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Abstract. We introduce a space of L? vector fields with bounded mean oscillation whose “normal” component to the boundary
is well-controlled. We establish its Helmholtz decomposition in the case when the domain is a perturbed C* half space in
R"™ (n > 3) with small perturbation.
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1. Introduction

This is a continuation of our paper [14]. It is well known that the Helmholtz decomposition plays a key
role in analyzing the Stokes and the Navier—Stokes equations [25]. Such decomposition is well studied for
LP space with 1 < p < co. It is a topological direct sum decomposition

LP()" = L () © GP(Q)

of the LP vector fields in a domain Q@ C R™. Here, L2(Q2) denotes the LP-closure of the space of all
smooth div-free vector fields that are compactly supported and G? denotes the space of all LP gradient
fields. If p = 2, such decomposition holds for any domain . It is an orthogonal decomposition and
often called Weyl’s decomposition. For 1 < p < oo, the decomposition still holds for various domain
including the whole space R™, the half space R, a perturbed half space, a bounded smooth domain
[10] and an exterior smooth domain. However, there are smooth unbounded domains which do not admit
LP-Helmholtz decomposition; see e.g. a nice book of Galdi [11].

If p = oo, such a decomposition does not hold even when 2 = R” since the projection operator is
a kind of the Riesz operator which is unbounded in L*°, though it is bounded in LP (1 < p < o0). We
replace L> by BMO space. It turns out that it is convenient to consider a subspace vBMO of BMO
to have the Helmholtz decomposition, at least for a half space [12] and a bounded domain [14]. Our goal
is to extend such a result to a perturbed half space. Unfortunately, it seems that a direct extension is
difficult because the behavior at space infinity is not well controlled. Thus we consider the L? intersection
of this space. For LP space, Farwig, Kozono, and Sohr [7] established the Helmholtz decomposition of
LPNL? (p > 2)and LP + L? (1 < p < 2) for arbitrary uniformly C? smooth domain in R?. (Later, it
is extended to arbitrary dimension [8].) Although we consider vBMO N L? in a slightly perturbed half
space in the present paper, our results extend to any uniformly C® domain. This will be discussed in a
separate forthcoming paper.

This article is part of the Topical collection Ladyzhenskaya Centennial Anniversary edited by Gregory Seregin, Konstantinas
Pileckas and Lev Kapitanski.
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Let us recall the BMO space of vector fields introduced in [13,14]. For p € (0, 00|, we recall a BMO

seminorm. For a locally integrable function f in Q, i.e., f € Li, .(Q), we set

1
[flBron () = sup {M oo |f() = fB,)| dy

B,.(z) C Q, r<u};

here fp denotes the average over B and B, (z) denotes the open ball of radius r centered at z and |B)|
denotes the Lebesgue measure of B. For v € (0, 00], we also use a seminorm

[flor(ry == sup {T‘"/ [f ()] dy
QNB,(x)
where I' := 9Q denotes the boundary of €2. The space

xEF,O<r<V},

BMO}™(9) = {f € Ll ()

[ﬂBMOM(Q) + [f]bu(r) < OO}

is essentially introduced in [2] and well studied in [5]. The Stokes semigroup in such spaces was studied
[2,4] and it is useful to prove that the analyticity of the Stokes semigroup still holds in some unbounded
domains which do not admit LP-Helmholtz decomposition [3].

Our space vBMO requires a control only on the normal component. Let dr denote the distance
function from I". We set

[”]UBMOW(Q) = [U]BJ\IO#(Q) + [Vdr - U]bv(r),

vBMO*Y(Q) = {v € Li,. ()"

[v]yBarorv () < OO} ;

where - denotes the standard inner product. This is a seminorm. If Q@ = R/}, this is not a norm unless
n =1, v = co. However, if T" has a fully curved part in the sense of [13, Definition 7], then [-], gapron» ()
becomes a norm [13, Lemma 8]. In particular, when € is a bounded C? domain, this is a norm. In this
paper, we consider the case where Q is a perturbed C* half space

n= {x = (2',2,) e R" | ), > h(m’)} ,

where h # 0is in C¥(R"~ 1), i.e., h is a compactly supported C* function in R"~!; here 2’ = (x1,...,2,_1)
for z € R". A perturbed C* (k > 2) half space R} is said to be of type (K) if
sup  |[V”h(2)| < K
x’ eRn—l
where V' := (01,0s,...,0,_1). We note that the perturbed C* half space has a fully curved part so that
[v]yBapow» (0) 18 @ norm. By definition, there always exists Rj, > 0 such that the support supp h C Bg,, (0).
We say that the perturbed C* half space R} has small perturbation if

R2271 1

D
h 2
where C*(n) is a specific constant depending only on the space dimension n,

Cs(h) =1+ ||h||C1(R"*1)a Cl(h) =14+ Ry ||v/2hHLoo(Rn—l) )

CL () E 50y (h) (c*,l(h) + Ci2(h) + RE) < ﬁ(n) @

Coi(h) = Cy(h)? (1 + Rg) (R,f V2R oo (re—1) + R} ||v’2hu3mm,1)) :

1
Coz(h) i= (Ru+ R ) [[92H]| e sy + (BT 1) [l e
To simplify the behavior near the infinity, we consider
vBMOL?(Q) := vBMO"" () N L*().
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Note that this space is independent of the choice of u,v.

The purpose of this paper is to establish the Helmholtz decomposition for the space vBMOL? (Rﬁ)
in the case where Rj, is a perturbed C? half space that has small perturbation with n > 3. Here is our
main theorem.

Theorem 1. Let R} be a perturbed C* half space of type (K) that has small perturbation with n > 3 and
I = OR}. Then for any v € vBMOL? (RZ), there exists a unique decomposition v = vy + Vq with

vg € vBMOLZ (R} := { f € vBMOL*(R})

divf=0mR}, f-n=0 onF},

Vq € GuBMOL?*(R}) = {Vp € vBMOL?(R})

pe L?OC(RZ)}

satisfying the estimate

+ [IVdl ) S C(K, R, Rp) vl

lvoll, g pror2 (rp) vBMOL? (Ry) = vBMOL?(R})’

where C(K, Ry, Ry,) is a constant that depends only on the constant K which controls the second order
derivative of h, the reach of the boundary R. and the size Ry which characterizes the support of h. In
particular, the Helmholtz projection P,gyrorz, defined by P,ygryorz(v) = vo, is a bounded linear map on
vBMOL?(R}) with range vBMOL2(R}) and kernel GvBMOL? (RY).

Roughly speaking, the reach R, represents the size of a small neighborhood of the boundary within
which every point has a unique projection on the boundary. Here we would like to direct the readers to
Sect. 2.1 for its precise definition.

Our strategy to prove Theorem 1 follows from the potential theoretic strategy we used to establish
the Helmholtz decomposition in a bounded C?® domain [14]. Let E represents the fundamental solution of
—A in R™. By [21], we see that as long as the boundary I is uniformly C?, the space BMO>(Q) N L?(£2)
allows the standard cut-off, i.e., we can decompose v into two parts v = vy + ve with v = v and
v1 = v — vy with some ¢ € C*°(R") that is supported within a small neighborhood of I". Thus, the
support of vy lies in a small neighborhood of I' whereas the support of v; is away from I'. For vy, by
extending vy as zero outside Q, we just set gf = Exdivv;. Then, the L* bound for Vg is well controlled
near I', which yields a bound for ” seminorm. To estimate vo, we use a normal coordinate system near
I' and reduce the problem to the half space. We extend vy to R™ so that the normal part (Vd - v3)Vd is
odd and the tangential part 73 — (Vd - 73)Vd is even in the direction of Vd with respect to I'. In such
type of coordinate system, the minus Laplacian can be transformed as

L = A — B + lower order terms, A= —-A,, B= Z Op,;bijOn; s
1<i,j<n—1
where 7, is the normal direction to the boundary so that {r, > 0} is the half space. We then use a freezing
coefficient method to construct volume potential ¢t and ¢@°", which corresponds to the contribution
from the tangential part 75'*" and the normal part 75", respectively. Since the leading term of div75"°"
in normal coordinate consists of the differential of 7,, only, if we extend the coefficient b;; even in 7, ¢i"°"
is constructed so that the leading term of Vd - V¢i°" is odd in the direction of Vd. On the other hand, as
the leading term of div73** in normal coordinate consists of the differential of 7' = (11,...,7,_1) only,
the even extension of b;; in 7, gives rise to ¢{*" so that the leading term of Vd - Vgi*" is also odd in the
direction of Vd. Disregarding lower order terms and localization procedure, ¢}** and ¢}°" are constructed

as
qgan _ _Lfl diV@tan _ _Afl(I o BA71)71 diV@tan,
qilor — _L—l div%nor — _A—l(I _ BA—l)—l diV@nor.

One is able to arrange BA~! small by working in a small neighborhood of a boundary point. Then
(I—BA~')~!is given as the Neumann series )~ (BA™")™. The BMO-BMO estimates for Vg¢}{*™ and
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Vet follow from [9]. Since the leading term of Vd - (Vgi*™ 4+ Vgi°") is odd in the direction of Vd with
respect to I, the BMO bound implies ” bound. The L? estimates for V¢{®® and V" hold as in the
localization procedure, the partition of unity we consider for a small neighborhood of I' is locally finite.
As a result, setting ¢1 = ¢i + ¢t*® + ¢° would give us our desired volume potential corresponding to
div v. Some results needed for the construction of volume potential g; have already been established in
[14, Section 3] and [21], for these parts we omit their proofs and recall them directly.

Theorem 2 (Construction of a suitable volume potential). Let  C R™ be a uniformly C® domain of
type (a, B, K) with n > 2. Let R, be the reach of the boundary I' = 0. Then, there exists a bounded
linear operator v — g, from vBMOL?*(Q)) to L> () such that

—Aqg; =dive in Q
and that there exists a constant C = C(«a, 8, K, Ry) > 0 satisfying

IVaillvermorz ) < Cllvllvrorz)-

In particular, the operator v — Vq1 is a bounded linear operator in vBMOL?(S).

Here (o, 8, K) are parameters that characterize the regularity of T'. We would like to direct the readers
to Sect. 2.1 for their precise definitions. Although the construction of the suitable volume potential works
for arbitrary uniformly C? domain in R™ with n > 2, for the rest of the theory we need to focus back
on perturbed half space in R" with n > 3. For v € vBMOL? (Rﬁ), we observe that w = v — V¢ is
divergence free in R}. Unfortunately, this w may not fulfill the trace condition w-n = 0 on the boundary
I' = OR}. We construct another potential go by solving the Neumann problem

AQQ =0 in RZ,

0

% =w-n on I.
We then set ¢ = g1 + g2 Since d¢ga/0n = Vo - n, vg = v — Vq gives the Helmholtz decomposition. To
complete the proof of Theorem 1, it suffices to control ||ng|\vBMOL2 (rp) by ”UHUBMOH (rp)"
Lemma 3 (Estimate of the normal trace). Let R} be a perturbed C** half space of type (K) with
k€ (0,1), n >3 and I = OR}. Then, there is a constant C = C(K, R, Ry,) > 0 such that

[[w - m]] Cllw]

. <
Les(T)NH ™2 (0) = vBMOL?(R})

for allw € yBMOL? (RZ) with divw = 0 in R}.
Here H—2(T) is a Hilbert space that is isomorphic to H~2(R™ 1), which turns out to be the dual

space of the homogeneous fractional Sobolev space H B (R™1). Here, the homogeneous Sobolev space of
order s € R is defined as

HS(R" 1) = {f ceS'R" Y| feL, (R and

”f”HS(R"—l) = (/Rnl |§’|28|f"\(£/)|2d§/) 2 < OO}

where S’(R"~!) denotes the space of Schwartz’s tempered distributions and fdenotes the Fourier trans-
form of f, see e.g. [1, Section 1.3]. Unfortunately, the space H> (R"~1) is complete if and only if n > 3.
Thus, we assume that n > 3 when the H ~2 norm appears. The basic idea to establish Lemma 3 is as
follows. The L estimate of w-n follows directly from the trace theorem established in [13, Theorem 22].
For the H~2 estimate for w - n, we split the boundary into the straight part and the curved part. Since
we have the L estimate for w - n and the curved part is compact, the contribution in the H~ 2 estimate
for w-n that comes from the curved part can be estimated by the L> norm of w - n. For the contribution
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in the H 2 estimate of w - n that comes from the straight part, we invoke the H~% estimate of w - n in
the case of the half space. We finally need the estimate for the Neumann problem.

Lemma 4 (Estimate for the Neumann problem). Let R} be a perturbed C? half space of type (K) that
has small perturbation with n > 3. Let R, be the reach of I' = OR}'. For any g € L>=(T')N H~=2(T), there
exists a unique (up to constant) solution u € L}, (R]!) to the Neumann problem

Au=0 1in Ry,

o 2

8711; =g on T (2)
such that the operator g — w is linear. Moreover, there exists a constant C = C(K, Ry, R) > 0 such
that

[Vl < Cllgll

vBMOL? (Ry) = Leo(T)NH 2 (T)’

To establish Lemma 4, the basic strategy is the same as in [14], we firstly show that

[VE « (5F DI, srrow (rp)

can be controlled for any g € L>(T') N H~2 (") where
Ex(ér @ g)(z /Em— dH" (y), xR}

represents the single layer potential for g. Since the boundary I' = OR} is curved and not compact,
we appeal a perturbation argument. For g € L>°(T"), we decompose g into the curved part g; and the
straight part go by setting g1 (', h(y)) := leR (0')( Ng(y',h(y")) for y € R"~ and g; := g — g1, where
1’32Rh(0,) represents the characteristic function for the open ball Bag, (0’) in R"~!. Since g, vanishes in
the curved part of ', we can define g& € L®(R"1) N H~2(R""1) by setting gZ (y/,0) = gy (v, h(y))
for any ' € R"~!. Note that

+ (60 ® g) (2) = E + (Somry ® 04! (2)

for any € R™. By setting ¢&" (3/,yn) := ¢4 (¥/,0) for any (3/,yn) € R™, we can deduce the BMO
estimate of VE x (6p ® gz) by applying the L — BMO estimate for singular integral operator [19,
Theorem 4.2.7] to VO, E * 1Rig§". Since g1 (.’7 h(.’)) is compactly supported in R»™!, we may extend
g1 to some gf . € L*(R") such that g{ . is compactly supported and Vd - Vgf . = 0 within a small
neighborhood of I'. Then, we can rewrite VFE * (5p ® gl) as

VE * (6r ® g1) = Vdiv (E * (¢5 . 1rp Vd)) — VE * (1rp 95 fo,p0 /) (3)

with some compactly supported continuous function fy ,, /4 (see Proof of Lemma 25 (i)) that is indepen-
dent of g. The BMO estimate for the first term on the right hand side of (3) can be controlled using the
L — BMO estimate for singular integration operator. The second term on the right hand side of (3) can
be controlled by the L> norm as VE(z) is a locally integrable kernel and fy ,, /4 has compact support.
We thus obtain the BMO estimate for VE * (ép ® g) for g € L>=(T).

