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Abstract. A fast approximation method to three dimensional equations in quasi-static uncoupled thermoelasticity is pro-
posed. We approximate the density via Gaussian approximating functions introduced in the method approximate approxi-
mations. In this way the action of the integral operators on such functions is presented in a simple analytical form. If the
density has separated representation, the problem is reduced to the computation of one-dimensional integrals which admit
efficient cubature procedures. The comparison of the numerical and exact solution shows that these formulas are accurate
and provide the predicted approximation rate 2, 4, 6 and 8.
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1. Introduction

The equations of thermoelasticity describe the elastic and the thermal behavior of elastic, heat conduc-
tive media, in particular the reciprocal actions between elastic stresses and temperature differences. We
consider the classical thermoelastic system where the elastic part is the usual second-order one in the
space variable. In the static uncoupled thermoelasticity, thermal effects on a body are restricted to strains
due to a steady-state temperature distribution. Uncoupled quasi-static thermoelasticity can be employed
when slowly varying thermal and mechanical loads are encountered and dissipative effected can be ne-
glected. The equations are a coupling of the equations of elasticity and of the heat equation ([2, p.76],
[3])

μΔu + (λ + μ) grad divu − γ grad T + ρF = 0 (1.1)
∂T

∂t
− κΔT = 0 (1.2)

T (x, 0) = g(x) (1.3)

for (x, t) ∈ R
3 × [0,∞), together with the corresponding initial and boundary conditions. The set of

quantities μ, λ, γ, ρ, κ are positive and 3λ + 2μ > 0. We suppose that g : R3 → R, F = (F1, F2, F3) :
R

3 × [0,∞) → R
3 with g, F1(·, t), F2(·, t), F3(·, t) ∈ S (R3). Here S (R3) denotes the Schwartz space

of smooth functions whose derivatives (including the function itself) decay at infinity faster than any
power. The function T (x, t) is the temperature and the vector u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the
thermoelastic displacement.
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The problem of determining T (x, t) is an independent of u(x, t) problem. The Cauchy problem (1.2)–
(1.3) can be solved by the Poisson integral

T (x, t) = (Pg)(x, t) =
1

(4πκt)3/2

∫

R3

e− |x−y|2
4κt g(y)dy. (1.4)

We get

grad T (x, t) =
1

(4πκt)3/2

∫

R3

−2(x − y)
4κt

e− |x−y|2
4κt g(y)dy.

Moreover

lim
|x|→∞

T (x, t) = lim
|x|→∞

|grad T (x, t)| = 0, ∀t > 0.

When the temperature field T is known, the displacement field u = (u1, u2, u3) is obtained by solving
(1.1) where the gradient of T is treated as a body force. The displacement field u = (u1, u2, u3) with
lim|x|→∞ |u(x, t)| = 0, t > 0, can be represented by means of the Kelvin fundamental matrix {Γk�}k,�=1,2,3

([4, p.84])

Γk�(x) =
λ′δk�

8π|x| +
μ′

8π

xkx�

|x|3 , k, 	 = 1, 2, 3 (1.5)

with

λ′ =
λ + 3μ

μ(λ + 2μ)
, μ′ =

λ + μ

μ(λ + 2μ)
.

Hence, we have

uk(x, t) =
3∑

�=1

∫

R3

Γk�(x − y)(ρF�(y, t) − γ
∂

∂y�
T (y, t))dy, k = 1, 2, 3.

We write

u(x, t) = u(1)(x, t) + u(2)(x, t),

where u(1)(x, t) is the solution of

μΔu(1) + (λ + μ)grad divu(1) + ρF = 0, lim
|x|→∞

|u(1)(x, t)| = 0 (1.6)

and u(2)(x, t) is the solution of

μΔu(2) + (λ + μ)grad divu(2) − γ grad T = 0, lim
|x|→∞

|u(2)(x, t)| = 0 (1.7)

with T in (1.4).
The vectors u(1) = (u(1)

1 , u
(1)
2 , u

(1)
3 ) and u(2) = (u(2)

1 , u
(2)
2 , u

(2)
3 ) have the following integral representa-

tion by means of the Kelvin fundamental matrix

u
(1)
k (x, t) = ρ

3∑
�=1

∫

R3

Γk�(x − y)F�(y, t)dy, k = 1, 2, 3;

u
(2)
k (x, t) = −γ

3∑
�=1

∫

R3

Γk�(x − y)
∂

∂y�
T (y, t)dy, k = 1, 2, 3.

