]) and integrate the resulting equations with respect to time from 0 to T . Using the

convergences (3.53)–(3.71), we can then pass to the limit k → ∞ to conclude that
∫ T

0

〈∂tv,wi〉H1
div(Ω) σ dt −

∫

Q

(v ⊗ v)∇wi σ dx dt +
∫

Q

2ν(φ)Dv : Dwi σ dx dt

=
∫

Q

μ∇φ · wi σ dx dt −
∫

Σ

γ(αΨ)v · wi σ + Ψ∇ΓΘ · wi σ dS dt,

(3.72a)

∫ T

0

〈
(∂tφ, ∂tΨ), (ζi, ξi)

〉
Dα

σ dt −
∫

Q

φv · ∇ζi σ dx dt −
∫

Σ

Ψv · ∇Γξi σ dS dt

= −
∫

Q

mΩ(φ)∇μ · ∇ζi σ dx dt −
∫

Σ

nΓ(Ψ)∇ΓΘ · ∇Γξi σ dS dt,

(3.72b)

∫

Q

μ ζi σ dx dt +
∫

Σ

Θ ξi σ dS dt

=
∫

Q

∇φ · ∇ζi σ + F ′(φ)ζi σ dx dt +
∫

Σ

α2∇ΓΨ · ∇Γξi σ + αG′(αΨ)ξi σ dS dt

(3.72c)

hold for all i ∈ N and all test functions σ ∈ C∞
0 ([0, T ]). Since span{wi | i ∈ N} is dense in H1

div(Ω)
and span{(ζi, ξi) | i ∈ N} is dense in Dα, this proves that the quintuplet (v, φ,Ψ, μ,Θ) satisfies the weak
formulation (3.16) for all test functions w ∈ H1

div(Ω) and (ζ, ξ), (η, ϑ) ∈ Dα. Reversing the change of
variables (3.22), we conclude that Definition 3.2(iii) is fulfilled.
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Integrating the weak formulation (3.16b) with respect to time from 0 to an arbitrary t ∈ [0, T ] and
choosing (ζ, ξ) ≡ (α, 1), we obtain (cf. (3.42))

α

∫

Ω

φ(t) dx +
∫

Γ

Ψ(t) dS = α

∫

Ω

φ0 dx +
∫

Γ

Ψ0 dS.

By the change of variables (3.22), this proves the mass conservation law (3.17) meaning that the condition
in Definition 3.2(iv) is fulfilled.

Furthermore, it follows from Strauss’ lemma (see [52, Corollary 2.1]) that

v ∈ Cw([0, T ];L2
div(Ω)), and (φ,Ψ) ∈ Cw([0, T ];Dα). (3.73)

In the two dimensional case, in view of the enhanced time integrability of ∂tv, we even obtain v ∈
C([0, T ];L2

div(Ω)). In summary, we conclude that the regularity condition (3.24) is satisfied and thus, by
the change of variables (3.22), Definition 3.2(i) is fulfilled.

In view of (3.35) and (3.36), we have

vk(0) → v0 strongly in L2
div(Ω), (3.74)

(
φk(0),Ψk(0)

)→ (φ0,Ψ0) strongly in L2, (3.75)

as k → ∞, due to the convergence properties of the projections PZk
and PUk

. On the other hand, we
infer from (3.55) and (3.57) that

vk(0) → v(0) strongly in H1
div(Ω)′, (3.76)

(
φk(0),Ψk(0)

)→ (
φ(0),Ψ(0)

)
strongly in L2, (3.77)

as k → ∞. In particular, we know from (3.73) that v(0) ∈ L2
div(Ω) and (φ(0),Ψ(0)) ∈ Dα. We thus

deduce v(0) = v0 a.e. in Ω, φ(0) = φ0 a.e. in Ω and Ψ(0) = Ψ0 a.e. on Γ. By the change of variables
(3.22), we conclude that Definition 3.2(ii) is fulfilled.

To verify the weak energy dissipation law, let σ ∈ C∞
0 (0, T ) be an arbitrary non-negative test function.

Multiplying (3.37) by σ and integrating on [0, T ], we obtain
∫ T

0

E
(
vk(t), φk(t), αΨk(t))σ(t) dt

+
∫ T

0

∫ t

0

∫

Ω

(
2ν(φk) |Dvk|2 + mΩ(φk)|∇μk|2

)
σ(t) dx dτ dt

+
∫ T

0

∫ t

0

∫

Γ

(
γ(αΨk) |vk|2 + nΓ(Ψk) |∇ΓΘk|2

)
σ(t) dS dτ dt

=
∫ T

0

E
(
vk(0), φk(0), αΨk(0))σ(t) dt.

(3.78)

By the strong convergence in (3.55), it easily follows that
∫ T

0

(
1
2
‖vk‖2

L2(Ω)

)
σ(t) dt →

∫ T

0

(
1
2
‖v‖2

L2(Ω)

)
σ(t) dt, (3.79)

as k → ∞. Similarly, by (3.61), we have
∫ T

0

(∫

Γ

G(αΨk) dS

)
σ(t) dt →

∫ T

0

(∫

Γ

G(αΨ) dS

)
σ(t) dt, (3.80)

as k → ∞. By means of (3.57), we also infer
∫ T

0

(
1
2
‖∇φ‖2

L2(Ω) +
1
2
‖α∇ΓΨ‖2

L2(Γ)

)
σ(t) dt

≤ lim inf
k→∞

∫ T

0

(
1
2
‖∇φk‖2

L2(Ω) +
1
2
‖α∇ΓΨk‖2

L2(Γ)

)
σ(t) dt.

(3.81)
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In addition, in light of (A3) and (3.59), Fatou’s lemma implies

∫ T

0

(∫

Ω

F (φ) dx

)
σ(t) dt ≤ lim inf

k→∞

∫ T

0

(∫

Ω

F (φk) dx

)
σ(t) dt. (3.82)

Combining (3.79)–(3.82), we obtain

∫ T

0

E
(
v(t), φ(t), αΨ(t)

)
σ(t) dt ≤ lim inf

k→∞

∫ T

0

E
(
vk(t), φk(t), αΨk(t)

)
σ(t) dt. (3.83)

Thanks to (3.68)–(3.71) and the weak lower-semicontinuity of norms with respect to weak convergence,
another application of Fatou’s lemma entails that

∫ T

0

∫ t

0

∫

Ω

(
2ν(φ) |Dv|2 + mΩ(φ)|∇μ|2

)
σ(t) dx dτ dt

+
∫ T

0

∫ t

0

∫

Γ

(
γ(αΨ) |v|2 + nΓ(Ψ) |∇ΓΘ|2

)
σ(t) dS dτ dt

≤ lim inf
k→∞

(∫ T

0

∫ t

0

∫

Ω

(
2ν(φk) |Dvk|2 + mΩ(φk)|∇μk|2

)
σ(t) dx dτ dt

+
∫ T

0

∫ t

0

∫

Γ

(
γ(αΨk) |vk|2 + nΓ(Ψk) |∇ΓΘk|2

)
σ(t) dS dτ dt

)

.