For the b” estimate of the normal component of VE * (6p ® g) with g € L>=(T') N H~3(T), we also
decompose g into the curved part g; and the straight part go. It is possible to show that

oF _
sup [ |95 (o] a0 < o 0
xerRO" r|jon

Y

where I‘};;" :={z € Q]d(z) < po} denotes the po-neighborhood of I" in €. Since g1 (', A(-")) is compactly
supported in R"~!, estimate (4) allows us to show that

|Vd(x) - V(B * (6r ® 91)) ()] < Cllgllz=(ry

T Birkhauser
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for any z € I‘ﬁ" with some constant C' = C (K, Ry, R.) > 0. On the other hand, for z close to the curved
part of I, Vd(x) is not necessarily (0,...,0,1), in this case

Vd(z) - V(B + (0r ® g2)) ()]

would contain contributions from V' (E * (0r ® g2)), which cannot be estimated by the L> bound of g,
(see Proposition 26). As a result, we introduce the H~2 bound of go. Since g2(-/,h("")) is supported in
Bog, (0V)¢, Vd(z) - VE(x — ') can be viewed as an element of Hz(T') for any z close to the curved part
of I'. Hence, by the H 3 _ M duality we can deduce that

V() - V(B * (6r @ 92)) (2)| < Cllgll -3

with some constant C' = C(K, Ry, R.) > 0. We thus obtain an L estimate for the normal component
of VE % (6p ® g) within a small neighborhood of I'. The b estimate naturally follows.
For g € L>(I') N H~2(T'), we prove that the trace of
oE
(Qg)(x) =

T 3nx

n

(z—y)g(y) dH" ' (y), x €T},

is of the form
1
¥(Qg) (', h(a")) = 59(2’, h(z")) = (S9) (', h(a)),
where S : L>®°(I') N H~2(I') — L=(I') N H~2(I) is a bounded linear operator satisfying

HS”LO@(F)OH’%(F)HLOO(F)QH’%(F)
< C m)Co() FHCLR) (Ce(h) + Coa(h) + R)
with C*(n) denoting a specific fixed constant which depends on dimension n only. Therefore, if R} is a

perturbed C? half space that has smal} perturbation with n =3, the inverse of I — 2S5 is well-defined as
a bounded linear map from L>(I') N H~2(T') to L>°(I') N H~2(T') by the Neumann series
(I-28)"1 =) (29)".

=0

The solution to the Neumann problem (2) is formally given by
u(z) = E % (5F ® (201 - 25)*19))@;), z R}

We finally need the L2 estimate for Vu in Ry In the case of the half space, for g € H~2(R"1),
the single layer potential E % (68R1 ® g) is exactly half of the solution u to the Neumann problem. By
directly considering the partial Fourier transform of E(z’, z,) with respect to 2/, we could easily deduce
that

HVUHL%RZL) = QHVE * (66R1 ®g) HL2(R1) = C(n)HgHH—%(Rn—1)'

In the case that R} is a perturbed C? half space with n > 3, for g € L (I‘)OH_% (T), we still decompose g
into the curved part g; and the straight part go. Since L= (T") is continuously embedded in H= (T") and
the curved part g has compact support in I', g € L>°(T") would imply that both g1, g2 € L™ (F)QH*% (T).
Since for any x € R™ we have that

VE % (6r @ g2)(z) = VE * (581{1 ® ng)(l“)

and for any « = (2, x,) € R/} we have that

‘VE * (53R1 ® gf) (', —x)

= ‘VE * (5@1{1 ®g§{)($',$n)

)
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the L? estimate of VE * (6p ® gg) in R™ follows from the L? estimate of VE (53R1 ® gf) in R%, ie.,
we have that

|V E « (or ®g2)HL2(R" =2[|VE « ( (domr ® g2 )HL2 (R7)

< C(K,Rp) HQHLOO(F NI~3([T)

For the curved part g1, we recall the argument which establishes the v BM O norm for V E* (5p ® g). We
extend g1 to g7 . € L>°(R") and consider equation (3). Since V div £ is L? integrable for any 1 < p < oo,
see e.g. [18, Theorem 5.2.7 and Theorem 5.2.10], the L? norm of the first term on the right hand side of
(3) can be estimated by the L*> norm of g. Whereas VE(z) is an integration kernel that is dominated by
a constant multiple of |#|~(»~1) by the famous Hardy-Littlewood-Sobolev inequality [1, Theorem 1.7],
we can also control the L? norm of the second term on the right hand side of (3) by the L° norm of
g. Combine with the L? estimate for the contribution from the straight part go, we finally obtain our
desired L? estimate

90l ) < OO B R =28) 01,0
< C(K, Bus RN e i3 )
for g € L>(I') N H~2(T). This completes the proof of Lemma 4.

When taking the normal trace and solving the Neumann problem, the reason why we need to require
the dimension n to be greater than or equal to 3 is because when n > 3, we indeed have the fact that
Hz(R" 1) is continuously embedded in L%(R"_l) and H™2 (R"‘l) is the dual space of Hz(R"1),
which further implies that L*% (R"1) is continuously embedded in H~z (R"~!). Based on these facts,
we can show that in the case of any perturbed C? half space R} with boundary I' = OR}!, H (R" b
is isomorphic to H=(T') and H =z (R"1) is isomorphic to H ’%(F). More importantly, we can estimate
the H~2 norm of the trace operator S by its L% norm and do cut-offs to boundary data g € L mn
H==(T) to decompo&e it into the curved part 91 and the straight part go. In the case Where n = 2,
the space Hz (R) is no longer complete and H~2(R) is not necessarily the dual space of Hz(R). The
completion of H 3 (R) cannot be embedded in the space of Schwartz’s tempered distributions. Moreover,
as a limit case, H: (R) is not continuously embedded in L>°(R). As a result, at the present we lack of tools
to estimate the H—2 norm of the trace operator S and we cannot do cut-offs to decompose a boundary
data into the curved part and the straight part any more. This is why we focus on the case where the
dimension n > 3 in this paper. The problem of Hz (R) is similar to H*(R2). The space H!(R2) is not
complete. Its completion should be the quotient space {u € L} (R?)|Vu € L?(R?)"}/R as discussed in
[11] since H'(R?) includes all smooth compactly supported functions. We have to study an appropriate
dual space as in [16].

This paper is organized as follows. In Sect. 2, we recall results from [21] to localize the problem and
results from [14] to construct a suitable volume potential corresponding to divv. Theorem 2 is proved
in this section. In Sect. 3, we take the normal trace in H ~2 sense by considering isomorphisms between
H~2(I") and H~2(R"!). In Sect. 4, we establish estimates for the trace operator S of Qg. We show that
S is bounded from L N H~z to L> N H~2. In Sect. 5, we solve Neumann problem (2) by considering
the single layer potential with 2(1 —2S5)~!g and establish the vBMOL? estimate for its gradient in R}.

loc

2. Volume Potential Construction in a Uniformly C® Domain
For v € vBMOL?(S2), we shall construct a suitable potential ¢; so that v — Vg is a bounded linear
operator in vBMOL?(Q) as stated in Theorem 2. The construction in the case where (2 is a uniformly

C3 domain basically follows from the theory in [14], where € is a bounded C® domain.

T Birkhauser
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2.1. Localization Tools

Let us recall some uniform estimates established in [21]. Let Q be a uniformly C* domain in R" with
k€ N and n > 2. Let I' = 99 denotes the boundary of domain 2. There exists «, 3 > 0 such that
for each zp € T, up to translation and rotation, there exists a function h,, € C* (BQ(O’))7 where B, (0)
denotes the open ball in R™~! of radius o with center 0, that satisfies the following properties:

(i)

K := sup |[(V’ ) <oo; V'h,(0)=0, h,(0)=0,
0<s<k

) hZo ||L°° (BQ(O/)

(i) QN Ua,p,h.,(20) = {(x',xn) eR"

B (@) < Ty < hyy (&) + 8, |2] < a} where

Ua p.h., (20) := {(m',xn) N

hao(2') — B < @y < hyy(2') + B, |2'] < oz}7

(iil) I'NUa,,h.,(20) = {(x’,xn) eR" |z,

= h,(2'), |2/ < a}.

We say that Q is of type (a, 3, K).
Let d denote the signed distance function from I' which is defined by

inf |2 — y| for z € ,
yel

dlz) =47 inflx —y| forax¢Q (5)
yel

so that d(z) = dr(z) for x € Q. For a uniformly C* domain Q, there is R® > 0 such that for z € Q
with |d(z)| < R%, there is a unique point 7z € I such that |z — 7| = |d(z)|. The supremum of such
R% is called the reach of T in €, we denote this supremum by R®. Let Q° be the complement of Q in
R™. Similarly, there is R®*" > 0 such that for 2 € Q° with |d(z)| < R®", we can also find a unique point
mx € T such that |z — 72| = |d(z)|. The supremum of such R is called the reach of T in Q°, we denote
this supremum by R®*. We then define

R, :=min (R?, R?C) ,
which we call it the reach of I'. Moreover, d is C* in the p-neighborhood of T' for any p € (0, R,), i.e
deCk (1"5””) for any p € (0, R,) with

I‘?n = {x ceR"

|d(z)] < p};

see e.g. [20, Chap. 14, Appendix], [24, Section 4.4].
There exists 0 < pg < min (oz7 s, %, m) such that for every zg € I,

U,(20) := {:17 eR"

()’ € B,(0)), |d(@)] < p}

is contained in the coordinate chart Uy g5, (20) for any p < pg. For zg € T', the normal coordinate change

Foy V= B,y (0") X (=po, po) — Up,(20) is defined by
_ 0 +0u(Vid) (0, hay (1))
r=F,(n) = {h (1) + 0 (0, d) (ﬂ’»hz(, ) (6)

or shortly
x =7z —d(z)n(rz), n(rz)=-Vd(rz).

) Birkhauser
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Note that that for any 29 € T', F, is indeed a C'-diffeomorphism between V,; and U,,(zp). For any
€ (0,1), there exists a constant c§, := C(e, K, po) > 0 and ¢, < po such that for any p € (0,c5] and
zp € T', the estimates

HVFZO _I”Loo(vp) < g, ||VFZ_01 _I||L°O(U,,(z0)) <€ (7)
hold simultaneously, see [21, Proposition 3].
For p € (0, p9/2), there exist a countable family of points in ', say Pr := {x; € T' | i € N}, such that
Y = | Up:).
;€S

Moreover, there exists a natural number N, = C(n) such that for any x; € Pr, there exist at most N,
points in Pr, say {z;,,..., %y, } C Pr, with

Up(:) NUp(s,) # 0
for each 1 <1 < N,, see e.g. [21, Proposition 5]. Based on this open cover, a partition of unity for Fr};{"

can be constructed. There exist ¢; € C! (Up(mi)) for each x; € Pr and a constant C'(N,,n,p) > 0 such
that
0<¢; <1 forany i€ N,

supp (i 0 Fi,)(',nn) C Bp(0) for any 7, € (—p,p) and i€ N,
Z pi(z) =1 forany x € F,l}n» Séle HV%HLOO(F}}") < C(Ns,n, p);
i=1 ¢

see e.g. [21, Proposition 6].

2.2. Cut-Off and Extension

In this subsection, we assume that Q C R" is a uniformly C? domain of type (o, 3, K) with n > 2. Let
p € (0,p0/2). For a function f defined in 1"5" N 2, we define feyen to be the even extension of f to 1"5"
with respect to the boundary T, i.e.,

feven (2 + d(z)n(rz)) := f(rz — d(z)n(rz)) for =z € I‘?n \Q
and fyqq to be the odd extension of f to I‘E‘n with respect to the boundary T, i.e.,
foda (72 + d(z)n(nz)) == —f (72 — d(z)n(rz)) for zeTR\Q.
For 2 € 'R", we further define that
P(z) := Vd(rz) @ Vd(rz) = n(nz) @ n(rz), Q(z):=1— P(x).

It is not hard to see that P(z) represents the normal projection to the direction Vd whereas Q(x)
represents the tangential projection to the direction Vd. For v € vBMOL?(Q) with suppv C F?n nQ,
we define ¥ to be its extension of the form

0(x) = (Pvoda)(z) + (QVeven) () 9)
for x € F}}n. Since suppv C I‘f}n, v can be viewed as being defined in R"™ with v(z) = 0 for any
z € RMIR".

Proposition 5 ([21]). Let Q C R™ be a uniformly C? domain of type (o, 3, K) with n > 2. Let ¢ € (0,1).
For any p € (0,c5,/2], there exists a constant C = C(«, 8, K, p) > 0 such that estimates
[Vevenll BMOL2(R7) < Cllv|l0BMOL2(Q)s
Vd - voadll Bmror2 ey + [Vd - vodd]or(ry < Cllvllosarorz (o)
hold for all v € vBMOL?(SY) with suppv C F?n and v > 0.
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Actually, we could achieve more than Proposition 5. We consider a cut off function 6 € C°(R) such
that 0 <6 <1,0(¢t) =1 for any 0 < |t| < 1/2 and 6(t) = 0 for any || > 3/4. Suppose that ¢ € (0,1) and
p € (0,¢5/2]. We set 6, := 0(d(x)/p). An easy check tells us that 6, € CZ(R™) with supp6, € 'R" and
O,(x) =1for x € I‘?/;. Within this paper, for any subset D C R"™ we denote rp to be the restriction

operator in D. For v € vBMOL?*(2), we let vy := (rqf,)v and v; := v — vo. We extend vy to T3 in
the same way as (9) in which the normal component of T3 is odd with respect to I' and the tangential
component of 73 is even with respect to I, i.e., we set

Vg 1= P(U2)odd + Q(UQ)even-
By [21, Theorem 1], we see that 7 := 73 + v1 is a linear extension of v to R™ which satisfies
17l Brmrorz@®ny + [Vd - 0lyee vy < Cllvllupmorz )

with some C' = C(a, 3, K,p) > 0. In general, multiplication by a smooth function is not bounded in
BMO®> (). However, since we have a bounded linear extension from vBMOL?(2) to BMOL?(R™),
such multiplication is bounded in vBMOL?(Q). Since py depends on «, 3, K and the reach R,, by fixing
an arbitrary € € (0,1) and an arbitrary p € (0, c5 /2], we can deduce the following multiplication rule.

