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Abstract. We consider a Beris-Edwards system modeling incompressible liquid crystal flows of nematic type. This system
couples a Navier–Stokes system for the fluid velocity with a time-dependent system for the Q-tensor variable, whose spectral
decomposition is related to the directors of liquid crystal molecules. The long-time behavior for global weak solutions is
studied, proving that each whole trajectory converges to a single equilibrium whenever a regularity hypothesis is satisfied
by the energy of the weak solution.
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1. Introduction

We deal with a system, which contains the Navier–Stokes equations with additional forcing terms for the
unknowns velocity u and pressure p, and a parabolic system for and tensor parameter order Q (following
the Landau–De Gennes theory), such that (u , p,Q) : (0, T ) × Ω → R

3 × R × R
3×3 satisfies,

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + (u · ∇)u − νΔu + ∇p = ∇ · τ(Q) + ∇ · σ(H,Q),
∇ · u = 0,
∂tQ + (u · ∇)Q − S(W,Q) = −γ H(Q),
Q = Qt, tr(Q) = 0,

(1)

in the time-space cylinder (0, T ) × Ω, subject to the initial and boundary conditions,

u |t=0 = u0, Q|t=0 = Q0 inΩ, (2)
u |∂Ω = 0, ∂nQ|∂Ω = 0 in (0, T ), (3)

The vector n denotes the normal outwards vector on the boundary ∂Ω. The set Ω ⊂ R
3 is a smooth and

bounded domain, the constant ν > 0 is the viscosity coefficient and γ > 0 is a material-dependent elastic
constant.

The tensors τ = τ(Q) ∈ R
3×3 and σ = σ(H,Q) ∈ R

3×3 given in (1) are defined by
{

τij(Q) := −ε ∂jQ : ∂iQ = −ε ∂jQkl ∂iQkl,
σ(H,Q) := H Q − QH,

where ε > 0. They are the symmetric and antisymmetric part of the stress tensor, respectively. The tensor
H = H(Q) is related to the variational derivative in L2(Ω) of a free energy functional in the vectorial
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subspace of symmetric and traceless tensors, in fact

E(Q) :=
∫

Ω

(ε

2
|∇Q|2 + F (Q)

)
dx, H(Q) :=

δE(Q)
δQ

. (4)

Here, A : B = Aij Bij denote the scalar product of matrices (using the Einstein summation convention
over repeated indices) and the potential function F (Q) is defined by

F (Q) :=
a

2
|Q|2 − b

3
(Q2 : Q) +

c

4
|Q|4, (5)

where a, b, c ∈ R with c > 0. We denote by |Q| = (Q : Q)1/2 the matrix Euclidean norm. Then, from (4)

and (5), one possible form to write the variational derivative
δE(Q)

δQ
in the subspace of symmetric and

traceless tensors of R3×3 is the following:

H(Q) = −ε ΔQ + f(Q) (6)

where

f(Q) = F ′(Q) + b
tr(Q2)

3
I = aQ − b

(

Q2 − tr(Q2)
3

I

)

+ c |Q|2 Q. (7)

Observe that, since Q = Qt and tr(Q) = 0, then f(Q) = f(Q)t and tr(f(Q)) = 0.
Note that H defined in (6) uses the one-constant approximation for the Oseen–Frank energy of liquid

crystals together with a Landau–De Gennes expression for the bulk energy given by f(Q).
Finally, W = W (u) = (∇u − (∇u)t)/2 is the antisymmetric part of ∇u and

S(W,Q) = W Q − QW (8)

is the so-called stretching term.
The configurations of liquid crystals can be described by a director field as minimizers of an energy

functional following the Oseen–Frank theory. The dynamic of the problem is considered by Ericksen–
Leslie models, where the evolution of the director field is coupled with a Navier–Stokes-type equation for
the underlying flow field. In the Landau–De Gennes theory, the director vector is replaced by a symmetric
and traceless matrix Q, which measures the deviation of the second moment tensor from its isotropic
value. Different expressions of the Q-tensor order parameter allows to represent a uniaxial, biaxial or
isotropic behavior of the molecules of the nematic crystal.