(3.84)

Recalling the growth conditions on F and G (see (A3)), we use the initial conditions (3.35) and (3.36)
as well as the convergence properties of the projections PUk

and PZk
along with Lebesgue’s general

convergence theorem to infer

E
(
v0, φ0, αΨ0

)
= lim

k→∞
E
(
vk(0), φk(0), αΨk(0)

)
. (3.85)

Therefore, we conclude from (3.38), (3.78), (3.83), (3.84) and (3.85) that

∫ T

0

E
(
v(t), φ(t), αΨ(t)

)
σ(t) dt

+
∫ T

0

∫ t

0

∫

Ω

(
2ν(φ) |Dv|2 + mΩ(φ)|∇μ|2

)
σ(t) dx dτ dt

+
∫ T

0

∫ t

0

∫

Γ

(
γ(αΨ) |v|2 + mΓ(Ψ) |∇ΓΘ|2

)
σ(t) dS dτ dt

≤
∫ T

0

E
(
v0, φ0, αΨ0

)
σ(t) dt,

(3.86)

which, in turn, implies that

E
(
v(t), φ(t), αΨ(t)

)
+
∫ t

0

∫

Ω

(
2ν(φ) |Dv|2 + mΩ(φ)|∇μ|2

)
dx dτ

+
∫ t

0

∫

Γ

(
γ(αΨ) |v|2 + nΓ(Ψ) |∇ΓΘ|2

)
dS dτ ≤ E

(
v0, φ0, αΨ0

)
(3.87)

for almost all t ∈ [0, T ].
It remains to show that the energy inequality (3.87) actually holds true for all t ∈ [0, T ]. First, we notice

that the both integral terms in (3.87) depend continuously on time. Recalling the growth assumptions
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on G′, we further derive the estimate
∣
∣
∣
∣

∫

Γ

(
G(αΨ(t)) − G(αΨ(s)

)
∣
∣
∣
∣ =

∫

Γ

∫ 1

0

G′(ταΨ(t) + (1 − τ)αΨ(s)) dτ α (Ψ(t) − Ψ(s)) dS

≤ C

∫

Γ

(
1 + |Ψ(t)|q−1 + |Ψ(s)|q−1

) |Ψ(t) − Ψ(s)| dS

≤ C
(
1 + ‖Ψ(t)‖q−1

H1(Γ) + ‖Ψ(s)‖q−1
H1(Γ)

)
‖Ψ(t) − Ψ(s)‖L2(Γ),

for all s, t ∈ [0, T ]. This implies that the function t �→ ∫
Γ

G(αΨ(t)) dS is continuous on [0, T ]. Furthermore,
recalling φ ∈ C([0, T ];L2(Ω)) as well as (3.73), we deduce that the functions

t �→ ‖v(t)‖2
L2(Ω), t �→ ‖∇φ(t)‖2

L2(Ω), t �→ ‖α∇ΓΨ(t)‖2
L2(Γ), t �→

∫

Ω

F
(
φ(t)

)
dx

are lower semicontinuous on [0, T ]. Here, for the first three functions, we used the weak lower semiconti-
nuity of the respective norms. For the fourth function, we applied Fatou’s lemma.

Combining all these properties, it follows that the weak solution (v, φ,Ψ, μ,Θ) satisfies the weak
energy dissipation law (3.87) for all times t ∈ [0, T ]. Hence, reversing the change of variables (3.22), we
conclude that Definition 3.2(v) is fulfilled.

We have thus shown that the quintuplet (v, φ, ψ, μ, θ) is a weak solution of system (3.12) in the sense
of Definition 3.2.

Step 5: Higher regularity. We now assume that Ω is of class C2 and, if d = 3, we further assume
p < 6. Thanks to the regularity theory for second order eigenvalue problems in [40, Proposition 4.1], we
deduce from the ansatz (3.33b) that (φk,Ψk) ∈ L2(0, T ;Dα ∩ H2) for all k ∈ N. In view of (3.34c), the
pair

(
φk(t),Ψk(t)

)
is a weak solution of the elliptic problem

−Δφk(t) = fk(t) in Ω, (3.88a)

−α2ΔΓΨk(t) + α∂nφk(t) = gk(t) on Γ, (3.88b)

φk(t)|Γ = αΨk(t) on Γ, (3.88c)

in the sense of [40, Definition 3.1], where
(
fk(t), gk(t)

)
:=
(
μk(t),Θk(t)

)− PZk

(
F ′(φk(t)), αG′(αΨk(t))

)

for almost all t ∈ [0, T ]. We now aim to prove uniform estimates that are independent of k by exploiting
(3.52a) and (3.52b). For this reason, the symbol C will stand for a generic constant independent of k.

We first observe that
∥
∥PZk

(
F ′(φk(t)), αG′(αΨk(t))

)∥∥2

L2 ≤ ∥∥(F ′(φk(t)), αG′(αΨk(t))
)∥∥2

L2 .

Recalling (A3) and using Sobolev’s embedding theorem, we derive the estimate
∥
∥αG′(αΨk(t)

)∥∥
L2(Γ)

≤ C + C‖Ψk(t)‖q−1
H1(Γ) ≤ C, (3.89)

for almost all t ∈ [0, T ]. Let now ε > 0 be arbitrary. Without loss of generality, we assume p ∈ (4, 6).
Using the Gagliardo–Nirenberg inequality and Young’s inequality, we observe that

∥
∥F ′(φk(t)

)∥∥
L2(Ω)

≤ C + C‖φk(t)‖p−1
L2(p−1)(Ω)

≤ C + C‖φk(t)‖
p+2
2

L6(Ω)‖φk(t)‖
p−4
2

H2(Ω)

≤ C + ε‖φk(t)‖H2(Ω).

(3.90)

In particular, this yields
(
fk(t), gk(t)

) ∈ L2 for almost all t ∈ [0, T ]. Introducing the functions

ψk := αΨk and θk := α−1Θk for any k ∈ N,
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we infer that for almost all t ∈ [0, T ], the pair
(
φk(t), ψk(t)

) ∈ L2(0, T ;D1 ∩ H2) is a weak solution of the
elliptic system

−Δφk(t) = fk(t) in Ω, (3.91a)

−ΔΓψk(t) + ∂nφk(t) = α−1gk(t) on Γ, (3.91b)

φk(t)|Γ = ψk(t) on Γ, (3.91c)

with
(
fk(t), α−1gk(t)

) ∈ L2. Hence, by regularity theory for elliptic problems with bulk–surface coupling
(see [40, Theorem 3.3]), we deduce that

(
φk(t), ψk(t)

) ∈ H2 with
∥
∥(φk(t), ψk(t)

)∥∥2

H2 ≤ C‖(fk(t), α−1gk(t)
)‖2

L2

≤ C
(
‖μk(t)‖2

L2(Ω) +
∥
∥F ′(φk(t)

)∥∥2

L2(Ω)
+ ‖θk(t)‖2

L2(Γ) +
∥
∥G′(ψk(t)

)∥∥2

L2(Γ)

)

≤ C + C‖μk(t)‖2
L2(Ω) + C‖θk(t)‖2

L2(Γ) + Cε2
∥
∥(φk(t), ψk(t)

)∥∥2

H2

for almost all t ∈ [0, T ]. Choosing ε sufficiently small, we can absorb the ε-dependent term on the right-
hand side by the left-hand side. Integrating the resulting estimate with respect to t from 0 to T , we derive
that

∫ T

0

‖(φk(t), ψk(t))‖2
H2 dt ≤ C. (3.92)

Recalling the convergence properties established in Step 4, we now pass to the limit k → ∞. By means
of the Banach–Alaoglu theorem, we infer from (3.92) that

(
φ, ψ

) ∈ L2(0, T ;H2). We further obtain
(
fk, α−1gk

)→ (
μ − F ′(φ), θ − G′(ψ)

)
weakly in L6/5(Q) × L2(Σ)

as k → ∞. Hence, by passing to the limit in (3.91), we eventually conclude that (3.19) is fulfilled in the
strong sense.

We now suppose that Ω is even of class C3 and, if d = 3, we further assume p < 6. In the following, we
merely proceed formally by directly considering the solution (φ, ψ) of (3.19). Nevertheless, the reasoning
below can be rigorously justified by a suitable approximation argument.