Fast formulas of high order for the approximation of u(1) were obtained in [9]. The goal of this paper
is to derive semi-analytic cubature formulas for (u(2), T ) solutions to (1.7)–(1.2)–(1.3) of an arbitrary
high-order which are fast and accurate by using the basis functions introduced in the theory approximate
approximations ([11,12]; see also [15] and the reference therein).
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The approximate quasi-interpolant has the form

Mh,D g(x) = D−3/2
∑

m∈Z3

g(hm)η
(
x − hm

h
√
D

)
(1.8)

where h and D are positive parameters and η is a smooth and rapidly decaying function which satisfies
the moment conditions of order N∫

R3

η(x)xαdx = δ0,α, 0 ≤ |α| < N. (1.9)

If we define the Fourier transform of η as

Fη(x) =
∫

R3

η(y)e−2iπ〈x,y〉dy,

then following [15, p.34] the approximate quasi-interpolant can be written in the form

Mh,D g(x) = g(x) + (−
√
Dh)NgN (x)

+
N−1∑
|α |=0

(
√
Dh)|α |

α!(2πi)|α | ∂αg(x) ρα

(x
h

, η,D
)

(1.10)

with the function

gN (x) = D−3/2
∑

|α |=N

N

α!

∑
m∈Z3

(x − hm

h
√
D

)α

η
(x−hm

h
√
D

) 1∫

0

sN−1∂αg(sx + (1 − s)hm) ds

containing the remainder of the Taylor expansion of g. The functions

ρα

(x
h

, η,D
)

=
∑

ν∈Z3\{0}
∂αFη(

√
Dν) e

2πi
h 〈x,ν 〉 (1.11)

are rapidly oscillating multivariate trigonometric series and

|ρα (x, η,D)| ≤
∑

ν∈Z3\{0}

∣∣∂αFη(
√
Dν)

∣∣ (1.12)

uniformly in x. Denoting

εk(D) = max
|α |=k

∑
ν∈Z3\{0}

∣∣∂αFη(
√
Dν)

∣∣

we derive ∣∣∣∣∣∣
N−1∑
|α |=0

(h
√
D)|α |

α!(2πi)|α | ∂αg(x) ρα

(x
h

, η,D
)∣∣∣∣∣∣ ≤

N−1∑
k=0

εk(D)
(
√
Dh)k

(2π)k

∑
|α |=k

|∂αg(x)| .

Thus, at any point x we have

|g(x) − Mh,D g(x)| ≤ c(
√
Dh)N‖∇Ng‖L∞ +

N−1∑
k=0

εk(D)
(2π)k

(
√
Dh)k |∇kg(x)| , (1.13)

where ∇kg denotes the vector of partial derivatives {∂αg}|α=k. The second term in the right hand side
of (1.13) is called the saturation error.

Since η ∈ S (R3) implies εk(D) → 0 as D → ∞ a proper choice of the parameter D allows to
make the terms εk(D) as small as necessary, for example less than the machine precision. Therefore, the
quasi-interpolant Mh,D g can behave in numerical computations like a converging approximation process.
Similar estimates hold in integral norms.
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Theorem 1.1. [15, p.42] Suppose that η ∈ S (R3) satisfies the moment condition (1.9). Then for any
g ∈ WL

p (R3), 1 ≤ p ≤ ∞ and L > 3/p, L ≥ N , the quasi-interpolant (1.8) satisfies

||g − Mh,D g||Lp
≤ cη(

√
Dh)N ||∇Ng||Lp

+
N−1∑
k=0

εk(D)
(2π)k

(
√
Dh)k||∇kg||Lp

(1.14)

where the constant cη does not depend on g, h and D .

