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Abstract. We construct a three-dimensional vector field that exhibits positive energy flux at every Littlewood–Paley shell
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1. Introduction

1.1. Anomalous Dissipation: What is Known

In his famous 1949 work [1] Onsager conjectured energy dissipation ‘without final assistance of viscosity’
in fluids. In today’s mathematical literature such phenomenon is referred to as ‘anomalous dissipation’
of solutions to the Euler equation. Onsager’s original conjecture was stated in terms of Hölder spaces
and is by now fully resolved: Constantin, E and Titi [2] proved conservation of energy of any weak
Euler solution which is C1/3+ε-regular in space, while Isett [3] constructed non-conservative C1/3−ε Euler
solutions, using the convex integration technique developed by De Lellis and Székelyhidi [4]. For the truly
dissipative case, see Buckmaster, De Lellis, Székelyhidi, and Vicol [5].

Both results remain valid if stated in terms of L3-based Sobolev or Besov spaces, i.e. for W 1/3±ε,3

or B
1/3±ε
3,∞ : the dissipative one trivially, the conservative part was shown by Duchon and Robert [6]. The

exponent 3 appears naturally via the cubic term in the energy balance equation, but less is known if the
integrability is below 3, in particular for Hs = W s,2. The best known result on the conservative side
is the trivial one: by Sobolev embedding H5/6+ε ↪→ W 1/3+ε,3. On the non-conservative side, recently
H1/2−ε has been reached in Buckmaster, Masmoudi, Novack, and Vicol [7] (which was later extended
by Novack and Vicol [8]). While the exponent 1/2 may be critical for full (h-principle-type) flexibility of
Euler solutions, it is conjectured (cf. Problem 5 in the survey [9] by Buckmaster and Vicol) that 5/6 is
the threshold for energy conservation.

Conjecture 1. For any s < 5
6 there are weak solutions to the Euler equation in CtH

s
x with strictly de-

creasing kinetic energy.

In this work we do not prove the conjecture, but provide evidence in its favour.

1.2. Energy Flux and Statement of the Main Result

The first step for proving conservation of energy is usually to regularize the Euler equation and to test it
with the regularised solution:

d

dt

1
2

∫
(Squ)2 dx =

∫
Squ · ∂tSqu dx = −

∫
Squ · Sq (u · ∇u) dx. (1)
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Here Sq denotes any linear regularizing operator such that Sq → Id as q → ∞; in our case it will be the
Littlewood-Paley projection onto functions with frequencies � 2q. Note that the pressure term vanishes
due to incompressibility and linearity of Sq.

The second step is showing that the right hand side of (1), called the energy flux (towards high
frequencies), vanishes as q → ∞, which holds if u is a divergence free field with enough regularity; this
step may be thus completely detached from the fact that u solves the Euler equation!

By (1), vanishing of the energy flux is a sufficient condition for conservation of energy. Even though
it may not be a necessary condition, non-vanishing of the flux suggests an energy cascade as described
by Richardson (cf. Frisch [10]), i.e. continuous transport of energy from low to high and higher frequency
structures, which is in turn seen as the mechanism of anomalous dissipation. Therefore, constructing a
non-vanishing energy flux of certain regularity is a strong premise for non-conservative Euler solutions
with that regularity. Such flux construction, with certain further desired properties, is the subject of this
note.

Let us define for a distributionally divergence-free vector field u : T
3 → R

3

Πq(u) =
∫
T3

Sq(u ⊗ u) : ∇Sq(u) dx,

where Sq denotes a Littlewood-Paley projection, to be precised later. The right hand side of (1), with
Sq disambiguated as a Littlewood-Paley projection, after applying incompressibility and integration by
parts, is precisely our Πq(u). With this definition, and the standard notion of Besov spaces Bs

p,r (defined
in Sect. 2) we state

Theorem 1. For any c ∈ R and δ > 0, there exists a divergence-free vector field U ∈ B
5/6
2,∞(T3) such that

lim inf
q→∞ Πq(U) > c − δ and lim sup

q→∞
Πq(U) < c + δ. (2)

In fact, U ∈ B
3
p − 2

3
p,∞ (T3) with any p ∈ (1, 9

2 ) and U ∈ Ḃ
3
p − 2

3
p,∞ (T3) with any p ∈ (1,∞].

1.3. Remarks and Comparison to Previous Results

(i) The theorem is sharp concerning regularity of U . Indeed, for any p < ∞ the flux Πq(U) vanishes for
q → ∞ for every U ∈ B

5/6
2,r . This follows from embedding into B

1/3
3,r and Theorem 3.3 of Cheskidov,

Constantin, Friedlander, and Shvydkoy [11].
(ii) A proper limit seems possible with a more careful choice of parameters. We did not pursue this here,

as the main objective was obtaining a positive lim inf for critical spaces in three space dimensions.
(iii) Our construction is strongly inspired by Cheskidov, Lopes Filho, Nussenzveig Lopes, and Shvy-

dkoy [12], which in turn develops ideas of Eyink [13]. Regularity-wise, a two dimensional sharp
result is sketched in [12]. The vector field U described there enjoys lim supq→∞ Πq(U) �= 0, while
lim infq→∞ Πq(U) = 0. In fact, [12] points at Cheskidov and Shvydkoy [14] for details of the construc-
tion aimed at sharp regularity for p < 3. A straightforward attempt to fill in those details may result
in non-zero values appearing extremely sparsely in the sequence Πq(U), which means that ’typically’
Πq(U) = 0. This is unsatisfactory from the perspective of energy cascade. Indeed, any Πq(U) ≈ 0
disrupts the transport of energy, which is predominantly local (from lower to slightly higher fre-
quencies; this locality remains in accordance with turbulence literature). Hence there cannot be a
continuous cascade related to U .