Proposition 6 ([21]). Let Q C R" be a uniformly C? domain of type (a, 3, K) withn > 2. Let ¢ € C7(Q)
with vy € (0,1). For each v € vBMOL?(Q), the function pv € vBMOL?(Q) satisfies

levllvsrmorz) < Cllellor@llvllerorz @)
with some constant C = C(«, B, K, R.) > 0 where R, represents the reach of T.

2.3. Decomposition of Volume Potential Corresponding to v

In this subsection, we assume that  C R is a uniformly C® domain of type («a, 3, K) with n > 2. Let us
recall some results that have already been established in [14]. There exists a constant p, = C(pg, K) > 0
such that all theories in this subsection hold for every p € (0, p]. Let p € (0, p,] and 6, be the cut-off
function defined in Sect. 2.2. Since now we assume that I' is uniformly C?, in this case 6, € C3(R")
with suppd, C I‘f}n and ¢, = 1 for any x € I‘i‘/;. Still, for v € vBMOL?(Q) we set vy := (rqf,)v and
v1 := v — v9. By Proposition 6, we see that vy, v, € vBMOL?(Q) satisfying

villoBarorz() + llvalloBrmorz ) < Cllvllvmor )

with some constant C' = C(«, 3, K, p) > 0.

To construct the mapping v +— ¢; in Theorem 2, we localize v by using the partition of the unity
{pi}52, associated with the covering {U,;}2; of Ff}n. Here for each ¢ € N, U, ; denotes U,(z;) with
x; € Pr. The corresponding volume potential to v; can be estimated directly.

Proposition 7. There exists a constant C(p) > 0 such that
IVaillsrorz@ny < Clp)llvllvpror )
qu%HLOO(I‘/f‘/Z) < C(p)lvlloBrmorz ()
for ¢} = E *div vy and v € vBMOL?*(Q). In particular,
[VquV(I‘) < Cp)lvllvpmorz(e)
for any v < p/4.
Proof. By the BMO-BMO estimate [9] and Proposition 6, we have the estimate

[VQHBMO(W,) < O[Ul]BMO(R") < C(p)HUHvBMOLZ(Q)-

) Birkhauser
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Consider z € I‘?;:L. Since Vgi is harmonic in I‘f};; and Be (x) C 1"5;2, the mean value property for
harmonic functions implies that

Vai(z) = — Vi (y) dy,
P B/i (z)
i.e., we can estimate |Vq{ (x)| by C(p)||Vqi | p2(mn)- Since the convolution with V?E is bounded in L? for
any 1 < p < oo, see e.g. [18, Theorem 5.2.7 and Theorem 5.2.10], we have that
IVaillzz@n) < Cllvillzegny < Cllvllz2 ey

Therefore, the estimate

Vg ()] < Clp)lvlluprmorz@)

R"

holds for any x € I‘p/4. (]

For i € N, we extend (rqog;)vs as in Proposition 5 to get (rop;)ve and set

oo

U2 = Z (rag;)ve.

i=1
Indeed, this extension is independent of the choice of {¢;}$2; as long as {¢;}32, is a partition of unity
for F?n. We next set

@tan = Q@ = Z Q ((TQ@i)even(UQ)even)-

i=1
For i € N, we have that p; € C?(U, ;) as in this case I' is of regularity uniformly C®. For simplicity of
notation, we denote (70®i)even(V2)even by v2,;. By Proposition 5 and 6, we can easily deduce that for any
i € N, va; € BMOL?(R"™) with suppvs; C U, satisfying the estimate

lv2,ill Bmorzmey < Clp)lvasill 5,02 (r=) < Clo, B, K, p)lvllvsmorz () (10)

We further denote Q vo; by wi*®. Now, we are ready to construct the suitable potential corresponding
to

00 00
—tan ,__ tan __
Vg M= E w; " = E Qua;.
i=1 1=1
tan tan

Proposition 8 ([14]). For every i € N, there exist bounded linear operators v — p;* and v — pi%
from vBMOL?(Q) to L>=(R™) such that

—ApP™ = divwi™ in Usp,; N
with i = piA" + piy', supp pi C Uy ;. Moreover, there exists a constant C = C(K, p) > 0 such that
1955 pnrone < Clenalsssonscuey
IVPIE | Loy < C 102l o)
ze?,llr)@fn /Br(z) [Vd - V™| dy < Cllvzill pasorzmny

with some p > n.

Having the estimate for the volume potential near the boundary regarding its tangential component,
we are left to handle the contribution from 73" := T3 — T3'**. We note that 73"°* admits decomposition

Enor = ZP ((TQQ@i)even(vQ)Odd)'

i=1

T Birkhauser
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For simplicity of notations, for every ¢ € N we denote Vd - ((rgwi)even(vg)odd) by f2. In this case, for
any i € N we have that fo; € BMOL?*(R™) with supp fo; C U, ; satisfying the estimate

1f2ill Brorz@m) < COf2ill 5oy (rar) < Cle, B, K, p)l[vllvyor> @)
P

We further denote f>;Vd by w°". With a similar idea of proof, we can establish the suitable potential
corresponding to T3"°".

r

Proposition 9 ([14]). For every i € N, there exist bounded linear operators v — pi'q
from vBMOL?(Q) to L>=(R") such that

—Apit =divw;" in U, NQ
nor . nor

=pi1 TP, supppiy C Usp,i. Moreover, there exists a constant C' = C(K,p) > 0 such that

and v — PPy

with p;

IVPiSllBaorzmny < CllfaillBror2rn,
VPP lLe@ny < Cllf2,ille®n),
sup 7‘7”/ |Vd - Vpi|dy < 0Hf2,i||BMOL2(Rn)
zel', r<p B, (x)
with some p > n.
Remark 10. Specifically speaking, Proposition 8 is indeed [14, Proposition 4] whose proof is in [14, Section
3.4], Proposition 9 is indeed [14, Proposition 5] whose proof is in [14, Section 3.5]. For Proposition 8, in
the local normal coordinate system at x; € Pr, pta“ is constructed as
F, N (pi) = —=0A7 (I — BA™Y) 7'V, Fo (va,),
A=-0, B= ) 0y (bi;0)0y,
1<i,j<n—1
with 6 denoting some cut-off function in Vi, and Fy, : V,,, — Up,,(x;) is the normal coordinate change in
Uy, (). Since 9,, A=19,), is bounded in BMO [9] and in L? (1 < p < oc) for any k,£ = 1,2,...,n, see e.g.
[19 Theorem 5.2.7 and Theorem 5.2.10], the BMO N L? norm of Vpﬁ“ is controlled by the BMO N L?
norm of v ;. On the other hand, ]0tan is constructed as the convolution of the Newton potential E with

some function of vs ;, we can directly estimate the L norm for tha“ by Holder’s inequality as VE is
locally LP-integrable for p sufﬁmently close to 1. Similarly, for Proposmon 9, pi9" is constructed as

L) = = BATN 0, FL (),
A=-A,, B= Z 8”i(bij9)anj
1<i,j<n—1

and p}'9" is constructed as the convolution of the Newton potential E with some function of f3;. The

BMO N L? estimate for Vp;9" and the L™ estimate for Vpj'§' can be derived by exactly the same
argument as in Proposition 8. The reason why statements of Propositions 8 and 9 look different from
[14, Proposition 4] and [14, Proposition 5] is because in the case that Q is a bounded C® domain, the
space vBMO(Q) is continuously embedded in L'(Q)". By the BMO — L' interpolation inequality, the
LP norm of vy ; and f2; can be controlled by their vBMO norm for any 1 < p < oo, see e.g. [5, Lemma
5], [23, Theorem 2.2]. If Q is a general uniformly C® domain, then it is not necessary that v BM0°>°(Q)
is continuously embedded in L'()". This is why we state Propositions 8 and 9 in a different form from
[14].

2.4. Volume Potential Corresponding to v

We admit Propositions 8 and 9. The corresponding volume potential to vs can be constructed by summing
up the cut-off of pf*™ and pP°" to Us,,; for all i. We define Qr :={U,; |x; € Pr}.
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Proof of Theorem 2. Let i € N. We firstly consider the contribution from the tangential part. Since T’
is uniformly C3, there exists a cut-off function 6; € C?(Us,;) such that §; = 1in U,;, 0 < 6; < 1 and
moreover, the estimate

16:llc2(s,.) < Clp)
holds for some constant C(p) > 0 independent of . We next set
a1y = 0ip™ + E x (py*" A0; + 2V0; - V") .
Note that Proposition 8 ensures that
—AG = —AGipi™) + pttAG; + 2V - Vit = 6; divwi™® = div w™

in  as supp wi*® C U, ;. We define that

tan . tan
Zq -

Since supppgflln C Uy,,; for all 4, by Proposition 8 we have that

ZHV P ey < 30 CE (1P ] e, + 1995 2o )
i=1

<K, p) Y llvaillaw, -

i=1

Since our partition of unity for I‘}}" is locally finite, see Sect. 2.1, we can deduce that

Z [v2,illL2(v,..) < N H(vz)even||L2(FRn) < 8N, |lvallz2(9) < 8N«|lvllL2 (o),
i=1

where N, is the constant which characterizes the local finiteness of Qr in the sense that any element of
Or can intersect for at most N, other elements of Qp. Suppose that B is a ball of radius r(B) < p. If B
does not intersect IS, , then

51 L[908 = (V0a1) 5] dy =0

for each @ € N. If B intersects F2p , then B intersects at most IV, neighborhoods of {Us,(z;)|x; € Pr},
see [21, Lemma 11]. Hence in this case, we have that

(Oipi) — (ZV Jﬁ“{‘) dy
B

N.
< Z[V(9up§?ﬁ)]BM0(Rn)
=1

(HpgﬂHLw(ng,ie) + HVpEjSHBMOL%R”))

Mz

—1
N.

< C(K,p) Z HU2,iz||BMOL2(R") :
—

Hence, by estimate (10) we deduce that
Z V(azpzafl)

i=1

< C(a, B, K, p)|vllvBrrorz(o)-
BMOL?(R")

T Birkhauser
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Note that supp szfg“ C Uyp,; for any i« € N and for every x € I‘QR;, z belongs to at most IV, elements
of Qr. By Proposition 8 again we can deduce that

{Z V( zp:a2n

tan

1p12

] BMO(R™) L= (Uzp,i)

< C(K, P)N* SUNP lva,ill BarOL2 (R -
1€

In addition, as

an 1 an
IV @i )2 me)y < 1U2pal2 [V (00| Lo rmy < Cp)l[v2ill 1o (m)

with some p > n, by the BMO — L? interpolation inequality we have that

tan

(Oipis') < ZIIV 0ipis) L2y < Clp ZHU22HLP(R")

L2(R™) i=1
S C( )N*||(U2)evenHLP(R") < O(p)N*||(U2)even||BMOL2(R")-
Hence, by Proposition 5 we obtain that

(0ipi™) Cla, B, K, p)llvllvprmorz()- (11)
BMOL2(R™)
Let ffan = ptan A@; + 2V 0, - Vpi*. Since supp ff** C Us, ;, we have that
1
(Kl V2N 2L 2, -

By the same argument above which proves the estimate (11), we can show that

o0 o
[Zf;ﬂ S g < Cla B K p)ollusarors@.
i=1 BMO(R"™) ;=1

By the BMO — L' interpolation (cf. [5, Lemma 5]), we see that the estimate
oo 00 s

Z fran Z fran [Z ftan]
i=1 i=1

> g
i=1

holds for any 1 < s < co. Since VE is in L?’ (Bgp(0)) for any 1 < p’ < n/(n— 1), it follows that

v (3o < Z o

=1

Ls(R™) L'(R BMO(R™)

BMOL!(R"™)

sup
zERN

Lr(R™)

for all p > n. Thus, we have that

oo ()

i=1

Cla, B, K, p)l|vllvBrmor (-

L>(R"™)
Since the convolution kernel VE(z) is dominated by a constant multiple of |z|~ ("1
Hardy-Littlewood—Sobolev inequality, see e.g. [1, Theorem 1.7], we deduce that

for- ($5) 5

=1 =1

, by the well-known

< C(n)

2n :
L2 (Rn) L n+2 (Rn)
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Hence by estimate (12), we see that

o ()

Combine with estimate (11), we finally obtain that

< C(a,B, K, p)|[vllvsrmor (-
BMOL?(R™)

V& Emorz@me) < Cla, B, K, p)|vlloprorz(a)-

tan

By Proposition 8, the control on the boundary with respect to ¢}*" is estimated by

sup 7"7”/ Vd - Vfﬁan| dy < C(K,p)N, sup ||v2,1'||vBMOL2(Q)
zel, r<p B, (x) i€EN

< C(o, 8, K, p)|vlloBrmorz (o)

as the partition OQr is a locally finite open cover of Fff”.

For the contribution coming from the normal component, we set in a similar way that
ary = 0ip}" + E x (pi7"Ab; + 2V0; - Vpi')

(2 3

and
oo
nor ,__ nor
q = E ay; -
i=1

By making use of Proposition 9 and repeating the whole argument above that treats the case for ¢i*",
we can prove that

quilorHBMOL%R") +[Vd- Vqlfor]bp(r) <C(a, B, K, P)||”HvBMOL2(Q)
in the same way. Then the volume potential ¢; corresponding to v can be constructed as
@ = g1 + g™t +

where ¢l is the volume potential defined in Proposition 7 corresponding to v;. By our construction, it
can be easily seen that

_AQI _ —Aq} _ Aqgan _ AQilor
oo o0
=divu; + Z divw™ + Z div w}"

i=1 i=1
= div(vy + vg) = divw

in Q. We are done. O

3. Normal Trace for a L? Vector Field with Bounded Mean Oscillation

Let R? be a perturbed C?** half space of type (K) with x € (0,1) and n > 3. Let R, > 0 denote the
reach of boundary I' = OR}'. We have already shown that there exists a constant C' = C(«, 8, K, R,) > 0
such that the estimate

lw -l per) < C||w||vBMOL2(Rz,)

holds for any w € vBMOL? (Rﬁ), see [13, Theorem 22]. In this section, we would like to further estimate

the H~2 norm of the normal trace of v on I for w € vBMOL? (Ry).
For simplicity of notations, from now on we define that for any ¢ > 0,

Br(6) :={z €T ||2'| < b}, Br(6)°:={z el||z'| >}

T Birkhauser
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and As to be the surface area of Bf-(4), i.e.,

As = / LdH" (y) = / (1+ |V'h(y')|2)% dy'.
Br.(9) ly’|<é

Moreover, for h € CH(R™™1), we define the constant Cs(h) := 1+ ||h[|c1mn-1).