Let ε > 0 be arbitrary and without loss of generality, we merely consider the case p ∈ [5, 6). Applying
the Gagliardo–Nirenberg inequality and the Agmon inequality, we find

∥
∥F ′′(φ(t)

)∇φ(t)
∥
∥

L2(Ω)
≤ C‖∇φ(t)‖L2(Ω) + C‖|φ(t)|p−2∇φ(t)‖L2(Ω)

≤ C + C‖φ(t)‖p−2
L2(p−2)(Ω)

‖∇φ(t)‖L∞(Ω)

≤ C + C‖φ(t)‖
p+1
2

L6(Ω)‖φ(t)‖
p−5
2 + 1

2
H2(Ω) ‖φ(t)‖ 1

2
H3(Ω)

≤ C + C‖φ(t)‖
p−4
2

H2(Ω)‖φ(t)‖ 1
2
H3(Ω)

≤ C + C‖φ(t)‖
p−4
4

H1(Ω)‖φ(t)‖
p−4
4 + 1

2
H3(Ω)

≤ C + C‖φ(t)‖
p−2
4

H3(Ω)

≤ C + ε‖φ(t)‖H3(Ω).

(3.93)

for almost all t ∈ [0, T ]. Using Hölder’s inequality and the estimates (3.90) and (3.93), we have
∥
∥F ′(φ(t)

)∥∥2

H1(Ω)
=
∥
∥F ′(φ(t)

)∥∥2

L2(Ω)
+
∥
∥F ′′(φ(t)

)∇φ(t)
∥
∥2

L2(Ω)

≤ C + Cε‖φ(t)‖2
H3(Ω)

(3.94)

for almost all t ∈ [0, T ]. Proceeding similarly, we derive the estimate
∥
∥G′′(φ(t)

)∇φ(t)
∥
∥

L2(Ω)
≤ C + ε‖ψ(t)‖H3(Γ), (3.95)
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which leads to
∥
∥G′(φ(t)

)∥∥2

H1(Ω)
≤ C + Cε‖ψ(t)‖2

H3(Γ) (3.96)

for almost all t ∈ [0, T ]. We thus obtain that
(
f(t), g(t)

) ∈ H1 and by regularity theory for elliptic
problems with bulk–surface coupling (see [40, Theorem 3.3]), we infer that

(
φ(t), ψ(t)

) ∈ H3 with
∥
∥(φ(t), ψ(t)

)∥∥2

H3 ≤ C
∥
∥(f(t), g(t)

)∥∥2

H1

≤ C
(
‖μ(t)‖2

H1(Ω) +
∥
∥F ′(φ(t)

)∥∥2

H1(Ω)
+ ‖θ(t)‖2

H1(Γ) +
∥
∥G′(ψ(t)

)∥∥2

H1(Γ)

)

≤ C + C‖μ(t)‖2
H1(Ω) + C‖θ(t)‖2

H1(Γ) + Cε2
∥
∥(φ(t), ψ(t)

)∥∥2

H3

for almost all t ∈ [0, T ]. Choosing ε sufficiently small, we can absorb the ε-dependent term on the right-
hand side by the left-hand side. Then, integrating the resulting estimate with respect to t from 0 to T ,
we eventually conclude that (φ, ψ) ∈ L2(0, T ;H3).

This means that all assertions are established and thus, the proof is complete. �

Proof of Theorem 3.4. We recall that the existence of a weak solution already follows from Theorem 3.3.
As the functions ν, mΩ and mΓ are assumed to be constant, we assume, without loss of generality, that
ν ≡ 1, mΩ ≡ 1 and mΓ ≡ 1. In the following, we write C to denote generic positive constants depending
only on Ω, the parameters of the system (3.12) and the norms of the initial data.

To establish the continuous dependence estimate (3.21), we now suppose that (v1, φ1, ψ1, μ1, θ1) and
(v2, φ2, ψ2, μ2, θ2) are two weak solutions corresponding to the initial data (v1

0, (φ
1
0, ψ

1
0)), (v2

0, (φ
2
0, ψ

2
0)) ∈

L2
div(Ω) × D1, respectively. Once again, we employ the change of variables (3.22) introduced in the proof

of Theorem 3.3. Therefore, for α =
√

β and i = 1, 2, we define
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ψi := α−1ψi, i.e., ψi = αΨi,

Ψi
0 := α−1ψi

0, i.e., ψi
0 = αΨi

0,

Θi := αθi i.e., θi = α−1Θi,

nΓ(Ψi) := α−2mΓ(ψ) ≡ α−2.

(3.97)

We further recall that the corresponding weak solutions (vi, φi,Ψi, μi,Θi) exhibit the regularity (3.24)
for i = 1, 2. Since d = 2 and Ω is of class C3, we further have (φi,Ψi) ∈ L2(0, T ;H3) for i = 1, 2. Now,
we set

(v, φ,Ψ, μ,Θ) = (v1 − v2, φ1 − φ2,Ψ1 − Ψ2, μ1 − μ2,Θ1 − Θ2).

In view of their construction in the proof of Theorem 3.3, the functions (vi, φi,Ψi, μi,Θi) satisfy the weak
formulation (3.25) for i = 1, 2. We thus obtain

〈∂tv,w〉H1
div(Ω) −

∫

Ω

(v1 ⊗ v) : ∇w dx −
∫

Ω

(v ⊗ v2) : ∇w dx +
∫

Ω

∇v : ∇w dx

=
∫

Ω

μ∇φ1 · w dx +
∫

Ω

μ2∇φ · w dx −
∫

Γ

γ(αΨ1)v · w dS

−
∫

Γ

(γ(αΨ1) − γ(αΨ2))v2 · w dS −
∫

Γ

Ψ1∇ΓΘ · w dS −
∫

Γ

Ψ∇ΓΘ2 · w dS,

(3.98a)

〈
(∂tφ, ∂tΨ), (ζ, ξ)

〉
Dα

−
∫

Ω

φ1v · ∇ζ dx −
∫

Ω

φv2 · ∇ζ dx −
∫

Γ

Ψ1v · ∇Γξ dS

−
∫

Γ

Ψv2 · ∇Γξ dS = −
∫

Ω

∇μ · ∇ζ dx −
∫

Γ

1
α2

∇ΓΘ · ∇Γξ dS

(3.98b)

for all test functions w ∈ H1
div(Ω), (ζ, ξ) ∈ Dα, where

μ = −Δφ + F ′(φ1) − F ′(φ2) a.e. in Q, (3.99a)

Θ = −α2ΔΓΨ + αG′(αΨ1) − αG′(αΨ2) + α∂nφ a.e. on Σ. (3.99b)
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Taking w = v in (3.98a), the classical chain rule formula that yields

1
2

d
dt

‖v‖2
L2(Ω) + ‖∇v‖2

L2(Ω) + γ0‖v‖2
L2(Γ)

≤
∫

Ω

(v1 ⊗ v) : ∇v dx +
∫

Ω

μ∇φ1 · v dx +
∫

Ω

μ2∇φ · v dx

−
∫

Γ

(γ(αΨ1) − γ(αΨ2))v2 · v dS −
∫

Γ

Ψ1∇ΓΘ · v dS −
∫

Γ

Ψ∇ΓΘ2 · v dS.

(3.100)

Here, we have used the assumption (A5) for the friction term γ and the relation
∫

Ω

(v ⊗ v2) : ∇v dx = −1
2

∫

Ω

(divv2)|v|2 dx = 0.

Choosing (ζ, ξ) = (φ,Ψ) ∈ Dα in (3.98b), we find

d
dt

[
1
2
‖φ‖2

L2(Ω) +
1
2
‖Ψ‖2

L2(Γ)

]
+
∫

Ω

∇μ · ∇φ dx +
1
α2

∫

Γ

∇ΓΘ · ∇ΓΨ dS

=
∫

Ω

φ1v · ∇φ dx +
∫

Ω

φv2 · ∇φ dx +
∫

Γ

Ψ1v · ∇ΓΨ dS +
∫

Γ

Ψv2 · ∇ΓΨ dS.