(iv) Another approach towards anomalous dissipation is proposed by Cheskidov and Luo [15]: the authors
construct almost fully intermittent vector fields in 3 or more dimensions, which are not stationary
but instead use time as another degree of freedom. More precisely, the construction features a ‘time-
delayed’ energy cascade and the definition of energy flux involves averaging in time. This is a very
interesting approach, especially towards possible blow-up scenarios, but it does not satisfy the energy
cascade heuristics sketched above.
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1.4. Organisation

In Sect. 2 we detail the construction of the vector field U and gather its properties. In Sect. 3 we decompose
the energy flux of U , which facilitates computations of the final Sect. 4, where the proof of Theorem 1 is
concluded.

2. The Construction

Take a smooth function

ϕ : [0,∞) → [0, 1], ϕ(ξ) =

{
1 ξ ≤

√
5
2 + 2ε

0 ξ ≥ 2 − 4ε,

with ε small enough, to be fixed later. Let ψ(ξ) = ϕ(2ξ) − ϕ(ξ). The Littlewood-Paley low-frequency and
dyadic projections are, respectively, Ŝqu(k):=ϕ(λ−1

q |k|)û(k) and Δ̂qu(k):=ψ(λ−1
q |k|)û(k), where λq = 2q.

2.1. The Planar Construction

In this section we construct the planar vector field U0 along [12]. Fix the plane P0:={(x1, x2, x3) ∈
R

3| x3 = 0}. Define the frequency vectors

F
1©

0 := (0, 1, 0), F
2©

0 := (2, 0, 0), F
3©

0 := (2, 1, 0)

and amplitude vectors

V
1©

0 := (1, 0, 0), V
2©

0 := (0, 1, 0), V
3©

0 := (−1, 2, 0).

The planar ’skeleton field’ S is the sum over q ∈ 3N of sq = s
1©

q + s
2©

q + s
3©

q , where

s 1©
q := λ

− 1
3

q V
1©

0 sin
(
λqF

1©
0 · x

)
,

s 2©
q := λ

− 1
3

q V
2©

0 cos
(
λqF

2©
0 · x

)
,

s 3©
q := λ

− 1
3

q V
3©

0 cos
(
λqF

3©
0 · x

)

The skeleton field S suffices to obtain the lim sup result in B
1
3
3,∞(T3); in particular div S = 0 thanks to

F
i©

0 · V
i©

0 = 0.
Since the Bernstein inequality implies the Sobolev inequality:

‖Δqf‖L3(T3) ≤ Cλ
1
2
q ‖Δqf‖L2(T3) =⇒ ‖f‖

B
1
3
3,∞(T3)

≤ C‖f‖
B

5
6
2,∞(T3)

,

constructing U ∈ B
5
6
2,∞ with a positive flux could be reached by replicating the interactions arising in S,

while saturating the Bernstein inequality. This strategy is realised by a three-dimensional blurring of the
skeleton frequencies, with the new amplitudes preserving solenoidality and being appropriately rescaled.

To this end define the active regions (‘blurs’ of frequencies λqF
i©

0 that are ‘active’ in S) as follows:

A
1©
0,q := Z

3 ∩ λq

(
F

1©
0 + [0, ε]3

)
,

A
2©
0,q := Z

3 ∩ λq

(
F

2©
0 + [0, ε]3

)
,

A
3©
0,q := Z

3 ∩ λq

(
F

3©
0 + [0, 2ε]3

)
.
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Define πξ to be the orthogonal projection onto the plane ξ⊥. Note that πξ(v)eiξ·x is a divergence-free
vector field and agrees with the classical Leray-Helmholtz projection of veiξ·x, since πξ = 1 − ξ

|ξ| ⊗ ξ
|ξ| .

We can now define the components of uq = u
1©

q + u
2©

q + u
3©

q

u 1©
q := ε−2λ

− 7
3

q

∑
ξ∈A

1©
0,q

πξ

(
V

1©
0

)
sin (ξ · x) ,

u 2©
q := ε−2λ

− 7
3

q

∑
ξ∈A

2©
0,q

πξ

(
V

2©
0

)
cos (ξ · x) ,

u 3©
q := ε−2λ

− 7
3

q

∑
ξ∈A

3©
0,q

πξ

(
V

3©
0

)
cos (ξ · x) .

(3)

Finally, the (almost) planar vector field is U0:=
∑

q∈3N uq. It is real-valued and (weakly) divergence-free.