The corresponding dynamic model (1)–(8) is called Beris-Edwards model [2] and was studied by Paicu
& Zarnescu in [16] and Abels et al. in [1]. In these two papers, symmetry and traceless of Q are assumed
but it is not proved. Other version of this model appears in [13] and [14] where it becomes from a generic
model which is modified to deduce symmetry and traceless of Q for any weak solution. Then, using
symmetry and traceless of Q, the model obtained in [13] can be rewritten as (1)–(8). Similar models and
an extensive bibliography can be found at [4] and [5].

The large-time behavior of some models for Nematic liquid crystals with unknown vector director
(following the Oseen–Frank theory) are studied in [12,19] (without stretching terms), in [11,15,18] (with
stretching terms) and in [17] (where different results are deduced depending on considering or not the
stretching terms).

On the other hand, the large-time behavior is also analyzed for others related models. For example,
for a Cahn–Hilliard–Navier–Stokes system in 2D domains in [10], for a chemotaxis model in [9], for a
Cahn–Hilliard–Navier–Stokes vesicle model in [7] and for a smectic-A liquid crystals model in [6]. The
liquid crystal model studied in [6] also follows the Oseen–Frank theory.

In this paper we study the large-time behavior of the weak solutions of (1)–(8). Firstly, we prove that
the ω-limit set for weak solutions is composed by critical points of the free-energy E(Q). After that, by
using a Lojasiewicz-Simon’s result we demonstrate the convergence of the whole trajectory of any weak
solution to a single equilibrium. The lack of regularity and uniqueness force to use technical and non-
standard arguments. The keys in the proof of our results are two, firstly to have a dissipative energy that
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leads, in particular, to prove the existence of global weak solutions in time and secondly the application
of the Lojasiewicz-Simon inequality that allows to obtain the convergence of the whole trajectory of the
Q-tensor. More specifically, the main novelties in this paper are:

• To choose a special regularized energy of any global weak solution, satisfying an energy’s law in-
equality in two forms; an integral version satisfied for all time interval and a differential version
satisfied a.e. in time (see (23) and (24) below).

• The proof of convergence of the whole trajectory of any weak solution to a unique equilibrium steady
solution, under the hypothesis that the regularized energy coincides a.e. in time with the energy
evaluated in the weak solution.

Sects. 2 gives the weak solution concept describing the main steps to prove the existence of global
in time weak solutions (more details can be seen in [13]). In Sect. 3 two suitable energy inequalities are
proved, a time-integral version for all time t and a time-differential version for almost every time. These
inequalities as far as we know, have not been proved before (they are cited in [3,17] but do not proved)
and they will be essential in the following arguments when only weak solutions have considered. In fact,
the standard argument of obtaining more regularity for large enough viscosity is not clear in this case.
In Sect. 4 the convergence at infinite time for global weak solutions is studied. Firstly, we prove that the
ω-limit set defined only for weak solutions (strong solution is necessary in standard methods) consists of
critical points of the free-energy. Finally, the convergence of the whole trajectory to a single equilibrium
as time goes to infinity is proved via a Lojasiewicz-Simon’s lemma.

A preliminary version of this paper appears in [8]. Now, we prove the existence of a special regularized
energy satisfying the energy’s law inequality for all interval which is essential to prove the convergence
of the trajectory to a unique point.

Notations

The notation can be abridged. We set Lp = Lp(Ω), p ≥ 1, H1 = H1(Ω), etc. If X = X(Ω) is a space
of functions defined in the open set Ω, we denote by Lp(0, T ;X) the Banach space Lp(0, T ;X(Ω)). In
particular, Lp

loc([0,+∞);X) are the functions of Lp(0, T ;X) for all T > 0 finite.
Also, boldface letters will be used for vectorial spaces, for instance L2 = L2(Ω) = L2(Ω)3.
In order to put the symmetric and traceless of the tensors inside of the space, we introduce the Hilbert

space

L
2 = L

2(Ω) = {Q ∈ L2(Ω)3×3, Q = Qt, tr(Q) = 0}
and likewise for H

1, etc.
We set V the space formed by all fields u ∈ C∞

0 (Ω)3 satisfying ∇ · u = 0. We denote H (respectively
V ) the closure of V in L2 (respectively H 1). H and V are Hilbert spaces for the norms | · |2 and ‖ · ‖1,
respectively. Furthermore,

H = {u ∈ L2; ∇ · u = 0, u · n = 0 on ∂Ω}, V = {u ∈ H 1; ∇ · u = 0, u = 0 on ∂Ω}.

