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1. Motivation

The subject of this paper is the mono-dimensional, inviscid Burgers’ equation which is the simplest model
that begins the whole universe of systems of fluid dynamics. From the mechanical viewpoint it is pure
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transport of the velocity, modelling a creation of water waves. In the language of material derivative it
reads D

Dtu = 0, and by reformulating we obtain the well known equation

∂tu + u∂xu = 0 on D × [0, T ). (1)

The theory says that starting from any smooth, compactly supported initial configuration, the solution
does not have to be smooth but it can suffer a jump discontinuity. Thus, waves can create a shock, also
called the gradient catastrophe. When we move to the weak formulation non-unique solutions are allowed,
and either non-physical shocks or physical rarefaction waves appear. In order to keep the mathematical
well-posedness the concept of entropy solutions has been introduced, and then both uniqueness property
and decrease in time to zero is guaranteed. The shocks are governed by the Rankine–Hugoniot condition
determining the speed of the jump and the Lax condition choosing between continuous and discontinuous
solution. The general rule is that the bigger wave overtakes the smaller one, so consequently, for a long
time we are not able to say anything about the smaller wave.

In this paper we address the following question: Is there any approach to the Burgers’ equation (1)
which admits certain preservation of the smaller wave after collision with the bigger one? The answer is
positive, but we are required to take D as a graph.

2. Introduction

The problem of inviscid Burgers equation on networks belongs to the family of conservation laws on
networks that has been developed for about thirty years and still receives considerable interest [5,12,23].
The major motivation for studying this topic is traffic modelling, see for instance [8,15,17], initiated
with the well-established now Lighthill–Whitham model [20]. The natural interpretation of a graph as
a transportation network shifted the burden of research interests into the case of non-convex flux which
enforced the application of either wave-front tracking approximations or vanishing viscosity methods [7].
Furthermore, fixed direction of a lane formed some bitten track for specifying conditions in vertices, review
can be found in [12]. In particular, there was no need in specifying negative values of solutions in vertices
since such flow reflects driving against the current which does not take place in general. The different
motivation of the research presented in this paper leads to new types of transmission conditions in the
vertices of a graph. Furthermore, considering pure Burgers’ equation, instead of general conservation law,
allows us to use methodology known from Hamilton–Jacobi equation [10, Sec. 3.3] and consequently to
obtain an explicit solution being a counterpart of the well-known Lax-Oleinik formula.

Let us look at the Burgers’ network problem from a fluid dynamics perspective. We need to find a
suitable language which will allow us to analyze arbitrary directions of the flow and to control the total
energy of the moving fluid. Imposing these conditions on the edges is a standard approach, but building
the theory where a backflow (change of the direction of a flow in vertex) appears is new, according to
authors’ best knowledge, and therefore worth being stressed.

Reaching for the graph structure can be interpreted either as the extension of a mono-dimensional
case or as non-standard discretization of a state space. The main question that arises is if introduction of
this structural approach gives hope for alternative techniques for proving blowup and uniqueness criteria.
If so, the development of a coherent language of description of fluid-type equations on metric graphs,
which is the main subject of this study, allows us to pursue from Burgers’ equation to multi-dimensional
systems like Navier-Stokes or compressible Euler. To this end, we begin in this paper with addressing two
preliminary questions:

1. What is the appropriate description of the flow in vertices?
The natural approach is to look at the change of the energy at redistribution points, namely

taking the maximal or minimal change of the energy at vertices. It is formulated in Theorem 1
in Section 4 for non-negative flows, and generalized to different sign solutions in Sect. 4.1. This
strategy is essentially different then transmission conditions for vehicular traffic [8], data networks
[9] or T-nodes [21].
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2. What is the relation between the pure mono-dimensional case and the network counterpart?
It turns out that choosing correctly the transmission conditions, the network system is in some
sense the generalisation of mono-dimensional one. In particular we will be able to answer positively
on the question imposed as a motivation in Sect. 2. This issue is discussed further in Sect. 6.

Thus, to state the problem succinctly, our paper aims at constructing general weak solutions to
Burgers’ equation in metric graphs initiated by arbitrary TV initial data (possibly with different signs).
The rules of transitions of the flow in vertices, in particular its direction and magnitude, are determined
by the optimization of the energy at the vertex. Let us underline that at each edge we have the entropy
solution in the meaning of the standard mono-dimensional case.

3. Problem Formulation

Let us start with the necessary formalism to describe the language for PDEs on the metric graphs,
compare also [8,16].

3.1. Graph Theory Toolbox

Consider G = (V,E,L,Φ) a directed, weighted and finite tree with no multiple edges. Namely, let

V := {vi : i ∈ I} , for I = {1, . . . , n} , and E := {ej : j ∈ J} , for J = {1, . . . , m} ,

be respectively sets of vertices and edges of a graph; while L : E → R+ be a weight (length) function of
the edge; ej �→ lj for any j ∈ J .

The structure of the network is defined by incidence matrix Φ ∈ Mn×m(R), Φ = (φij)i∈I,j∈J =
Φ+ − Φ− such that Φ+ = (φ+

ij)i∈I,j∈J and Φ− = (φ−
ij)i∈I,j∈J satisfy conditions

φ+
ij =

{
1 if

ej→ vi

0 otherwise,
φ−

ij =
{

1 if vi
ej→

0 otherwise.

If φij �= 0, we say that edge ej is incident to vi. We say that there exists a multiple edge between vertices
vi, vk ∈ V if there exist two edges ep, eq ∈ E such that, for z = p, q, φ+

kz = 1 and φ−
iz = 1. Hence, the

lack of multiple edges provides a uniqueness of such assignment ej = (vi, vk) ∈ E for some vi, vk ∈ V . In
further consideration we call vi a head and vk a tail of the edge ej . The vertex vi is a source or a sink if
respectively φ+

ij = 0 or φ−
ij = 0 for any j ∈ J .

By the path in the graph we understand a finite sequence of edges pi = ek1 , . . . , ekNi
such that for any

ekj
, ekj+1 there exists a vertex vkj

∈ V such that
ekj→ vkj

ekj+1→ (equivalently φ+
kjkj

= 1 = φ−
kjkj+1

)

for j = 1, ..., l − 1. It means the path is of the following form

vk0

ek1→ vk1

ek2→ vk2

ek3→ ...
ekNi−1→ vkNi−1

ekNi→ vkNi
.

By the length Ni of a path pi we understand the number of edges on the path, while by weighted length
Li the weights’ sum of all edges on the path.

We say that a graph is connected if there exists at least one path between every two vertices. A closed
path, namely vk0 = vkNi

, is a cycle and the graph is called acyclic if it has no cycles. Finally, we say that
a graph is a directed tree if it is connected and has no cycles.

In the following considerations we refer to the special examples of trees being a restriction of finite
graphs. We say that G′ = (V ′, E′,L′,Φ′) is a subgraph of a graph G = (V,E,L,Φ) if it satisfies the
conditions

V ′ ⊆ V, E′ = E|V ′×V ′ , L′ = L|E′ , Φ′ = Φ|I′×J ′ ,

where I ′ = {i ∈ I : vi ∈ V ′} and J ′ = {j ∈ J : ej ∈ E′}.
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Definition 1. Consider G = (V,E,L,Φ) and vi ∈ V . We say that Gi = (Vi, Ei,Li,Φi) is a vi-subgraph of
G if

Vi := {vj ∈ V : j ∈ Ji} , and Ji := {j ∈ I : φij �= 0}. (2)

Definition 2. A path graph Pm is any connected subgraph of 1D Cartesian grid P = (VP , EP ,LP ,ΦP )

VP = {vi : i ∈ Z} , EP = {ej : i ∈ Z} , LP ≡ 1, ΦP = (φij)i,j∈Z, φij =

⎧⎨
⎩

1 for i = j
−1 for i = j − 1
0 otherwise

having m edges.
By the honeycomb tree Hm we understand any connected subgraph of directed hexagonal lattice

H = (VH , EH ,LH)

VH =
{
v(p+q,−q,p), v(p+q+1,−q,p) : p, q ∈ Z

}
, LH = 1,

EH =
{
(v(p+q,−q,p), v(p+q+1,−q,p)), (v(p+q,−q,p), v(p+q,−q+1,p)), (v(p+q+1,−q,p), v(p+q+1,−q,p+1)) : p, q ∈ Z

}
having m edges. In further considerations we refer to v(p+q,−q,p) as vertex of the first kind while to
v(p+q+1,−q,p) as the vertex of the second kind, see Fig. 1.

Note that any vertex of hexagonal lattice H is described by a triple of type (p + q,−q, p) with two
parameters p, q, which corresponds to the three directions on the honeycomb.

Define now the in- and out degree of vertex vi which is the number of edges having respectively a tail
or a head in vertex vi, namely

deg+(vi) =
∑
j∈J

φ+
ij , deg−(vi) =

∑
j∈J

φ−
ij , and deg(vi) = deg+(vi) + deg−(vi).

Then using the notation from Definition 2, we have for p, q ∈ Z

deg+(v(p+q,−q,p)) = 1, deg−(v(p+q,−q,p)) = 2;
deg+(v(p+q+1,−q,p)) = 2, deg−(v(p+q+1,−q,p)) = 1.

Considering the restriction of H to the subgraph we obtain also additional types of vertices v being
sources (deg+(v) = 0, deg−(v) ∈ {1, 2}), sinks (deg+(v) ∈ {1, 2}, deg−(v) = 0) or vertices of the path
graph (deg−(v) = deg+(v) = 1).

Furthermore, we introduce a direction of a vertex vi ∈ V as an ordered pair of sets Di = (Din
i ,Dout

i ),
Din

i ,Dout
i ⊂ E such that

Din
i :=

{
ej ∈ E :

ej→ vi

}
, and Dout

i :=
{

ej ∈ E : vi
ej→
}

. (3)

Since directed trees G do not have loops, therefore Din
i ∩Dout

i = ∅, for any i ∈ I. If we change the vertex
vi into v′

i in the way that the parameterization of all edges incident to the vertex vi become opposite, we
say that vi and v′

i have the opposite direction. In the case of honeycomb trees the direction of vertices of
the first and second kind are, for p, q ∈ Z, the following

D(p+q,−q,p) =
(
Din

(p+q,−q,p),D
out
(p+q,−q,p)

)
Din

(p+q,−q,p) =
{
(v(p+q,−q,p−1), v(p+q,−q,p))

}
,

Dout
(p+q,−q,p) =

{
(v(p+q,−q,p), v(p+q+1,−q,p)), (v(p+q,−q,p), v(p+q,−q+1,p))

}
,

D(p+q+1,−q,p) =
(
Din

(p+q+1,−q,p),D
out
(p+q+1,−q,p)

)
Dout

(p+q+1,−q,p) =
{
(v(p+q+1,−q,p), v(p+q+1,−q,p+1))

}
Din

(p+q+1,−q,p) =
{
(v(p+q,−q−1,p), v(p+q+1,−q,p)), (v(p+q−1,−q,p), v(p+q+1,−q,p))

}
.

The above distinction is crucial to the considerations in Sect. 5.1.
Finally, let us remind that for any tree it is possible to re-enumerate edges in the way that for any

two edges es, ej ∈ E, and for any chosen path es = ek1 , . . . , ekN
= ej ; ki < ki+1 for all i ∈ 1, . . . , N − 1.

Additionally in the following considerations we choose the enumeration of edges in the way that all sources
are associated with the first few edges, namely sources are heads of the edges ei, i = 1, . . . , s. We call
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(i)

v(0,0,0)v(0,0,−1)

v(1,0,0)

v(0,1,0)

(ii)

v(1,0,0) v(1,0,1)

v(0,0,0)

v(1,−1,0)

(iii)

ů1 = a

ů2 = 1

ů3 = 1
v1 v2

v3

v4

Fig. 1. Two kinds of vertices in honeycomb trees H15. (i) v(0,0,0) is of the first kind (ii) v(1,0,0) is of the second kind.

Vertices’ direction is denoted in the symbolic way in red. In (iii) a metric honeycomb tree H3 introduced in Example 3

such numeration an increasing order of edges and note that two trees with an increasing order of edges
are homomorphic.

3.2. Introduction of Metric Graphs

To introduce a metric space into consideration we associate each edge of a graph with a compact interval
in the following way for d : E → B(R) let d(ej) = [0, lj ]; where B(R) is a Borel algebra on R. We say
that G = (G, d) is a directed metric graph. In what follows we always consider the parametrisation of an
edge that agrees with the direction of an edge. By an abuse of notation we shall denote a metric edge
d(ej) simply by ej , the vertices at the endpoints of the edge ej = (vi, vk) by ej(0) := vi and ej(lj) := vk.
Further, when considering a function fj defined on the metric edge d(ej) = [0, lj ], we shall occasionally
write f(vi) := f(s) if ej(s) = vi for s = 0, lj . By the function defined on the metric graph we understand
a vector-valued function f : [0, 1] → R

m such that f(x) = (fj(ljx))j∈J , where fj : [0, lj ] → R is defined
on the edge ej .