New classes of cubature formulas for important integral operators of mathematical physics by using
approximate approximations were studied in [14]. They are based on replacing the density of the integral
operator by its quasi-interpolant where the generating function η is chosen such that the operator applied
to it can be computed, analytically or at least efficiently. We choose as basis functions products of
Gaussians and special polynomials. The use of the Gaussian functions for the numerical solution of the
problems under consideration has the main advantage that the action of the integral operators on such
functions may be presented in a simple analytical form.

By combining cubature formulas for volume potentials based on approximate approximations with
the strategy of separated representations (cf., e.g. [1]), it is possible to derive a method for approximating
volume potentials which is accurate and fast also in the multidimensional case and provides approximation
formulas of high order. This procedure was applied successfully for the first time to the integration of the
harmonic potential [5]. This approach was extended to the biharmonic [7], elastic and hydrodynamic [9]
potentials, and to parabolic problems [6]. New approximation formulas for the solutions of nonstationary
Stokes system were obtained in [8]. The static thermoelasticity was considered in [10]. Here we show that
the fast method can be applied to uncoupled quasi-static thermoelasticity.

The outline of the paper is the following. In Sect. 2 we describe the fast formulas for the approximation
of T obtained in [6]. In Sect. 3 we use the approximants obtained in Sect. 2 to construct approximation for-
mulas for u(2) and give error estimates. In Sect. 4 we provide results of numerical experiments, illustrating
that our formulas are accurate and provide the predicted approximation rates 2, 4, 6 and 8.

2. Approximation of T

Cubature formulas for (1.4) are derived by replacing the density g with the quasi-interpolant (1.8). Then

(PMh,D g)(x, t) =
1

D3/2

∑
m∈Z3

g(hm)(Pη)
(
x − hm

h
√
D

,
t

h2D

)
(2.1)

provides an approximation formula for T (x, t).
The cubature error can be estimated by the following.

Theorem 2.1. [15, Theorem 6.1] Suppose that η satisfies the moment condition (1.9). If the initial values
of the parabolic problem (1.2)–(1.3) satisfy g ∈ WN

p (R3), 1 ≤ p ≤ ∞, then the approximate solution (2.1)
converges for any fixed t > 0 with the order O(hN ) to the solution of the problem.

As basis functions in (1.8) we take the tensor products of univariate basis functions

η2M (x) =
3∏

j=1

η̃2M (xj); η̃2M (x) =
(−1)M−1

√
π22M−1(M − 1)!

H2M−1(x)e−x2

x
, (2.2)

where Hk are the Hermite polynomials

Hk(x) = (−1)kex2
(

d

dx

)k

e−x2
.
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Theorem 2.2. Let M ≥ 1. The Poisson integral (1.4) applied to the generating functions η2M in (2.2)
can be written as

(Pη2M )(x, t) =
3∏

j=1

QM (xj , 4κt)√
1 + 4κt

e−|x|2/(1+4κt) (2.3)

where QM (x, t) is a polynomial in x of degree 2M − 2 whose coefficients depend on t, defined by

QM (x, t) =
1√
π

M−1∑
s=0

1
(1 + t)s

(−1)s

4ss!
H2s

(
x√

1 + t

)
. (2.4)

Proof. We have
⎛
⎝P

⎛
⎝ 3∏

j=1

η̃2M

⎞
⎠

⎞
⎠ (x, t) =

3∏
j=1

1√
4πκt

∞∫

−∞
e−(xj−yj)

2/(4κt)η̃2M (yj) dyj .

Using the representation ([15, p.55])

η̃2M (x) = A

(
d

dx

)
e−x2

, A

(
d

dx

)
=

1√
π

M−1∑
s=0

(−1)s

s!4s

d2s

dx2s
(2.5)

and the relation
∞∫

−∞
e− (x−y)2

a e− (y−z)2

b dy =
(

πab

a + b

)1/2

e− (x−z)2

a+b , a > 0, b > 0, (2.6)

we get

∞∫

−∞
e− (x−y)2

4κt η̃2M (y) dy = A

(
d

dx

) ∞∫

−∞
e− (x−y)2

4κt e−y2
dy =

(
4πκt

1 + 4κt

)1/2

A

(
d

dx

)
e− x2

1+4κt .