2.2. The Rotations and the Full Field U

The flux of U0 is controlled only for q ∈ 3N, thus merely a lim sup result is possible. Straightforward ’con-
densation’ 3N → N results however in undesirable interactions. We overcome this problem by combining
almost-planar fields at three distinct planes. Each of these three types of almost-planar fields is obtained
by rotating the construction from Sect. 2.1.

Fix the line L:={x1 + 2x2 = 0 = x3} within the plane P0. Let R denote the rotation around L by π
3 ,

which is given by the matrix

R =
1
10

⎡
⎣ 9 −2 −√

15
−2 6 −2

√
15√

15 2
√

15 5

⎤
⎦

The rotated components will be similar to uq from the previous section, but anchored instead at the plane

P1 = RP0 or P2 = R2P0. More precisely: fix q ∈ 3N + 1, for i = 1, 2, 3 define V
i©

1 :=RV
i©

0 , F
i©

1 :=RF
i©

0

and the regions

A
1©
1,q := Z

3 ∩ λq

(
F

1©
1 + [0, ε]3

)
,

A
2©
1,q := Z

3 ∩ λq

(
F

2©
1 + [0, ε]3

)
,

A
3©
1,q := Z

3 ∩ λq

(
F

3©
1 + [0, 2ε]3

)
.

(Note that we first rotate the skeleton frequencies and blur afterwards, since rotating the blurs A
i©

0,q

results in non-integer values.) The components u
i©

q and uq are then defined as in Sect. 2.1, now with V
i©

1

replacing V
i©

0 and A
3©
1,q replacing A

3©
0,q. We write U1:=

∑
q∈3N+1 uq.

The 2π
3 -rotated field U2:=

∑
q∈3N+2 uq is defined with R in the definition of V

i©
1 , F

i©
1 replaced by R2

(yielding V
i©

2 , F
i©

2 , and A
i©

2,q). Finally

U = U0 + U1 + U2.
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For brevity, we will at times suppress the lower index j in A
i©

j,q (denoting rotation), since it is unambigu-
ously determined by q mod 3. In other words

U =
∑

q

uq =
∑

q

u 1©
q + u 2©

q + u 3©
q , with

u 1©
q = ε−2λ

− 7
3

q

∑
ξ∈A

1©
q

πξ

(
V

1©
q mod 3

)
sin (ξ · x)

u 2©
q = ε−2λ

− 7
3

q

∑
ξ∈A

2©
q

πξ

(
V

2©
q mod 3

)
cos (ξ · x)

u 3©
q = ε−2λ

− 7
3

q

∑
ξ∈A

3©
q

πξ

(
V

3©
q mod 3

)
cos (ξ · x) .

2.3. Regularity of U

By O(ε) we will denote a real scalar, vector or tensor of magnitude � ε, i.e. such that |O(ε)| ≤ Cε, with
a uniform constant C (i.e. independent from any parameters).

For objects defined in Sects. 2.1, 2.2 we have

Proposition 1. For j = 0, 1, 2 (rotations) and i = 1, 2, 3 it holds

πξ

(
V

i©
j

)
− V

i©
j = O(ε) ∀ ξ ∈ A

i©
j,q , (4)

|A i©
j,q | ∈ [(ελq − 1)3, (ελq + 1)3] for i = 1, 2, (5a)

|A 3©
j,q | ∈ [(2ελq − 1)3, (2ελq + 1)3]. (5b)

Moreover, for any p ∈ (1,∞]

‖uq‖Lp ≤ Cpε
1− 3

p λ
2
3− 3

p
q , (6)

‖U‖
Ḃ

3
p

− 2
3

p,∞
≤ Cpε

1− 3
p . (7)

Proof. From the construction in Sects. 2.1, 2.2 we have

ξ ∈ A
i©

j,q =⇒ ξ

|ξ| =
F

i©
j

|F i©
j |

+ O(ε) (8)

and F
i©

j ⊥ V
i©

j . The projection πξ = 1 − ξ
|ξ| ⊗ ξ

|ξ| , therefore

πξ

(
V

i©
j

)
= V

i©
j − ξ

|ξ|

⎛
⎝ F

i©
j

|F i©
j |

+ O(ε)

⎞
⎠ · V

i©
j = V

i©
j − ξ

|ξ|O(ε)

from which (4) follows immediately.
In any cube x0+[0, ελq]3, there are at most (�ελq� + 1)3 ≤ (ελq +1)3 and at least (�ελq�)3 ≥ (ελq −1)3

lattice points. This proves (5) in the case i = 1, 2. For i = 3 the only difference is that the cube has twice
longer edges.
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Since πξ agrees with the Leray-Helmholtz projector, we can use the Lp theory for the latter, obtaining

‖u 1©
q ‖p ≤ Cpε

−2λ
− 7

3
q ‖

∑
ξ∈A

1©
q

V
1©

q mod 3 sin (ξ·) ‖p

≤ Cpε
−2λ

− 7
3

q ‖
∑

ξ∈A
1©

q

sin (ξ·) ‖p

≤ Cpε
−2λ

− 7
3

q (ελq)3(1− 1
p ),

where the last but one inequality holds, because V
1©

q mod 3 is constant. The last inequality, since Aq is

a cube, follows along the lines of the Dirichlet kernel estimate. An analogous computation for u
2©

q ,

u
3©

q yields (6) for p ∈ (1,∞). The case p = ∞ follows from the (non-optimal) straightforward bound
‖uq‖L∞ ≤ ‖ûq‖L∞ spt(ûq) and application of (4) and (5).