3.1. Isomorphism Between H = (R"~1) and H3 ()

We would like to firstly give a characterization to the homogeneous fractional Sobolev space H %(R"’l)
before we define Hz(I'). Let us recall that if f € Hz(R™ 1), then f € L} (R"1) and the Gagliardo

seminorm
N2
[f (y)‘ dx/dy/<00.
113 (R Ro-t Jroct =yt

More precisely, if f € HE(R"_l)7 then it holds that

with some constant C'(n) that depends only on dimension n; see e.g. [1, Proposition 1.37]. However, the

finiteness of the Gagliardo seminorm [f] . 1 does not imply that f € H B (R"~1). Constant functions

HZ (Rm-1)
in R"~! are typical counterexamples. Since we are considering the case where n > 3, we have a very
. 2n—2
important property that H %(R"_l) can be continuously embedded in L™==2 (R"1), i.e., there exists a

constant C'(n) > 0 such that the estimate

holds for any f € Hz(R™ 1), see e.g. [1, Theorem 1.38]. As a result, we expect that H2z(R"™!) can be
identified with the space

GHRY) = {f e LT R | 1] gy < )

< L1
2 ey S COM g s (13

Fortunately, this expectation is indeed true. The Gagliardo seminorm [-] . 1 turns out to be a

H?2 (Rn—l)
norm on G2 (R™1). The space G2 (R"1) is complete with norm HH%(R"*U and it contains C2°(R"1)

as a dense subspace; see [6, Theorem 3.1]. Since C°(R"') ¢ Hz(R™!), we see that ||fHH2 Re1)
and [f]H%(Rn,l) are equivalent for any f € C2°(R"1). Hence, the space Gz (R"!) coincide with the

completion of C2°(R"~!) in norm || - ||H%(Rn71)’ i.e., it holds that

H*(R"™) =GR,

The reason why the completion of C>°(R"~!) in norm | - HH%(Rn—l) is indeed H2(R"!) is as follows.
For p > 0, we can construct a cut-off function 65, € C2°(R"~!) such that 0 < 6, <1in R"', 65, = 1in
B,(0) and 65, = 0 in B2,(0’)°. We note that for any f € S(R"~!) where S(R"~!) denotes the Schwartz

space, 02, f converges to f in norm ||- ||H 3(mno1y 3P 0O (This claim will be established within the proof

of Proposition 17 which appears later in Sect. 3.3). Therefore, by recalling that the space Sop(R"™ 1) is
dense in H2(R" 1) where So(R"!) denotes the subspace of S(R™!) whose Fourier transform vanishes
near the origin, see e.g. [1, Proposition 1.35], we can deduce that

HYRY) = Co@n 1) b mnen
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With respect to a function f defined on R"~!, we could define a corresponding function f* that is
defined on I" by setting

fh(y/7h(y/)) = f(y"), forall 3 € R" %

Let the mapping f +— f" be denoted by Tj, i.e., f* = T}, (f). Since it is not that natural to consider
the Fourier transform on a surface, we follow the characterization of H %(R”’l) above to define the
homogeneous fractional Sobolev space Hz (T'). We say that f* € H=(T') if f* € LW (T") satisfies

[ () *// 6 |$—y|n

The space H2 (T") is a Banach space (actually Hilbert space) equipped with the norm HH%(F)' Without

to denote [']H%(F)' Finally, we would

2
)] dH"H(z) dH" ! (y) < .

causing any ambiguity, we simply use the norm notation || - ||H 1)
like to note that

—2 NGRS S T
= (L4 |VR(y)[7)* dy

s(h)#== 2Hf||

<
= () = (R"— 1)

f 2n—2 < (/ f y' 2
191, 32 o RM| W)
= /"l =

ie., f€ L%(Rn_l) if and only if f* € L%(I’).
Lemma 11. The mapping Ty, : Hz (R"™) — Hz(T') is an isomorphism.

Proof. Let f € Hz(R™1). We naturally have that

// e Ix—yl”
hx — f(y, /
/m 1/Rw 1 o (' iLy’)/i( { (h(y}f)()r)l)'

><(1+|Vh(m)| V(1 + [V'h(y)?)? da’ dy

/m 1/Rm|f ,ﬁn)'Qd a.

Hence, the Hz (') estimate for f reads as

’ 2

dH" ! (z) A" (y)

2

h
173 oy < ColBI g3 sy (14)

Let f" € H=(T). With respect to f", we define that f(y') := f"(y',h(y’)) for any y € R"~'. By
the mean value theorem, we see that the estimate [h(2") — h(y')| < [|[V'h|[pogn—1)[7" — 3’| holds for any
2,y € R""1. As a result, for any x,y € I we have that

1 Cy(h) Cs(h)
< = .
2" —y'| = (&' =y W) —h(y))| |z -yl
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Hence, we deduce that

2
/ / —,(i)‘dx’dy’
Rn—1 JRn-1 Y|
|fhx ha) = "y l’h(yl)>‘2 i) ?)E
/R,L 1/th 1 x _y/ h( ) h(y’))|n (1+|V h( )’ )
x (1+[V'h(y |)2dwdy

// 0 Ix—yl”

113 g sy < COOCBYE N (15)

| 2

dH" " (x) dH" " (y).

Therefore, we obtain that

As an application of Lemma 11, we have the following embedding result.
Corollary 12. Hz(T) is continuously embedded in L%(F),

h rl —1/rh . Ll n—1\ . . 2n—2 ne1
Proof. Let f* € H2(I") and f =T, ~(f"). Since H2(R"™") is continuously embedded in L™»=2 (R"'),
by estimate (15) we see that
£ g < OS] g < COICDF5 S s

L n=2(T") Ln=2 (R*1)

< Cn)C,(h) 53 2||fh||H2(F)

3.2. Isomorphism Between H —2 (R™*~1) and H—3 ()

Let us further recall that a tempered distribution g is said to belong to the homogeneous Sobolev space
H—2(R" V) ifge L] (R"') satisfies

2 — 1
19, s ey = [ €GO a8 < .
Since 1 < 251 for all n > 3, H~3(R™ ') is characterized as the dual space of Hz(R"1), i.e., it holds
that

sup

1 <1
H2 (R~ 1)

/ g W) dy’
R'n,—l

191 s, =
see e.g. [1, Proposition 1.36]. In order to establish an isomorphism between the dual spaces of H z (R™1)
and Hz(I'), we need the following multiplication rule for Hz (R"1).

Proposition 13. Let p > 0 and ¢ € CY(R"~ 1) satisfies that ¢ is identically a constant in B,(0")¢. Then
for any f € Hz(R™™Y), we have that (f € H2(R"™) satisfying

168153 sy < COD (ISl + 1T Cl o)L 3 g

) Birkhauser
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Proof. Let f € Hz(R™1). For 2/, € R"!, by the triangle inequality we see that
@) F ") = ¢ G < 2w sy 1 @) = SO 2116 = I

Since ¢ is identically a constant in B,(0')¢, it is sufficient to estimate

2
[ s M ZEDE
5,00 Sy T Tl
n2 16 — <)
—d dy’
+/B2p(o'>c/ (0) 7=l \x' /|n T ay

Ba (07) sz(o' | y|

For |2'| > 2p and |y| < p, we have that |2’ — y'| > |2/| — p. Hence, by Hoélder’s inequality and the
2n

embedding of H2(R"!) in L7~ = (R"1), see estimate (13), we deduce that

n—2

on—2 n—1
I < C(n)p" 7 HIC T oo (1) (/ [f(D) " dfﬂ)
B2/J(0')C

_1
1 n—1
X — —d’
(/BW)C (] — oy )

n—2 .00 i
2 __r
L2::22 (Rn-1) (;A rn272n+2+i d?”)
< C)ICIIZ 0 a1y IF12, 4

H2(R77. 1)

n—1

< C(n)p" I 2o o) I £

Similarly, for |y’| > 2p and |2'| < p, we also have that |2/ — /| > |¢/| — p. By Holder’s inequality and
estimate (13) again, we see that

/

I < C(n)plCll7 mn- 1)Hf||2zn 2

dy
(Rn- 1)/32p ()¢ (Iyl—p)

<C(n )P”C”Loc Rn— 1)Hf||2 2n-2 @) (l /p . dr)
COICIL e n) 1112, 4

By the mean value theorem, it holds that [((2") — ((y')| < [[V'C|| o (mn-1)|2" —3'[. Therefore, by Hélder’s
inequality and estimate (13) once more, we finally have that

2
B < IV [ 17

Ba,(0) By (o) |7 — Y[ 2
< C(n)p* ||V’ CHLoc(Rw 1)||f|| 2n=2

—2 (Rn 1)
< C)P* IV Sl mny 11,4

Rn 1)

dy’ dx’

H‘Z(RTI 1)
0

In accordance with the duality relation between H~2 (R™™1) and H2(R"!), we define the homoge-
neous Sobolev space H~2(T') to be the dual space of Iz (T') with

/F 9" W) [ y) a1 (y)

sup
o <1
H2 ()

||gh||H*%(F) =

T Birkhauser
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for g" € H~2(I'). Based on the fact that H2(R""') is isomorphic to Hz (T'), we can show that their dual
spaces are isomorphic with each other as well.

Lemma 14. The mapping Ty, : H—2 (R"™Y) — H~2(T') is an isomorphism.

Proof. Let g € H™2(R™ 1) and ¢" = Ty (g). For any f* € Hz(T'), we have that

Lo wrmaew = [ a0+ vrer) .

Rn—1

Since (1+ |V’h(y’)|2)% e C'(R" 1) and (1+ |V’h(y’)’2)%
that

= 1in Bpg, (0")°, by Proposition 13 we deduce

/th(y)f"(y) dH”‘l(y)’ < gl gy 1L VB A1l 3 sy

< COCCINN -3 g1 13 sy

where
Ci(h):=1+ Rh||v/2h||Loo(Rn71).

By controlling Hf||H%(Rn_1) by ”fh”H%(r) using estimate (15), we obtain that

93 0y < COOCIETCLB gl 3

Let g" € H=2(I') and g = T, ' (g"). For any f € Hz(R" '), we have that
2, —1 LNES
| srwhar = [ s+ [V ) 1+ 9h) ) ay

_1
_ / T (14 VRGP 7)o 1 ar ().
r
Since we define 2 (I) to be the dual space of Hz (I), the duality relation says that

< |z (@ 19 72) 0|y o 1 s a7)

‘/R 9y f () dy

Note that for any f € H%(F), we have that
12 0N2\ "2\ bk gqm—1
[ (@ 9 ) ot s )

1
<194 0y || 70 (14 VRN ) 1

sy’

Let f. =T, '(f"). By estimate (14), we see that

|7 (@ VR 72) 1t

Cuh) |1+ V') 7 1.

L1 S 1 .
H2 (D) H2(Rn—1)

N

Since (1+ ’V’h(y’)}Q)fé e C'(R" 1) and (1+ ‘V'h(y’)|2) is also identically 1 in Bg, (0’)¢, by Propo-

sition 13 again we deduce that

|+ v H < C(n)Cy()C (h)|

A3 (Rr1) el sy

) Birkhauser
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Hence, by estimate (15) we have that
12y "2 Lk
i (6 19060 s
/ T (14 V'R ) o 1t dH”‘l(y)‘
r

< sup  C(n)Cs(h)*Ci(h)
1720, g <1

< C(n)Cy(h)2C1(h)

= sup
IFE . <1
H2(T)

19"l

Finally, by controlling the Hz (I') norm of f" by the Hz (R""!) norm of f using estimate (14) again, we
obtain from estimate (17) that

< C C 3 SC h gh L1 fll o1 s
‘/n . ( ) ( ) 1( )H ||H 2(1-\)H ||H2(Rn—1)
i.e.,

191l ;- 3 < C(n)Cs(h)EH2C1(h)

L) S (18)

h
16" -3 oy
O
Since H~ 2 (R"!) is the dual space of H2 (R"!), the fact that Hz(R""") is continuously embedded

in %7 (R™1) would imply that L*% (R""!) is continuously embedded in H~2(R""!), i.., there
exists a constant C(n) > 0 such that the estimate

(19)

903 sy < CODNgl 22

holds for any g € H—2(R"1). By the isomorphism between H~2(R™"!) and H~z(I'), we deduce the
following embedding result.

Corollary 15. L% (T') is continuously embedded in H~ 3 (T').

Proof. We consider g" € H~2(I') and f* € Hz(I') with HthH2 o < 1. Let g = T, '(¢") and f =
T, ' (f"). By Proposition 13, estimate (19) and estimate (15), we can deduce that

‘Lgh@lﬁ()dﬂnl ‘ ‘A;‘l y) (14 |V'h(y I)%dd

< 1 !

o \(1+ NI (.
< CCIC Mgl -3 g3 o)
< C)C (M) L) gl 2

(Rm=1)°

< |lg" H oz, We obtain that

Since n—
lgll, 2oz .

(R ™

< Cm)Cs()EHCL(R)lg"] | 202

)’
(]
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N .
3.3. H— 2 Estimate for the Normal Trace w - n

Since we are considering the case where n > 3, similar to the characterization of H %(R"’l)7 the space
H'(R™) has the characterization that u € H*(R™) if and only if u € L%(R") such that Vu € L2(R"™).
The space H'(R") is complete with norm || Vu| L2(Rn)- Moreover, it contains C°(R™) as a dense subspace;
see e.g. [6, Theorem 3.1], [11,16].

Proposition 16. There exists a bounded linear lifting operator (- Hz (R™™1) — H1(R™).

Proof. For f € Hz(R™1), we set
/ 1 ix'-& —|x " Ty et ’
Uf(cc 7xn) = (27T)" /1:{%—1 Ca (e e ll€ ‘f(ﬁ )) d§ (21>

for (2/,z,) € R™, i.e., uy is the inverse Fourier transform of e"“”gl‘f(g’) with respect to £. By the
Fourier-Plancherel formula, see e.g. [1, Theorem 1.25], we have that

2 [ ’ 7 ’
/ 672$n|5 ‘ dr, = 47T2|£/|71 ‘f(f/)

0

| @ er de, = s fe)

for £ # 0. Hence, we can deduce that

12 17~ ¢! 2 _ 12 R ’ 2 ’
|erime e a= [ el [ rae’ s

et [ jel|fer]

On the other hand, by the Fourier-Plancherel formula again, we see that

[ a2 [T7 (€ 60)|” den = 42| F(E)] / (e~l=nIE'T) [ d,,

de'.