The main idea of this paper is to find the function defined on the metric graph that satisfies both the
weak formulation of Burgers’ equation on edges and certain transmission conditions in vertices. Based on
general knowledge of the mono-dimensional case, it is obvious that the direction of a flow can disagree
with the parameterization of an edge. Although it does not cause a difficulty on the edge, it complicates
transmission conditions. To define well conditions in vertices we extend the classical notion of weighted
adjacency matrix of a line graph B = (bij)i,j∈J , which in the standard setting reads

bjk �= 0 if ∃vi

ek→ vi
ej→ and bjk = 0 otherwise. (4)

Consider the following operators Bpq = (bpq
jk)j,k∈J , for p, q ∈ {0, 1} such that

b01jk ≥ 0 if ∃vi

ek→ vi
ej→ and b01jk = 0 otherwise; (5a)

b00jk ≥ 0 if ∃vi

ek← vi
ej→ and b00jk = 0 otherwise; (5b)

b10jk ≥ 0 if ∃vi

ek← vi
ej← and b10jk = 0 otherwise; (5c)

b11jk ≥ 0 if ∃vi

ek→ vi
ej← and b11jk = 0 otherwise. (5d)

Note that the new approach to adjacency matrix definition given in (5), unlike the classical one (4),
allows for the lack of flow between two edges even though they are physically connected. Obviously
B01 =

(B10
)T , but we distinguish those cases due to its different meaning in the sense of flow. Note that

if b01jk ≥ 0, then using the notation from (5a) and (3), ek ∈ Din
i and ej ∈ Dout

i . On the other hand for
b10jk ≥ 0, ej ∈ Din

i and ek ∈ Dout
i . Consequently, in the first case the direction of vertex vi is opposite to

the direction of the vertex in the second case.
If we replace 1 with arbitrary nonzero coefficients in matrices B, Bpq we arrive at unweighted coun-

terparts of matrices, we call them adjacency matrices of a line graph, and denote them by B, Bpq
.
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Due to the change in the definition of adjacency matrices, it is possible to find a path in the metric
graph in which there is no possibility of flow from one edge, say ek, to another ej due to vanishing of
coefficients bpq

jk, p, q ∈ {0, 1}, j, k ∈ J . Therefore in the whole paper we distinguish the definition of path
in the graph G and in its metric counterpart G. By the path in the metric graph we understand a finite
sequence of edges pi = ek1 , . . . , ekNi

such that for any ekj
, ekj+1 there exists a pair (p, q), p, q ∈ {0, 1}

such that bpq
kj+1kj

�= 0. The notions of path length Ni and weighted path length Li remain unchanged.

3.3. Burgers’ Equation on the Network

Let us defined Burgers’ equation on the metric graph G, compare also with Eq. (1),

∂tu + u∂xu = 0 on G × [0, T ).

Namely, let u = (uj(lj ·))j∈J be the function defined on the metric graph G which satisfies

∂tuj(x, t) + uj(x, t)∂xuj(x, t) = 0, x ∈ [0, lj ], t ∈ [0, T ), (6a)

uj(x, 0) = ůj(x), x ∈ [0, lj ], (6b)

for every coordinate j ∈ J . Now let us derive the transmission conditions that incorporate the network
structure into the formulation from one hand, and allow for the flow that agrees with the physical
motivation from another.

Let us start with the formulation of transfers that comes from the generalisation of vertex conditions
for network transport, see [16, Sec. 3a]. Consider operators u �→ Bz(u) ∈ Mm(R), z = 0, 1 and for almost
all t ∈ [0, T ) assume that

B0(u)u(0, t) + B1(u)u(1, t) = 0, with Bz = Bz0 + Bz1, defined in (5). (7)

Obviously such a general formulation has to be specified for a number of reasons. Even in the linear
case, when B0,B1 are independent of u, the uniqueness of the solution to (7) strictly depends on their
rank. Furthermore, there is no clear relation with a graph structure because again for arbitrary operators
B0,B1 ∈ Mm(R), it is not always possible to build the graph, not mentioning the directed tree that is the
object of these considerations. For details see [1].

Let us draw your attention to one property that is important in further considerations. If the direction
of flow disagrees with the parametrization it may allow for a cyclic flow along the edges even though the
graph is a directed tree.

Example 1. Consider a graph G = (V,E,L,Φ) such that

V = {vi : i = 1, 2, 3} , E = {ej : j = 1, 2, 3} , L ≡ 2π and Φ =

⎡
⎣−1 0 −1

1 −1 0
0 1 1

⎤
⎦ , (8)

presented also in Fig. 2. Problem (6)–(7) such that

B0 =

⎡
⎣1 0 1

0 −1 0
0 0 0

⎤
⎦ , B1 =

⎡
⎣0 0 0

1 0 0
0 1 1

⎤
⎦ , and ů1, ů2 > 0, ů3 < 0.

is equivalent locally in time with the Burgers’ equation on the circle with radius r = 3.

In the Example 1 the cyclic structure appeared due to the disturbance of a flow in vertices v1 and v3.
Note that the direction of the vertex v1 is D1 = (Din

1 ,Dout
1 ) = (∅, {e1, e2}) while the mass flows from the

edge e3 into e1. Similar problem appeared in v3. In the further considerations we allow for the flow to
go in line with the vertex direction and in the opposite direction. We assure, however, that there is no
exchange of mass between edges in the sets Din

i (as well Dout
i ) for any i ∈ I, namely

B00 = B11 = 0. (9)
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v1 v2 v3
e1 e2

e3 v1 v2 v3
ů1 = 0 ů2 = 1

(i) (ii)

Fig. 2. Illustration depicts two network structures: the first is a graph G defined in (8) and considered in Example 1;
while the second a metric path graph P2 introduced in Example 2

Let us now fix the vertex i ∈ I, the moment t ∈ [0, T ) and we consider two cases. If the flow at t agrees
with the direction of a vertex. Then the transmission conditions in vertex vi read

uj(0, t) =
∑

{s∈J: es∈Din
i }

b01js(u)us(1, t), for j ∈ J such that φ−
ij �= 0, (10)

where (b01js)j,s∈J is the adjacency matrix defined in (5a). Similarly, for the flow opposite to the vertex
direction we have

uj(1, t) =
∑

{s∈J: es∈Dout
i }

b10js(u)us(0, t), for j ∈ J such that φ+
ij �= 0, (11)

with (b10js)j,s∈J is the adjacency matrix defined in (5c). In particular we note that for considered problem
matrices B00 and B11 defined respectively in (5b) and (5d), vanish.

Definition 3. We say that system (6)–(11)–(11) is the strong formulation of Burgers’ equation on the
metric tree G.

The above definition is formal, still the relation B(u) is not given. In order to move from strong to
weak formulation we introduce a set of smooth functions over G. Namely, the functions smooth over the
edges which agree on germs given in each vertex vi; with the neighbourhood oriented in line with direction
Di. Below we give a weaker definition, which always allows determining the differentiation by parts.

Definition 4. We say that f = (fj(lj ·))j∈J defined on the metric graph G is smooth on G, and we write
f ∈ C∞(G), if the following conditions hold

(i) fj(lj ·) ∈ C∞[0, lj ] for any ej ∈ E;
(ii) for any vi ∈ V , and any k ∈ N

∂(k)fj(lj ·) = ∂(k)fk(0) for all ej ∈ Din
i and ek ∈ Dout

i .

Consider now a function φ : [0, 1] × [0,∞) → R
m ,φ(·, t) ∈ C∞(G). In what follows the product of

two vector functions is understood in the sense of the Hadamard product, namely fg = (fjgj)j∈J . Now
define integration over the metric graph G as the sum of the integrals over all edges of a graph, namely
for any integrable function f = (fj)j∈J defined on G∫

G
f(x)dx =

∑
j∈J

∫ lj

0

fj(x)dx. (12)

The weak solution u should satisfy the condition∫ T

0

∫
G

(
u∂tφ +

u2∂x

2
φ

)
dxdt =

∫
G

ů(x)φ(x, 0)dx, (13)

for some t ∈ [0,∞). Let us put our attention on the definition of the integral over G. To pass from (13)
to the strong from of the equation we put the x derivative on the equation, namely, we consider

∫
G

u2∂xφ

2
dx =

∑
j∈E

⎛
⎝ u2

jφj

2

∣∣∣∣∣
x=lj

− u2
jφj

2

∣∣∣∣∣
x=0

−
∫
[0,lj ]

uj∂xujφj

⎞
⎠
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= −
∫

G
u∂xuφ +

∑
i∈I

⎛
⎜⎝ ∑

{j∈J: ej∈Din
i }

u2
jφj

2

∣∣∣∣∣
x=lj

−
∑

{j∈J: ej∈Dout
i }

u2
jφj

2

∣∣∣∣∣
x=0

⎞
⎟⎠ .

So to eliminate boundary terms at each vertex vi, using the Definition 4ii) for k = 0, we require that
∑

{j∈J: ej∈Din
i }

u2
j (lj , t)

2
=

∑
{j∈J: ej∈Dout

i }

u2
j (0, t)

2
for almost all t ∈ [0,∞). (14)

Equation (14), known as the Kirchhoff condition, is one of the most classical transmission conditions
considered on metric graphs, see [22, Sec. 2.2.1]. It describes the conservation of flux in each vertex of a
network.

Definition 5. We say that system (13)–(11)–(11) is the weak formulation of Burgers’ equation on the
metric tree G, if weighted adjacency matrices of a line graph Bpq, p, q = 0, 1, satisfy conditions (9), (14).
The class of solutions to the problem in weak formulation we denote by B(G).

The hyperbolic character of Burgers’ equation makes determine the behaviour at vertices to obtain
the transmission condition for incoming characteristics, i.e. the coefficients of matrices B01 and B10. In
our setting we are obliged to take into account two restrictions. The first one is the Kirchhoff condition
(14) while the second is the requirement that dynamic on graph G is acyclic, namely (9). Note that the
determination of a solution, even under the above restrictions, is not unique. To make the solver of our
equation on G well posed, there is a need to impose more conditions. The general case is rather complex,
so in this paper we concentrate on two examples: the equation with non-negative velocities, and the
general velocities on the honeycomb tree, see Definition 2. In the last case, the geometry of vertices is
simple enough to consider all possible flow variations in vertices. It also gives some intuitions for the more
general case.

The article is organised as follows. Section 4 concentrates on non-negative case. The coefficients of B10

are related with the change of energy of the solution, see Sect. 4.1, while the existence result in Theorem 2
is derived using methodology known from Hamilton–Jacobi equation, it is our first main result. In Sect. 5
general velocities on honeycomb trees are considered. The generalisation of energy methods applied to
the vertices of the first and second kind, see Definition 2, with arbitrary direction of a flow in vertex can
be found in Sect. 5.1 while the existence result in Sect. 5.3, the second main result is stated as Theorem
3. Finally, in Sect. 6 we refer to the motivating example of wave interference.

4. Non-negative Entropy Solutions

In this section the analysis is restricted to the flow direction that agrees with the parameterization of
edges. Consequently, we look for weak solutions such that for ů > 0 the solution remains in the non-
negative cone, u ≥ 0. Considerations in the Sect. 4.1 relate coefficients of B01(u) with some properties of
the solution u while in Sect. 4.2 we derive the existence theorem to the problem of a form
∑
j∈J

∫ T

0

∫ lj

0

(
uj∂tφj +

u2
j∂xφj

2

)
dxdt =

∑
j∈J

∫ lj

0

ůj(x)φj(x, 0)dx, (15a)

uj(x, 0) = ůj(x) > 0, x ∈ [0, lj ], j ∈ J, (15b)

uj(0, t) =
∑

{s∈J: es∈Din
i }

b01js(u)us(1, t), for φ−
ij �= 0, (15c)

∑
{j∈J: ej∈Din

i }
u2

j (lj , t) =
∑

{j∈J: ej∈Dout
i }

u2
j (0, t), for almost all t ∈ [0, T ]. (15d)

Before we go through the details let us formalise the notion of non-negative solution.
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Definition 6. We say that function u is a non-negative weak solution of network Burgers’ equation (15)
if

(i) t �→ uj(·, t) ∈ L∞([0, lj ],R) is continuous almost everywhere on [0, T ), for T > 0;
(ii) for every φ(·, t) ∈ C∞(G) u satisfies (15a),
(iii) u ≥ 0 for every ů ∈ L∞([0, 1],Rm

+ ),
(iv) u satisfies transmission conditions (15c)–(15d).