The final regularity statement (7) follows from (6) and the fact that by (12) below at most 3 compo-
nents uq interfere with a single Littlewood-Paley shell. �

2.4. Fourier Side of U

For the sake of the next section, let us write uq in terms of Fourier modes, restricting our attention to
the leading order amplitudes, provided by (4):

û
1©

q = −iλ
− 7

3
q ε−2

(
V

1©
q mod 3 + O(ε)

) (
χ

A
1©

q

− χ
−A

1©
q

)
,

û
2©

q = λ
− 7

3
q ε−2

(
V

2©
q mod 3 + O(ε)

) (
χ

A
2©

q

+ χ
−A

2©
q

)
,

û
3©

q = λ
− 7

3
q ε−2

(
V

3©
q mod 3 + O(ε)

) (
χ

A
3©

q

+ χ
−A

3©
q

)
,

(9)

where χA denotes the characteristic function of A. Differentiation yields

̂∇u
1©

q = −λ
− 4

3
q ε−2

(
V

1©
q mod 3 ⊗ F

1©
q mod 3 + O(ε)

) (
χ

A
1©

q

+ χ
−A

1©
q

)
,

̂∇u
2©

q = iλ
− 4

3
q ε−2

(
V

2©
q mod 3 ⊗ F

2©
q mod 3 + O(ε)

) (
χ

A
2©

q

− χ
−A

2©
q

)
,

̂∇u
3©

q = iλ
− 4

3
q ε−2

(
V

3©
q mod 3 ⊗ F

3©
q mod 3 + O(ε)

) (
χ

A
3©

q

− χ
−A

3©
q

)
.

(10)

Observe that the amplitudes of ∇u
1©

q are real while the other ones are purely imaginary.
We will also need the following precise estimates about the shells in which the Fourier support of U

is contained:

spt(û 1©
q ) ⊂ {λq(1 −

√
3ε) ≤ |ξ| ≤ λq(1 +

√
3ε)},

spt(û 2©
q ) ⊂ {λq(2 −

√
3ε) ≤ |ξ| ≤ λq(2 +

√
3ε)},

spt(û 3©
q ) ⊂ {λq(

√
5 − 2

√
3ε) ≤ |ξ| ≤ λq(

√
5 + 2

√
3ε)}.

(11)

Hence

spt(ûq) ⊂ {λq(1 − 2ε) < |ξ| < λq(
√

5 + 4ε)}. (12)
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Fig. 1. Active regions from three consecutive generations q − 1, q, q + 1 and support of ∇ϕ(λ−1
q ·). Different colours of

active regions indicate that in fact they are anchored at three different planes

Bounds (11) can be seen using Fig. 1. Let us justify them more extensively. It holds spt(û i©
q ) = ±A

i©
q ;

in particular the supports are symmetric, so we can ignore the ‘negative’ part in our computation. For

i = 1, 2, A
i©

q ⊂ Qi:=λq(F
i©

q mod 3 + [0, ε]3), while for Q3 we replace ε with 2ε. The diameter of Qi equals√
3λqε for i = 1, 2 and 2

√
3λqε for i = 3. Observe that

|F 1©
q mod 3| = 1, |F 2©

q mod 3| = 2, |F 3©
q mod 3| =

√
5

irrespective of rotation. This, the fact that λqF
i©

q mod 3 ∈ Qi and the values of the diameters yield the
generous estimate (11).

3. Flux Decomposition

Let v1, v2, v3 be any vector fields from T
3 to C

3. Then, for ξj ∈ Z
3, j = 1, 2, 3, via Parseval∫

(v1 ⊗ v2) : ∇v3 =
∑

ξ1+ξ2+ξ3=0

v̂1(ξ1) ⊗ v̂2(ξ2) : ∇̂v3(ξ3). (13)

Thus, any contribution to the integral necessitates ξ1 + ξ2 + ξ3 = 0. This observation is an underlying
principle for the following analysis of the flux. In particular, modes satisfying ξ1 + ξ2 + ξ3 = 0 will be
referred to as ’interacting’ (i.e. contributing to the flux), exhibiting ’non-zero interactions’ etc.

The aim of this section is to split the flux Πq(U) into a local part Πlocal
q , which is restricted to

interactions within a single component uq, and a non-local part Πnon−local
q , which involves modes further

apart. We will show that Πlocal
q behaves precisely like the flux of the skeleton field S. However, unlike in

the Πq(S) case, Πnon−local
q will contribute to the flux. Indeed, a blur of a very high frequency interacts with

its almost-symmetric counterpart, producing a much lower non-zero mode, which in turn may interact
with a low-frequency mode.