(3.101)

We observe that
∫

Ω

∇μ · ∇φ dx = −
∫

Ω

μΔφ dx +
∫

Γ

μ∂nφ dS

= ‖Δφ‖2
L2(Ω) −

∫

Ω

(F ′(φ1) − F ′(φ2)) Δφ dx +
∫

Γ

αΘ∂nφ dS

= ‖Δφ‖2
L2(Ω) −

∫

Ω

(F ′(φ1) − F ′(φ2)) Δφ dx + ‖Θ‖2
L2(Γ)

+
∫

Γ

α2ΘΔΓΨ dS −
∫

Γ

Θ (αG′(αΨ1) − αG′(αΨ2)) dS

= ‖Δφ‖2
L2(Ω) −

∫

Ω

(F ′(φ1) − F ′(φ2)) Δφ dx + ‖Θ‖2
L2(Γ)

− α2

∫

Γ

∇ΓΘ · ∇ΓΨ dS −
∫

Γ

Θ (αG′(αΨ1) − αG′(αΨ2)) dS.

Since divv2 = 0 in Ω, we further deduce that
∫

Ω

φv2 · ∇φ dx =
∫

Ω

v2 · ∇
(

1
2
φ2

)
dx = 0

via integration by parts. Hence, the differential equation (3.101) can be reformulated as

d
dt

[
1
2
‖φ‖2

L2(Ω) +
1
2
‖Ψ‖2

L2(Γ)

]
+ ‖Δφ‖2

L2(Ω) + ‖Θ‖2
L2(Γ)

=
∫

Ω

φ1v · ∇φ dx +
∫

Γ

Ψ1v · ∇ΓΨ dS +
∫

Γ

Ψv2 · ∇ΓΨ dS

+
(

α2 − 1
α2

)∫

Γ

∇ΓΘ · ∇ΓΨ dS +
∫

Ω

(F ′(φ1) − F ′(φ2)) Δφ dx

+
∫

Γ

Θ (αG′(αΨ1) − αG′(αΨ2)) dS.

(3.102)
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Next, choosing (ζ, ξ) = (μ,Θ) ∈ Dα in (3.98b), we find

〈
(∂tφ, ∂tΨ), (μ,Θ)

〉
Dα

+ ‖∇μ‖2
L2(Ω) +

1
α2

‖∇ΓΘ‖2
L2(Γ)

=
∫

Ω

φ1v · ∇μ dx +
∫

Ω

φv2 · ∇μ dx +
∫

Γ

Ψ1v · ∇ΓΘ dS +
∫

Γ

Ψv2 · ∇ΓΘ dS.
(3.103)

Recalling that (φi, ψi) ∈ L2(0, T ;H3), we infer that F ′(φi) ∈ H1(Ω) and G′(αΨi) ∈ H1(Γ) a.e. in [0, T ]
for i ∈ {1, 2}. We further conclude from (3.20) that

F ′(φ1) − F ′(φ2) = F ′(αΨ1) − F ′(αΨ2) = α2
(
G′(αΨ1) − G′(αΨ2)

)
a.e. on Σ,

which directly entails
(
F ′(φ1)−F ′(φ2), αG′(αΨ1)−αG′(αΨ2)

) ∈ Dα, for almost every t ∈ [0, T ]. In view
of (3.99), we thus have

(−Δφ,−α2ΔΓΨ + α∂nφ) ∈ L2(0, T ;Dα).

Hence, exploiting Proposition A.2 with κ = α2 and σ = α, the first term in (3.103) can be expressed as
〈
(∂tφ, ∂tΨ), (μ,Θ)

〉
Dα

=
〈
(∂tφ, ∂tΨ), (−Δφ,−α2ΔΓΨ + α∂nφ)

〉
Dα

+
〈
(∂tφ, ∂tΨ),

(
F ′(φ1) − F ′(φ2), αG′(αΨ1) − αG′(αΨ2)

)〉
Dα

=
d
dt

[
1
2
‖∇φ‖2

L2(Ω) +
α2

2
‖∇ΓΨ‖2

L2(Γ)

]

+
〈
(∂tφ, ∂tΨ),

(
F ′(φ1) − F ′(φ2), αG′(αΨ1) − αG′(αΨ2)

)〉
Dα

.

(3.104)

Using this identity, (3.103) can be rewritten as

d
dt

[
1
2
‖∇φ‖2

L2(Ω) +
α2

2
‖∇ΓΨ‖2

L2(Γ)

]
+ ‖∇μ‖2

L2(Ω) +
1
α2

‖∇ΓΘ‖2
L2(Γ)

=
∫

Ω

φ1v · ∇μ dx +
∫

Ω

φv2 · ∇μ dx +
∫

Γ

Ψ1v · ∇ΓΘ dS +
∫

Γ

Ψv2 · ∇ΓΘ dS

− 〈(∂tφ, ∂tΨ),
(
F ′(φ1) − F ′(φ2), αG′(αΨ1) − αG′(αΨ2)

)〉
Dα

.

(3.105)

Summing (3.102) and (3.105), we find

d
dt

[
1
2
‖φ‖2

H1(Ω) +
1
2
‖Ψ‖2

L2(Γ) +
α2

2
‖∇ΓΨ‖2

L2(Γ)

]

+ ‖∇μ‖2
L2(Ω) +

1
α2

‖∇ΓΘ‖2
L2(Γ) + ‖Δφ‖2

L2(Ω) + ‖Θ‖2
L2(Γ)

=
∫

Ω

φ1v · ∇φ dx +
∫

Γ

Ψ1v · ∇ΓΨ dS +
∫

Γ

Ψv2 · ∇ΓΨ dS

+
(

α2 − 1
α2

)∫

Γ

∇ΓΘ · ∇ΓΨ dS +
∫

Ω

(F ′(φ1) − F ′(φ2)) Δφ dx

+
∫

Γ

Θ (αG′(αΨ1) − αG′(αΨ2)) dS +
∫

Ω

φ1v · ∇μ dx

+
∫

Ω

φv2 · ∇μ dx +
∫

Γ

Ψ1v · ∇ΓΘ dS +
∫

Γ

Ψv2 · ∇ΓΘ dS

− 〈(∂tφ, ∂tΨ),
(
F ′(φ1) − F ′(φ2), αG′(αΨ1) − αG′(αΨ2)

)〉
Dα

.

(3.106)

Observing that
∫

Ω

μ∇φ1 · v dx +
∫

Ω

φ1v · ∇μ dx = 0,



JMFM Two-Phase Flows with Bulk Page 35 of 44 65

which follows via integration by parts since divv = 0 in Ω, and collecting (3.100) and (3.106) together,
we end up with

d
dt

[
1
2
‖v‖2

L2(Ω) +
1
2
‖φ‖2

H1(Ω) +
1
2
‖Ψ‖2

L2(Γ) +
α2

2
‖∇ΓΨ‖2

L2(Γ)

]

+ ‖∇v‖2
L2(Ω) + γ0‖v‖2

L2(Γ) + ‖∇μ‖2
L2(Ω) +

1
α2

‖∇ΓΘ‖2
L2(Γ) + ‖Δφ‖2

L2(Ω) + ‖Θ‖2
L2(Γ)

≤
∫

Ω

(v1 ⊗ v) : ∇v dx +
∫

Ω

μ2∇φ · v dx −
∫

Γ

(γ(αΨ1) − γ(αΨ2))v2 · v dS

−
∫

Γ

Ψ∇ΓΘ2 · v dS +
∫

Ω

φ1v · ∇φ dx +
∫

Γ

Ψ1v · ∇ΓΨ dS +
∫

Γ

Ψv2 · ∇ΓΨ dS

+
∫

Ω

φv2 · ∇μ dx +
∫

Γ

Ψv2 · ∇ΓΘ dS +
(

α2 − 1
α2

)∫

Γ

∇ΓΘ · ∇ΓΨ dS

+
∫

Ω

(F ′(φ1) − F ′(φ2)) Δφ dx +
∫

Γ

Θ (αG′(αΨ1) − G′(αΨ2)) dS

− 〈(∂tφ, ∂tΨ),
(
F ′(φ1) − F ′(φ2), αG′(αΨ1) − αG′(αΨ2)

)〉
Dα

.