4.1. Derivation of Transmission Conditions

The aim of this part is to understand how to derive coefficients of matrix B01(u) in (15c), hence in the
whole Sect. 4.1 referring to the network Burgers’ equation we consider the problem

(15a) – (15b) – (15d). (16)

We learn from the mono-dimensional case that to obtain the uniqueness of weak solutions there is a
need to specify the shock wave by Rankine–Hugoniot condition and exclude non-physical shocks by, for
instance, Lax condition. Namely, let ξ : [0, T ) → R+ be a smooth curve describing the discontinuity of
scalar weak solution u, and by ξ±(t) denote left and right limit when x goes to ξ(t). Then

d

dt
ξ(t) =

u(ξ−(t), t) + u(ξ+(t), t)
2

, and u(ξ−(t), t) > u(ξ+(t), t). (17)

Definition 7. We say that function uj : [0, lj ] × [0, T ) → R is an entropy solution of scalar Burgers’
equation on edge ej , i = 1, . . . , m if it is a weak solution of to scalar Burgers’ equation on edge ej which
satisfies both Rankine–Hugoniot and Lax conditions at each discontinuity.

Furthermore, u = (uj)j∈J is edge-entropy solution if it is an entropy solution at each edge.

Let us remind also that in the mono-dimensional case Oleinik’s one-sided inequality

u(x2, t) − u(x1, t) ≤ x2 − x1

t
, for x1 ≤ x2, t > 0. (18)

implies that u is an entropy solution.
We concentrate on vertices now. Note first that Kirchhoff condition in vertex vi being resp. a source

or a sink assures unique representation of solution uj(vi, t) = 0, for ej ∈ Dout
i and ej ∈ Din

i resp.,
since there is no flow through these vertices. In the case of other vertices we may obtain the ambiguity.
Consequently, imposing only conditions (17) on the non-negative weak solution to (16) still does not
guarantee the uniqueness. Let us stop at this statement for a moment. In order to define the fraction of
mass that flows through the vertex vi at some fixed time t, let us transform a classical notion of Riemann
solver into the transmission in the vertex counterpart. Denote by uj(vi, t

∓) the value of solution (in a
head or a tail of an edge, respectively for φ−

ij �= 0 and φ+
ij �= 0), before the flow through the vertex for t−

and after the flow for t+.

Definition 8. Let G = ((V,E,L, φ), d) be a metric graph and fix vi ∈ V . We say that a mapping

TSi : [0,∞]deg(vi) → [0,∞]deg(vi), u(x, t−)|Ji
�→ u(x, t+)|Ji

,

where Ji is defined in (2), is a transmission solver in vertex vi ∈ V , if it satisfies conditions (15d) for
almost all t ∈ [0, T ).

The first peculiarity implied by assuming only the Kirchhoff conditions in vertices is the lack of
condition that joins values of solution before and after the flow through the vertex, namely at t− and t+.
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Example 2. Let P2 be a path graph, see Definition 2, and consider a Riemann problem on metric path
graph P2, presented in Fig. 2, of the form

2∑
j=1

∫ T

0

∫ 1

0

(
uj∂tφj +

u2
j∂xφj

2

)
dxdt =

2∑
j=1

∫ 1

0

ůj(x)φj(x, 0)dx,

ů1(x) = 0, ů2(x) = 1, x ∈ [0, 1],
u1(0, t) = u2(1, t) = 0, u2

1(1, t) = u2
2(0, t), t ≥ 0.

(19)

The transmission solver TS2 does not have to be unique at vertex v2 = e1(1) = e2(0), for some neighbour-
hood of t = 0. Note that for any parameter a ∈ [0,∞), u defined below is a non-negative, edge-entropy
solution for some t ∈ [0, ε).

1. Let a ∈ [0, 1), then

u1(x, t) =
{

0 for x �= 1,
a for x = 1,

u2(x, t) =

⎧⎨
⎩

a for x
t ≤ a,

x
t for a < x

t ≤ 1,
1 for x

t > 1.

2. Let a ∈ [1,∞), then

u1(x, t) =
{

0 for x �= 1,
a for x = 1,

u2(x, t) =
{

a for x
t < a+1

2 ,
1 for x

t > a+1
2 .

Obviously, each coordinate of u is a piece-wise continuous solution to mono-dimensional Burgers’ equation
and at each jump satisfies Rankin-Hugoniot and Lax conditions. Consequently, by [4, Thm. 4.2] uj is an
entropy solution of scalar Burgers’ equation on edges ej , j = 1, 2, so the edge-entropy solution to network
Burgers. Finally, we derive a family of transmission solvers in v2 at t = 0, that depends on parameter a.

TS2(0, 1) = (a, a), a ∈ [0,∞). (20)

Considerations on a path graph allow us to build the intuition related with the behaviour in vertices, as
the solution can be easily related with the scalar case. Let us refer to the solutions presented in Example 2
with a standard solution of initial-boundary value problem on the interval [0, 2]. Namely, with a problem
of a form ∫ T

0

∫ 2

0

(
u∂tφ +

u2
j∂xφ

2

)
dxdt =

∫ 2

0

ů(x)φj(x, 0)dx,

ů(x) =

{
0 x ∈ [0, 1],
1 x ∈ [1, 2],

u(0, t) = u(2, t) = 0 t ≥ 0.

The comparison clearly indicates that to obtain an entropy solution in a mono-dimensional case we need
to take a = 0, since otherwise we introduce a non-physical shock into the model. The choice of a ∈ (0, 1]
gives a weak solution that can be justified, while a > 1 seems to make no sense. To choose a physically
reasonable solution in the network case, we assume the continuity at some edges adjacent to the vertex
vi, a.e. in time. Namely, continuity at the edges from Din

i if the flow agrees with the direction of a vertex.
In the case of non-negative solution, this condition simplifies to

(LC) uj(1, t−) = uj(1, t+), for ej ∈ Din
i and a.e. t ∈ (0, T ).

Condition (LC) transfers the problem of finding a value of solution at t+ only into edges from Dout
i . It

is worth mentioning that it is well defined only for vertices different than sinks. For the path graph, see
Example 2, it is sufficient to obtain the uniqueness; but not in the general case deg−(vi) > 1. The next
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condition relates the value of solution after the flow through the vertex with the change of the energy,
which is a natural assumption in the context of fluid-type equations.

Let us remind that in the case of scalar Burgers’ equation the change of energy of piece wise continuous
solution with one jump, defined on the interval [A,B] reads

d

dt
E(t) =

u3(A, t)
3

− u3(B, t)
3

− (u(ξ−(t), t) − u(ξ+(t), t))3

12
, (21)

where u(s±(t), t) is the right and left limit at discontinuity curve ξ(·). We easily note that for each shock
wave that satisfies the Lax condition, energy decreases proportionally to the magnitude of a jump, while
for non-physical shocks we observe the increase of the energy. In the following consideration we take
into account only edge-entropy solutions, see Definition 7, which excludes existence of non-physical shock
waves. Now fix the vertex vi and consider the Riemann problem, at x = 1 for incoming edges and x = 0
for outgoing ones, that arises due to the flow through the vertex. We define the change of the energy at
vi by Ei : [0,∞)deg(vi) → R

Ei(u(vi, t)) =
∑

j: ej∈Din
i

E+
ij (u(1, t)) +

∑
j: ej∈Dout

i

E−
ij (u(0, t)),

E±
ij (u(vi, t)) =

u3
j (vi, t

∓) − u3
j (vi, t

±)
3

− (uj(vi, t
∓) − uj(vi, t

±))3

12
θ
(
uj(vi, t

∓) − uj(vi, t
±)
)
, (22)

where E±
ij : [0,∞)deg(vi) → R is the change of energy at the edge ej and θ is a Heaviside step function.

The following transmission conditions are related to extremes of Ei.
(Em

i ) transmission conditions (15c) in vi minimize function Ei,
(EM

i ) transmission conditions (15c) in vi maximize function Ei.
At the beginning let us remark that without condition (LC) the problem of minimization of Ei with

respect to u(vi, t
+) does not have to be well-posed. Let us return to the Example 2. For v2, at t = 0, we

have
mina∈[0,∞) E2(0, 1, a, a) = −∞,

since E2 reads

E2(0, 1, a, a) =

{− 1
3 , for a ∈ [0, 1)

− (a−1)3

12 − 1
3 for a ∈ [1,∞).

On the contrary maximizing Ei we obtain a = 1 which is again not the solution we head to. In order to
build further intuition we consider a problem defined on the metric honeycomb tree.

Example 3. Let us consider metric honeycomb tree H3 being v-subgraph of honeycomb lattice for v
being a vertex of the first kind, see Fig. 1(iii). Define on H3 a network Burgers’ equation (16) with initial
condition ů(x) := (a, 1, 1)T , a ∈ [0, 1]. The edge-entropy solution which satisfies condition (LC) depends
on one parameter b ∈ [0, a], for t ∈ [0, ε), and reads

u1(x, t) = a,

u2(x, t) =

⎧⎨
⎩

b for x
t ≤ b,

x
t for b < x

t ≤ 1,
1 for x

t > 1,

u3(x, t) =

⎧⎨
⎩

√
a2 − b2 for x

t ≤ √
a2 − b2,

x
t for

√
a2 − b2 < x

t ≤ 1,
1 for x

t > 1.
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Now we build two transmission solvers which satisfy either (Em
i ) or (EM

i ), and denote them respectively
by TSm

2 and TSM
2 . Function E2 is, for t = 0, formulated by

E2

(
a, 1, 1, a, b,

√
a2 − b2

)
=

b3 + (a2 − b2)
3
2 − 2

3
Calculating critical points of E2 and values at the boundary we arrive at three possible cases, namely
b = 0, b =

√
2
2 a and b = a. We note that

E2(a, 1, 1, a, a, 0) = E2(a, 1, 1, a, 0, a) =
a3 − 2

3
and E2

(
a, 1, 1, a,

√
2

2
a,

√
2

2
a

)
=

√
2a3 − 4

6
,

hence TSm
2 (a, 1, 1) =

(
a,

√
2
2 a,

√
2
2 a
)

and TSM
2 (a, 1, 1) ∈ {(a, 0, a), (a, a, 0)}.

Example 3 is very specific since the value of solution before the flow through the vertex is equal at e2
and e3, see Fig. 1 for the notation. Consequently, for t = 0 edges e2 and e3 can be considered as locally
symmetric with respect to the flow. In order to exclude such case in further considerations we introduce
some technical condition called decreasing flow with respect to edge enumeration

(DF) (TSM
i )j ≥ (TSM

i )k for any j < k, j, k ∈ Dout
i .

It allows specifying the solution in which the highest flow is related to the edge with the lowest number.
Since all tree graphs G having the same triplet (V,E,L) but different mappings Φ that all satisfy an
increasing order of edges are homomorphic, then any locally symmetric solution can be chosen depending
on the choice of representative. In particular, using the notation introduced in Example 3, assuming that
TS2 satisfies (DF) we have that TSM

2 (a, 1, 1) = (a, a, 0).
What happens if edges e2 and e3 are not locally symmetric with respect to the flow? We expect that

it leads to different mass distribution when going through the vertex, depending on the value of ů2 and
ů3. In such a case, coefficients of matrix B01(u) in Eq. (15c) depend strictly on solution u. On the other
hand, it is worth to underline that the considered transmission solver works point-wise in time and seems
justified to add a consistency condition that allows it to stabilize, on a certain time interval. Namely, we
expect that

TSi

(
TSi

(
u(vi, t

−)
))

= u(vi, t
+). (23)

Condition (23) was also introduced in [12, Def. 5] as one of common assumptions imposed on different
transmission solvers considered in the literature. In line with this reasoning, let us define minimal and
maximal transmission solver in vertex as follows.

Definition 9. Let TSm
i (resp. TSM

i ) be the transmission solver that, for some fixed t ∈ [0, T ), satisfy
conditions (LC)–(Em

i ) (resp. (LC)–(EM
i )–(DF)) in vi. We say that (TSm

i )� (resp. (TSM
i )�) is a minimal

(resp. maximal) transmission solver in vertex vi if it satisfies

(TSz
i )�u(vi, t

−) = lim
n→∞(TSz

i )(n)u(vi, t
−), for any u(vi, t

−) ∈ [0,∞)deg(vi), z = m,M, (24)

where, by (TSz
i )(n), we understand the n-th composition of the mapping TSz

i .