Recall that |O(ε)| ≤ Cε with a uniform C. We will from now onwards tacitly assume that ε ≤ ε0,
where Cε0 ≤ 1

C . Consequently, 1−|O(ε)| ≥ 1− 1
C . Even though O(ε) is unsigned and even not necessarily

a real number, we will write at times 1 − O(ε), meaning 1 − |O(ε)|. Denoting a � b:=a ⊗ b + b ⊗ a, we
state
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Lemma 1 (Flux decomposition). The energy flux Πq(U) = Πlocal
q + Πnon−local

q , where

Πlocal
q =

∫
u 2©

q � u 3©
q : ∇u 1©

q (14)

and

Πnon−local
q =

∑
i=1,2,3

∑
l≤q

∑
k>max(q,l+Nε)

∫
u

i©
k ⊗ u

i©
k : ∇u

1©
l (15)

with Nε = �3 − log ε�.
The remainder of this section contains proof of Lemma 1.

3.1. Initial Splitting of Πq(U)

Let us define for U =
∑

q uq of Sect. 2.2

U<q:=
∑
l<q

ul and analogously: U>q, U≤q, U≥q.

The splitting U = U<q + uq + U>q is usually called Bony decomposition. By (11) and the choice of the
cutoff function ϕ, implying there are no active modes of U in the support of derivative of ϕ, we have (cf.
Fig. 1)

Sq(U) = U<q + u 1©
q and U − Sq(U) = u 2©

q + u 3©
q + U>q. (16)

Therefore

Πq(U) =
∫

Sq(U ⊗ U) : ∇Sq(U) =
∫

Sq(u ⊗ U) : ∇(U<q + u 1©
q )

=
∫

(U ⊗ U) : ∇(U<q + u 1©
q ).

(17)

U is divergence-free and integrable, while U<q + u
1©

q is smooth, thus integrating by parts∫
(U<q + u 1©

q ) ⊗ U : ∇(U<q + u 1©
q ) = 0. (18)

Subtracting (18) from (17) we obtain

Πq(U) =
∫ (

u 2©
q + u 3©

q + U>q

)
⊗ U : ∇

(
U<q + u 1©

q

)
. (19)

We split now Πq(U) of (19) into the part Πnon−local
q where modes are separated and the remainder Πlocal

q

as follows:

Πlocal
q =

∫
(u 2©

q + u 3©
q + uq+1) ⊗ (uq−1 + uq + uq+1) : ∇(uq−1 + u 1©

q ), (20)

Πnon−local
q =

∫
U>q+1 ⊗ U : ∇

(
U<q + u 1©

q

)

+
∫

(u 2©
q + u 3©

q + uq+1) ⊗ U : ∇U<q−1

+
∫

(u 2©
q + u 3©

q + uq+1) ⊗ (U<q−1 + U>q+1) : ∇(uq−1 + u 1©
q ).

(21)

We need to show that (20) is in fact (14), and that (21) is in fact (15).
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3.2. Exclusion of Three Different Planes Interacting

We will say that a point ξ is anchored to a set Ω if dist(ξ,Ω) ≤ 2ε|ξ|. We claim that each frequency ξ of
Û is unambiguously anchored at one of three different planes P0, P1 or P2, thanks to ε ≤ ε0 small in our

definition of active frequency regions A
i©

q .

Indeed, λqF
i©

q mod 3 ∈ Pq mod 3, so dist(ξ, Pq mod 3) ≤ |ξ − λqF
i©

q mod 3|. At the same time, if ξ ∈ A
i©

q

then by construction ξ belongs to a cube with a vertex λqF
i©

q mod 3 and with its side length ελq or 2ελq.

This reads for ξ ∈ A
i©

q with i = 1, 2

dist(ξ, Pq mod 3) ≤ |ξ − λqF
i©

q mod 3| ≤
√

3ελq ≤
√

3ε

1 − 2ε
|ξ|,

where the last inequality stems from (12). Hence for i = 1, 2, ξ ∈ A
i©

q are anchored to Pq mod 3, provided
√
3

1−2ε0
≤ 2. Similarly for ξ ∈ A

3©
q , because

dist(ξ, Pq mod 3) ≤ |ξ − λqF
3©

q mod 3| ≤ 2
√

3ελq ≤ 2
√

3ε√
5 − 2

√
3ε

|ξ|,

applying now (11) and again an uniform upper bound on ε0.
Since ε is small, we see that the anchoring is unambiguous, as claimed.
Our next goal is to exclude any interactions between modes related to three different planes P .

Proposition 2. If each spt(ûq′), spt(ûq′′), spt(ûq′′′) is anchored at a different plane P , then∫
uq′ ⊗ uq′′ : ∇uq′′′ = 0. (22)

Proof. Every P stems from a rotation around axis L, whose normal plane we call L⊥. Let us denote the
orthogonal projection onto L⊥ by πL⊥ . For modes ξj ∈ spt(ûqj

) with j = 1, 2, 3 to interact, it is necessary
that πL⊥(ξi) do interact, i.e. that

πL⊥(ξ1) + πL⊥(ξ2) + πL⊥(ξ3) = 0. (23)

For the following considerations, it may be beneficial to visualise U projected onto L⊥, i.e. Fig. 1 seen
along the axis L, see Fig. 2.