By direct computation, the polynomials QM satisfy

A

(
d

dx

)
e− x2

1+t = QM (x, t)e− x2
1+t . (2.7)

Formula (2.3) easily follows. �
Using formula (2.3), we can specify the high order approximation T

(M)
h,D (x, t) := (PMh,D g)(x, t) as

follows

T
(M)
h,D (x, t) =

∑
m∈Z3

g(hm)
e− |x−hm|2

h2D (1+4κt/(h2D ))

(D(1 + 4κt/(h2D)))3/2

3∏
j=1

QM

(
xj − hmj

h
√
D

,
4κt

h2D

)
(2.8)

for the generating function η2M defined in (2.2). This is a semi-analytic cubature formula for (1.4) with
the error O(h2M ).

From (2.8), at the points (hs, t), s = (s1, s2, s3) ∈ Z
3,

T
(M)
h,D (hs, t) =

∑
m∈Z3

g(hm)
e− |s−m|2

D (1+4κt/(h2D ))

(D(1 + 4κt/(h2D)))3/2

3∏
j=1

QM

(
sj − mj√

D
,

4κt

h2D

)
. (2.9)
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Remark 2.3. The polynomials QM for M = 1, 2, 3, 4 are given by

Q1(x, t) = 1/
√

π,

Q2(x, t) =
1√
π

(
− x2

(t + 1)2
+

1
2(t + 1)

+ 1
)

,

Q3(x, t) = Q2(x, t) +
1√
π

(
x4

2(t + 1)4
− 3x2

2(t + 1)3
+

3
8(t + 1)2

)
,

Q4(x, t) = Q3(x, t) +
1√
π

(
− x6

6(t + 1)6
+

5x4

4(t + 1)5
− 15x2

8(t + 1)4
+

5
16(t + 1)3

)
.

The approximation formulas (2.9) are very efficient if g has a separated representation, i.e. for a given
accuracy ε it can be represented as the sum of products of vectors in dimension 1

g(x) =
L∑

�=1

3∏
r=1

g(�)r (xr) + O(ε). (2.10)

Then T (hs, t) can be approximated by the sum of products of one-dimensional sums

T
(M)
h,D g(hs, t) =

L∑
�=1

3∏
r=1

S(�)
r (sr, 4κt)

where

S(�)
r (s, t) =

∑
m∈Z

g(�)r (hm)
e− (s−m)2

D (1+t)

(D(1 + t))1/2
QM

(
s − m√

D
,

t

h2D

)
, r = 1, 2, 3.

3. Approximation of u(2)

In this section we propose formulas for the approximation of

u
(2)
k (x, t) = −γ

3∑
�=1

∫

R3

Γk�(x − y)
∂

∂y�
T (y, t)dy, k = 1, 2, 3

where T is given in (1.4).
Integrating by parts and using the relation

∂

∂y�
Γk�(x − y) = − ∂

∂x�
Γk�(x − y)

we get

u
(2)
k (x, t) = −γ

3∑
�=1

∫

R3

∂

∂x�
Γk�(x − y)T (y, t)dy, k = 1, 2, 3.

From the relation [4, p.84]
3∑

�=1

∂

∂x�
Γk�(x) =

1
4π(λ + 2μ)

∂

∂xk

1
|x|

we obtain

u
(2)
k (x, t) = −cγ,λ+2μ

4π

∂

∂xk

∫

R3

T (y, t)
|x − y|dy, k = 1, 2, 3 (3.1)
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where we set

cγ,λ+2μ =
γ

λ + 2μ
.

Since T (y, t) = (Pg)(y, t) we can also write

u
(2)
k (x, t) = −cγ,λ+2μ

∂

∂xk
L ((Pg)(·, t))(x), k = 1, 2, 3 (3.2)

where we denote by L the harmonic potential

L (g)(x) =
1
4π

∫

R3

g(y)
|x − y|dy. (3.3)

We use the representation (1.4) to get

u
(2)
k (x, t) = −cγ,λ+2μ

4π

1
(4πκt)3/2

∂

∂xk

∫

R3

dy
|x − y|

∫

R3

e− |y−z|2
4κt g(z)dz, k = 1, 2, 3

and we change the order of integration

u
(2)
k (x, t) = −cγ,λ+2μ

4π

1
(4πκt)3/2

∂

∂xk

∫

R3

g(z)dz
∫

R3

e− |y−z|2
4κt

|x − y| dy

= −cγ,λ+2μ

4π

1
π3/2

1
(4κt)1/2

∂

∂xk

∫

R3

g(z)dz
∫

R3

e−|w|2∣∣∣ x−z√
4κt

− w
∣∣∣dw, k = 1, 2, 3.