If B is a Banach space, Cw([0,+∞);B) is the space of weakly continuous functions f , that is f(s)
converges weakly to f(t) in B as s converges to t.

From now on, C > 0 will denote different constants, depending only on data of the problem.

2. Weak Solutions

We start arguing in a formal manner, assuming a sufficiently regular solution (u , p,Q) of (1)–(8). For
more detailed calculations of this section, see [13].
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Variational Formulation

Using that tr(Q) = 0 and definition of f(Q) given in (7), one has

∂iF (Q) = F ′(Q) : ∂iQ = (F ′(Q) + b
tr(Q2)

3
I) : ∂iQ = f(Q) : ∂iQ.

Therefore, the tensor τ can be rewritten as:

(∇ · τ(Q))i = −ε ∂j(∂jQ : ∂iQ) = −ε ΔQ : ∂iQ − ε ∂jQ : ∂2
ijQ

= H(Q) : ∂iQ − ∂i

(
F (Q) + ε

2 |∇Q|2)

By testing the first equation of (1) by any ũ : Ω → R
3 with ũ |∂Ω = 0 and ∇ · ũ = 0 in Ω, using

that σ(H,Q) is antisymmetric (hence (σ(H,Q),∇u) = (σ(H,Q),W (u))), we arrive at the following
variational formulation of (1):

〈∂tu , ũ〉 + ((u · ∇)u , ũ) + ν(∇u ,∇ũ) − ((ũ · ∇)Q,H) + (σ(H,Q),W (ũ)) = 0, (9)

where 〈·, ·〉 is the duality product between V ′ and V and (·, ·) denotes the inner product in L2(Ω). On the
other hand, testing the Q-system of (1) by any symmetric traceless H̃ and the system −ε ΔQ+f(Q) = H

by any symmetric traceless Q̃, we get the following variational formulation:
{

(∂tQ, H̃) + ((u · ∇)Q, H̃) − (S(W,Q), H̃) + γ (H(Q), H̃) = 0,
ε (∇Q,∇Q̃) + (f(Q), Q̃) − (H(Q), Q̃) = 0.

(10)

From (10), we obtain, in particular that:

(∂tQ, Q̃) + ((u · ∇)Q, Q̃) − (S(W,Q), Q̃) − ε γ (ΔQ, Q̃) + γ (f(Q), Q̃) = 0. (11)

Dissipative Energy Law and Global in Time A Priori Estimates

By taking ũ = u in (9) and (H̃, Q̃) = (H(Q), ∂tQ) in (10) the following “energy equality” holds:

d

dt

(
1
2
‖u‖2

L2 + E(Q)
)

+ ν‖∇u‖2
L2 + γ‖H(Q)‖2

L2 = 0. (12)

Observe that E(Q) =
∫

Ω

(
1
2
|∇Q|2 + F (Q)

)

dx is not a positive term due to F (Q). However, it is

possible to find a large enough constant μ > 0 depending on parameters a, b and c given in the definition
of F (Q) in (5), such that

Fμ(Q) := F (Q) + μ ≥ c

8
|Q|4. (13)

By replacing E(Q) in (12) by Eμ(Q) :=
∫

Ω

(
1
2
|∇Q|2 + Fμ(Q)

)

≥ 0, and denoting the kinetic energy as

Ek(u(t)) :=
1
2
‖u‖2

L2

and the total energy as E(u , Q) := Ek(u) + Eμ(Q), then (12) implies
d

dt
E(u(t), Q(t)) + ν‖∇u‖2

L2 + γ‖H(Q)‖2
L2 = 0. (14)