Observe that πL⊥ projections of modes of uq have norms equal either 2
√
5

5 λq(1+O(ε)) =: λ̃q(1+O(ε))
or 2λ̃q(1 + O(ε)).

We assumed that each mode ξi is anchored at a different P plane. Consequently, each πL⊥(ξi) is
anchored to a different line li which is πL⊥ projection of a plane P . Take the mode with the largest norm,
say ξ1 of ûq0 , anchored at l1. We have

either |πL⊥(ξ1)| = λ̃q0(1 + O(ε)), (24a)

or |πL⊥(ξ1)| = 2λ̃q0(1 + O(ε)). (24b)

The remaining two active πL⊥(ξi)’s, i = 2, 3 are anchored, respectively, at different lines l2, l3. Therefore
we have

|πL⊥(ξ2)| = 2−j λ̃q0(1 + O(ε)) for a j ≥ 0 (25a)

|πL⊥(ξ3)| = 2−k−1λ̃q0(1 + O(ε)) for a k ≥ 0. (25b)

The first consequence of (25) is that (24b) cannot happen. Indeed, using (23) we have

|πL⊥(ξ1)| = |πL⊥(ξ2) + πL⊥(ξ3)| ≤ λ̃q0(1 + O(ε)) + 2−1λ̃q0(1 + O(ε)) <
3
2
λ̃q0(1 + O(ε)). (26)

Next, knowing that (24a) is the only possibility, we argue that (24a) requires j = 1 in (25a). Indeed, j < 1
is immediately excluded analogously to (26). Take case j = 0 in (25a). The involved projections of modes
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Fig. 2. Windmill: dots indicate (approximately) active regions projected on the plane of rotation L⊥

πL⊥(ξ1), πL⊥(ξ2) are anchored at different lines l1, l2, with angle π/3 between them. This spreading
means that, by adding vectors we have

|πL⊥(ξ1) + πL⊥(ξ2)| ≥ λq0(1 − O(ε)),

but then (25b) makes (23) impossible. (Recall we write 1 − O(ε) for 1 − |O(ε)|.)
Finally, having both (24a) and (25a) with j = 1, we see that k > 0 in (25b) is now excluded analogously

to (26).
Altogether, (23) may occur only if

|πL⊥(ξ1)| = λ̃q0(1 + O(ε)), |πL⊥(ξ2)| =
λ̃q0

2
(1 + O(ε)), |πL⊥(ξ3)| =

λ̃q0

2
(1 + O(ε)),

but due to π/3 angle between l2, l3, |πL⊥(ξ2) + πL⊥(ξ3)| ≤
√
3
2 λ̃q0(1 + O(ε)) < λ̃q0(1 − O(ε)), so (23) is

impossible. �

3.3. Exclusion of Near-Field Interactions

It turns out that active modes which are not all from the same ûq may interact only in the following
scenario: the two higher-frequency modes are from the same ûq, while the third mode is of considerably
lower frequency. More precisely, we have

Proposition 3. Let q1 ≤ q2 ≤ q3. Assume that uqj
’s interact, i.e. there are ξ1, ξ2, ξ3 where ξj ∈ spt

(
ûqj

)
for j = 1, 2, 3 such that

ξ1 + ξ2 + ξ3 = 0.

Suppose q1 < q3, then q1 + 3 ≤ q2 = q3.

Proof. We distinguish three elementary cases, depending on the separation between the largest q3 and
the smallest q1.

Case 1. q1 = q3 − 1. Since q2 ∈ {q1, q3} there are exactly two modes anchored at the same plane and
the third mode at a different one, say ξ, η are anchored at P0 while ζ is not. Then, on the one hand

dist(ξ + η, P0) ≤ dist(ξ, P0) + dist(η, P0) ≤ 2ε(|ξ| + |η|) ≤ 2ε(2
√

5 + O(ε))λq3 , (27)
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with the last inequality given by (12) and the fact that q3 is the largest of qj ’s. On the other hand,
projections do not increase distances, so dist(ζ, P0) ≥ dist(πL⊥(ζ), l0), with l0 = πL⊥(P0) (recall setting
of proof of Proposition 2). Since the angle between the planes Pq mod 3 is always π

3 (thus between lines
lq mod 3 being their projections) and ζ is anchored to lq mod 3 �= l0, we have, cf Fig. 2

dist(ζ, P0) ≥ dist(πL⊥(ζ), l0) ≥ λ̃q1(1 − O(ε))(sin(
π

3
) − O(ε))

≥ (
√

15
5

− O(ε))λq1 = (
√

15
10

− O(ε))λq3

(28)

Comparing (27) and (28), we see that dist(ξ + η, P0) < dist(ζ, P0) for ε ≤ ε0, so there is no interaction.
Case 2. q1 = q3 − 2. There are two possibilities:

(a) q2 = q1 + 1, i.e. q2 is strictly inbetween q1 and q3. Then all ξj are anchored at a different plane, so
by Proposition 2 there is no interaction.