We need to justify now that Definition 9 is well-posed, hence that the limit in (24) exists. If it does
not depend on u then problem (15) transforms into

∑
j∈J

∫ T

0

∫ lj

0

(
uj∂tφj +

u2
j∂xφj

2

)
dxdt =

∑
j∈J

∫ lj

0

ůj(x)φj(x, 0)dx, (25a)

uj(x, 0) = ůj(x) > 0, x ∈ [0, lj ], j ∈ J, (25b)

uj(0, t) =
∑

{s∈J: es∈Din
i }

b01js(u)us(1, t), for φ−
ij �= 0, (25c)
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where coefficients of B01 in (25c) are given by

b01js(u) =
(TSz

i )�
j (u)∑

{k∈J: ek∈Din
i }(TSz

i )�
k(u)

, for z = m,M. (26)

Theorem 1. Consider non-negative weak solution u of Burgers’ equation (16) on the metric tree G and
fix t ∈ [0, T ). The following statements hold.
(i) At each vertex vi ∈ V , there exists a unique transmission solver (TSm

i )� of the form

(TSm
i )�u(vi, t

−) =

{
uj(1, t−) for ej ∈ Din

i ,
1√

deg(vi)

√∑
{s∈J: es∈Din

i } u2
s(1, t−) for ej ∈ Dout

i . (27)

(ii) At each vertex vi ∈ V , there exists a unique transmission solver (TSM
i )� of the form

(TSM
i )�u(vi, t

−) =

⎧⎪⎪⎨
⎪⎪⎩

uj(1, t−) for ej ∈ Din
i ,√∑

{s∈J: es∈Din
i } u2

s(1, t−) for ej = ek,

0 for ej ∈ Dout
i \ {ek} ,

(28)

where k ∈ J satisfies condition

k := max
{
j ∈ J : ej ∈ Dout

i

}
. (29)

Proof. Let vi ∈ V be an arbitrary vertex. Without loose of generality we assume that∑
{j∈J: ej∈Din

i }
u2

j (1, t−) = 1, (30)

and introduce a notation f∓ = (f∓
j )deg(vi)

j=1 := (u2
j (vi, t

∓))deg(vi)
j=1 . By (LC), finding TSz

i , z = m,M , is
equivalent to the optimization problem

Ē(f+) =
∑deg+(vi)

j=1 hj

(√
f+

j

)
−→ min /max,

on the set A =
{

f+ ∈ [0, 1]deg+(vi) :
∑deg+(vi)

j=1 f+
j = 1

}
,

(31)

where

hj(u) =

⎧⎨
⎩

1
3

(
u3 − (f−

j )
3
2

)
for u2 < f−

j ,

1
4

(
u3 + (f−

j )
1
2 u2 − f−

j u − f
3
2
j

)
for u2 ≥ f−

j .
(32)

Since we optimize a continuous function Ē on a compact set A, the only thing to prove is the uniqueness
of the existing minimum/maximum. We show that Ē is strictly quasiconvex on a convex set A, namely

Ē(λf+ + (1 − λ)g+) < max
(Ē(f+), Ē(g+)

)
for f+, g+ ∈ A, f+ �= g+, λ ∈ (0, 1); and therefore attains a unique global minimum. Note that function
λ �→ Ē(λf+ + (1 − λ)g+), for f+, g+ ∈ A and λ ∈ [0, 1] is convex since

d

dλ2
Ē(λf+ + (1 − λ)g+) =

l−∑
j=1

(f+
j − g+j )2

2(λf+
j + (1 − λ)g+j )

⎛
⎝ d

du2
hj(u)

∣∣∣∣
u=
√

λf+
j +(1−λ)g+

j

−
d

duhj(u)
∣∣
u=
√

λf+
j +(1−λ)g+

j

2
√

λf+
j + (1 − λ)g+j

⎞
⎠ > 0.

Hence, it attains maximum at the boundary and

Ē(λf+ + (1 − λ)g+) ≤ max
(Ē(f+), Ē(g+)

)
. (33)

Since the inequality (33) is strict for λ ∈ (0, 1), Ē is strictly quasiconvex.
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Using the methods of quasiconvex programming we know that maximum is attained at the boundary
of A, see [13, Lem. 3.2]. Adding condition (DF) we have a uniqueness of TSM

i .
We now derive the formula for (TSz

i )�, z = m,M , starting with minimization condition. The idea is
to describe sequences (u(vi, t

−
n ))n∈N and (u(vi, t

+
n ))n∈N in such a way that for each step

u(vi, t
−
n+1) := u(vi, t

+
n ), and t1 := t. (34)

All velocities are non-negative, so for the next time step we obtain such regulation for the velocities
coming out the chosen vertex. Let us fix arbitrary n ∈ N and denote by u− and u+ the value of the
solution in vertex vi in the time step tn.

u− :=
(
(TSm

i )(n−1)u(vi, t
−)
)
k
, u+ :=

(
(TSm

i )(n)u(vi, t
−)
)
k
; (35)

where k ∈ {j ∈ J : ej ∈ maxej∈Dout
i

(TSm
i )(n−1)u(vi, t

−)
}

. (36)

Now consider some index s ∈ J such that

ū− :=
(
(TSm

i )(n−1)u(vi, t
−)
)
s

< u−, and ū+ :=
(
(TSm

i )(n)u(vi, t
−)
)
s

> ū−. (37)

Without loss of generality assume that the flow through the vertex vi in tn changes only values at two
coordinates of edges adjacent to vi. Since, for almost all t, Kirchhoff condition needs to be satisfied we
have

(u−)2 + (ū−)2 = (u+)2 + (ū+)2. (38)
We show that the choice of transmission conditions described in (35)–(37) minimizes the function Ei.
Consequently, only the value given in (27) can be the limit (TSm

i )�.
Indeed, for h > 0 and

ū+ = ū− + h, we have by (38) u+ =
√

(u−)2 − 2(ū−)h − h2.

The structure of the data implies that

Ei(u(vi, tn)) =
∑

j: ej∈Dout
i \{ek,es}

E−
ij (u(0, tn)) +

(ū+)3 − (ū−)3

3
− (ū+ − ū−)3

12
+

(u+)3 − (u−)3

3

=
∑

j: ej∈Dout
i \{ek,es}

E−
ij (u(0, tn)) +

(ū− + h)3 − (ū−)3

3
− h3

12

+

(
(u−)2 − 2(ū−)h − h2

) 3
2 − (u−)3

3
=: Ẽ(h)

But then we note that
d

dh
Ẽ(h)|h=0 = (ū−)(ū− − u−) < 0. (39)

Hence Ei decreases locally with a growth of h > 0.
Let us turn now to the energy maximization case. Since the above considerations are working for h

negative also, the form of the derivative in (39) ensures that the maximum is realised at the boundary of
the set A. Condition (DF) provides a final formula for (TSM

i )�. �

The assumptions of Theorem 1 are strictly related to non-negative velocities of flow. In the general
case the considerations are more subtle and generate a larger number of possibilities of physical behaviour
of a flow. For that reason in Sect. 5.1 we confine ourselves to honeycomb trees. Note that this metric
graph provides only three types of transmission conditions, according to the formula (26). Two for the
vertices vi of the first kind, such that Di = ({ej} , {ek, el}), j < k

(i) uk(0, t) = uj(1, t), uk(0, t) = 0
(ii) uj(0, t) = uk(0, t) =

√
2
2 uj(1, t);

and one for the vertices of the second kind such that Di = ({ej , ek} , {el})

(iii) ul(0, t) = uj(1,t)√
u2

j (1,t)+u2
k(1,t)

uj(1, t) + uk(1,t)√
u2

j (1,t)+u2
k(1,t)

uk(1, t).
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At the end of this part let us give the formal definition of entropy solution of network Burgers’
equation.

Definition 10. We say that function u : [0, 1] × [0, T ) → R
m is a vertex-entropy solution, if it is a weak

solution to network Burgers’ equation (15).
Furthermore, u = (uj)j∈J is entropy solution if it is an edge- and vertex-entropy solution. In particular

minimal- and maximal-entropy solutions are respectively the edge-entropy solutions to (25)–(26) with
z = m,M .

4.2. Existence of Solutions

We are finally ready to prove the existence result in the case of non-negative solutions.

Theorem 2. Problem (15) for a finite tree G admits a non-negative entropy solution for any ů ∈ L∞([0, 1],
R

m
+ ). For almost all t > 0 function x �→ u(x, t) has a locally bounded total variation and can be calculated

recursively from the formula

uj(x, t) =
x − yj(x, t)

t
, where yj minimizes function (40a)

y �→ Gj(x, t, y) =
(

(x − y)2

2t
+
∫ y

0

ůj(s)ds

)
χ[0,x](y) (40b)

+

(
x(x − y)

2t
−
∫ −y

x−y t

0

u2
j (0, s)

2
ds

)
χ(−∞,0)(y), (40c)

for any edge j ∈ J .

Proof. In accordance with the proof of existence of a weak solution in the scalar case, see [19, Thm.1.1]
and [6], we show that formula (40) is valid for piece-wise smooth solutions satisfying Lax shock inequality
at discontinuity. To this end we define a solution recursively at each edge.

Necessity. Assume first that u is a solution of (15) as stated above. Then for any source ej(0), j =
1, . . . , s, see Sect. 3.1, the right hand side of (15c) vanishes and consequently uj(0, t) = 0 for all t > 0.
Note that due to the tree structure and recursive procedure, we can choose such an order of edges that
before calculating the solution on k-th edge we have values of all uj(x, t) for j ∈ J such that bkj > 0,
see Eq. (4). Consequently, the system of conservation laws on network transforms into a sequence of
initial-boundary-value problems of a form

∫ lj

0

(
uj∂tφj +

u2
j∂xφj

2

)
dxdt =

∫ lj

0

ůj(x)φj(x, 0)dx, (41a)

uj(x, 0) = ůj(x) > 0, x ∈ [0, lj ], j ∈ J, (41b)

uj(0, t) =
∑

{s∈J: es∈Din
i }

b01js(t)us(1, t), (41c)

where i ∈ I satisfies vi = ej(0).
Let us fix j ∈ J and define auxiliary function wj : [0, lj ] × [0,∞) → R+; ẘj : [0, lj ] → R+ such that

wj(x, t) =
∫ x

0

uj(s, t)ds, ẘj(x) := wj(x, 0). (42)

Note that u is a weak, piece-wise smooth solution to (15) if and only if it satisfies

∂tuj + uj∂xuj = 0
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at each smoothness region in [0, lj ] × [0, T ) and Rankine–Hugoniot condition along the discontinuity, see
[19, Thm. 2.3]. We have∫ x

0

∂tuj(s, t) + ∂s

u2
j (s, t)

2
ds = ∂twj(x, t) +

u2
j (x, t) − u2

j (0, t)
2

= ∂twj(x, t) +
(∂xwj(x, t))2

2
− (∂xwj(x, t))2

2

∣∣∣∣
x=0

= 0. (43)

By the properties of a square function we have that for any v ∈ [0,∞) and z ∈ R

vz − v2

2
≤ z2

2
.

For z = ∂xwj , by (43),

v∂xwj − v2

2
≤ (∂xwj)2

2
=

(∂xwj)2

2

∣∣∣∣
x=0

− ∂twj ,

and consequently,

∂twj + v∂xwj ≤ v2

2
+

(∂xwj)2

2

∣∣∣∣
x=0

. (44)

In order to determine the value of uj at (x, t) ∈ [0, lj ] × [0,∞) we chose some v. The line passing
through (x, t) with slope v either intersects the ox axis at y = x−vt ∈ [0, lj ] or hits the oy axis at t = −y

v
for y < 0. We integrate (44) along the characteristic y = x − vt separately in two mentioned cases.

If y ∈ [0, lj ], then integrating over [0, t], analogously to the proof in the scalar case, we have

wj(x, t) ≤ v2t

2
+
∫ t

0

(∂xwj(0, s))2

2
ds + ẘj(x)

=
(x − y)2

2t
+
∫ t

0

u2
j (0, s)

2
ds +

∫ x

0

ůj(s)ds. (45)

If y ∈ (−∞, 0), then we integrate over
[−y

v , t
]

and since v = x−y
t and by (42), we obtain

wj(x, t) ≤ v2

2

(
t +

y

v

)
+
∫ t

− y
v

(∂xwj(0, s))2

2
ds + wj

(
0,−y

v

)

≤ x(x − y)
2t

+
∫ t

− yt
x−y

u2
j (0, s)

2
ds. (46)

Finally, by (45) and (46)

wj(x, t) ≤
∫ t

0

u2
j (0, s)

2
ds + Gj(x, t, y), (47)

where Gj is defined in (40b)–(40c). Since the left hand side does not depend on y we minimize the right
hand side over y. Let us choose the slope of the characteristic line v = uj(x, t). Inserting v to (44) we
obtain, by (43), the equality. The minimum in (47) is attained for yj since u satisfies Lax condition.
Finally,

wj(x, t) =
∫ t

0

u2
j (0, s)

2
ds + Gj(x, t, yj), where yj := arg miny∈R

Gj(x, t, y), (48)

and since yj(x, t) = x − uj(x, t)t we derive a formula (40a).
Sufficiency. Assume that u is given by (40), and show that it is a weak solution to (15). Note firstly

that u is well defined since for any j = 1, . . . , m, there exists a unique minimizer of Gj .
The existence of a minimizer of Gj for y ∈ [0, x] is obvious since the first entry in (40b) grows

faster than linearly while the second has at most linear growth. The same argument works in the case
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y ∈ (−∞, 0) if we transform the problem of minimiaztion of Gj over yj into minimization of function
Hj : [0, x] × (0,∞) × [0,∞) → R,

Hj(x, t, τj) :=
x2

2(t − τj)
−
∫ τ

0

u2
j (0, s)

2
ds, (49)

over τj , where

τj(x, t) :=
−yj(x, t)

x − yj(x, t)
t, for some yj(x, t) < 0. (50)

We show now that x �→ yj(x, t) is non-decreasing. Consequently it has locally bounded total variation
and it is continuous in all but countably many points. It is sufficient for the uniqueness of the minimizer
of Gj and the well-posedness of u for almost all (x, t).