Then

u
(2)
k (x, t) = −cγ,λ+2μ

π3/2

1
(4κt)1/2

∂

∂xk

∫

R3

L (e−|·|2)(
x − z√

4κt
)g(z)dz, k = 1, 2, 3. (3.4)

We use the representation ([15, p.128])

L (e−|·|2)(x) =
1
4

∞∫

0

e− |x|2
1+τ

(1 + τ)3/2
dτ

to get

u
(2)
k (x, t) = −cγ,λ+2μ

4
1

π3/2

1
(4κt)1/2

∂

∂xk

∞∫

0

dτ

(1 + τ)3/2

∫

R3

e−
| x−z√

4κt
|2

1+τ g(z)dz. (3.5)

Now we replace g in (3.5) by the approximate quasi-interpolant (1.8) and we set

(Nh,D g)k(x, t) :=

−cγ,λ+2μ

4π3/2

h3

(4κt)1/2

∑
m∈Z3

g(hm)
∂

∂xk

∞∫

0

dτ

(1 + τ)3/2

∫

R3

e
− |rm(x)−w|2

(1+τ) 4κt
h2D η (w) dw (3.6)

with

rm(x) =
x − hm

h
√
D

.

In the next theorem we estimate the error of the cubature formula Nh,D g.
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Theorem 3.1. Suppose that η satisfies the moment condition (1.9). Let 1 < p < 3, q = 3p/(3 − p), and
let g ∈ WL

p (R3) with L > 3/p, L ≥ N . Then there exist two constants c and C such that, for any fixed
t > 0

||(Nh,D g)(·, t)) − u(2)(·, t)||Lq
≤ c(h

√
D)N ||∇Ng||Lp

+ C hN . (3.7)

The constant c does not depend on g, h and D and C is independent of h.

Proof. Since (Nh,D g)(x, t) = −cγ,λ+2μ∇L ((PMh,D g)(·, t))(x) and u(2)(x, t) = −cγ,λ+2μ∇L ((Pg)(·, t))(x),
we have to estimate the difference

||∇L ((Pg)(·, t)) − ∇L ((PMh,D g)(·, t))||Lq
. (3.8)

Since

∇L ((Pg)(·, t)) − ∇L ((PMh,D g)(·, t)) = ∇L (P(g − Mh,D g)(·, t)),

the norm ||∇u||Lq
is equivalent to the norm ||(−Δ)1/2u||Lq

([13, p.458]) and L is the inverse of the
Laplacian, we obtain

||(−Δ)1/2(L (Pg)(·, t) − L ((PMh,D g))(·, t))||Lq
≤ Bpq||P(g − Mh,D g)(·, t))||Lp

where Bpq denotes the norm of the bounded mapping (−Δ)−1/2 : Lp → Lq [17, Theorem V.1]. From [15,
(6.14)], [16, (2.68)]) we see that

||P(g − Mh,D g)(·, t))||Lp
≤ ||g − Mh,D g||Lp

(3.9)

for any t > 0 and p ≥ 1. In addition, the saturation error converges to zero with the order O(hN ). In [15,
Paragraph 6.2.1] the inequality

∣∣∣ 1
(4πκt)3/2

∫

R3

e− |x−y|2
4κt ∂αg(y) ρα

(y
h

, η,D
)
dy

∣∣∣

≤ cαhN−|α |

(4πκt)(N−|α |)/2
∑

ν∈Z3\{0}
|∂αFη(

√
Dν)||ν||α |−N

is proved with a constant cα depending on g and t. This shows that

∥∥∥ 1
(4πκt)3/2

N−1∑
|α |=0

(
√
Dh)|α |

α!(2πi)|α |

∫

R3

e− |x−y|2
4κt ∂αg(y) ρα

(y
h

, η,D
)
dy

∥∥∥
Lp

≤ c hN .