(3.107)

In order to estimate the right-hand side in (3.107), we recall that

‖vi‖L∞(0,T ;L2(Ω)) ≤ C, ‖(φi,Ψi)‖L∞(0,T ;H1) ≤ C (3.108)

for i ∈ {1, 2}. By the Ladyzhenskaya inequality and the Poincaré inequality (3.10), we have
∣
∣
∣
∣

∫

Ω

(v1 ⊗ v) : ∇v dx

∣
∣
∣
∣ ≤ ‖v1‖L4(Ω)‖v‖L4(Ω)‖∇v‖L2(Ω)

≤ C‖v1‖L4(Ω)‖v‖ 1
2
L2(Ω)‖v‖ 1

2
H1(Ω)‖∇v‖L2(Ω)

≤ C‖v1‖L4(Ω)‖v‖ 1
2
L2(Ω)

(‖∇v‖L2(Ω) + γ0‖v‖L2(Γ)

) 3
2

≤ 1
8
‖∇v‖2

L2(Ω) +
γ0

12
‖v‖2

L2(Γ) + C‖v1‖4
L4(Ω)‖v‖2

L2(Ω).

(3.109)

Moreover, using Sobolev’s embedding theorem as well as Young’s inequality, we obtain
∣
∣
∣
∣

∫

Ω

μ2∇φ · v dx

∣
∣
∣
∣ ≤ ‖μ2‖L6(Ω)‖∇φ‖L3(Ω)‖v‖L2(Ω)

≤ �

10
‖φ‖2

H2(Ω) + C‖μ2‖2
H1(Ω)‖v‖2

L2(Ω),

(3.110)

where � is a small constant which will be chosen later on. Since d = 2, we have the continuous embeddings
H1(Γ) ↪→ L∞(Γ) and H1/2(Γ) ↪→ Lp(Γ) for every p ∈ [1,∞). Due to the trace theorem, it holds
H1(Ω) ↪→ H1/2(Γ) and consequently H1(Ω) ↪→ Lp(Γ) for every p ∈ [1,∞). Using (3.108) as well as the
assumption that γ′ is locally bounded, we thus get

∣
∣
∣
∣−
∫

Γ

(γ(αΨ1) − γ(αΨ2))v2 · v dS

∣
∣
∣
∣ ≤ C‖Ψ‖L6(Γ)‖v2‖L3(Γ)‖v‖L2(Γ)

≤ γ0

12
‖v‖2

L2(Γ) + C‖v2‖2
H1(Ω)‖Ψ‖2

H1(Γ). (3.111)

Exploiting the bulk–surface Poincaré inequality (3.10), the trace theorem and Sobolev’s embedding the-
orem, we obtain

∣
∣
∣
∣−
∫

Γ

Ψ∇ΓΘ2 · v dS

∣
∣
∣
∣ ≤ ‖Ψ‖L6(Γ)‖Θ2‖H1(Γ)‖v‖L3(Γ)

≤ C‖Ψ‖H1(Γ)‖Θ2‖H1(Γ)‖v‖H1(Ω)

≤ 1
8
‖∇v‖2

L2(Ω) +
γ0

12
‖v‖2

L2(Γ) + C‖Θ2‖2
H1(Γ)‖Ψ‖2

H1(Γ). (3.112)
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Proceeding similarly, we derive the estimates
∣
∣
∣
∣

∫

Ω

φ1v · ∇φ dx

∣
∣
∣
∣ ≤ ‖φ1‖L6(Ω)‖v‖L3(Ω)‖∇φ‖L2(Ω)

≤ 1
8
‖∇v‖2

L2(Ω) +
γ0

12
‖v‖2

L2(Γ) + C‖φ‖2
H1(Ω),

(3.113)

∣
∣
∣
∣

∫

Γ

Ψ1v · ∇ΓΨ dS

∣
∣
∣
∣ ≤ ‖Ψ1‖L6(Γ)‖v‖L3(Γ)‖∇ΓΨ‖L2(Γ)

≤ C‖v‖H1(Ω)‖Ψ‖H1(Γ)

≤ 1
8
‖∇v‖2

L2(Ω) +
γ0

12
‖v‖2

L2(Γ) + C‖Ψ‖2
H1(Γ),

(3.114)

∣
∣
∣
∣

∫

Γ

Ψv2 · ∇ΓΨ dS

∣
∣
∣
∣ ≤ ‖Ψ‖L6(Γ)‖v2‖L3(Γ)‖∇ΓΨ‖L2(Γ)

≤ C‖v2‖H1(Ω)‖Ψ‖2
H1(Γ),

(3.115)

∣
∣
∣
∣

∫

Ω

φv2 · ∇μ dx

∣
∣
∣
∣ ≤ ‖φ‖L6(Ω)‖v2‖L3(Ω)‖∇μ‖L2(Ω)

≤ 1
4
‖∇μ‖2

L2(Ω) + C‖v2‖2
H1(Ω)‖φ‖2

H1(Ω),

(3.116)

∣
∣
∣
∣

∫

Γ

Ψv2 · ∇ΓΘ dS

∣
∣
∣
∣ ≤ ‖Ψ‖L6(Γ)‖v2‖L3(Γ)‖∇ΓΘ‖L2(Γ)

≤ 1
8α2

‖∇ΓΘ‖2
L2(Γ) + C‖v2‖2

H1(Ω)‖Ψ‖2
H1(Γ)

(3.117)

and
∣
∣
∣
∣

(
α2 − 1

α2

)∫

Γ

∇ΓΘ · ∇ΓΨ dS

∣
∣
∣
∣ ≤

1
8α2

‖∇ΓΘ‖2
L2(Γ) + C‖Ψ‖2

H1(Γ). (3.118)

Recalling (A3) as well as (3.108), we deduce that
∣
∣
∣
∣

∫

Ω

(F ′(φ1) − F ′(φ2)) Δφ dx

∣
∣
∣
∣

≤ C

∫

Ω

(
1 + |φ1|p−2 + |φ2|p−2

) |φ||Δφ| dx

≤ C
(
1 + ‖φ1‖p−2

L3(p−2)(Ω)
+ ‖φ2‖p−2

L3(p−2)(Ω)

)
‖φ‖L6(Ω)‖Δφ‖L2(Ω)

≤ C‖φ‖H1(Ω)‖Δφ‖L2(Ω)

≤ 1
2
‖Δφ‖2

L2(Ω) + C‖φ‖2
H1(Ω).

(3.119)

Recalling that H1(Γ) ↪→ L∞(Γ) (since d = 2), we also infer that
∣
∣
∣
∣

∫

Γ

Θ (αG′(αΨ1) − αG′(αΨ2)) dS

∣
∣
∣
∣ ≤ C‖Θ‖L2(Γ)‖Ψ‖L2(Γ)

≤ 1
2
‖Θ‖2

L2(Γ) + C‖Ψ‖2
H1(Γ).

(3.120)

Regarding the final term, it follows by duality that
∣
∣
∣−〈(∂tφ, ∂tΨ),

(
F ′(φ1) − F ′(φ2), αG′(αΨ1) − αG′(αΨ2)

)〉
Dα

∣
∣
∣

≤ ‖(∂tφ, ∂tΨ)‖D′
α

∥
∥(F ′(φ1) − F ′(φ2), αG′(αΨ1) − αG′(αΨ2)

)∥∥
Dα

≤ C‖(∂tφ, ∂tΨ)‖D′
α

(∥
∥F ′(φ1) − F ′(φ2)

∥
∥

H1(Ω)
+
∥
∥G′(αΨ1) − G′(αΨ2)

∥
∥

H1(Γ)

)
.