= sn2(e'P| Fe) / 20l g, = am?le'||F(€)[7,
0

which further implies that

21~ ¢! 2 _ >~ 2|~ ¢l 2 /
|l el de= [ [ el iae el dede

= 472 /
Rn—l
Therefore, we obtain that

s sy = [ 1€ ITTE 6N d = 872011

H2 Rn 1)

~ 2
F&) dg'.

Letting £n(f) = uy for any f € Hz(R" ') completes the proof of Proposition 16. O

We start with the half space problem. If w € L*(R’})" satisfies divw = 0 in R}, then the normal
trace w - n can be taken in the H~2 sense.

Proposition 17. There exists a constant C(n) > 0 such that the estimate

0l ey < OOl (22)

holds for any w € L*(R")™ with divw = 0 in R

) Birkhauser
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Proof. Let 02 € C°(R) be such that 0 < 6, < 1in R, 05(z) = 1 for any |z| < 1 and 62(z) = 0 for any
|z| > 2. We define 65, € C°(R") by setting

Qgp(x) =0y (|z> , TE R™.

For f € Hz(R"1), we consider
f1(@') = 01(2") f(2),  01(2') :==1—02,(2",0)

for 2/ € R"~!. Since §; = 0 in B,(0), we decompose

2
/ / |fI (y, de d / / / |f1 ( )| dx'dy’
Rn-1 JRn-1 \1‘ —Z/|" =2 J|z|>2 |95 —y|"

/ / /1y nd "dy +/ / /(@ nd’dy’:Il+I2+13.
ly’ |>p ]z |< 4 |.1? _y| ly’'|< % |a:’|>p |.’II _y|

Since [y'| > p and |2| < § would imply that |2 — 3| > |y'| — £, by Holder’s inequality we deduce that
1 T
I < C)p" | f1ll? 2ns / B S
1772 (B,0)¢) \Jjyi=p (19| = 5
C(n )||f|\2 ne :
2n-2 (B ) )

By symmetry, I3 follows the same estimate as I5. For I, we follow the proof of Proposition 13 to estimate

it as
11§2/ / f/(y)l da' dy
w123 % v

0 0:(y))
+ 2/ / | I( ) /I(y )| dx/ dy/ — 1171 +Il72~
ly'|=5 J]z'|>

g 2" —y'|"

Since §; =1 in By,(0")¢, we further decompose I o as

9 —0; ()
1172:/ / ‘ ( )‘2| I( ) IEI )‘ dl‘/dy/
2<ly/|<2p J |2’ >3p —

+f / ARy
ly'|>3p <|9c’|<2p | yl‘n

0:(z") — 0:(v 2
+/ / IF () | ’(x2 ,’Ely” da' dy' = Jy + Jo + Js.
<y’ |<2p |z’ |<2p 2" —y/|

By the proof of Proposition 13, we see that
J1 + Jg S C(TL)Hinzn—z

n—2 (30/2(0/)(:) ’

Jo < C e .
2 S OO g )

Therefore, we deduce that

V)
1123 s, < / / G = SO gy
H3(Rn-1) ly'|>8 J|a|>4 |CU Y|

C 22”72 22n 2 2 one ’
(n) <||f|L 222 (5, 0)0) I 2 (5,0)°) I 2nze (BBP(O,)C)>

Since the L2 norm of f is controlled by the H2 norm of f, we deduce that 1l

converges
H2 Rn 1) g

to zero as p tends to infinity, i.e., 62,(-',0)f converges to f in H? norm as p — 0.

T Birkhauser



41 Page 24 of 46 Y. Giga and Z. Gu JMFM

Let us note that the multiplication by a smooth function with compact support is bounded in H? (R™).

Indeed, by Holder’s inequality and the continuous embedding of H'(R™) in L (R™), we see that the
estimate

[oull g1 (rny = IV(@U) || L2y < UV Ol L2Rn) + |9V Ul L2(RA)
S AIVEllzn@mmllell 2oy
< (IVollLn ey + 18l Lo me)) 1l g2 () (23)

holds for any ¢ € C=(R"). Let f € Hz(R"!) and uy be defined as in expression (21). We consider
Uy, = Bapuy. Since ||Vl pn(mn) < C(n)|03 L), by estimate (23) we have that

+ Pl oo mey [ VU 2 (v

[us.20ll g1 ey < CR)[0ll g1y

Since supp uf.2, C Bs,(0), it actually holds that uyss, € H'(R") satisfies
[ws,2pllrmr) < C(R)pllug2pll i mnys

see e.g. [1, Proposition 1.55]. Let ij = By,(0) N RY. Since usz, € Hl(B;p)7 by the Gauss-Green
formula, see e.g. [27, Lemma 1.2.3], it holds that

‘/Rn_l 0o, (2", 0) f (2w, (2, 0) da’

S/ |Vugo, - w| do
Bf,
S Ilvuf’2p||L2(B;p)||w||L2(B;p) S Huf,QpHHl(Rn)||wHL2 R”)

< C)llugll g men)

for any p > 0 and w € L*(R'})" with divw = 0 in R"}.. Since we have already shown above that 65,(-",0) f

converges to f in H2 norm as p — 0o, by Proposition 16 we conclude that for any f € H2(R""!) and
w € L*(RY) with divw = 0 in R},

wllz2my)

’/Rn ) "Nwy, (27,0) da’ (n)Hf”H%(Rﬂfl)||w||L2(R1)7
ie.,

0l gy < COV e

O
Remark 18. Instead, if the domain Q C R™ that we are considering is bounded C?, then for w € L?(Q)"

satisfying divw = 0 in €2, the normal trace w - n can be taken in the H= sense, i.e., there exists a
constant C, independent of w, such that

[[w -l < Cllwllz2 o)

H™% (09)
for any w € L*(Q)" with divw = 0 in Q; see e.g. [26,28].

Now we are ready to consider the perturbed half space problem. For w € vBMOL? (RZ) withdivw =0
in R}, we show that the normal trace w - n can be taken in the L> N H~2 sense.

Proof of Lemma 3. Let w € vBMOL?*(R}) with divw = 0 in R} Let ¢, € C°(R") satisfies o, = 1
in Bijr (»)(0) and supp w« € Bayr 1)(0) with 7 (h) == Ry + 4nK R?. Then we set w; = p,w and
wy 1= w — w. By Proposition 6, we see that wy, ws € vBMOL? (Rﬁ) satisfying

sl pprors (rp) Hlwall, pyro (rp) < CH@*HCl(R;;) 1ol pprors (rp)

) Birkhauser
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with some constant C' = C(a, 8, K, R,) > 0. For z € T such that |z'| = Ry, we have that h(z’) = 0 and
V'h(z") = 0. Thus, for any y € BR(R}), by picking an arbitrary z’ € R"~! such that |2/| = Rj, and
considering the mean value theorem, we have that

[h(y")| = |h(y') = h(a")| < IV2hllpe(rly’ — 2" < dnKRj.
As a result, we deduce that
Bpyrn)(0)NT = Br(p +71(h))
for any p > 0. Since wy = 0 in R} N Ba 7, (5)(0)¢, by Corollary 15 and the L> estimate for w; - n [13,
Theorem 22|, we can deduce that

= A2 lwn - mf| ey

[[wy - ], 2t

i S [ -nf ) 2ns

(r
S C(a7 /37 K7 R*)Cs(h)ﬁ (2 + Tl(h)) 2 ||wH’UBMOL2 (R;l) °
On the other hand, we define that

_ Jwa(x) if zeR}NRE,
o, (7) = {0 if zeR?\R}.
Since wp = 0 in R} N B4+, (»)(0), we have that ws i = 0 in R} N By, (1)(0). By Proposition 17, we
have that

w7 - naR1||H,%(Rn,1) < Cn)|wa,mllL2@my) < Cn)lw:ll,, (rp)

where nyR? denotes the outward normal on the boundary OR' of the half space R'}. Since T}, (wg’ H -

nyRrn ) = ws - np with nr denoting the outward normal on the boundary I" of the perturbed half space
R}, by estimate (16) we obtain that

C(n)Cs(h) E 1 C1(h)|lwapr - nomy

+

HU}Q : nFHH*%(F) g

< C(n)cs(h)%*lcl(h)szIILZ(

A3 (Rn-1)

Ry’

4. Estimates for Some Boundary Integrals

Let E denotes the fundamental solution of —A in R", i.e.,

. [~ loglel/2m (n=2),
E(x) : {|x|2”/(n(n—2)b1(n)) (n>3),

where b1(n) denotes the volume of the unit ball B;(0) in R™. In this section, we assume that R} is a
perturbed C? half space of type (K) with boundary I' = 9R. The purpose of this section is to establish
several estimates for the trace operator of

(Qg)(z) = / or

T 81’1([

(x—y)g(y)dH" ', x €T

for g € L°(T)N H ~2 (T") where 9/0n, denotes the exterior normal derivative with respect to z-variable.
Let us recall that for a perturbed C? half space R} with h € CZ(R"™!) that is not identically zero,
R}, > 0 represents the smallest positive real number such that supph C Bg, (0').

T Birkhauser
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4.1. Estimate for the Normal Derivative in y of E

To be specific, we give an estimate for the boundary integral of gTE(:c — ) for x € R} that is close to
Y

the boundary I'. We have a compatible result with [14, Lemma 6], which deals with the case where the
domain is bounded. For p € (0, po|, we define that Fg = I‘?n NQ.

Lemma 19. Let R} be a perturbed C? half space of type (K) with boundary I' = OR}, n > 2 and
p € (0,p0]. Then, it holds that
(i)
OFE

) 1 .
FaT(:v—y)dH” 1(y):—§ forany x € Rj,
Y

sup /
mGFf} T

C19(K, h,p) == (R} 4+ pK + p+ 1) |hllcrmn-1) + [| VA oo mn-1) + p + 1.

(i)

aai(‘” o y)‘ dHn_l(y) < C(n)clg(K, h, p)

where

Proof. (i) This follows from the Gauss divergence theorem. For a bounded piecewise C' domain D C
R, we have that

8E( YdH" (y /AEgc—
3D8ny

for any € D. Since AyE(x —y) = —d(z — y), we obtain that
OF
(@ —y)dH" " (y) = 1
/é)D Ony
for x € D. Let x € R}}. For R > 0, we define the domain Dg by
Dr=A{",yn) |h(y) < yn < Rl @n-1) + 2znl, Iy < R}
We consider R > Ry, + |2'|. By applying the Gauss divergence theorem in Dy, we deduce that

-1 =/ 67E(93—y) dH" ! (y)

yn=llAll oo gn—1,+2lnl, ly/| <R 0Ty

+f OF (o yyanni(y)

er, ly'|<r Ony

+ ey ()
0<yn<|Ihll Loo (rn—1y+2lzal, [y'|=R YHy
The last term tends to zero naturally as R — oo. For the first term, since n, is pointing straightly
upward but z is located below {(y/,yn) | yn = ||kl Lo (mr-1) + 2|@n]}, the kernel (OE/On,)(x —y) in
this case is exactly the half of the Poisson kernel Ps, , (2'—y') with 0y, o, = [|h|| poe (mr—1) 42|70 | =2
Hence, the first integral on the right hand side tends to —% as R — oo. We therefore obtain (i).
(ii) Let us observe that

—n, = —n(y, h(y)) = (- V'hy),1)/wy)

where w(y’) = (1 + |V'h(y’)|2)l/2 and V' is the gradient in y variables. This implies that
OFE B o(y")
_C( )8ny (.1? - y) - n/2

o) (|2 =y + (20— h(y))?)
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for y € I" with
oy):=-V'hy) @ —y)+ (z, — h(y')) where z, > h(z'), 2,y € R*"\.
We set that
a(y’)

o\ n/2"
(I = 12 + (w0 = h(w)?)
By the Taylor expansion, for |x' — y'| < 1 we have that

h(z') = h(y') + V'h(y) - (2" —y) +r(a’,y)

K(2',y o) =

with
1
) = & =) [ 1= 0)(T2h) 6+ (1 0)y) db - (0~ )
0
We obtain that
o(y') =an — h@') +r(@’y)
with an estimate

r(z’,y") < |V"h] ' —y'P (24)

Lo (Bl(z/))|
We decompose K into the sum of a leading term and a remainder term
K@@'y xn) = Ko(2',y/, 2n) + R(2, Y/, 20)
with
Xy — h(x’)
(12" = 92 + (2 — h()?)
r(@',y')
) o\"/2"
(1" = 12 + (w0 = h(w)*)

KO(:E/) y/a xn) =

n/2’

R($/7 y/7 xn) =

The term R is estimated as

R 3 a) | < T2 ()l =

1(z)
for |2’ — 4’| < 1 by estimate (24). Hence,

/ ‘R(x’,y’,xn)
yerl’, W<y/)

|z’ —y’|<1

dH" " (y) < C(n) || V2| Lo mr-1)-

Since
lo() < V'R - 2" = /[ + |al + [2(y)]
for any ¢’ € R"~1, we have that

K(z',y ) 1
BT In)| =y < / V' h(y)| dy
/yel“, ‘ w(y') ly' —a’|>1
ly/—z/|>1
’ ’ |xn| ’
+ |h(y")| dy’ + T (25)
ly —a'|>1 ' —ar>1 |y — @]

Since supph C Bg, (0'), the first two terms of estimate (25) can be estimated by the constant
C(n)RZ_1||h||Cl(Rn71). On the other hand, since the estimate

|zn — h(2")| < (nK + 1)pl|hllcr@n—1) + p

T Birkhauser
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holds for any 2 € T, The third term of estimate (25) can be controlled by the constant C(n)((pK +
p+ DlAlcrmn-1) +p). By (i), we observe that

@ :/ . K(z/,y/’xn) danl(y)

2 w(y’)
ly/ —z’|>1
K ! ! n R /7 /7 n —
+/ 0(x7y/7:17 )danl(y)jL/ (I y, €z >dHn 1(y)'
yel, w(y) yel, w(y)
ly/ —z'|<1 ly/ —='|<1

The term K| is very singular but it is positive for z € I‘g. Hence, we have that

K xlv ylv L n—
[ B i) < cucrg ()
yel, w(y )
ly/—a|<1
where the constant C1q(k, h, p) has the explicit expression
Cr9(K, h,p) == (R} + pK + p+ 1) ||h]|cr(mn-1) + | VA Lo (mn-1) + p + 1.

Therefore, we finally obtain the estimate

/8E
r

On,
which holds for any x € I'!. This completes the proof of Lemma 19.

(o - y>\ H () < Cn) (K, b p)

O

Before we end this subsection, we would like to give an estimate on the difference between gradients
of the signed distance function near the boundary with explicit constant dependency on the boundary
function h. This estimate plays an important role in later estimations of various boundary integrals.