(b) q2 ∈ {q1, q3}. Then the very same argument as in Case 1 applies, with a smaller but fixed parameter
ε0.

Case 3. q1 ≤ q3 − 3. We can estimate using (12) twice

(
√

5 + 4ε)λq2 > |ξ2| = |ξ1 + ξ3| ≥ |ξ3| − |ξ1| ≥ (1 −
√

5
8

− 5ε

2
)λq3 >

√
5 + 4ε

4
λq3 ,

where the last inequality uses ε ≤ ε0. Comparing the leftmost and the rightmost quantity above, we see
that necessarily q2 ≥ q3 − 1. We have thus two options: either q2 + 1 = q3 or q2 = q3; the latter being
the final statement. Therefore it remains to exclude q2 + 1 = q3. In such case ξ2 and ξ3 are anchored at
different planes, say P0 and P1, respectively. Analogously to (28) we thus have

dist(ξ3, P0) ≥ (
√

15
5

− O(ε))λq3 .

The mode ξ2 is anchored at the plane P0, so −ξ2 is also anchored at the plane P0. Consequently, via
triangle inequality

|ξ2 + ξ3| + 2ε|ξ2| ≥ dist(ξ3, P0).

Together, the above two inequalities yield

|ξ2 + ξ3| ≥ dist(ξ3, P0) − 2ε|ξ2| ≥ (
√

15
5

− O(ε))λq3 > (
√

5
8

+
ε

2
)λq3 ≥ |ξ1|,

with the last inequality due to (12) and q1 ≤ q3 − 3. Hence we excluded q2 + 1 = q3. �

3.4. Proof of (14)

Observe that

Πlocal
q =

∫
(u 2©

q + u 3©
q + uq+1) ⊗ (uq−1 + uq + uq+1) : ∇(uq−1 + u 1©

q )

=
∫ (

u 2©
q + u 3©

q

)
⊗ uq : ∇u 1©

q .

(29)

The former identity of (29) is (20); the latter holds thanks to Proposition 3. Indeed, the remaining terms
involve at least two different qj ’s, but they do not satisfy the separation condition q1 + 3 ≤ q3 (here
q1 = q − 1, q3 = q + 1) demanded in Proposition 3 for a non-zero interaction.

Let us now take ξ1, ξ2 in the Fourier support of the tensor product terms in (29). For a nonzero

interaction necessarily ξ1 + ξ2 ∈ spt(û 1©
q ), which requires by construction (consult Fig. 1) one of ξ1, ξ2 in

spt(û 2©
q ) and the other in spt(û 3©

q ), implying (14).
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3.5. Proof of (15)

First observe that none of the integrals in (21) involves only one uq, consequently Proposition 3 applies
(q1 < q3). Hence, any non-zero interaction within Πnon−local

q has the form

Πl,k:=
∫

uk ⊗ uk : ∇ul, where l ≤ q ≤ k and l + 3 ≤ k.

Let us analyse Πl,k. First note that ξ1 + ξ2 + ξ3 = 0 together with ξ1, ξ2 ∈ spt(ûk) and ξ3 ∈ spt(ûl) imply

that ξ1 ∈ A
i©

k and ξ2 ∈ −A
i©

k with the same i, or ξ1 ∈ −A
i©

k and ξ2 ∈ +A
i©

k with the same i. Indeed,

in any other case, by the separation of active regions ±A
i©

k ,±A
j©

k with i �= j (cf Fig. 1) one has

|ξ1 + ξ2| ≥ (1 − O(ε))λk = 8(1 − O(ε))λl > |ξ3|,
with the last inequality via (12), so there cannot be any interaction. Therefore

Πl,k =
∑

i=1,2,3

∫
u

i©
k ⊗ u

i©
k : ∇ul =

∑
i=1,2,3

∫
u

i©
k ⊗ u

i©
k : ∇u

1©
l ,

where the last identity is due to (13) and the following observation: the product of Fourier modes from

opposite regions is real by (9), but by (10) modes in ∇u
i©

q are purely imaginary unless i = 1. The total
flux is real, so any imaginary components are irrelevant.

Summarising, the non-local flux reduces to

Πnon−local
q =

∑
l≤q

∑
k≥max{q,l+3}

Πl,k.

Using the expression for Πl,k we can strip it down even more. Since ξ1, ξ2 are from opposite active regions,
we can estimate

λl(1 − 2ε) ≤ |ξ3| = |ξ1 + ξ2| ≤ 2 diam(A i©
k ) ≤ 4

√
3ελk.

Taking logarithms above

l ≤ log2 ε + k + 2 + log2

√
3

1 − 2ε
=⇒ k > l − 3 − log2 ε

for ε ≤ ε0, as long as ε0 < 2−√
3

4 . Now (15) follows immediately and the definition of N(ε) is justified. �

4. Proof of Theorem 1

4.1. Exact Estimates for Πlocal
q

Recall (14); using (13) it reads

Πlocal
q =

∑
ξ1+ξ2+ξ3=0

û
2©

q (ξ2) � û
3©

q (ξ3) :
̂∇u

1©
q (ξ1),

where ξ1 ∈ ±A
1©

q , ξ2 ∈ ±A
2©

q , ξ3 ∈ ±A
3©

q , since these are the active regions of respective u
i©

q ’s, see

(9). By our construction, for ξ1 ∈ A
1©

q and ξ2 ∈ A
2©

q , ξ1 + ξ2 ∈ A
3©

q always holds, compare Fig. 1 and

recall from Sect. 2.2 that we used the blurs A
3©

q with twice the side length of the blurs A
i©

q , i = 1, 2.