(3.121)
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By comparison in (3.98b), we observe that

‖(∂tφ, ∂tΨ)‖D′
α

≤ C
(‖φ1‖L∞(Ω)‖v‖L2(Ω) + ‖φ‖L6(Ω)‖v2‖L3(Ω) + ‖Ψ1‖L∞(Γ)‖v‖L2(Γ)

+‖Ψ‖L6(Γ)‖v2‖L3(Γ) + ‖∇μ‖L2(Ω) + ‖∇ΓΘ‖L2(Γ)

)

≤ C
(‖φ1‖L∞(Ω)‖v‖L2(Ω) + ‖φ‖L6(Ω)‖v2‖L3(Ω) + ‖v‖L2(Γ)

+‖Ψ‖L6(Γ)‖v2‖L3(Γ) + ‖∇μ‖L2(Ω) + ‖∇ΓΘ‖L2(Γ)

)
.

(3.122)

Moreover, recalling (A3), we obtain
∥
∥F ′(φ1) − F ′(φ2)

∥
∥

H1(Ω)

≤ ∥∥F ′(φ1) − F ′(φ2)
∥
∥

L2(Ω)
+
∥
∥F ′′(φ1)∇φ1 − F ′′(φ2)∇φ2

∥
∥

L2(Ω)

≤ ∥∥F ′(φ1) − F ′(φ2)
∥
∥

L2(Ω)
+
∥
∥ (F ′′(φ1) − F ′′(φ2)) ∇φ1

∥
∥

L2(Ω)
+
∥
∥F ′′(φ2)∇φ

∥
∥

L2(Ω)

≤
(∫

Ω

∣
∣
∣
∣

∫ 1

0

F ′′(τφ1 + (1 − τ)φ2) dτ

∣
∣
∣
∣

2

φ2 dx

) 1
2

+

(∫

Ω

∣
∣
∣
∣

∫ 1

0

F ′′′(τφ1 + (1 − τ)φ2) dτ

∣
∣
∣
∣

2

φ2|∇φ1|2 dx

) 1
2

+
∥
∥F ′′(φ2)

∥
∥

L6(Ω)
‖∇φ‖L3(Ω)

≤
(
1 + ‖φ1‖p−2

L3(p−2)(Ω)
+ ‖φ2‖p−2

L3(p−2)(Ω)

)
‖φ‖L6(Ω)

+ C
(
1 + ‖φ1‖p−3

L12(p−3)(Ω)
+ ‖φ2‖p−3

L12(p−3)(Ω)

)
‖φ‖L6(Ω)‖∇φ1‖L4(Ω) + C‖∇φ‖L3(Ω)

≤ C
(
1 + ‖φ1‖W 1,4(Ω)

) ‖φ‖H1(Ω) + C‖φ‖W 1,3(Ω).

(3.123)

Similarly, we find
∥
∥G′(αΨ1) − G′(αΨ2)

∥
∥

H1(Γ)

≤ ∥∥G′(αΨ1) − G′(αΨ2)
∥
∥

L2(Γ)
+ α

∥
∥G′′(αΨ1)∇ΓΨ1 − G′′(αΨ2)∇ΓΨ2

∥
∥

L2(Γ)

≤ C‖Ψ‖L2(Γ) + C
∥
∥ (G′′(αΨ1) − G′′(αΨ2)) ∇ΓΨ1

∥
∥

L2(Γ)
+ C

∥
∥G′′(αΨ2)∇ΓΨ

∥
∥

L2(Γ)

≤ C‖Ψ‖L2(Γ) + C‖Ψ‖L∞(Γ)‖∇ΓΨ1‖L2(Γ) + C‖∇ΓΨ‖L2(Γ)

≤ C‖Ψ‖H1(Γ).

(3.124)

Combining the above estimates (3.122)–(3.124), we obtain
∣
∣
∣−〈(∂tφ, ∂tΨ),

(
F ′(φ1) − F ′(φ2), αG′(αΨ1) − αG′(αΨ2)

)〉
Dα

∣
∣
∣

≤ C‖φ1‖L∞(Ω)‖v‖L2(Ω)

((
1 + ‖φ1‖W 1,4(Ω)

) ‖φ‖H1(Ω) + ‖φ‖W 1,3(Ω) + ‖Ψ‖H1(Γ)

)

+ C‖v2‖L3(Ω)‖φ‖L6(Ω)

((
1 + ‖φ1‖W 1,4(Ω)

) ‖φ‖H1(Ω) + ‖φ‖W 1,3(Ω) + ‖Ψ‖H1(Γ)

)

+ C‖v2‖L3(Γ)‖Ψ‖L6(Γ)

((
1 + ‖φ1‖W 1,4(Ω)

) ‖φ‖H1(Ω) + ‖φ‖W 1,3(Ω) + ‖Ψ‖H1(Γ)

)

+ C
(‖v‖L2(Γ) + ‖∇μ‖L2(Ω) + ‖∇ΓΘ‖L2(Γ)

)

× ((1 + ‖φ1‖W 1,4(Ω)

) ‖φ‖H1(Ω) + ‖φ‖W 1,3(Ω) + ‖Ψ‖H1(Γ)

)

=: R1 + R2 + R3 + R4.

(3.125)

Using Sobolev’s embedding theorem, the Gagliardo–Nirenberg interpolation inequality, the trace theorem
and Young’s inequality, we infer that

R1 ≤ C‖φ1‖L∞(Ω)

(
1 + ‖φ1‖W 1,4(Ω)

) (‖v‖2
L2(Ω) + ‖φ‖2

H1(Ω)

)

+ C‖φ1‖L∞(Ω)‖v‖L2(Ω)‖φ‖W 1,3(Ω) + C‖φ1‖L∞(Ω)

(
‖v‖2

L2(Ω) + ‖Ψ‖2
H1(Γ)

)
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≤ �

10
‖φ‖2

H2(Ω) + C‖φ1‖L∞(Ω)

(
1 + ‖φ1‖W 1,4(Ω)

) (‖v‖2
L2(Ω) + ‖φ‖2

H1(Ω)

)

+ C
(
‖φ1‖L∞(Ω) + ‖φ1‖2

L∞(Ω)

)(
‖v‖2

L2(Ω) + ‖Ψ‖2
H1(Γ)

)

≤ �

10
‖φ‖2

H2(Ω) + C
(
1 + ‖φ1‖2

L∞(Ω) + ‖φ1‖2
W 1,4(Ω)

)(
‖v‖2

L2(Ω) + ‖φ‖2
H1(Ω) + ‖Ψ‖2

H1(Γ)

)
,

R2 ≤ C‖v2‖L3(Ω)

(
1 + ‖φ1‖W 1,4(Ω)

) (‖φ‖2
H1(Ω) + ‖Ψ‖2

H1(Γ)

)

+ C‖v2‖L3(Ω)‖φ‖L6(Ω)‖φ‖W 1,3(Ω)

≤ �

10
‖φ‖2

H2(Ω) + C
(
1 + ‖φ1‖2

W 1,4(Ω) + ‖v2‖2
L3(Ω)

)(
‖φ‖2

H1(Ω) + ‖Ψ‖2
H1(Γ)

)
,

R3 ≤ C
(‖v2‖L3(Γ) + ‖v2‖L3(Γ)‖φ1‖W 1,4(Ω)

) (‖φ‖2
H1(Ω) + ‖Ψ‖2

H1(Γ)

)

+ C‖v2‖L3(Γ)‖Ψ‖L6(Γ)‖φ‖W 1,3(Ω)

≤ C
(
1 + ‖v2‖2

H1(Ω) + ‖φ1‖2
W 1,4(Ω)

)(
‖φ‖2

H1(Ω) + ‖Ψ‖2
H1(Γ)

)