Hence, by Theorem 1.1 the assertion follows. �

We assume the basis function (2.2). Keeping in mind (2.5) and (2.7) we have, for b > 0

∫

R3

e− |z−w|2
b η (w) dw =

3∏
j=1

A

(
d

dzj

)∫
R

e−w2
e−(zj−w2)/bdw

=
(

πb

1 + b

)3/2 3∏
j=1

A

(
d

dzj

)
e−z2

j /(1+b) =
(

πb

1 + b

)3/2 3∏
j=1

QM (zj , b)e−z2
j /(1+b).
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Substituting in (3.6) we obtain, for k = 1, 2, 3,

(N (M)
h,D g)k(x, t) = −cγ,λ+2μκ t h3

∑
m∈Z3

g(hm)

×
∞∫

0

∂

∂xk

3∏
j=1

QM

(
xj − hmj

h
√
D

, (1 + τ)
4κt

h2D

)
e− |x−hm|2

h2D +(1+τ)4κt

(h2D + (1 + τ)4κt)3/2
dτ

= cγ,λ+2μ
κ t

hD2

∑
m∈Z3

g(hm)

∞∫

0

3∏
j=1j 	=k

QM

(
xj − hmj

h
√
D

, (1 + τ)
4κt

h2D

)

×RM

(
xk − hmk

h
√
D

, (1 + τ)
4κt

h2D

)
e− |x−hm|2

h2D +(1+τ)4κt
(h

√
D)3

(h2D + (1 + τ)4κt)3/2
dτ, (3.10)

where

RM (x,Λ) =
2x

1 + Λ
QM (x,Λ) + 2

√
1 + ΛAM (x,Λ)

with

AM (x,Λ) =
2√
π

M−1∑
s=1

1
(1 + Λ)s−1/2

(−1)s−1

(s − 1)!4s
H2s−1

(
x√

1 + Λ

)
.

For example, for M = 1 we get the following formula suitable for fast computation

(N (1)
h,D g)k(x, t)

=
2

π3/2
cγ,λ+2μ κ t h4

√
D

∑
m∈Z3

g(hm)
xk − hmk

h
√
D

∞∫

0

e− |x−hm|2
h2D +(1+τ)4κt

(h2D + (1 + τ)4κt)5/2
dτ.

4. Implementation and Numerical Experiments

In this section we provide numerical experiments for the approximation of u(2) and T by means of (3.10)
and (2.8), respectively.

The quadrature of the one-dimensional integrals which appears in (N (M)
h,D g)k, k = 1, 2, 3, with certain

quadrature weights ωp and nodes τp leads to the approximation formulas at the point of a uniform grid
{hs}

u
(2)
k (hs, t) ≈ (N (M)

h,D g)k(hs, t)

= cγ,λ+2μ
κ t

hD2

∑
m∈Z3

g(hm)
∑

p

ωp

3∏
j=1j 	=k

QM

(
sj − mj√

D
, (1 + τp)

4κt

h2D

)

×RM

(
sk − mk√

D
, (1 + τp)

4κt

h2D

)
e
− |s−m|2

D +(1+τp)4κt/h2 (h
√
D)3

(h2D + (1 + τp)4κt)3/2
.

The approximation formulas (N (M)
h,D g)k, k = 1, 2, 3 are very efficient if g has a separated representa-

tion (2.10). Then an approximate value of u
(2)
k (hs, t) can be approximated using only one-dimensional

operations as follows

u
(2)
k (hs, t) ≈ (N (M)

h,D g)k(hs, t)

≈ γ

λ + 2μ

κ t

hD2

L∑
�=1

∑
p

ωpR
(�)
k (sk, (1 + τp)

4κt

h2D
)

3∏
j=1j 	=k

T
(�)
j

(
sj , (1 + τp)

4κt

h2D

)
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Table 1. Exact values u
(2)
1 in (4.2) at some grid points x = (x, x, x) and t = 1, approximated values using N