Let us fix t > 0; and by an abuse of notation denote by y1 := yj(x1, t), y2 := yj(x2, t) for any
x1, x2 ∈ [0, x]. Denote by x0 ∈ [0, x] an argument such that yj(x0, t) = 0. By contradiction we assume
that x �→ yj(x, t) is decreasing and we consider three cases.

1. 0 ≤ y2 < y1 and x0 ≤ x1 < x2

From the definition of y1, Gj(x1, t, y1) ≤ Gj(x1, t, y2). Additionally,(
x2 − y1

t

)2

+
(

x1 − y2
t

)2

<

(
x1 − y1

t

)2

+
(

x2 − y2
t

)2

.

Finally, using (40b) we obtain the contradiction with the fact that y2 minimizes y �→ Gj(x2, t, y)

Gj(x2, t, y1) ≤ Gj(x1, t, y2) − Gj(x1, t, y1) + Gj(x2, t, y1) < Gj(x2, t, y2).

2. y2 < y1 ≤ 0 and x1 < x2 < x0

Using the notation in (49)–(50), introduce τ1 := τj(x1, t) and τ2 := τj(x2, t). Conditions y2 < y1
and x1 < x2 imply that τ1 < τ2 and therefore we can repeat the reasoning in point 1. Again
Hj(x1, t, τ1) ≤ Hj(x1, t, τ2) and

x2
1

t − τ1
+

x2
2

t − τ2
<

x2
1

t − τ2
+

x2
2

t − τ1
.

Using (49), we obtain the contradiction with the fact that τ2 minimizes τj �→ Hj(x2, t, τ)

Hj(x2, t, τ1) ≤ Hj(x1, t, τ1) − Hj(x1, t, τ2) + Hj(x2, t, τ1) < Hj(x2, t, τ2).

3. y2 < 0 ≤ y1 and x1 < x2 Note that x �→ yi is non-decreasing on both intervals [0, x0] and [x0, x] so
consequently x0 ≤ x1 < x2 ≤ x0, which leads to the contradiction.

We show that (40) is a weak solution. Define now functions ajε, ujε, fjε, vjε ∈ L∞([0, 1] × R+) such
that

ajε(x, t) :=
∫ 0

−∞
e− 1

ε Gj(x,t,y)dy +
∫ ∞

0

e− 1
ε Gj(x,t,y)dy,

ujε(x, t) :=
1

ajε(x, t)

(∫ 0

−∞

2x − y

2t
e− 1

ε Gj(x,t,y)dy +
∫ ∞

0

x − y

t
e− 1

ε Gj(x,t,y)dy

)
,

fjε(x, t) :=
1

ajε(x, t)

(∫ 0

−∞

x(x − y)
2t2

e− 1
ε Gj(x,t,y)dy +

∫ ∞

0

(x − y)2

2t2
e− 1

ε Gj(x,t,y)dy

)
.

Set additionally
vjε(x, t) = log ajε(x, t). (51)

Note now that functions (x, t) �→ Gj(x, t, y) and (x, t) �→ vjε(x, t, y), are differentiable with respect to x
and t; and hence ujε = −ε ∂tvjε(x, t), fjε(x, t, y) = ε ∂xvjε(x, t, y) we have

∂tujε + ∂xfjε = 0. (52)
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We show that

lim
ε→0+

ujε(x, t) = uj(x, t) and lim
ε→0+

fjε(x, t) = fj(x, t), (53)

for any (x, t) in which x �→ yj(x, t) is continuous. Denote by ȳj(x, t) the unique minimizer of Gj at (x, t)
and define a mapping

y �→ Ḡj(x, t, y) := Gj(x, t, y) − Gj(x, t, ȳj);

which attains in ȳj its minimum equal to 0. Since Ḡj is locally Lipschitz continuous (which in particular
on the interval (−∞, 0) follows from reformulation (49)–(50) then for any δ > 0, the estimate holds for
y ∈ [ȳj(x, t) − δ, ȳj(x, t) + δ] with Lipschitz constant Cj1(x, t). Therefore

ajε(x, t) =
∫
R

e− 1
ε Ḡj(x,t,y)dy ≥

∫ ȳj(x,t)+δ

ȳj(x,t)−δ

e−Cj1(x,t)|y−ȳj |dy

=
2

Cj1(x, t)

(
1 − e− Cj1(x,t)δ

ε

)
ε ≥ Cj2(x, t)ε,

for all ε < δ. On the other hand, for y such that |y − ȳj | ≥ δ, Ḡj is bounded away from zero and attains
infinity in infinity, hence

e− 1
ε Ḡj(x,t,y) ≤ e− 1

ε Cj3(x,t,δ)|y−ȳj |. (54)

Finally we have

|ujε − uj | =
1

ajε(x,t)t

(∫
{y: |y−ȳj |<δ}

|y − ȳj |e− 1
ε Gj(x,t,y)dy +

∫
{y: |y−ȳj |≥δ}

|y − ȳj |e− 1
ε Gj(x,t,y)dy

)

≤ δ

t
+

2
Cj2tε

∫ ∞

0

ye− Cj3
ε ydy =

δ

t
+

2
Cj2C2

j3t
ε.

Passing to 0 with ε we receive the first limit in (53). Analogously, we calculate the second and passing
with ε → 0 in (52) we conclude that u is a weak solution to (15).

Equation (40) is edge-entropy solution since it satisfies Oleinik’s one-sided inequality (18). Indeed, by
the fact that x �→ yj(x, t) is non-decreasing and positive, for any x1 ≤ x2, x1, x2 ∈ [0, lj ] and a.e. t > 0

uj(x2, t) − uj(x1, t) =
x2 − yj(x2, t)

t
− x1 − yj(x1, t)

t
≤ x2 − x1

t
.

For the case with negative y′s we get

uj(x2, t) − uj(x1, t) =
x2

t − τ(x2, t)
− x1

t − τ(x1, t)
=

x2 − x1

t − τ(x2, t)
+
(

x1

t − τ(x2, t)
− x1

t − τ(x1, t)

)

≤ x2 − x1

t − τ(x2, t)
.

Since transmission conditions in (15c) are defined uniquely we arrive at an entropy solution.
Finally, on every edge the weak solution in piece-wise C1 function so taking the limit x2 − x1 → 0

∂xuj(x1, t) = lim
x1−x2→0

uj(x2, t) − uj(x1, t)
x2 − x1

≤ max
{

1
t
,

1
t − τ(x2, t)

}
, (55)

we arrive with the estimate on ux at a.e. (x1, t). �

Note that Eq. (40) are the counterparts of Lax-Oleinik formulas, see [18, Eq. IV.1.3], for Burgers’
equation on a tree. For the graph that satisfies condition

deg+(vi) ≤ 1, for any i ∈ I, (56)

it is possible to relate this solution with the standard formulation on the straight line. The core property in
this representation is to derive coefficients B01(u) that are independent of a flow when we move back-word
along the characteristic line.
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(i)

e1

e2

e3

v0

(ii)

e3

e1

e2

v0

Fig. 3. Two v0-subgraphs of honeycomb tree, for v0 being respectively a vertex of (i) a first kind (ii) a second kind.
Illustration for Example 4 and considerations in Sect. 5.1

Example 4. In order to explain this situation consider again two kinds of nodes in honeycomb tree, see
Fig. 3(i)(ii) and the transmission conditions in vertex v0 characterised by minimal transmission solver
(TSm)�.

(i) v0 is of a first kind
The idea now is to define the solution on the graph at point (x, t) on the edge e3 along the path
e0e1e3 where by e0 we understand a half line e0 = (−∞, 0) with initial condition ů0 = 0 and
transmission conditions between edges e0 and e1 that conserve both the mass and the flux, namely

u0(1, t) = u1(0, t), for almost all t > 0. (57)

We change the reasoning in the proof of Theorem 2 in the following way. Considering the character-
istic line passing through (x0, t0) with slope v0 (assume y0 = x0−v0t0 < 0) we allow it to go through
the vertex and continue until it hits the initial line. Using the formula for transmission conditions
(25c)–(26), we conclude that characteristic line passes through the point

(
1,−y0

v0

)
on the edge e1

with a slope
√

2v0. Then it intersects either e1 or e0 at (y1, 0). Finally the explicit formula for the
solution is given by

u3(x0, t0) =
x0 − y3(x0, t0)

t0

where y3 minimizes function

y �→ G3(x0, t0, y) =
∫ y1

−∞
ů1(s)ds +

(x0 − y)2

2t0
.

(ii) v0 is of a second kind
The first problem in repeating the reasoning in (i) for v0 is the lack of uniqueness of the path since
we can chose either e0e1e3 or e0e2e3. The more essential problem, however, is the fact that we
cannot define neither the slope of characteristic line v1 on e1, nor its counterpart on e2 - v2. Such
representation does not result from transmission condition

v0 =
√

2
2

(v1 + v2) .

Example 4 indicates that the condition (56) allows to choose the unique path from any point x ∈ G
to the source and ensures well-posedness of the following procedure: G is a finite tree, so it is possible
to re-enumerate edges in the way that for any two edges es, ej ∈ E, and for any chosen path es =
ek1 , . . . , ekl

= ej ; ki < ki+1 for all i ∈ 1, . . . , l − 1. Fix ej ∈ E and define a path Pj = ek1ek2 . . . ekNj
of a

length Lj =
∑Nj

s=1 ls that starts in a source and ends in ej . Now define uPj
: (−∞, lj ] × [0,∞) → R+ and
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ůPj
: (−∞, lj ] → R+ such that

uPj
(x, t) :=

Nj∑
s=1

⎛
⎝Nj−1∏

p=s

1
b01kp+1kp

⎞
⎠ uks

⎛
⎝x +

Nj−1∑
p=s

lp, t

⎞
⎠ χ(−∑Nj−1

p=s lp,−∑Nj−1
p=s+1 lp

](x),

ůPj
(x) := uPj

(x, 0).

Proposition 1. The solution to the problem (15) for a finite tree G that satisfies (56) can be related with
mono-dimensional case using the counterpart of Lax-Oleinik formula on the path sub-graph, namely the
formula for any j ∈ J is given by

uj(x, t) =
x − yj(x, t)

t
,

where yj minimizes function

y �→ Gj(x, t, y) =
∫ y

−∞
ůPj

(s)ds +
(x − y)2

2t
.

Finally, it is worth underlining that the considerations presented in the proof of Theorem 2 can be
generalised in the number of directions. Firstly, we can examine conservation law on the edges of a
network, coupled by the linear transmission of mass that satisfies the conservation of flux condition for
f ∈ C1([0,∞)) such that

f ′′ > 0, f(0) = 0 and lim
u→∞

f(u)
u

= +∞. (58)

On the other hand, we can introduce some sources of mass in vertices vi such that φ+
ij = 0 for any j ∈ J .

We formalise those observations into a remark.

Proposition 2. Let f be a flux function that satisfies (58). For any ů ∈ L∞([0, 1],Rm
+ ) and ū ∈ L∞([0, T ],Rm

+ ),
the proof of Theorem 2 can be repeated to the following generalisation of a problem (15), for almost all
t ∈ [0, T ],
∑
j∈J

∫ T

0

∫ lj

0

(uj∂tφj + f(uj)∂xφj) dxdt =
∑
j∈J

∫ lj

0

ůj(x)φj(x, 0)dx, (59a)

uj(x, 0) = ůj(x) > 0, x ∈ [0, lj ], j ∈ J, (59b)

uj(0, t) =
∑

{s∈J: es∈Din
i }

b01js(u)us(1, t), for φ−
ij �= 0, deg+(vi) > 0

(59c)∑
{j∈J: ej∈Din

i }
f(uj(lj , t)) =

∑
{j∈J: ej∈Dout

i }
f(uj(0, t)), for deg+(vi) > 0, (59d)

uj(0, t) = ūj(t) ≥ 0, for φ−
ij �= 0, deg+(vi) = 0. (59e)

Proof. The proof of this fact can be found in [18, Thm. 2.1]. �

4.3. Dense Subclass of Positive Solutions

Note that for positive solutions one can distinguish a special class of functions which are preserved under
the flow. This class is the same as for the classical mono-dimensional Burgers’ equation.

Proposition 3. Let G be a metric tree. We introduce a class of functions W+ such that

f ∈ W+ iff {f ∈ B(G) : f is piece-wise C1 non-decreasing non-negative function,
the number of jumps is finite and side derivatives exist at each point ofG} (60)
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(i)

e1

e2

e3

e4

e5
· vi

··

·· (ii)

e1

e2

e3

e
· vi

·

·

·
e

e4

e5
· vi

·

·

Fig. 4. Transformation of arbitrary vertex vi in a tree G, illustration (i), into two vertices v′
i, v

′′
i , illustration (ii),

according to formula (61) introduced in Proposition 3

Then the class W+ is preserved by the flow generated by the Burgers’ equation (15), i.e. if ů ∈ W+

then u(t) ∈ W+ for any t > 0.