+ C‖v2‖H1(Ω)‖Ψ‖H1(Γ)‖φ‖ 2
3
H1(Ω)‖φ‖ 1

3
H2(Ω)

≤ �

8
‖φ‖2

H2(Ω) + C
(
1 + ‖v2‖2

H1(Ω) + ‖φ1‖2
W 1,4(Ω)

)(
‖φ‖2

H1(Ω) + ‖Ψ‖2
H1(Γ)

)

+ C‖v2‖
6
5
H1(Ω)‖Ψ‖ 6

5
H1(Γ)‖φ‖ 4

5
H1(Ω)

≤ �

10
‖φ‖2

H2(Ω) + C
(
1 + ‖v2‖2

H1(Ω) + ‖φ1‖2
W 1,4(Ω)

)(
‖φ‖2

H1(Ω) + ‖Ψ‖2
H1(Γ)

)
,

R4 ≤ γ0

12
‖v‖2

L2(Γ) +
1
4
‖∇μ‖2

L2(Ω) +
1

4α2
‖∇ΓΘ‖2

L2(Γ)

+ C
(
1 + ‖φ1‖2

W 1,4(Ω)

)(
‖φ‖2

H1(Ω) + ‖Ψ‖2
H1(Γ)

)
+ C‖φ‖ 4

3
H1(Ω)‖φ‖ 2

3
H2(Ω)

≤ γ0

12
‖v‖2

L2(Γ) +
1
4
‖∇μ‖2

L2(Ω) +
1

4α2
‖∇ΓΘ‖2

L2(Γ) +
�

10
‖φ‖2

H2(Ω)

+ C
(
1 + ‖φ1‖2

W 1,4(Ω)

)(
‖φ‖2

H1(Ω) + ‖Ψ‖2
H1(Γ)

)
.

Plugging these estimates into (3.125) and exploiting (3.109)–(3.120), we eventually obtain from (3.107)
the differential inequality

d
dt

[
1
2
‖v‖2

L2(Ω) +
1
2
‖φ‖2

H1(Ω) +
1
2
‖Ψ‖2

L2(Γ) +
α2

2
‖∇ΓΨ‖2

L2(Γ)

]
+

1
2
‖∇v‖2

L2(Ω)

+
γ0

2
‖v‖2

L2(Γ) +
1
2
‖∇μ‖2

L2(Ω) +
1

2α2
‖∇ΓΘ‖2

L2(Γ) +
1
2
‖Δφ‖2

L2(Ω) +
1
2
‖Θ‖2

L2(Γ)

≤ �

2
‖φ‖2

H2(Ω) + CF(t)
[
1
2
‖v‖2

L2(Ω) +
1
2
‖φ‖2

H1(Ω) +
1
2
‖Ψ‖2

L2(Γ) +
α2

2
‖∇ΓΨ‖2

L2(Γ)

]
,

(3.126)

where

F(t) := 1 + ‖v1(t)‖4
L4(Ω) + ‖v2(t)‖2

H1(Ω) + ‖μ2(t)‖2
H1(Ω) + ‖θ2(t)‖2

H1(Γ) + ‖φ1(t)‖2
W 1,4(Ω).

for almost all t ∈ [0, T ].
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Now, reversing the change of variables (3.97), we infer that the original variables (v, φ, ψ, μ, θ) satisfy
the estimate

d
dt

[
1
2
‖v‖2

L2(Ω) +
1
2
‖φ‖2

H1(Ω) +
1

2α2
‖ψ‖2

L2(Γ) +
1
2
‖∇Γψ‖2

L2(Γ)

]
+

1
2
‖∇v‖2

L2(Ω)

+
γ0

2
‖v‖2

L2(Γ) +
1
2
‖∇μ‖2

L2(Ω) +
1
2
‖∇Γθ‖2

L2(Γ) +
1
2
‖Δφ‖2

L2(Ω) +
α2

2
‖θ‖2

L2(Γ)

≤ �

2
‖φ‖2

H2(Ω) + CF(t)
[
1
2
‖v‖2

L2(Ω) +
1
2
‖φ‖2

H1(Ω) +
1

2α2
‖ψ‖2

L2(Γ) +
1
2
‖∇Γψ‖2

L2(Γ)

]
.

(3.127)

In order to complete the proof, it remains to absorb the H2(Ω)-norm of φ. Since

μ = −Δφ + F ′(φ1) − F ′(φ2) a.e. in Q, (3.128a)

θ = −ΔΓψ + G′(ψ1) − αG′(ψ2) + ∂nφ a.e. on Σ, (3.128b)

we use the regularity theory for elliptic problems with bulk–surface coupling (see [40, Theorem 3.3]) to
derive that

‖φ‖2
H2(Ω) ≤ ‖(φ, ψ)‖2

H2 ≤ C‖(−Δφ,−ΔΓψ + ∂nφ)‖2
L2

≤ C
(
‖Δφ‖2

L2(Ω) + ‖θ‖2
L2(Γ) +

∥
∥G′(ψ1) − G′(ψ2)

∥
∥2

L2(Γ)

)

≤ C0

(
‖Δφ‖2

L2(Ω) + α2‖θ‖2
L2(Γ)

)
+

C

α2
‖ψ‖2

L2(Γ).

(3.129)

Multiplying the above estimate by 1
4C0

, and adding the resulting inequality to (3.126), we obtain

d
dt

[
1
2
‖v‖2

L2(Ω) +
1
2
‖φ‖2

H1(Ω) +
1

2α2
‖ψ‖2

L2(Γ) +
1
2
‖∇Γψ‖2

L2(Γ)

]
+

1
2
‖∇v‖2

L2(Ω) +
γ0

2
‖v‖2

L2(Γ)

+
1
2
‖∇μ‖2

L2(Ω) +
1
2
‖∇Γθ‖2

L2(Γ) +
1
4
‖Δφ‖2

L2(Ω) +
α2

4
‖θ‖2

L2(Γ) +
(

1
4C0

− �

2

)
‖φ‖2

H2(Ω)

≤ CF(t)
[
1
2
‖v‖2

L2(Ω) +
1
2
‖φ‖2

H1(Ω) +
1

2α2
‖ψ‖2

L2(Γ) +
1
2
‖∇Γψ‖2

L2(Γ)

]
.

Thus, choosing � ≤ 1
2C0

, we conclude that

d
dt

[
1
2
‖v‖2

L2(Ω) +
1
2
‖φ‖2

H1(Ω) +
1

2α2
‖ψ‖2

L2(Γ) +
1
2
‖∇Γψ‖2

L2(Γ)

]

≤ CF(t)
[
1
2
‖v‖2

L2(Ω) +
1
2
‖φ‖2

H1(Ω) +
1

2α2
‖ψ‖2

L2(Γ) +
1
2
‖∇Γψ‖2

L2(Γ)

]
.

(3.130)

Since F ∈ L1(0, T ), Gronwall’s lemma directly implies that the stability estimate (3.21) holds for all
t ∈ [0, T ]. As a consequence, the uniqueness of weak solutions immediately follows. Thus, the proof is
complete. �
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A. Appendix: Chain Rule Formula

Let κ and σ be two positive constants. We define the function Φσ
κ : L2 → [0,∞] as

Φσ
κ(φ, ψ) =

⎧
⎨

⎩

∫

Ω

1
2
|∇φ|2 dx +

∫

Γ

κ

2
|∇Γψ|2 dS, if (φ, ψ) ∈ Dσ,

+ ∞, otherwise.
(A.1)

Proposition A.1. For any κ ∈ (0,∞) and σ ∈ (0,∞), the function Φσ
κ is convex, lower semicontinuous

and proper. The subgradient Aσ
κ = ∂Φσ

κ is given by

Aσ
κ(φ, ψ) = (−Δφ,−κΔΓψ + σ∂nφ), for all (φ, ψ) ∈ D(Aσ

κ), (A.2)

where

D(Aκ) = H2 ∩ Dσ. (A.3)

Proof. It is easy to see that Φσ
κ is convex and proper. The lower semicontinuity of Φσ

κ immediately follows
from the weak lower semicontinuity of the norm with respect to the weak convergence.