(3)
0.025,2 and

relative errors

x Exact Approximation Relative error

0.2 0.005877714358389 0.005877714358305 0.000000000014293
0.4 0.011261752497046 0.011261752496897 0.000000000013266
0.6 0.015739444606540 0.015739444606356 0.000000000011663
0.8 0.019040181119417 0.019040181119233 0.000000000009627
1.0 0.021063107052464 0.021063107052310 0.000000000007329
1.2 0.021868467971482 0.021868467971373 0.000000000004978

Table 2. Absolute error and rate of convergence for u
(2)
1 in (4.2) at x = (1, 0, 0) and t = 1 using N

(M)
h,2

h−1 M = 1 M = 2 M = 3 M = 4

Error Rate Error Rate Error Rate Error Rate

5 0.575D-03 0.616D-05 0.716D-07 0.862D-09
10 0.146D-03 1.98 0.392D-06 3.98 0.115D-08 5.96 0.350D-11 7.95
20 0.366D-04 2.00 0.246D-07 3.99 0.181D-10 5.99 0.138D-13 7.99
40 0.915D-05 2.00 0.154D-08 4.00 0.283D-12 6.00 0.625D-16 7.79
80 0.229D-05 2.00 0.963D-10 4.00 0.443D-14 6.00 0.694D-17
160 0.572D-06 2.00 0.602D-11 4.00 0.101D-15 5.46 0.416D-16

Table 3. Absolute error and rate of convergence for u
(2)
1 in (4.2) at x = (0.8, 0.8, 0.8) and t = 2 using N

(M)
h,2

h−1 M = 1 M = 2 M = 3 M = 4

Error Rate Error Rate Error Rate Error Rate

5 0.105D-03 0.651D-06 0.448D-08 0.325D-10
10 0.265D-04 1.99 0.411D-07 3.99 0.712D-10 5.98 0.130D-12 7.97
20 0.665D-05 2.00 0.258D-08 4.00 0.112D-11 5.99 0.508D-15 8.00
40 0.166D-05 2.00 0.161D-09 4.00 0.175D-13 6.00 0.173D-17
80 0.416D-06 2.00 0.101D-10 4.00 0.276D-15 5.99 0.347D-17
160 0.104D-06 2.00 0.630D-12 4.00 0.867D-17 0.520D-17

Table 4. Exact values T in (4.1) at some grid points x = (x, x, x) and t = 1, approximated values using T
(3)
0.025,2 and

relative errors

x Exact Approximation Relative error

0.2 0.087321648499213 0.087321648497995 0.000000000001218
0.4 0.081255491801684 0.081255491800718 0.000000000000966
0.6 0.072067156274417 0.072067156273796 0.000000000000621
0.8 0.060922246911397 0.060922246911132 0.000000000000265
1.0 0.049087205005965 0.049087205005997 0.000000000000032
1.2 0.037697674580285 0.037697674580511 0.000000000000226

with the one-dimensional convolutions

T (�)
r (s,Λ) = Λ−1

∑
m∈R

g(�)r (hm)QM

(
s − m√

D
,Λ

)
e− (s−m)2

ΛD ,

R(�)
r (s,Λ) = Λ−1

∑
m∈R

g(�)r (hm)RM

(
s − m√

D
,Λ

)
e− (s−m)2

ΛD .
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Table 5. Absolute error and rate of convergence for T in (4.1) at x = (1, 0, 0) and t = 1 using T
(M)
h,2

h−1 M = 1 M = 2 M = 3 M = 4

Error Rate Error Rate Error Rate Error Rate

10 0.379E–03 0.984E–06 0.284E–08 0.862E–11
20 0.951E–04 1.99 0.618E–07 3.99 0.447E–10 5.99 0.341E–13 7.99
40 0.238E–04 1.99 0.387E–08 3.99 0.699E–12 5.99 0.291E–15 6.87
80 0.595E–05 2.00 0.242E–09 4.00 0.109E–13 6.00 0.111E–15
160 0.149E–05 2.00 0.151E–10 4.00 0.222E–15 5.62 0.180E–15