Proof. Let ů ∈ W+. Since in the interior of each edge we have the mono-dimensional situation then W+

class is preserved there. The only element that needs to be clarified is a transmission condition, namely
that uj(0, t) is piece-wise C1, non-decreasing with a finite number of jumps for every j ∈ J . The properties
of solution going out from an arbitrary vertex vi in the tree G can be considered as the composition of
flows going out of two vertices v′

i and v′′
i which are associated with vi by the following relation

deg+(v′
i) = deg+(vi), deg−(v′

i) = 1; and deg+(v′′
i ) = 1, deg−(v′′

i ) = deg−(vi). (61)

See also Fig. 4. We can easily see that vertex v′
i joins the flow, while v′′

i splits it into outgoing edges. In
the case of v′

i, the flow in e(0) is a square root of sum of squared flows of incoming edges. Since on each
ej ∈ Din

i the flow is non-decreasing, C1 function, then this properties are preserved for e(0) for all but
finite number of points. Since for v′′

i the transmission conditions at the head of outgoing edges are just
proportions of the flow coming to the tail of edge e, fine properties are guaranteed.

Finally, we note that the number of jumps can be multiplied by deg−(vi) as the shock crosses vi but
the finiteness of the graph ensures the control of the number of jumps. We shall also recall that under
evolution some jumps may disappear. �

In further considerations we will use also W+
opp class such that

f ∈ W+
opp iff {f ∈ B(G) : f is piece-wise C1 non-increasing non-negative function,

the number of jumps is finite and side derivatives exist at each point of G}. (62)

Definition 11. Let u be a function defined over the graph G. We say that u ∈ TV (G) iff

‖u‖TV (G) =
∑
j∈J

‖uj‖TV (ej) is finite.

Let us start with the estimates of TV -norm of non-negative solution for specified family of graphs
that can be generalised for arbitrary metric trees.

Lemma 1. Let G be a metric honeycomb tree with one source e1(0) and one sink em(1). For u being a
solution to the problem (15) given by Theorem 2, the following estimate holds

sup
t∈[0,T ]

‖u2(t)‖TV (G) +
∫ T

0

|∂tu
2
m|(1, t)dt ≤ 2κG

(
‖ů‖TV (G) +

∫ T

0

|∂tu
2
1|(0, t)dt

)
, (63)

where κG depends on graph structure.

Proof. Let us remind first that solutions u given by Theorem 2 are non-negative. We start with showing
that u ∈ W+ restricted to an arbitrary edge ej satisfies

d

dt

∫
ej

|∂xu2
j |dx + |∂tu

2
j |(1, t) ≤ |∂tu

2
j |(0, t). (64)
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If u is from W+-class, then for uj there exists a finite sequence 0 = ξ0(t) < ξ1(t) < ... < ξK(t)(t) = 1 for
a.e. t ∈ [0, T ) such that

uj(x, t) =
K(t)−1∑

k=0

uj(x, t)χ[ξk(t),ξk+1(t)](x),

and on each interval [ξk(t), ξk+1(t)] u is non-decreasing. We extended it by the left and right hand side
limits. Furthermore, K(t) is piece-wise constant so there exists a finite sequence 0 < t0 < t1 < ... < tM <
T such that K(t) is constant over each interval (ti, ti+1). Note also K(t) is decreasing as u1(0, t) = 0
by Kirchhoff condition. In accordance with previous notation we distinguish the left and right limits at
points ξk by respectively u(ξ∓

k (t), t). We have

d

dt

∫
[0,1]

|∂xu2
j |dx =

d

dt

⎡
⎣K(t)−1∑

k=0

(u2
j (ξ

−
k+1(t), t) − u2

j (ξ
+
k (t), t))+

K(t)−2∑
k=0

(u2
j (ξ

−
k+1(t), t) − u2

j (ξ
+
k+1(t), t))

⎤
⎦ . (65)

Since, for a.e. t ∈ (ti, ti+1), K(t) is constant, then for 0 < k < K(t)

d

dt
uj(ξ−

k+1(t), t) = ∂tuj(ξ−
k+1(t), t) + ∂xuj(ξ−

k+1(t), t)
dξk+1(t)

dt
.

But by the Rankine–Hugoniot and Lax conditions for ξk+1, see (17), we conclude

d

dt
u2

j (ξ
−
k+1(t), t) = uj(ξ−

k+1(t), t)∂xuj(ξ−
k+1(t), t)

(
uj(ξ+k+1(t), t) − uj(ξ−

k+1(t), t)
) ≤ 0.

In the same manner we prove that
d

dt
u2

j (ξ
+
k+1(t), t) ≥ 0.

Taking into account the boundary terms coming from k = 0,K(t) we find that

d

dt

∫
[0,1]

|∂xu2
j |dx ≤ ∂tu

2
j (1, t) − ∂tu

2
j (0, t).

The boundary terms −∂tu
2
j (z, t) = 2u2

j (z, t)∂xuj(z, t), z = 0, 1 are non-negative since we are working in
W+-class, which leads to (64).

The class W+ is dense in TV (G), so it allows us to approximate any TV -flow by an element from the
W+–class. In order to pass to the limit we need to generate the global estimate, namely one which is
independent of K(t). Integrating (64) over (ti, ti+1) we get

sup
t∈[ti,ti+1]

(
‖u2

j‖TV (ej)(t) +
∫ t

ti

|∂tu
2
j |(1, t)dt

)
≤
∫ ti+1

ti

|∂tu
2
j |(0, t)dt + ‖u2

j (ti)‖TV (ej).

Summing up over all intervals (ti, ti+1) we get

‖u2
j (T )‖TV (ej) +

∫ T

0

|∂tu
2
j |(1, t)dt ≤

∫ T

0

|∂tu
2
j |(0, t)dt + ‖ů2

j‖TV (ej). (66)

In order to make TV -norm of u2
j T -independent we transform (66) into

sup
[0,T ]

‖u2
j‖TV (ej) +

∫ T

0

|∂tu
2
j |(1, t)dt ≤ 2

(∫ T

0

|∂tu
2
j |(0, t)dt + ‖ů2

j‖TV (ej))

)
. (67)

Now we are ready to construct an approximation sequence tending to the desired solution for some general
data ůj ∈ TV (ej). For given ε > 0 and ūj = uj(0, ·) ∈ TV (0, T ) we claim there exist

ůjε ∈ W+ and ūjε ∈ W+
opp
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such that
‖ů2

jε − ů2
j‖L1(ej) < ε and ‖ū2

jε − ū2
j‖L1(0,T ) < ε

and
‖ů2

jε‖TV (ej) ≤ ‖ů2
j‖TV (ej) and ‖ū2

jε‖TV (0,T ) ≤ ‖ū2
j‖TV (0,T ).

So the considerations for the u ∈ W+ deliver the existence of uε solutions on the time interval [0, T ]
and (67) implies the following estimate independent of ε.

sup
[0,T ]

‖u2
jε‖TV (ej) +

∫ T

0

|∂tu
2
jε|(1, t)dt ≤ 2

(∫ T

0

|∂tu
2
jε|(0, t)dt + ‖ů2

jε‖TV (ej)

)

≤ 2

(∫ T

0

|∂tū
2
j |(0, t)dt + ‖ů2

j‖TV (ej)

)
.

The above estimates imply the uniform bound for

∂tuε ∈ L∞(0, T ;M(ej)).

This leads, up to a subsequence ε → 0, to

ujε → uj in L1([0, T ] × ej),
ujε ⇀∗ uj in L∞([0, T ] × ej),
ujε|x=lj → uj |x=lj in L1(0, T ).

In particular we have the point-wise convergence in the domain and at the boundary {x = 1}. So we
conclude u is the solution to Burgers’ equation at ej .

Finally, to obtain TV -estimate (63) for the whole graph we proceed recursively from the edge ej to
the source e1(0), specifying the right hand side of (64). G is a metric honeycomb tree so there is restricted
number of vertices’ types, see Definition 2 and remarks below.

Consider a vertex of the first kind vi, and denote edges adjacent to it in the following way Di =
({ej} , {ek, el}). By the transmission conditions (15d)

u2
z(0, t) = θzu

2
j (1, t) with θz ≤ 1, z = k, l.

Then by differentiation in time we find that

|∂tu
2
z|(0, t) = θz|∂tu

2
j |(1, t), z = k, l.

So the identity (64) gives a term on the left hand side which dominates the terms |∂tu
2
z|(0, t), z = k, l,

namely

d

dt

(∫
ej

2|∂xu2
j |dx +

∫
ek

|∂xu2
k|dx +

∫
el

|∂xu2
l |dx

)
+ |∂tu

2
k|(1, t) + |∂tu

2
l |(1, t) ≤ 2|∂tu

2
j |(0, t). (68)

Note that vi has two out-going edges and θz ≤ 1 for z = k, l, therefore, the equation for ej is taken twice.
In the second case as vi is of the second kind, using notation Di = ({ej , ek} , {el}), we have

u2
j (1, t) + u2

k(1, t) = u2
l (0, t).

Then we easily deduce that
|∂tu

2
l |(0, t) ≤ |∂tu

2
j |(1, t) + |∂tu

2
k|(1, t), (69)

and analogously to (68) we obtain

d

dt

(∫
ej

|∂xu2
j |dx +

∫
ek

|∂xu2
k|dx + 2

∫
el

|∂xu2
l |dx

)
+ |∂tu

2
l |(1, t) ≤ |∂tu

2
j |(0, t) + |∂tu

2
k|(0, t). (70)
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Finally taking the vertex from the path graph such that Di = ({ej} , {ek}) we have a conservation of
mass in the vertex and consequently

d

dt

(∫
ej

|∂xu2
j |dx +

∫
ek

|∂xu2
k|dx

)
+ |∂tu

2
k|(1, t) ≤ |∂tu

2
j |(0, t). (71)

Repeating iteratively above steps, and taking all edges with required multiplicity κj that depends on
the degree of vertex and its position in the graph we obtain

d

dt

∑
j∈J

∫
ej

2κj |∂xu2
j |dx + |∂tu

2
N |(1, t) ≤ 2κ1 |∂tu

2
1|(0, t),

since the graph G has exactly one source e1(0) and one sink em(0). After the integration by parts implies
(63). �

Remark 1. Estimate derived in Lemma 1 can be extended into arbitrary metric tree G having sources
ej(0), j = 1, . . . , s and sinks ej(lj) for j = m − S + 1, . . . , m

sup
t∈[0,T ]

‖u2(t)‖TV (G) +
∫ T

0

m∑
j=m−S+1

|∂tu
2
j |(lj , t)dt ≤ CG

⎛
⎝‖ů‖TV (G) +

∫ T

0

s∑
j=1

|∂tu
2
j |(0, t)dt

⎞
⎠ . (72)

Proof. The general case is slightly more involving. Assume that for vertex vi

Din
i = {ek1 , ..., ekp

} and Dout
i = {er1 , ..., erq

}.

Then of course by the Kirchhoff condition
p∑

i=1

u2
ki

(lki
, t) =

q∑
j=1

u2
rj

(0, t),

and for appropriate constants θrj
≤ 1, j = 1, . . . , q,

|∂tu
2
rj

|(0, t) ≤ θrj

p∑
i=1

|∂tuki
|(lki

, t).

Taking into account multiplicity of incoming and outgoing edges, it leads to

d

dt

⎛
⎝deg−(vi)

p∑
i=1

∫
eki

|∂xu2
ki

|dx + deg+(vi)
q∑

j=1

∫
erj

|∂xu2
rj

|dx

⎞
⎠+ deg+(vi)

q∑
j=1

|∂tu
2
rj

|(lrj
, t)

≤ deg−(vi)
p∑

i=1

|∂tu
2
ki

|(0, t).

The rest of estimates follows as for honeycomb tree in Lemma 1. �

5. Stitching Solutions on the Honeycomb Tree

In this part we generalise the considerations from Sect. 4.1 into the case of solutions of an arbitrary
sign. With no surprise, the major problem of this construction is a determination of physically justified
behaviour in vertices for different sign velocities at adjacent edges. In the whole Sect. 5 we restrict ourselves
to honeycomb trees since they consist of exactly two kinds of vertices which additionally provide the same
possible cases to consider.
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5.1. Derivation of Transmission Conditions

To keep the well-posedness of the solution in the terms of the distributional formulation, see reasoning
in (13)–(14), we are required to control the Kirchhoff conditions (14). Using the notation introduced in
Sect. 4.1, we denote by t∓ time shortly before/after the flow through the vertex at t. Denote the set of
edges in which the mass enters the vertex vi at t > 0 by Fi(t) := F in

i (t) ∪ Fout
i (t) where

F in
i (t) :=

{
ej ∈ Din

i : uj(1, t−) ≥ 0
}

and Fout
i (t) :=

{
ej ∈ Dout

i : uj(1, t−) ≤ 0
}

. (73)

Furthermore, we need to specify the direction of a flow through the vertex. We say that flow agrees with
(is opposite to) the direction of a vertex Di = (Din

i ,Dout
i ) at t > 0, for some vi ∈ V , if∑

ej∈Fin
i (t)

u2
j (1, t−) ≷

∑
ej∈Fout

i (t)

u2
j (0, t−).