Consequently, any ξ1 ∈ A
1©

q and ξ2 ∈ A
2©

q interacts via ξ1 + ξ2 + ξ3 = 0 with precisely one ξ3 ∈ −A
3©

q ;
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if only one of the signs of active regions of ξ1, ξ2 is flipped, there is no interaction; and any ξ1 ∈ −A
1©

q

and ξ2 ∈ −A
2©

q interacts with precisely one ξ3 ∈ A
3©

q . We thus arrive via (9) and (10) at

Πlocal
q =

− (ελq)−62
∑

ξ1∈A
1©

q

ξ2∈A
2©

q

(
V

2©
q mod 3 + O(ε)

)
�

(
V

3©
q mod 3 + O(ε)

)
:
(
V

1©
q mod 3 ⊗ F

1©
q mod 3 + O(ε)

)

= −2(ελq)−6|A 1©
q ||A 2©

q |
(
V

2©
q mod 3 � V

3©
q mod 3 : V

1©
q mod 3 ⊗ F

1©
q mod 3 + O(ε)

)
.

It holds a � b : c ⊗ d = (b · c) (a · d) + (a · c) (b · d). This, the fact that rotations, in particular R, do not
alter the dot product, and the values of V i© and F i© provided in Sect. 2.1 yield

Πlocal
q = 2(ελq)−6|A 1©

q ||A 2©
q | (1 + O(ε)) ∈ 2(ελq)−6[(ελq − 1)3, (ελq + 1)3](1 + O(ε)),

with the latter identity using (5).
Summarizing, we obtain, for O(ε) independent of q

2
(

ελq − 1
ελq

)6

(1 − O(ε)) ≤ Πlocal
q ≤ 2

(
ελq + 1

ελq

)6

(1 + O(ε)). (30)

For any ε > 0 fixed, the lower and upper bound in (30) becomes, respectively, 2 ± O(ε) for large q’s.

4.2. Estimate for Πnon−local
q

Recall (15). It reads via (13)

Πnon−local
q

=
∑

i=1,2,3

∑
l≤q

∑
k>max{q,l+Nε}

∑
ξ1+ξ2+ξ3=0

|ξ1|∈A
i©

k , |ξ3|∈A
1©

l

(
û

i©
k (ξ1) ⊗ û

i©
k (ξ2) :

̂∇u
1©

l (ξ3)
)

.

A brutal estimate for the innermost sum, using (9) and (10), yields

∑

|ξ1|∈A
i©

k , |ξ3|∈A
1©

l

∣∣∣∣û i©
k (ξ1) ⊗ û

i©
k (ξ2) :

̂∇u
1©

l (ξ3)
∣∣∣∣ ≤ Cε−6λ

− 14
3

k λ
− 4

3
l |A i©

k ||A 1©
l |

≤ Cε−3λ
− 5

3
k λ

− 4
3

l (ελl + 1)3,

with the latter inequality using (5) and that, since we interested in the limit q → ∞, for any fixed ε,
ελk ≥ 1 for k ≥ q. Therefore

|Πnon−local
q | ≤ C

∑
l≤q

∑
k>max{q,l+Nε}

λ
− 5

3
k max(λ

5
3
l , ε−3λ

− 4
3

l )

= C
∑
l≤q

(
max{1,

1
ελl

}
)3 ∑

k>max{q,l+Nε}

(
λl

λk

) 5
3

.



30 Page 14 of 15 J. Burczak and G. Sattig JMFM

Observe that the max in the outer sum is 1 if l ≥ lε:= − log ε
log 2 . Therefore the sums split into

|Πnon−local
q |

≤
∑
l<lε

(ελl)−3
∑
k≥q

(
λl

λk

) 5
3

+
∑

lε≤l≤q−Nε

∑
k≥q

(
λl

λk

) 5
3

+
∑

q−Nε<l≥q

∑
k≥l+Nε

(
λl

λk

) 5
3

(where the second sum might be empty). The first summand above vanishes as q → ∞ (and ε fixed),
the second term is bounded independent of q by 2− 5

3Nε = O(ε), and the third sum is bounded by
Nε2− 5

3Nε = O(ε log ε), in view of Nε = �3 − log(ε)�. Thus we have, for q sufficiently large with respect to
ε,

|Πnon−local
q | ≤ O(ε log ε). (31)

4.3. Conclusion of the Proof

Recall that the energy flux of Πq(U) is cubic in U , so by multiplying the original construction with
(c/2)1/3 we obtain a field such that by (30) and (31)

c − O(ε log ε) < Πq(U) < c + O(ε log ε)

holds for sufficiently large q. Choosing ε in the construction sufficiently small with respect to δ then
proves (2).
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