Proposition 20. Let R} be a perturbed C? half space with boundary T’ = OR} and n > 2. Then, for any
T € Flff)n and y € T', it holds that

Vd(z) = Vd(y)| < C()Cs(h)?||[ V| oo (mn-1)l2 = yl.
Proof. Let y e I', x € ngl and 7x be the unique projection of x on I'. Note that
Vd(x) — Vd(y) = Vd(rx) — Vd(y)
B <V’h(y’) _ V'h(ra’) 1 1 )

w(y') w(ra') Tw(ma)  w(y)

where w(-') = (1 + |V’h(~’)|2)1/2 and 7z’ denotes the first n — 1 component of 7z. By rewriting
V'h(y )w(rz") = V'h(rz )w(y') = (V'h(y') — V'h(7z"))w(ra’)
+ V'h(ra’) (w(ra') — w(y'))

and applying the mean value theorem to both V'h(y’) — V'h(nz’) and w(rz’) — w(y’), we can deduce
that

Vd(rz) — Vd(y)| < C(n) [Vl o mn-1) (1 + [V 2l Foe (nr) ) 72" = 3/].

Since we must have |z — y| > |z — 7| for any y € T such that y # mx, by the triangle inequality
|x — x| > |y — mx| — |z — y|, we can deduce that the inequality |y — mx| < 2|z — y| holds for any y € T".
Since obviously |rz’ — y'| < |7x — y|, we obtain Proposition 20. O
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4.2. Criterion for a Class of Functions to be in Hz (R"~1)
Let n > 2. We say that f € Hz(R" 1) if f € L2(R""!) and

2 )= fW)
2(Rn-1) —d "dy' < oo.
||f||H2(Rn 1) ||fHL (R /L 1/Rn . 2’ — /| x dy

Our criterion is similar and compatible with [15, Lemma 3.2].
Proposition 21. Let n > 2 and p > 0. Suppose that f € CH(R"™!) satisfies
supp f € B, (0)°,  [f(@)| - |2'["7" < er, [VF(@)] - [o']" < 2

with some constants c; and co independent of x' € R"™1. Then the estimate

2 2 2
IR, < c<n>( q +)
HQ(RTL 1y pn pn

holds with some constant C(n) > 0 depending on n only.
Proof. By a direct calculation, we see that
1 C(n)c?
sy < ay <
L2(Rn-1) 1 Bay (0)¢ |y |2n 2 pr—1
For y' € B,(0') and 2’ € BQ;,(O’)C we have that |2’ — y'| > p. Hence, we can deduce that

)2
B,(0") J B, (0)¢ JU—ZU|" L,(07) BQ,JO')Cx—y

|n
< ( ) ||f||2 < C(n)c%
— L2(B2P(O/)c) — pn :

By symmetry, we also have that

n o 7|2 2
/ / |f(1‘2 f/(z )| dy’ dl‘/ < C(TQCI
B,(0") JB,(0")¢ lz" — /| p

Hence, it is sufficient to estimate

AN |2
O Y S il
B,(0)¢ JB,(0")° 2" — |

We then follow the similar idea that proves [15, Lemma 3.2]. Assume that |2'| < |¢/| and connect z’
and ' by a geodesic curve in Bj,/(0")¢. Since the curve length is less than (7/2)|z" —%/|, by a fundamental
theorem of calculus, we observe that

[f (@) = fW) < (7/2)|a" — | - sup {IV’f(Z')I

Z/ S B$/(0/>C}

< (1/2)eala’ —yf| - 27"

Since the integrand of I is symmetric with respect to 2’ and ', we now estimate

R =

Dy = {(‘rlvyl)
D, = {(xlay/)

with

p< 2| <yl [« =yl < Iw’l} 7

p < || <y, [2" = y| > Ix’l} :
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To estimate I, we observe that

f@) = ) _n (-
| (|x?_y/(|n)| < (7T/2)2Cg|17/| 2 |$,*y/‘ (n—2)
S(ﬂ_/2)263|m/|—2n+1+6|x y| (n—2)—1-6

for any 0 < ¢ < 1 since |2’ — y'| < |2’|. Thus,

7T/2 / / m/‘—(n—2) dy/|.’1,‘l|_2n dCL’I
B,(0") JB (;c’)
(7_‘_/2 / / —$| (n—2)—1— 6dy |$|—2n+1+5dx
B,(0)c JB (_L/)c

()

To estimate I5, we observe that
N N2 "2 "2
@) = SO ol @) + 1) <42y —
" =y " =y

since |2’| < |y/|. Since |2’ — y/| > |2/| in this case, we have that

y/|—n|x/|—(2n—2)
|£Cl . y/|—n|x/|—(2n—2) < |.’E, _ yl‘—(n—2)|x/|—2n

and
|$/ _ y/|7n|x/|7(2n72) < |x/ _ y/‘f(n75)‘z/‘7(2n72)76

for any 0 < § < 1. Hence,

I < 40?/ / ly — /|~ =2 dy/ |2 | 72" da’
B, (0)° B (a')

+4C%/ / |y/ _ 33/|_(n_6) dy/|33/|_(2n_2)_6 dz’
BP(O/)C Bp(a:/)c

ACn) n—(n—2)5 -4
ot (1=68)(n+6—1)

4.3. L*° Estimate for the Trace Operator of Qg

For p € (0,00), we let 1390(0,) to be the characteristic function associated with the open ball B,(0') in
R"7 ! ie., we define that

, , 1 if 2’ e B,(0),
1B(/)(x):: : ! n—1 /
0 if 2/ e R" '\ B,(0).
For g € L*°(T"), we decompose ¢ into the sum of the curved part g; and the straight part g» where
an (93 h(x )) BZRh (0/)( ) (55/7 h(x/)),
g2(2", h(a")) = g(a’, h(z")) — g1 (2, h(2))

for any 2/ € R"~!'. Note that g1,g> € L>(T'). With respect to go, we further define gf € L>(0R"}) b
setting

H(2',0) =

& if |2/ < 2R, 26)

g2(z’,0) if |2'| > 2Ry
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for 2/ € R 1.

Theorem 22. Let R} be a perturbed C? half space with boundary T = OR} and n > 3. Moreover, let us
assume that h € C2(R"™') satisfies the smallness condition

Then, the boundary trace of Qg is of the form
1(Q9) (+', h(x) = Z9(a' (")) ~ (So) («', (')
forg € L=®(T)NH~2(T), where S is a bounded linear operator from L>(D)NH 2 (T') to L>=(T') satisfying
81 eyt 0y ey S GG (Cot () + Ca(B)
with some specific constant C§(n) depending only on n and
Cs(h) =1+ |hllcimn-1),  Ci(h) =1+ Rp[[ V"] oo (mn1),

Cuna(h) == Ci(h)*(1+ R%)(R% V2R pos -1y + R;% ||V/2h|\?ioo(Rn—1)),

Cip(h) = (Rn + R?)HVQ}L”LW(R“*) + (R + Dhllor @1
Proof. For x € Ff}o, we decompose g into the straight part go and the curved part ¢;, i.e.,

@)= e )

oF o
+ L, (2Rn on, ((E - y)gl(y) dH 1(y) = Il(l') —|—I2(x)

Moreover, we further decompose I(x) as

IQ(x)z/ {(Vd(z) = Vd(y)) - VE(z — y) }g1(y) dH" ' (y)
B{(2Ry,)

OF
* / 67(:” — g1 (y) dH" " (y) = L1 (2) + Lo().
BL(2R;,) 9Ny

Suppose that z € F;?O with |2’| > 2Ry,. Since |2'| > 2Ry, is the straight part of I', we have that

Ii(z) :_/|y|>th Py, (2" = y)g2(y') dy’ = —/Rn_len(x —y)gs' () dy,

where P, denotes the Poisson kernel. Let x tends xy on the boundary, in this case we have that I (x)
tends to 3¢5’ (o), which is indeed 1g(z). We then estimate I51(zq) for zg € I with |zj| > 2R,. By
Proposition 20, Iz 1(x¢) can be estimated as

1

o (20)] < C(n)Ca()? V2| o (ot 19 o (1) / e

(27)
ly’|<2Rp, |zg

If |z(] > 3R}, then we have that |z(, — | > Rj. In this case,

»/ly’|<2Rh

If |z{| < 3Ry, then in this case we have the estimate

1 1
7dy'S/ s Ay < C(n)Ry, (28)
/|y’|<2Rh, lzg — y'|"—2 ol —y'|<5Rn [T — Y772

Hence, for z¢ € I with |z(| > 2R, we obtain that
12,1 (z0)| < C(n)Cs(h)* Ru[ V"2 h| Lo (ro-1) |9l = ()

dy' < R, " |Bag, (0)] < C(n)Ry,

136 _ y/|n—2
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Next, we estimate Iz o(xo) for zp € T’ with |zy] > 2Ry. Since supph C Bg, (0/), for y € T with
Ry, < |y'| < 2Ry, and zg € T with |z(| > 2Ry, we actually have that
OF
IZ (20— 1) = 0.
any (ZC() y)
Thus, for xg € T with |z(| > 2Rp,
OF L
Balw) = [ - y)ann) A ),
BL(Ry) 9y
By estimate (24), we have that
1
a()] < Colh) V2l ey lollaeery [ oy
ly'|<Rp |z — ']
Since |xy| > 2Ry, it holds that |z — y'| > Ry, for |y'| < Ry,. Hence, we obtain the estimate for |1 2(z)|
for the case where |x{| > 2Ry, i.e.,

| 12,2 (o) Scs(h)Rh(n2)|v/2h||L°°(R"1)|9|L°°(F)/ o 1dy'
y'|<Rp,

< O (W) RAIV 2l o (s e
Therefore, for xg € T with |z(| > 2Rp,, by setting

S0 == [ G0 o) )
we get that
1(Q9) (@) = g9(x0) — () (o)
with

[Sllop < C(”)CS(h)3RhHVIQh”LOO(R"—l)'

Suppose now that = € Ff}o with |2/| < 2Rj,. There exists a bounded C? domain Q. C R} such that
0Q. NT' = B[(2R},). Let us recall a standard result concerning the double layer potential, see e.g. [22,

Lemma 6.17]. Let f € L*°(01.), then the boundary trace of the double layer potential
OF _
(PA(z)= [ —(z=9)f(y)dH" ' (y), z€Q
80, Gny

is of the form

1 OE -

V(PA) () = 5f(w)+ [ Z=(w=y)f(y) dH" 7 ()
Q. Oy

for w € 99Q,.. We define g. € L>(99Q.) by letting

 Ja(w) for wedQ.NT,
gc(w){o for we o N\T.

Thus, for any z € €2, we have that
Iy(z) = I21(2) + (ch)(z).
Let x tends to xy on the boundary, we deduce that
1
Ly (20) = I2.1(w0) + (v(Pge)) (w0) = Io,1(w0) + 59(x0) + L2,2(wo).

For zp € T with |z(| < 2Ry, by applying Proposition 20 again, we see that |[I21(x¢)| can also be
controlled by estimate (27) and (28), i.e., in this case we also have that

5,1 (0)| < C(n)Cs(h)*Rp[IV"2h]| Lo mn1) gl Loe (1)

) Birkhauser



JMFM The Helmholtz Decomposition of a BMO Type Vector Field Page 33 of 46 41

We now estimate Is o(x¢) for xp € I with |z{| < 2Rj,. By estimate (24) again, we have that

oFE

o0 y>| ()

/{yGB’r(QRh) [z —y'|<1}
V'2h|| 100 (rn—

< Cs(h)/ H/”L#d?f

/| <2Rn Jah—y' <1 |T0 =V

Since in this case |xy| < 2Ry, |y| < 2Ry, would imply that |z — 3’| < 4R}, we have that

1 1
s dy’ < / ————— dy < C(n)Ry,.
/y'<th lzo —y'[" 2 |2t —y'|<aRy |T0 — Y'[" 72

On the other hand, for y € I' such that |y’ —x(| > 1, we can straightforwardly estimate |o(y’)| in OE/0n,
by [V'R(y')| - |26 — ¥'| + |h(x()] + |h(y")|. Hence, we have that
OFE

o (70— y>] aH (y)

/{yGBf(ZRh) [lzg—y’|>1}

h|| poe (rn—1
< Cy(h) / V'R + [h(y")] dy’ + Cs(h) / [Pl sy
R»—1

lep—y'1>1 1T —YI"
< C(n)Cs(h) (R~ + 1)l crmn-1).-
Combining these estimates together, we see that the estimate for I 1(x0)| + |[I2,2(x0)| reads as
[12,1(0)| + [I2,2(z0)|
< C(n)Cs () (Rul|V"* | Lo (1) + (B~ + D[Bllor 1)) 19l os (-
In order to estimate Iy (zg) for xg € T with |z{| < 2R}, we further decompose
92y 1Y) = 1, 01 (¥)g2(y" h(y) + 15, (01 (¥)g2(y", ()
=922V, () + g22(¥', h(y"))
for any 3y’ € R™! where rj, := Ré and

O .
(@) = / (z0 = ¥)g2.2(y) AH" " (1)
Bl.(r)e I

oF
b g ) R )
Bl" (’l‘h,) 0

oF
+ / (20 — 1)92(y) AH"(y) = Ty 1(z0) + T1 2(w0) + I (o).
B (r,) OMay

We next seek to control Iy 1(z) for xg € I’ with |z{| < 2Rj,. Let 62 € C°(R"™!) be a cut-off function
such that 0 < 6y <1in R"7!, 6y = 1 in B;(0’) and supp f C B(0’). We then set that

Burns ) = 00 (L2 )
Koo (') = { V(o) - VE (0 = (4, 5(5")) ) } (1= 20,0 3)

for y' € R"!. Since we are assuming that 2R;, < rp, it holds that Bo,, (z()) C By, (0'). Hence, 1 —
O2r, 0o = 1 in Ba,, (x()® would imply that

I (7o) = /R’H Koo () g2,2(y' 1)) (1 + |V’h(y’)]2)% dy'.
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Note that for any xg,y € I' such that xg # y, we have that

—V'h(xp) - (x5 —y') + (h(xh) — h(y"))
/ / 712 / /! 2 n/2

w(ah) (26— y'2 + (h(zh) - h(y)?)