If there is an equality in the above equation, then there is no flow through the vertex vi at t. Let us define
Di =

(Din
i ,Dout

i

)
a flow direction of a vertex vi which is a counterpart of vertex direction in the case of

metric graph. Namely,

Din/out
i =

{
D

in/out
i for flow that agrees with the direction of a vertex,

D
out/in
i for flow opposite to the direction of a vertex.

(74)

We say that the flow direction is positive (negative) in the first (second) case in (74) and write respectively
sgn(Di) = 1 (sgn(Di) = −1).

In the following considerations we redefine the maximal and minimal transmission solver TSz
i (t),

z = m,M , generalising conditions presented in Sect. 4.1. We assume
(i) Kirchhoff conditions (14),
(ii) continuity conditions in vertices different than sources or sinks generalising (LC), namely for a.e.

t ∈ (0, T )

uj(vi, t
+) =

{
uj(vi, t

−) for ej ∈ Din
i ∩ Fi(t),

0 for ej ∈ Din
i \ Fi(t),

(FC )

(iii) energy minimization/maximization condition, with function Ei : Πej∈Din
i ∩Dout

i
Uj → R being gene-

ralization of (22), given by the formula

Ei(u(vi, t)) = sgn(Di)

⎡
⎣ ∑

j: ej∈Din
i

E+
ij (u(vi, t)) +

∑
j: ej∈Dout

i

E−
ij (u(vi, t))

⎤
⎦ ,

E±
ij (u(vi, t)) =

u3
j (vi, t

∓) − u3
j (vi, t

±)
3

− (uj(vi, t
∓) − uj(vi, t

±))3

12
θ
(
sgn(Di)

(
uj(vi, t

∓) − uj(vi, t
±)
))

,

with a domain

Uj = R for ej ∈ Din
i ,

Uj =
(
min(−uj(vi, t

−), sgn(Di)∞),max(−uj(vi, t
−), sgn(Di)∞)

) ∪ {−uj(vi, t
−)
}

,

for ej ∈ Dout
i ∩ Fout

i ,

Uj = (min(0, sgn(Di)∞),max(0, sgn(Di)∞)) ∪ {0} for ej ∈ Dout
i \ Fout

i .

(iv) decreasing flow with respect to edge enumeration in the case of Ei maximization, (DF).

It is easy to notice that the form of condition (FC) assures that there is no flow within the sets Din/out
i .

In the case of condition (iii) the generalisation is based on the Ei domain’s change. The restriction of
the value of solutions for ej ∈ Dout

i prevents the situation that there exists an edge ej(0) = vi (resp.
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ej(lj) = vi), in which the flow direction at ej(0) (resp. ej(lj)) is opposite to the flow at the vertex vi and
there is no shock at ej(0) (resp. ej(lj)).

Based on TSz
i , z = m,M , which satisfy conditions (i)–(iii); we can repeat the definition of (TSz

i )�,
z = m,M given in Definition 9. Finally, we are ready to present transmission conditions derived by
(TSz

i )� for the honeycomb tree.
Case I. Sources and sinks
In analogy to non-negative case we assume that for vi being a source (a sink) we have uj(vi, t) = 0,

ej ∈ Dout
i (ej ∈ Din

i ).
Case II. Vertices from a path graph
Let vi be a vertex related to the path graph such that Di = ({ej} , {ek}). By (FC) we have the

behaviour analogous to the mono-dimensional case.

1. uj(1, t−) ≥ 0 and uk(0, t−) ≤ 0
Let us specify the flow through the vertex.
(a) u2

j (1, t−) ≥ uk(0, t−) We have the flow that agrees with the direction of vertex and

uj(1, t+) = uk(0, t+) = uj(1, t−). (75)

(b) u2
j (1, t−) < uk(0, t−) We have the flow opposite to the direction of vertex and

uj(1, t+) = uk(0, t+) = uk(1, t−). (76)

2. uj(1, t−) < 0 and uk(0, t−) > 0

There is no flow that directs the vertex hence

uj(1, t+) = uk(0, t+) = 0.

3. uj(1, t−) · uk(0, t−) ≥ 0

We have either (75) for sgn(uj(1, t−) ≥ 0, or (76) for sgn(uj(1, t−) ≤ 0.

Case III. Vertices of the hexagonal grid of the first and second kind
For the illustration see Fig. 3 with the notation changed from e1, e2, e3 to respectively ej , ek, el. It is

worth mentioning that considerations for vertices of the first and second kind are analogous hence we
concentrate only on a vertex of a second kind, see Fig. 3(ii).

1. uj(1, t−) ≥ 0, uk(0, t−) ≥ 0, ul(0, t−) < 0
Firstly we need to specify the direction of flow through the vertex.
(a) u2

j (1, t−) ≥ u2
l (0, t−)

In this case the flow agrees with the direction of a vertex (goes through the vertex to the right)
and therefore values of solution after the flow should not depend on values in edges from Dout

i .
Intuitively, the character of the vertex should therefore fit to the case of constant sign flows.
Obviously uj(1, t+) = uj(1, t−). Consider now three cases related to the choice of maximal and
minimal transmission solver.

– In the first (maximal) one, k < l, the total energy should go to the edge ek, and zero
to el. Since ul(0, t−) < 0 then the flow reaches the vertex and the influence of this flow
needs to be somehow balanced to maintain the proper direction of a flow. Therefore, we
divide the flow from ej into two parts in such a way that

ul(0, t+) = −ul(0, t−) and uk(0, t+) =
√

u2
j (1, t−) − u2

l (0, t−). (77)

– The second (maximal) case, k > l, is when the whole energy is going to el, then

uk(0, t+) = 0 and ul(0, t+) = uj(1, t−). (78)



JMFM Burgers’ Equation Revisited: Extension of Mono-Dimensional Case on a Network Page 27 of 34 112

– The last case, related to energy minimization, is more involved. We should have

uk(0, t+) = ul(0, t+) =
√

2
2

uj(1, t), (79)

but it is valid only for
√
2
2 uj(1, t−) ≥ ul(0, t−). Otherwise it does not agree with the

domain Ul. Instead, minimum is attained at the boundary of Ul, hence we arrive at (77).
(b) uj(1, t−)2 < ul(0, t−)2

Now the flow is opposite to the direction of a vertex (goes through the vertex to the left) and
therefore values of solution after the flow should not depend on values in edges from Din

i . We
put

uk(0, t+) = 0, ul(0, t+) = uk(0, t−) and uj(1, t+) = ul(0, t−), (80)
where the last quantity is negative. It is the only possibility.

2. uj(1, t−) ≥ 0, uk(0, t−) < 0, ul(0, t−) ≥ 0

This case is analogical to 1. due to the symmetry of the honeycomb tree.
3. uj(1, t−) ≤ 0, uk(0, t−) ≥ 0, ul(0, t−) ≥ 0

This case is trivial since the mass flows in the direction opposite to the vertex at all edges and the
vertex becomes a kind of source. The only possible boundary constraint is

uj(1, t+) = uk(0, t+) = ul(0, t+) = 0. (81)

4. uj(1, t) ≥ 0, uk(0, t) ≤ 0, ul(0, t) ≤ 0

Now the situation is more interesting since the vertex resembles a sink and again there is a need to
specify the direction of a flow.
(a) u2

j (1, t−) ≤ u2
k(0, t−) + u2

l (0, t−)

The flow is opposite to the direction of a vertex (goes through the vertex to the left) and the
shock wave appears on the edge ej . Obviously uz(0, t+) = uz(0, t−) for z = k, l and

uj(1, t+) = −
√

u2
k(0, t−) + u2

l (0, t−). (82)

(b) uj(1, t−)2 > u2
k(0, t−) + u2

l (0, t−)

The flow agrees with the direction of a vertex (goes through the vertex to the right) and the
shock wave appears on the edge ej and we need to choose the condition for ek(0) and el(0) at
t+. Again by the energy maximization methods we have two options.

– for k < j we repeat condition (77),
– for k > j

uk(0, t+) = −uk(0, t−) and ul(0, t+) =
√

uj(1, t−)2 − uk(0, t−)2. (83)

While in the case of minimization
– for

√
2
2 uj(1, t−) > max(−uk(1, t−),−ul(1, t−)) we have (79)

– for
√
2
2 uj(1, t−) > −uk(1, t−) and

√
2
2 uj(1, t−) < −ul(0, t−) =

√
2
2 uj(1, t−)+α, α2 >

√
2uj

we arrive at (77).
– finally for

√
2
2 uj(1, t−) > −ul(1, t−) and

√
2
2 uj(1, t−) < −uk(0, t−) =

√
2
2 uj(1, t−) + α,

α2 >
√

2uj we obtain (83).

5.2. Different Sign Solutions

In this part we construct an approximation of a solution which consists piece-wise of elements from classes
W+ and W−. We say that f ∈ W− if −f ∈ W+, for W+ defined in (60). Let us explain now how to
stitch two mentioned types of solutions.
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Let (Uk)k∈K be a partition of a set d(E) of metric edges of G = (G, d), namely a family of closed and
connected intervals such that for any Uk there exits exactly one metric edge ekj

such that Uk ⊂ ekj
,⋃

k∈K

Uk = d(E) and int Uk ∩ int Ul = ∅ for k �= l.

Define now a class of solutions W such that for any fixed ů ∈ TV (G)

u ∈ W iff {u ∈ B(G) : there exists a partition (Uk)k∈K of a set of metric edges d(E)
such that either u|Uk

∈ W+ or u|Uk
∈ W−}. (84)

Proposition 4. Let G be a metric honeycomb tree. Then the class W is preserved by the flow generated by
the Burgers’ equation (15) and the total variation norm is controlled in time, namely

sup
t∈[0,T ]

∫
G

|∂xu2|dx +
∑

j

∫ T

0

(|∂tu
2|(0, t) + |∂tu

2|(1, t))dt ≤ C

∫
G

|∂xů2|dx + CT‖u‖3∞. (85)

Proof. We prove the proposition by stitching the solutions from W+ and W− in several steps.
Step 1. In order to construct the general solution we introduce auxiliary solutions related to each of

Uk. Let u(k) be a solution to the Burgers’ equation on G initiated by the initial datum

ů(k) = ůχUk
. (86)

Since ů ∈ W±, it follows that ů(k) ∈ W± and consequently, by Proposition 3, u(k) is a constant sign
solution over the graph.

Step 2. Now we define the interaction between two neighbouring solutions in the interior of ej .
Introduce function u(kl), for two chosen intervals Uk and Ul such that Dk∩Dl � ξ(0) for some ξ(0) ∈ (0, lj).
We need to determine the evolution of the contact point ξ(t) starting from ξ(0). Without loss of generality
assume that min Uk < min Ul.

(i) If u(k) < 0 < u(k), then solution in the neighbourhood of ξ(0) is constructed as a rarefaction wave,
namely

u(kl)(x, t) =

⎧⎪⎨
⎪⎩

u(k)(x, t) for x
t < uk(ξ(t), t),

x
t for uk(ξ(t), t) < x

t < ul(ξ(t), t),

u(l)(x, t) for ul(ξ(t), t) < x
t .

(ii) If u(k) > 0 > u(k), then u(k) and u(l) are stitched together by the Rankine–Hugoniot condition

d

dt
s(t) =

u(k)(ξ(t), t) + u(l)(ξ(t), t)
2

.

In the neighbourhood of (ξ(0), 0) we have

u(kl)(x, t) = u(k)(x, t) for x < ξ(t) and u(kl)(x, t) = u(l)(x, t) for x > ξ(t).

Step 3. Finally, we concentrate on the case of changing the sign at the vertex using the transmission
solver derived in Sect. 5.1. For given conditions in vertices at t− there exists a unique representation after
the flow through the vertex, at t+. Since the flow through the vertex Di is fixed, we solve the equations
at outgoing edges Dout

i knowing that at least locally near the vertex the solutions are of constant sign.
Let us become more precise about the choice of the time interval where the solution is defined. We

consider the case III.1a) from Sect. 5.1. We build the solution on edges ej and el for some time T1 > 0,
and the transmission condition gives the boundary data for the equation at ek, at least in a vicinity of
the vertex. Then we solve Burgers’ equation in the interior of an edge ek obtaining the solution locally
in time. In general it may happen that the solution uk stays positive at the vertex just for time T2 > 0,
which can be smaller than T1. Hence, the procedure of deriving the solution in the neighbourhood of
the vertex is well-defined in time being the minimum of T1 and T2. Nevertheless, since the speed of
a wave propagation and the number of vertices is finite, considered time always exists. Note that the
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construction of the solution bases on approximation in W-class. It follows that transmission conditions
need to be modified by a suitable approximation, with some error which is controlled. To preserve the W
– class the boundary term must be in Wopp, and this modification is explained in the next step.