Let us now consider the operator Aσ
κ : D(Aσ

κ) ⊂ L2 → L2 as defined in (A.2)–(A.3). First of all, we
observe that Aσ

κ is well defined since ∂nφ ∈ H
1
2 (Γ) for any φ ∈ H2(Ω). For any (φ, ψ) ∈ D(Aσ

κ) and
(ζ, ξ) ∈ Dσ, we have

(Aσ
κ(φ, ψ), (φ, ψ) − (ζ, ξ))L2 =

∫

Ω

−Δφ(φ − ζ) dx +
∫

Γ

(−κΔΓψ + σ∂nφ)(ψ − ξ) dS

=
∫

Ω

∇φ · ∇(φ − ζ) dx −
∫

Γ

∂nφ(φ − ζ) dS

+
∫

Γ

κ∇Γψ · ∇Γ(ψ − ξ) dS +
∫

Γ

σ∂nφ(ψ − ξ) dS

=
∫

Ω

∇φ · ∇(φ − ζ) dx − σ

∫

Γ

∂nφ(ψ − ξ) dS

+
∫

Γ

κ∇Γψ · ∇Γ(ψ − ξ) dS + σ

∫

Γ

∂nφ(ψ − ξ) dS

=
∫

Ω

∇φ · ∇(φ − ζ) dx +
∫

Γ

κ∇Γψ · ∇Γ(ψ − ξ) dS

≥
∫

Ω

1
2
|∇φ|2 dx −

∫

Ω

1
2
|∇ζ|2 dx

+
∫

Γ

κ

2
|∇Γψ|2 dS −

∫

Γ

κ

2
|∇Γξ|2 dS.

http://creativecommons.org/licenses/by/4.0/
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Thus, we found

(Aσ
κ(φ, ψ), (φ, ψ) − (ζ, ξ))L2 ≥ Φσ

κ(φ, ψ) − Φσ
κ(ζ, ξ), for all (φ, ψ) ∈ D(Aσ

κ), (ζ, ξ) ∈ Dσ.

The above inequality can be easily extended to

(Aσ
κ(φ, ψ), (φ, ψ) − (ζ, ξ))L2 ≥ Φσ

κ(φ, ψ) − Φσ
κ(ζ, ξ), for all (φ, ψ) ∈ D(Aσ

κ), (ζ, ξ) ∈ L2.

This implies that Aκ ⊂ ∂Φκ, i.e., D(Aκ) ⊂ D(∂Φκ) and Aκ(φ, ψ) ∈ ∂Φκ(φ, ψ) for all (φ, ψ) ∈ D(Aκ).
In order to conclude that Aσ

κ = ∂Φσ
κ, we are left to show that Aσ

κ is maximal monotone in L2 × L2,
namely R(I + Aσ

κ) = L2. For this purpose, let us fix (f, g) ∈ L2 and consider the equation (φ, ψ) +
Aσ

κ(φ, ψ) = (f, g), which reads as

φ − Δφ = f in Ω, (A.4a)

ψ − κΔΓψ + σ∂nφ = g on Γ, (A.4b)

φ|Γ = σψ on Γ. (A.4c)

A pair (φ, ψ) ∈ Dσ is a corresponding weak solution if
(
(φ, ψ), (ζ, ξ)

)
L2 +

∫

Ω

∇φ · ∇ζ dx +
∫

Γ

κ∇Γψ · ∇Γξ dS =
(
(f, g), (ζ, ξ)

)
L2 (A.5)

for all (ζ, ξ) ∈ Dσ. The existence and uniqueness of (φ, ψ) ∈ Dσ solving (A.5) follows directly from the
Lax-Milgram theorem. Next, using regularity theory for elliptic problems with bulk–surface coupling (see
[40, Theorem 3.3]), where (f − φ, g − ψ) ∈ L2 is interpreted as the source term, we infer that (φ, ψ) ∈ H2

and (A.4) holds almost everywhere. This entails the desired conclusion. �

Proposition A.2. Let κ ∈ (0,∞) and σ ∈ (0,∞). Assume that (φ, ψ) ∈ L2(0, T ;Dσ) ∩ H1(0, T ;D′
σ) such

that (−Δφ,−κΔΓψ + σ∂nφ) ∈ L2(0, T ;Dσ). Then, the chain rule formula

d
dt

[
1
2
‖∇φ‖2

L2(Ω) +
κ

2
‖∇Γψ‖2

L2(Γ)

]
=
〈
(∂tφ, ∂tψ), (−Δφ,−κΔΓψ + σ∂nφ)

〉
Dσ

(A.6)

holds for almost every t ∈ [0, T ].

Proof. We define the function Φ̃ : L2 → [0,∞] as

Φ̃(φ, ψ) =

⎧
⎨

⎩

∫

Ω

1
2
|φ|2 dx +

∫

Γ

1
2
|ψ|2 dS, if (φ, ψ) ∈ L2,

+ ∞, otherwise.
(A.7)

It is easily seen that Φ̃ is convex, lower semicontinuous and proper. In addition, the subgradient B : L2 →
L2, B(φ, ψ) = (φ, ψ) is Lipschitz in H0. Let us now consider Φ
 = Φσ

κ + Φ̃ : L2 → [0,∞], which clearly is
a convex, lower semicontinuous, proper functional. Moreover, we have

Φ
(φ, ψ) ≥ Φ̃(φ, ψ) = ‖(φ, ψ)‖2
L2 for all (φ, ψ) ∈ L2.

Thanks to [51, Lemma 2.1, Chapter IV] , we infer that Aσ
κ + B is a maximal monotone operator with

domain D(Aσ
κ + B) = D(Aσ

κ), which coincides with ∂Φ
. In light of our assumptions, we recall that
(φ, ψ) ∈ L2(0, T ;Dσ) ∩ H1(0, T ;D′

σ). Then, since φ|Γ = σψ on Γ, we observe that

∂Φ
(φ, ψ) = (−Δφ + φ,−κΔΓψ + σ∂nφ + ψ) ∈ L2(0, T ;Dσ).

Therefore, we are in position to apply [48, Lemma 4.1], which entails that t → Φ
(φ(t), ψ(t)) is absolutely
continuous on [0, T ] and the chain rule

d
dt

[
1
2
‖φ‖2

H1(Ω) +
1
2
‖ψ‖2

L2(Γ) +
κ

2
‖∇Γψ‖2

L2(Γ)

]

=
〈
(∂tφ, ∂tψ), (−Δφ + φ,−κΔΓψ + σ∂nφ + ψ)

〉
Dσ

(A.8)
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holds almost everywhere in [0, T ]. On the other hand, by the classical chain rule formula (or, alternatively,
by using [48, Lemma 4.1] with J = Φ̃), we know that

d
dt

[
1
2
‖φ‖2

L2(Ω) +
1
2
‖ψ‖2

L2(Γ)

]
=
〈
(∂tφ, ∂tψ), (φ, ψ)

〉
Dσ

(A.9)

almost everywhere in [0, T ]. Finally, subtracting (A.9) from (A.8), we reach the claimed (A.6). �

References

[1] Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities.
Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)

[2] Abels, H.: Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM
J. Math. Anal. 44(1), 316–340 (2012)

[3] Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of
incompressible fluids with different densities. J. Math. Fluid Mech. 15(3), 453–480 (2013)

[4] Abels, H., Depner, D., Garcke, H.: On an incompressible Navier–Stokes/Cahn–Hilliard system with degenerate mobility.
Ann. Inst. H. Poincaré C Anal. Non Linéaire 30(6), 1175–1190 (2013)
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