Vd(xg) - VE(zo —y) = —C(n)

where w(zf) = (1+ |V’ h(xé)\z )1/2. Through some simple calculations, we can deduce by the mean value
theorem that the estimate

Rh”v/zhHLoo(Rnfl)
o=y

Hv/hHLoo(Rnfl)

Kz (y)] < C(n) < C(n)

oh— g
holds for any xg,y € I' and the estimate
RVl + RV
o —y'|"

holds for any xg,y € T' with zg # y. In addition, for y € T such that r, < |y’ — z(| < 2rp, we have that

V!, (Vd(wo) - VE(zo — 1)) | <

/ /
9, a0 < Tz ATy
Hence, we see that the estimate
Rh||vl2hHL°°(R"—1) + R%”vlthgoo(Rnfl)
[zo —y'|"
holds for any zo,y € I'. By the duality relation between Hz (R"1) and H~2 (R""1), we see that I 1 ()
follows the estimate

2,1
Taa@o)l < 11+ [V BCD)* Ko )l o 922 A g o
By Proposition 13 and Proposition 21, we have that
2, 1
(L [VRCDT) * Ky ()] < C(n)Cs(M)CL(M) [ Ky ()]

% (Rr-1) =

[V Kao(y)] < C(n)

H%(Rn71)
1 5
< C)Co()CR) (R 92l o ey + By V2R o))

Since Ly(R”*I) is continuously embedded in H~2 (R"~1), by estimate (18) and estimate (20) we see
that

1
[V, 0 0 AN 3 sy < CIC ()™ () B i o
Therefore, the estimate for I ;(xg) reads as

|Il71(x0)‘ < C(n>cs(h)n+60*,1(h)HgHLoo(p)mH*% (1)

where
Coa(h) = CL (R (1 + RY) (RE[[V'2h| +RE V2R
*,1 — U1 h h LOO(R"L*I) h Loo(Rnfl) .
Since for I 2(x) and I 3(x¢), the integration region is bounded, I 2 (x¢) and I 3(x¢) can be estimated
in exactly the same way as I 1(x¢) + I2,2(z0) in the case where |x(| < 2Rj,. As a result, here we directly

give the estimate for Iy o(zo) and I1 3(zo) without going through what have already been done again.
The estimate for Iy 2(z¢) and I; 3(zg) reads as

11 2(0)| + [I1,3(z0)| < C(n)Cs(h)*Cua(R)]Igll Lo (ry

where

S _
Cia(h) == (Ru+ RE) VR oo mn-1) + (BE ™"+ DlAllor gn—)-
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Therefore, for zg € I' with |x| < 2Ry, by setting

oF
T 81’110

(Sg)(z0) = — (zo — y)g(y) dH" ' (y),

we obtain that

1(Q9) (w0) = 59(r0) — () (o)
with
1Sllop < C(m)Cs(h)™(Ca(h) + Cia(h)).
This completes the proof of Theorem 22. (I

4.4. H—z Estimate for the Trace Operator S

In this subsection, we assume that R} is a perturbed C? half space with boundary I' = R} and n > 3.

We shall derive the H~2 estimate for the trace operator S from its L*% estimate. We begin with the
LP estimate for S.

Lemma 23. Let g € L(T)NH 2 (T). Then, it holds that Sg € LP(T) for any 1 < p < co. For1 < p < oo,
Sg satisfies the estimate

n—1
||Sg||LP(F) S CT(TL’p)CS(h)nJr?(C*’l(h) + C*2(h) + 1)th ||g||L°°(F)ﬁH7%(F)

with some specific constant C5(n,p) > 0 that depends on n and p only. For p = 1, Sg satisfies the
estimate

9Ly < CEC 0™ TCos Mgl b e

with some specific constant C3(n) > 0 that depends on n only and
Ci3(h) = R} (Ci1(h) + Cup(h)) + Ry V"?R| oo (r-1).

Proof. We firstly consider z € T with |2/| < 3Rj,. Since we already have the L™ estimate for Sg on T
according to Theorem 22, the estimate

( / 1Sg(@)l? dH"‘l(x))
B[.(3Rp)

< Cg(n)Cs(h)"*(Cia(h) + Cia(h))

o=

1
AZ’th ”g”LQO(F)mH—%(F)

follows naturally, where the surface area Asp, is estimated by
1
Asg, = / LdH" ! (z) = / (1+ ]v’h(x’)f) 2dx’ < O(n)Cs(h)Ry 1.
Bll—‘(3Rh) |x’|<3Rh

Hence, for any 1 < p < oo, it holds that

( / Sg(a)l? dH"l(x))
B[.(3Rp)

< C(n,p)Cs(h)" 7 (Cra(h) + Cua(h))

n—1

th HgHLoc(F)mH*%(F)‘
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Let 1 < p < co. We then consider z € I' with |2/| > 3Ry. For y € T with |y/| < 2R}, the triangle
inequality implies that |2’ — ¢'| > |2'| — 2Ry, In this case, we deduce that

p
1
1Sg(x)|” < C(n,p)Cs(h)? </|y/|<2Rh o — gt dy') 19117 o (1
|Bar,, ()]

< p p _
< C(n,p)Cs(R)|gll <O (|| — 2Ry, )PP

Hence, we have that
[ se@l an e
Br(3Rn)°

_ 1
< C(n, p)Cy(R)PHRI D |g|P / IS
" L) w>3r, (17| —2Rp)Pm=P

where the integral on the right hand side can be estimated as
1 o0 2 n—2
/ —_—— dr' < C(n)/ % dr
lo'|>3R, ([2/| = 2Ry )PP Rn renTe

%

n—2 00
< C(n) Z RZ_2_i /R " dr < C(n,p)R%lfp)(nil).
i=0 h

PP

Therefore, we obtain that

( / Sg(a)l? dH"*(x))
B[.(3Rp)*

For z € I with |2'| > 3Ry, we indeed have that Vd(z) = (0,...,0,1). Thus, Sg(x) has the form

hy) (1 + V') )
Sga) = C(n) [ ( gl b)) '
ly/|<2Rp (‘x/ _ y/|2 + h(y’)2) 2
Since |z' — y'| > |2'| — 2Ry, for any |y’| < 2Rp, |Sg(z)| can thus be estimated as

1S9(2)] < C(m)Ca () 11l e grun1y 9l e oy 22O
< ('] — 2Ry)"

S

< C(n,p)Cs(h)’R," ||gll o< (r)-

Hence,
[ Isga)] ani)
Bll—‘ (3R;L)C

1
< C(n)Cs(h)?RY YA poo(mn-1 - / — X
(n)Cs(R) Ry |7l Los mr-1) 9]l o (1) s, (@]~ 2B

< C(n)CS(h)RZHVI?hHLOO(R”*l)||g||L°°(F)~

We are now ready to state the H~3 estimate for the trace operator S.
Corollary 24. For g € L>°(I') N H~2(T"), we have that Sg € H~2(T) satisfying
1990151y < CoCI)FHCLRN(Coa(h) + Coal) + VRN 1y o)
with some specific constant C5(n) > 0 that depends on n only.

Proof. Since L¥(I‘) is continuously embedded in H~2(T'), by considering estimate (20) and Lemma
23 with p = 22=2 we obtain Corollary 24. O

n
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We define constants
C.(h) := Cy(h) FF8Cy (B) (Cur(B) + Can(h) + R )

and C*(n) := Cg(n) + C5(n). We would like to emphasize that C*(n) is a specific constant that depends
on dimension n only and C,(h) is a constant that depends on the boundary function h only. Theorem 22
and Corollary 24 guarantee that the trace operator S : L>(I') N H~2(I') — L>(I')N H~2(T) is bounded
linear and

||S||L°°(F)ﬂH7%(F)HLOQ(I‘)OH*%(F) <C (n)C*(h)

Moreover, we can require Cy(h) to be arbitrarily small by taking R}, to be sufficiently small.

5. Neumann Problem with Bounded Data in a Perturbed C? Half Space with Small
Perturbation

We consider the Neumann problem for the Laplace equation in a perturbed C? half space in R™ with
L-initial data for n > 3. We shall begin with the half space problem. It is well-known that a solution
of the Neumann problem

Au=0 in Rr_f_,

ou " (29)
I g on ORY
is formally given by
ua)= [ Nepaman, (30)

where N denotes the Neumann-Green function
N(I,ZJ) = E(I - y) +E(I/ - y’,xn +yn)~

Its exterior normal derivative 9N/On, for y, = 0 is nothing but the Poisson kernel with the parameter
Zp. By symmetry we observe that

0 1
_ Bl — N / ’ - /
pr. /RH (@' =y 2a)g(y) dy’ — Sg(a’)

as x, > 0 tends to zero. Thus u gives a solution to (29) formally. The function

E x (Sory, © g) = / B~y xa)g(y) dy
-

is called the single layer potential of g.
For g € L¥(R"™!), we let g(2/,z,) := g(z',0) for any x € R™. Natrually, g € L>°(R"). Let lrn be
the characteristic function associated with the half space R'}. In this case, we have that

VE  (Jorz © g) = VO, E* 1r2 g.

Hence, by the L>°-BMO estimate for the singular integral operator [19, Theorem 4.2.7], we have the
estimate

[V(E * (63R1 & g))]BMO(R") < C(n)HgHLN(R"—l)~ (31)
Moreover, since —0, (£ * (Jorr ® g)) is the half of the Poisson integral, i.e.,
1
00, (B Gomy ©9) =5 [ Pola’ =)o) '
Rn—1
the estimate
1
102, (B « (Gomy © )| ey < 520 (32)
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holds for any g € L>(R"1), see [14, Lemma 7]. We are able to to establish similar estimates for the
case where the domain is a perturbed C? half space.

Lemma 25. Let R} be a perturbed C? half space of type (K) with boundary T' = OR} and n > 3. Then,
(i) (BMO estimate) For all g € L>°(T), the estimate
[VE « (6r ® g)] svo@n) < C(m)C25 ;(h, po)llgll = (r) (33)
holds with
Co5.4(h. po) := Cs(h)*(Ri + po + 1)" (I V2 hll L= mn-1) + 25 1)
(ii) (L> estimate for normal component) For all g € L°(I') N H~2(T'), the estimate
|Vd-VE«(6r@g)|, . (ra) < C(n)Co5 55 (K 1 p) 191 -3 (34)
holds with
Cop.5 (K, h,po) := Co(h) (Ry ™ + po K + po +2) + po
+ Ca(h)* (2 + 6R1) | V2 hl| e (r-1) + Ca(h)"F10C1(R)* (1 + 3Rn) %
For g € L>°(T"), the notation F * (dr ® g) in Lemma 25 means that

Ex(dr @ g)(= /Em— y)dH" ' (y), = e€R™

5.1. BM O Estimate

We follow the idea of the proof for [14, Lemma 5 (i)], which establishes the same BMO estimate in the
case where the domain is a bounded C? doamin.

Proof of Lemma 25 (i). For g € L*°(T"), we follow the setting in Sect. 4.3 to decompose g into the curved
part g; and the straight part g, and let gif € L (R"~!) be defined as expression (26). Since by definition
we have that

* (0r ® g2) = E * (domy ® 95 ),
the estimate

V(B (Gonz ® )] pasormey < COGE |w sy < C)lglz o

follows from estimate (31). As we are now considering the case where the boundary T is uniformly C?,
the signed distance function d is C? in I‘gﬂ, see e.g. [20, Section 14.6]. We consider § € C°(R) such that
0<60<1,0(c)=1for |o| <1and #(c) =0 for |o| > 2. Note that 04 := 0(4d/po) is C? in R". We
extend g1 € L*>(I") to ¢g§ € L™ (FE;T;Q) by setting

gi(z) == g1 (mz)

for any x € F 5 With w2 denoting the unique projection of x on I'. For x € e /2, by considering the
normal coordmate r = Fry(n) in U,y /o(mx), we have that

(Vad)p,, - (Vag) Frp = Oy, (91) . = 0

as (¢5)r,, (', m1) = (¢9)F,, (0, 72) for any |n/| < p0/2 and 7,79 € ( p0/2, po/2). Here the notation (f)pm
represents the composition of f and Fr,, i.e., (f)F,, := fo Fy,. Hence, we see that Vd-Vg¢§ = 0 in Fg/z.

Let us consider g7 . := 0495. A key observation is that

or ® g1 = (V1iry - Vd)gi . = div(g{ 1rp Vd) — 1ry div(g] . Vd),
49/(4d/p0) e
- 91-

div(g] .Vd) = g7 [Ad+Vd-Vgi . = ¢} Ad + p
0
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Thus,
VE x (51“ ® gl) = Vdiv (E * (giclevd)) — VE % (11:{29?‘]“97/,0/4) = I1 + .[2

where fy /4 = 0aAd + W. By the L>*°-BMO estimate for the singular integral operator [19,
Theorem 4.2.7], the first term is estimated as

(L] smomn) < C(n)||9~‘f,ch||Lw(Rg) < Cm)lgllzo=(r)-

Since

()| < 2Rh} ;

SupP(97.f0,p0/4) € Ue,po/2 = {17 €Tl
for x € R™ with d(z, U, y,/2) = infyeu, , ,»|2 —y| <1 we have that

()] < C(n) / !

- d ©
R Wfoporall (v, 9 e (v, 2)

where
C95.5(h: po) = (Rp + po + 1) (V"2 Al oo 0y + VBl Foe 0y V2l oo ) + 25 )-

For z € R" with d(z, U p,/2) = infyeu, , ,,|7 —y| > 1, same estimate above for |I5(z)| holds trivially as
|z —y|~ (™D <1 for any y € Uc,po/2- The proof of the first part of Lemma 25 is now complete. O

5.2. L°° Estimate for Normal Component

The L* estimate to the normal component of VE % (dr ® ¢g) within a small neighborhood of T" for
g € L>°() N H~2(I) can be derived by almost the same argument as establishing the boundedness of
the trace operator S from L (I') N H~2(T) to L>(T') in Theorem 22.