Step 4. Steps 1–3 allow for a unique definition of solution for any time since the structure of the W-
class guarantees that the solutions locally are of constant sign on edges and they are uniquely determined
in vertices. At the end we need to estimate TV -norm. Repeating the considerations from the proof of
Lemma 1, we note that for each edge we find the following bound

d

dt

∫
ej

|∂xu2
j |dx + |∂tu

2
j (1, t)| sgn (uj(1, t)) − |∂tu

2
j (0, t)| sgn (uj(0, t)) ≤ 0.

Of course, the above inequality does not deliver needed information, since in general not only we fail to
control the boundary terms, but also the sign of the solution at the ends of the edge.

However, based on construction proposed for W+-functions, we obtain local versions of the above
inequality. Introduce π : ej → [0, 1] a smooth function such that supp π ⊂⊂ ej and π ≡ 1 on the internal
interval in ej . Then

2∂t(πuj) + 2uj∂x(πuj) − u2
jπx = 0

Then we find
d

dt

∫
ej

|∂x(πu2
j )|dx ≤ ‖πx‖∞ ‖uj‖3∞ .

So it gives information about the interior of edges.
However the key element is in vertices so for each vertex we use again the localization argument.

Again, in order to explain the construction of local estimation we consider a concrete case from Sect. 5.1,
namely the case III.1a). Let us remind that solution is given by u2

l (0, t) = u2
j (1, t) − u2

k(0, t). Before we
start the estimation, let us look closer at this definition. We aim at construction of the flow in the W –
class, so the boundary condition is required to be in W+

opp. However the above formula does not ensure
that it holds. But from (87) we deduce that

∫ T

0
|∂tu

2
l |(0, t)dt is bounded. Thus, given ε > 0 we find a new

unew
l (0, t) ∈ W+

opp such that
∫ T

0
|∂tu

new
l

2|(0, t)dt ≤ ∫ T

0
|∂tu

2
l |(0, t)dt and ‖unew

l (0, ·) − ul(0, ·)‖L1(0,T ) ≤ ε.
This way the W structure of solutions is preserved, and the TV - norm over G is controlled too.

Take π defined around the vertex vi, being 1 over a sufficiently large cover of vi and supported in
ej ∪ ek ∪ ej . Then we find

d

dt

∫
ej

|∂x(πu2
j )|dx + |∂tu

2
j |(1, t) ≤ ‖πx‖∞‖u‖3∞,

d

dt

∫
ek

|∂x(πu2
k)|dx + |∂tu

2
k|(0, t) ≤ ‖πx‖∞‖u‖3∞,

d

dt

∫
el

|∂x(πu2
l )|dx ≤ |∂tu

2
l |(0, t) + ‖πx‖∞‖u‖3∞.

Since u2
l (0, t) = u2

j (1, t) − u2
k(0, t), we conclude that

|∂tu
2
l |(0, t) ≤ |∂tu

2
j |(1, t) + |∂tu

2
k|(0, t). (87)

So summing all together we get

d

dt

(∫
ej

|∂x(πu2
j )|dx +

∫
el

|∂x(πu2
l )|dx +

∫
ek

|∂x(πu2
k)|dx

)
≤ C‖πx‖∞‖u‖3∞. (88)

Although above information is sufficient, we can have even stronger condition which controls the trans-
mission relation. Because of form of the inequalities for ej and ek, taking it twice, we improve (88),
namely

d

dt

(∫
ej

|∂x(πu2
j )|dx +

∫
el

|∂x(πu2
l )|dx +

∫
ek

|∂x(πu2
k)|dx

)
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+
(|∂tu

2
l |(0, t) + |∂tu

2
k|(0, t) + |∂tu

2
j |(1, t)

) ≤ C‖πx‖∞‖u‖3∞. (89)

In the general case, the signs at the vertex may be different, we get the better info with boundary
term for the case when the flow at the edge comes into the vertex. So such inequality we make double,
then we obtain (89) for the general case. Note that there is only one case where there is no incoming
flow, but then all boundary terms are just zero, so the time derivatives vanish too.

Finally, repeating the steps from Lemma 1 in the general case, we get (85). �

5.3. Existence of General Solutions

In the last part of this section we show the following existence result, that goes in line with Definition 3.
Note that ů is a different sign function.

Theorem 3. Let ů ∈ TV (G). There exists a weak solution to the Burgers’ equation on graph G such that

u2 ∈ L∞(0, T ;TV (G)).

Proof. For given ů ∈ TV (G), let us proceed in the following steps.
Step 1. Firstly, we approximate the initial condition. For given ε > 0, one finds ůε = (̊uε)+ + (̊uε)−

such that (̊uε)+ ∈ W+, (̊uε)− ∈ W− and

‖ů − ůε‖L1(G) < ε and ‖ů2
ε‖TV (G) ≤ ‖ů2‖TV (G).

We solve the equation starting from ůε in the class W according to the steps presented in Proposition 4.
Then the uniform bound

sup
t∈(0,T )

‖u2
ε(t)‖TV (G) ≤ C, can be found, as well as sup

t∈(0,T )

‖∂tuε(t)‖M(G) ≤ C.

Step 2. Using Lions-Aubin lemma we find a subsequence such that

uε → u∗ ∈ Lp(G × (0, T )) for any p < ∞,

hence u∗ is a weak solution. Weak limits guarantee that

u ∈ L∞(G × (0, T )) and u ∈ L∞(0, T ;TV (G)). (90)

Step 3. The boundary conditions follow from the information carried by (85), while in the limit this
condition can be found only as measure. The compactness ensures us that the approximating sequence
goes strongly at the boundary point-wisely since then uε → u in Lp(0, T ) in the vertices in time.

Step 4. As the last step let us comment on the uniqueness. The above properties of solutions to
the Burgers’ equation fulfil the conditions for the classical mono-dimensional case. We obtain an entropy
solution as a bounded distributional solution with the bound (55).

We claim that the solution is unique. Unfortunately, in order to restate the proof from Evans textbook,
see [10], the method of characteristics on metric graphs for the transport type equation with smooth
coefficients is needed. To our best knowledge still there is no such result in the literature. It will be the
subject of our further investigations, hence at this moment we state the uniqueness only as a conjecture.

�

6. Conclusions

At the end of this paper we return to our questions from Sect. 2 to understand how well does the de-
veloped theory reflect fluid motion observed in real life networks and what is its relation with classical
approach.

1. What is the appropriate description of the flow in vertices?
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The main argument that supports the energy perspective in vertices is the emergence of a natural
phenomenon - a backflow - known from networks of fluids, for instance from the cardiovascular system.
Using transmission conditions defined for arbitrary initial data in Sect. 5.1, one can mimic such behaviour
on networks.

Example 5. The backflow presented in this example is related to the collision of opposite speed waves in
a vertex. Here we illustrate the feature of conditions for Case III from Sect. 5.1.

Consider G = (G, d) be the following metric tree V = {v1}, E = {e1, e2, e3},

L(ei) = 10 for i = 1, 2, 3, φ =
[
1 −1 −1

]
, d(ei) = [0, 10] for i = 1, 2, 3.

Note that G can be interpreted as interval [−10, 10] split at 0 into two.

e1

e2

e3

v1

As the initial datum we consider

ů1(x) = 3θ(x + 3/2), ů2(x) = −θ(x − 1/2), ů3(x) = −2θ(x − 1).

Then at time t = 1 the waves impact themselves at v1 and using the energy minimization/maximisation
transmission conditions we obtain the following. In the first case , since 9 > 4 + 1, we have

u2(0, 1+) = 3
√

2
2

, u3(0, 1+) = 3
√

2
2

and then the solution reads for t > 1

u2(x, t) =

{
3/

√
2 x < 1

2 ( 3√
2

− 1)(t − 1)

−1 x > 1
2 ( 3√

2
− 1)(t − 1)

, u3(x, t) =

{
3/

√
2 x < 1

2 ( 3√
2

− 2)(t − 1)

−2 x > 1
2 ( 3√

2
− 2)(t − 1)

.

In the case of maximization of the energy to edge e2, we get

u2(0, 1+) =
√

5, u3(0, 1+) = 2.

Then the solution reads (t > 1)

u2(x, t) =

{√
5 x < 1

2 (
√

5 − 1)(t − 1)

−1 x > 1
2 (

√
5 − 1)(t − 1)

, u3(x, t) = −2.

Hence, in both cases we observe a backflow that appears either on one (e2) or on two (e2 and e3) edges.

Now let us move to the second question.

2. What is the relation between the pure mono-dimensional case and the network counterpart?

The answer to this question is based on the global properties of a network. Namely, depending on the
type of transmission conditions (maximizing or minimizing the energy) and their reciprocal location we
may obtain either qualitatively similar dynamics or essentially different one. In order to illustrate it, we
return an interpretation of Burgers’ equation in the spirit of wave interference presented in Motivation,
Section 1.

Let us start again with a mono-dimensional equation, namely (1) with D = R. Take the following
initial configuration on the line.

u|t=0 = χ[−4,−3] − χ[3,4]. (91)
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For simplicity consider distributional non-physical solutions being a shift with a speed determined by the
Rankine–Hugoniot condition. It means that solution at least for small time is given by

u(x, t) = χ[−4+ 1
2 t,−3+ 1

2 t](x) − χ[3− 1
2 t,4− 1

2 t](x).

In the case of different velocities of waves, the stronger one overtakes the smaller one which is the
consequence of the weak formulation and the regime of the Rankine–Hugoniot conditions. To overcome
this weakness we put the system onto a metric graph. We rewrite the system into

∂tu + u∂xu = 0 on G × [0, T ), u|t=0 = ů at G,

where G is the metric graph. This way we shall be able to obtain a rich structure of solutions even for
initial data like (91). Let us look at the following example.

Example 6. Let G = (G, d) be the following metric tree V = {v1, v2}, E = {e1, . . . , e4},

L(ei) =
{

9 for i = 1, 4
2 for i = 2, 3 , φ =

[
1 −1 −1 0
0 1 1 −1

]
, d(ei) =

{
[0, 9] for i = 1, 4
[0, 2] for i = 2, 3 .

Note that G can be interpreted as interval [−10, 10] splitted at (−1, 0) into two and joined again at (1, 0).

e1 e4
e2

e3

v1 v2

We consider Burgers’ equation on G with the following initial condition

u1|t=0 = χ[6,7], u4|t=0 = −χ[2,3], u2|t=0 = u3|t=0 = 0. (92)

Note that condition (92) for network is an analogue of condition (91) for a straight line and at time t = 0
we can illustrate it in the following way

v1 v2
� �

To avoid problems with definitions and argumentation, we just present very schematic behaviour of
the proposed system. We assume that the waves are non-physical of kind χ[ 12 t,1+ 1

2 t](x). The character of
dynamics is determined by the rules in vertices, describing the partition of the solutions onto different
paths. Consider three situations:

Case I. In vertex v1 the wave from edge e1 goes on e2, and in vertex v2 the wave from e4 goes on
e3. So at t = t1 suitably chosen we have

v1 v2

�

�

Then waves pass through without direct interaction, so the energy is not lost. For large time we obtain
the solution of the form

u(x, t) = −χ[3− 1
2 t,4− 1

2 t] + χ[−4+ 1
2 t,−3+ 1

2 t], (93)
so there is no interaction of waves. It is not possible in description by the classical Burgers equation.

Case II. In vertex v1 the wave divides into two equal parts (in the sense of energy), and the same
happens for vertex v2. For t = t1 we have

v1 v2

�

��

�

Now the waves meet on both e2 and e3 and since they are anti-symmetric, they annihilate. Thus for
large time

u(x, t) = 0. (94)
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This case covers the classical result of Burgers’ equation, like without a graph.
Case III. In the vertex v1 the wave divides into two equal parts, but in the vertex v2 the wave from

e4 goes on the edge e3. It means that the upper part of the wave goes on e4, but on lower edge e3 we
have a shock of two waves. For t = t1

v1 v2

�

��

Since the one coming from the right side is larger, the smaller one is overtaken and the wave flows on
the edge e1. Hence up to a small modification of time related to Rankine–Hugoniot conditions, for large
time we have

u(x, t) = −χ[3− 1
2 t,4− 1

2 t] +
√

2
2

χ[−4+ 1
2 t,−3+ 1

2 t]

This case is the most interesting since we obtain a practical interference. One part is dumped while the
second one is preserved in its magnitude.

We can conclude that developed theory can be interpreted as the extension of mono-dimensional cases
into the network. The enhancement of the domain of consideration allows for phenomenons that cannot
be observed in simple one dimension. It is definitely worth continuing the research firstly to formally show
the uniqueness of the solution starting from arbitrary TV initial datum. Going further, it is interesting to
understand the relation of Burgers’ equation considered on planar networks with classical two dimensional
problems.
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