Table 6. Absolute error and rate of convergence for T in (4.1) at x = (0.8, 0.8, 0.8) and t = 2 using T
(M)
h,2

h−1 M = 1 M = 2 M = 3 M = 4

Error Rate Error Rate Error Rate Error Rate

10 0.687E–04 0.841E–07 0.104E–09 0.110E–12
20 0.172E–04 1.99 0.527E–08 3.99 0.163E–11 5.99 0.489E–15 7.81
40 0.430E–05 1.99 0.329E–09 3.99 0.253E–13 6.00 0.729E–16
80 0.108E–05 2.00 0.206E–10 4.00 0.479E–15 5.73 0.625E–16
160 0.269E–06 2.00 0.129E–11 4.00 0.194E–15 0.194E–15

We provide results of some experiments which show the accuracy and the convergence order of the
method. We compute the solution of (1.7),(1.2),(1.3) with g(x) = e−|x|2 . The exact solution of (1.2)–(1.3)
is given by

T (x, t) = P(e−|·|2)(x, t) =
e−|x|2/(1+4κt)

(1 + 4κt)3/2
(4.1)

and, by using (3.2) and

L (e−|·|2)(x) =
√

π

4|x|erf (|x|),

we get

u
(2)
k (x, t) = −cγ,λ+2μ

√
π

4
∂

∂xk

erf
(

|x|√
1+4κt

)

|x| (4.2)

=
cγ,λ+2μ

4
xk

|x|2

⎛
⎝√

π
erf

(
|x|√
1+4κt

)

|x| − e−|x|2/(1+4κt)

√
1 + 4κt

⎞
⎠ , k = 1, 2, 3.

We assume κ = 1 and the parameters γ, λ, μ such that cγ,λ+2μ = 1.
Following [18] the one-dimensional integrals in (3.10) are transformed to integrals over R with inte-

grands decaying doubly exponentially by making the substitutions

t = eξ, ξ = α(σ + eσ), σ = β(u − e−u) (4.3)

with certain positive constants α, β, and the computation is based on the classical trapezoidal rule. Then
the tensor product structure of the integrands allows the efficient computation of N (M)

h,D g.

In Table 1 we compare the exact values u
(2)
1 in (4.2) and the approximates values (N (3)

0.025,2(e
−|·|2))1

at some grid points x = (x, x, x) and t = 1. In Tables 2 and 3 we report on the absolute errors and
approximate rates for the computation of u

(2)
1 at x = (1, 0, 0), t = 1 and x = (0.8, 0.8, 0.8), t = 2,
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respectively. The approximate values are computed by the formulas (N (M)
h,2 (e−|·|2))1 for M = 1, 2, 3, 4

and uniform grids size h = 0.1 × 2−s, s = 0, . . . , 4. The convergence rate is calculated as

(log |u(2)
1 − N

(M)
2h,2 (e−|·|2)1| − log |u(2)

1 − N
(M)

h,2 (e−|·|2)1|)/ log 2.

We have chosen α = 6, β = 5 in the transformation (4.3) and τ = 0.003 with 600 terms in the
trapezoidal rule. The numerical results confirm the h2M convergence of the approximating formula when
M = 1, 2, 3, 4. For small h, the 8th-order formula has reached the machine precision.

In the next tables we report on numerical experiments for the approximation of T in (4.1) by means
of (2.8).

In Table 4 we compare the values of the exact solution and the approximate solution at some points.
The approximations in Table 4 have been computed on a uniform grid with step size h = 0.025 and
N = 6.

In Tables 5 and 6 we show that formula (2.8) approximates the exact solution with the predicted
approximate orders h2M with M = 1, 2, 3, 4. For small h, the 6th-order and 8th-order formulas have
reached the machine precision.
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Linköping
Sweden
e-mail: vladimir.mazya@liu.se

Gunther Schmidt
WIAS
Berlin
Germany
e-mail: schmidt.gunther@online.de

(accepted: February 4, 2023; published online: May 17, 2023)


	Approximation of Uncoupled Quasi-Static Thermoelasticity Solutions Based on Gaussians
	Abstract
	1. Introduction
	2. Approximation of T
	3. Approximation of u(2)
	4. Implementation and Numerical Experiments
	References