Proof of Lemma 25 (ii). Let g € L>®°(T) N H~2(T) and = € Ff}o Suppose firstly that |2'| > 3Ry. By
following the setting in Sect. 4.3 to decompose g into the curved part g; and the straight part go, we have
that

Vd(z) - (VE * (or ® g))(z) = (05, E * (v ® g))(x)

— (0, B+ (Gome ® 1)) (2) + / (0.E) (z — 1)1 () dH"(y),
BIL(QRh,)

where g = T, '(g2). By estimate (32), we see that
1 1
| (90, B % (Bomy © 951)) (@)] < 5 ll95" | omy) < 5 llgllzoe -

Since |z'| > 3Ry, for any y € B[.(2Ry,) we have that |z — y| > |2/ — /| > |2'| — |¢'| > Rj. Hence,

/ (0nE)(x —y)g1(y) dH" (y)
B{(2Rp)

N

< C(n)R;, " lgll poe r / (1+ V'R dy' < C(n)Cs(h) ||l Lo (-

ly'[<2Rn
Thus, for z € T} with |2/| > 3Ry, we show that

[Vd(z) - (VE * (r © 9)) ()] < C)Ca(B) g (r)-
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Next, we consider the case where |2'| < 3Ry, In this case, we consider a modified decomposition of g.
We let g7 := 1931+3th o) 9 and g3 := g — g7 where 1lBl+3Rh () is the characteristic function associated

with the open ball By y3g, (0') in R"~1. We firstly deal with the modified curved part g;. Note that
Vd(z) - (VE * (or @ g7))(2) = /F (Vd(z) — Vd(y)) - VE(z — y)g; (y) dH" " (y)

8E * n—
+ [ e = gl ) @) = D) + L)
r Oy
By Proposition 20, we have that

1
[ (2)] < C(n)HV/Qh”L‘”(R"—l)Cs(h)Q||g||L°°(1")/ dy’

v |<1+3R, |2 —'["7?
< C(n) (L + 6Ry)|[V™?h oo rn-1)Cs (R)? |9 oo r)-
On the other hand, by Lemma 19 we have that
[I2(2)| < C(n)C19 (£, h, po)llgll e (r)-

Then, we deal with the modified straight part g5. Let 6, € C>°(R"™1) be a cut-off function such that
0<60,<1,6,=11in B%+3Rh(0’) and supp b, C Bii3p, (0). Let = € Pf}o with |2'| < 3Rj,. We define
that

O z(y) =0y —2'), K,(y):= {Vd(:z:) ~VE($ - (y’,h(y’)))} (1-0.0(y)).
Note that

=

Vd(z) - (VE  (or ® g3))(x) = / K. ()93 (' h(y) (1 + [V'Ry)[*) dy’

Rnfl
and for any x € Ff}o and y € I with « # y, it holds that

V') - (&' —y) + (20 — B(Y))

Vd(z) - VE(z —y) = —C(n) 2\ /2
w(a:’)(|x’ =2+ (zn — h(y)) )

where w(z') = (1 + |V’h(x’)|2)%. By following similar calculations in the proof of Theorem 22, we can
deduce that K, (') € C'(R"~") satisfies supp K, (') C B13p, (#),
(Ko ()] - |2 = y'["™" < C(n)Cs(h), |V, Ka(y)| - [a" —y/I" < C(n)Cs(h)*.
Hence, by the duality relation between H%(R”_l) and H_%(R"_l)7 Proposition 13, Proposition 21,
estimate (18) and estimate (20), we can deduce that
[Vd(z) - (VE * (0r ® g3)) ()]
2,1 X
<N+ VRO Kl gy o 195 A -3 ooy

S C(n)Cs(h)n+1001(h)3(l + 3Rh)g ||g||L°°(F)ﬁH_% (F)

O
We would like to emphasize that it is insufficient to obtain an L°° estimate for the normal component
of VE % (or ® g) in a small neighborhood of T if we only assume that g € L>°(T"). Let B be a ball centered

at 0 with radius rp such that B[(2R),) C B/2. By almost the same argument as in the proof of Lemma
25 (i), we can see that if z € '} with |2/| > r5/2, then we have the estimate

|Vd(z) - (VE  (or ® g))(2)| < C(K, Ru, Ri)||gl| Lo (1)
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In addition, if = € F?O with |2/| < rp/2, we decompose g = g. + gs where
gc(z’,h(x')) = 1/13;B (o/)(xl)g(flah(fl))v
gs(a', h(@")) = g (@', h(2")) — ge(', h(a"))
for any 2’ € R"~L. Since g, is compactly supported, we also have that
[Vd(z) - (VE = (0r ® gc))(z)| < C(K, Ry, Rn)||gll o (ry-

The main barrier comes from the contribution of g4 in the case that |2/| < rp/2.

Proposition 26. For 1 < j <mn — 1, there does not exist a constant C > 0 such that
‘(@E) * (6Rn71 ® g) (.23/70” < C”g”Loo(Rnfl)
for any |2'| < rp/2 and g € L>°(R"™1) with suppg C B, (0')°.

Proof. Let 1 < j <n — 1. Note that

(O11)+ (oo ©.0)w.0) = Cn) [ Mgty dy' = Cl)Ry (o)

Page 41 of 46 41

where R;(g) represents the j-th Riesz transform of g. Let 02 € C2°(R™!) be a cut-off function that
satisfies 0 < 0y < 1, 6 = 1 in B1(0’) and suppfy C Ba(0'). We set v, /4(2") = 92(%), Orp(2') =

1—05(2"/rB), ¥ry16(2') = 92(%) and

Ri(2) == (1 = thrg16(2)) - ;ﬁ

forany 2/ c R" land1<j<n-—1.

We assume the contrary of Proposition 26. Suppose that there exist a constant C’ > 0 such that

1Rj(9)(2)] < C'llgll e @n-1)

for any |2'| < rp/2 and g € L>®(R"!) with suppg C B, (0')¢. As a consequence, the estimate

[1P(9) Lo (rn-1) < C'l|gll o (mo-1)
holds for any g € L>°(R"~!) where

P(g)(z') :== 1y, a(a’) (RJ* * (gzﬁ,,Bg))(a:'), z e R L
With respect to f € L'(R"™1), we can define the adjoint operator of P by
P 1= by (@) (B # (¥ /af) ) @), 2 € RV

(35)

Estimate (35) implies that P* is a bounded linear operator which maps L'(R"™!) to L}(R"7 1), i.e., it

holds that
| P* (Nl @wr-1y < N fllor @)

for any f € L'(R™1). For t > 0, we consider the Gaussian function

fil) o= e

——1 € 4@ Z/ S Rn_l.
(4mt) =

Since R;('/)erM(x/ - '/) S Cgo(Rn—l) and

/

lim fi(a —y') = o(a" —¢/)
in the sense of distributions, we see that

lim P*()(&') = b (&)} ()

(36)

T Birkhauser



41 Page 42 of 46 Y. Giga and Z. Gu JMFM

Since || f¢||z1(mn-1) = 1 for any ¢ > 0, estimate (36) implies that for any ¢ > 0, it holds that
| P*(fo)llLrmn—1y < C".

Hence, by the Bolzano—Weierstrass theorem, there exists a sequence {t,, }men which converges to zero
so that the sequence

{1P* (fro)lr e} en

is convergent. By Fatou’s lemma, we can then conclude that
1¢rs Bl L1 o1y < Lim [|P*(fe,, )

However, for |2| > 2rp we have that ¢, («')R}(2’) = x;/|2’|", which is clearly not L' integrable in the
region {2’ € R"™!||z'| > 2rp}. We reach a contradiction. O

lLi@n-1y < C.

5.3. L? Estimate for the Gradient of the Single Layer Potential

We begin with the half space case.
Proposition 27. Let n > 3. For any g € H—2(R"™!), the estimate
holds with some constant C(n) > 0 that depends on dimension n only.

Proof. We consider the partial Fourier transform of F with respect to 2/, i.e., we let
E'E zy) = / e T B 2, da
R»—1

Since E(x',x,) is radial symmetric in R"~! for any fixed z,, > 0, E'(¢,x,) can be calculated by the
Hankel transform of order 252 of the function T E (r,xy) where

C(n)

E(r,z,) = m

)

i.e., we have that

3—n e_xn|€/|

B(€\w) = €15 |7 Blrn) Jopa (1) dr = Cln) g

where Jn_s is the Bessel function of the first kind of order 2-3 see e.g. [17, Formula 6.565.2]. Then by
the Fourier-Plancherel formula, we obtain that

HV’E * (&)Rg ® g>Hiz(Ri) = /0 /an ‘V’E s (581{1 ®9) (m’,xn)|2 dz' dz,,

=C(n) /R ge@r / o2 du,, de!

=) [ €175 € de = ool

an 1)

and

|0z, E = (58R1 ®g)HiQ(R1) = /0 /Rni1 |0, E = (53R1 ® g) (x’,a:n)|2dcc' dzx,,

— C(?’l)/ ’@\/(gl)’Q/ e—2$n|&-/| dl‘n dg/
Rn—1 0

=Cm)gl? -,

H Q(Rn 1)
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We then generalize this result to arbitrary perturbed C? half space R}.

Lemma 28. Let R} be a perturbed C* half space with boundary I' = Q2 and n > 3. For any g € L>(I') N
H~=(T), the estimate

IVE = (3r @ g) | 2 gy < Cm)C28(Rs p)GN e 1y 4
holds with

n+2

Cog(h, po) == Po Rh +P02" Cy(h)? Rh (||V2h||L<>o Ry + 05 )
+ ()P (R) (1 + RY).

Proof. Let g € L>=(I") N H_%(l"). Following the setting in Sect. 4.3, we decompose g into the curved
part g1 = 1 (09 and the straight part go = g — g1. Since g € L>(T) and L= (T") is continuously
“h

embedded in H—2(T'), by estimate (20) we see that g; € H—2(T') satisfies

9153 0y < COIC WDl 2

< C(n)Cs(h)EF2CL R 19l = (ry-

Hence, it holds that both g1, g2 € L>(T) N H‘l( ) With respect to g, let g4’ be defined by expression
(26). Since Th(gf) = g2 and the mapping T}, : 2(R"1) — H~2(I) is an isomorphism, by estimate
(18) that g&f € H—2(R"!) satisfies

< C(m)Cs(h)EH2C1(h) g2

Hg ||H*§(Rn 1y = H7§(F)

(37)
< C(n)Co(h)" 501 (h)? (1 + Ry )

||g||L°° (T)NH~2 (D)

Next, we follow the proof of Lemma 25 (i) to estimate the L? norm of VE x (6r ® g1). We consider
0 € C(?C( ) such that 0 < 0 <1,6(c) =1 for |o| <1 and 0(c) =0 for |o] > 2. We let 0y := 0(4d/po)
where d is the signed distance function defined by expression (5). Note that this 6, is C? in R". We
extend g; € L>®(T) to ¢§ € L>=(T o /2) by setting ¢§(z) := g1(mx) for any = € F?O';Q with 72 denoting
the unique projection of x on I'. It holds that Vd - Vg = 0 in I‘E:;;Q. We then set gf . := 0497. For any
r € R™, we have that

VE x (0r ® g1)(z) = Vdiv (E * (4§ 1rp Vd)) (z) = VE % (Lrp g5 fo,p0/4) (2)
= I (z) + Ix(x)
where fg .4 == 04Ad + %. Since Vdiv E is bounded in LP for any 1 < p < oo, see e.g. [18,
Theorem 5.2.7 and Theorem 5.2.10], we can deduce that
I lze ey < Cllgh olrg Vellzgo < Cn)pd By gl oy
as suppgi . C {z € ng}Q |[(mx)'| < 2Rp}. Since VE(x) is an integration kernel that is dominated by

C(n)|z|*=™ for z € R"\{0}, by the famous Hardy-Littlewood-Sobolev inequality, see e.g. [1, Theorem
1.7], we have that

[ 2] L2 () < C(n) 1Ry 95 fo.p0 /4
where r = -2 Since supp g5 f,p, /4 C {x € I‘po/2 |[(7x)'| < 2Rp}, we deduce that

L (R)

R poiliree
<O By (IV 2Rl o) (L IV B o) + 05 ) lollooe o).

Hence, we obtain the L? estimate for g, i.e.,
IVE + (6 @ g1) | 2 ey < C(0)C28 1 (h p0) gl p= )
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where

n+2

1 n-1 n+2 n24n-—2
Cog1(h,po) == pi R, +po™ Cs()?Ry, = (V2R Le@n1) + 05 )

The L? estimate of VE * (51“ ® gg) in R follows directly from Proposition 27 and estimate (37). We
have that

IVE* (dory ® 05) || 2myy = COI92" 1 -3

< C(n)Cy(h)™5Cy()2(1 + RE)

(Rn—1)
HgHLOO(F)ﬂH’%(F)'
Note that for any « € R"™, it holds that

VE % (6r @ g2)(x) = VE * (5aR¢ ® g5 ) ().

Moreover, for any x = (2/,2,) € R} we have that

VE + (domy @ g8') (@', —)

- ‘VE* (63R1 ®gf)(x',xn) )

Therefore, the L? estimate of VE * (0p @ g2) in R™ reads as
|VE « (or © g2) HL2(R") =2||VE « (63111 ®g£{)HL2(R1)

< C(n)Ca(h)"™5Cy (h)?(1+ RE) Hg”m(r)mH*%m'

5.4. Solution to the Neumann Problem

Let R} be a perturbed C? half space with boundary I' = OR} and n > 3. We further assume that R}
has small perturbation, i.e., we require that the boundary function h € C?(R"~!) satisfies

1
Ci(h) < ———
«(h) 2C*(n)
where C*(n) is a specific constant that depends on dimension n only. Under this setting, we are able to
construct a solution to Neumann problem (2).

Proof of Lemma 4. Let g € L>®(T') N H-: (I"). By Corollary 24 and Theorem 22, for any i € N we have
that

[1(25) My < 2/C* (n)'C,(h)

g”Loo(r)nH*%( HgHL“(F)N’iT’%(F)'

Since we are now assuming that 2C*(n)C,(h) < 1, the operator I — 25, which is bounded linear from
L>(T)NH2(T) to L=(I')N H~ 2 (I'), admits a well-defined inverse constructed by the Neumann series

oo

(I-28)":=> (29)

=0

in the sense that (I —25)~1 : L) N H~2(I') — L=(I') N H~2(I') is also bounded linear. For g €
L>°(I) N H~2(T'), we have that

—-1 @ vk i (]
10 =28) g1l < b ey < (ZQ C* ()i C(h) ) 190 e -

- HgHLOO(F)ﬁH’%(F)
~ 1-2C*(n)Cy(h)"
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Hence, with respect to g € L>(I') N H > (T), we claim that the solution to Neumann problem (2) can be
constructed as

u(z) = E (5p ® (2(I - 25)_1g)>(9c), x e Rj.

A simple check ensures that u satisfies Neumann problem (2) formally. It is sufficient to establish the
vBMOL? estimate for Vu. The vBMO®°*o-norm for Vu in R} is guaranteed by Lemma 25. By estimate
(33) and estimate (34), we have that

1—2C*(n)C.(h) Le=(T)nH ™2 (D)

where Co5 (K, h, po) := Co5 ,(h, po)+Co5 . (K, h, po). The L? estimate of Vu follows directly from Lemma
28, we have that

[Vl )<

vBMO>=w0 (R;:

IVl , (rp) = C(n)Cag(h, po)||(I —25)~

C(n)Cag(h, po)
= 1-2C*(n)C,(h) I9W ey oy
This completes the proof of Lemma 4. O

1
g”Loo(F)mH*%(r)
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