This energy equality shows the dissipative character of the model with respect to the total free-energy
E(u(t), Q(t)). In fact, assuming finite total energy of initial data, i.e. E(u0, Q0) < +∞, then the following
regularity hold:

u ∈ L∞(0,+∞;H ) ∩ L2(0,+∞;V ),
∇Q ∈ L∞(0,+∞;L2(Ω)3×3×3), Fμ(Q) ∈ L∞(0,+∞;L1(Ω)),

H(Q) ∈ L2(0,+∞;L2).
(15)
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From (13) and (15), we deduce that Q ∈ L∞(0,+∞;L4), Q ∈ L∞(0,+∞;H1) and, in particular

Q ∈ L∞(0,+∞;L6). (16)

Since f(Q) is a third order polynomial function, |f(Q)| ≤ C(a, b, c)
(|Q| + |Q|2 + |Q|3) which, together

with (16), gives f(Q) ∈ L∞(0,+∞;L2).
From H(Q) = −ε ΔQ + f(Q), by using the H2-regularity of the Poisson problem:

{−ε ΔQ + Q = H(Q) − f(Q) + Q in Ω,
∂nQ|Γ = 0

we deduce that:

Q ∈ L2
loc([0 + ∞);H2).

In the following definition of weak solution, we will relax the energy law (14) to an energy inequality
in integral form (see (18) below).

Definition 1 (Weak solution). It will be said that (u , Q) is a weak solution in (0,+∞) of problem (1)–(3)
if

⎧
⎨

⎩

u ∈ L∞(0,+∞;H) ∩ L2(0,+∞;V),
Q ∈ L∞(0,+∞;H1) ∩ L2

loc([0 + ∞);H2),
H(Q) ∈ L2(0,+∞;L2),

(17)

satisfies the variational formulation (9) and (10), the initial conditions (2), the boundary conditions (3)
and the following energy inequality a.e. t1, t0 with t1 ≥ t0 ≥ 0:

E(u(t1), Q(t1)) − E(u(t0), Q(t0)) +
∫ t1

t0

(ν‖∇u(s)‖2
L2 + γ‖H(Q(s))‖2

L2) ds ≤ 0. (18)

Note that the regularity imposed in (17) is satisfied up to infinite time excepting the H2(Ω)-regularity
for Q.

By applying the regularity (17) to the systems (9) and (11), we have

∂tu ∈ L
4/3
loc ([0,+∞);V′) and ∂tQ ∈ L

4/3
loc ([0,+∞);L2).

Hence, the following time-continuity can be deduced:

u ∈ C([0,+∞);V′) ∩ Cw([0,+∞);H) and Q ∈ C([0,+∞);L2(Ω)) ∩ Cw([0,+∞);H1).

In particular, the initial conditions (2) make sense because (u(t), Q(t)) ∈ H × H
1 for all t ≥ 0.

Theorem 2 (Existence of weak solutions). If (u0, Q0) ∈ H × H
1, there exists a weak solution (u, Q) of

system (1)–(3) in (0,+∞).

Proof. The first part of this theorem is proved in [13] by means of a Galerkin approximation related to
the variational formulation (10), which preserves the divergence-free of the velocity and the symmetry
and traceless of the tensor. Therefore, it suffices to prove (18). We start from the following energy equality
satisfied by the Galerkin approximate solutions (see [13]) for all t, t0 with t ≥ t0 ≥ 0:

E(um(t), Qm(t)) − E(um(t0), Qm(t0)) +
∫ t

t0

(ν‖∇um(s)‖2
L2 + γ‖H(Qm(s))‖2

L2) ds ≤ 0. (19)

Moreover, um(t) and Qm(t) have sufficient estimates to obtain

E(um(t), Qm(t)) → E(u(t), Q(t)) in L1(0, T ), and in particular a.e. t ≥ 0. (20)

Since um → u weakly in L2(0,∞;V ) and H(Qm) → H(Q) weakly in L2(0,∞;L2), then

lim inf
m→+∞

∫ t1

t0

(ν‖∇um‖2
L2 + γ‖H(Qm)‖2

L2) ≥
∫ t1

t0

(ν‖∇u‖2
L2 + γ‖H(Q)‖2

L2) (21)

for all t1, t0 : t1 ≥ t0 ≥ 0.
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By taking lim infm→+∞ in (19), we obtain that for all t1 ≥ t0 ≥ 0,

lim inf
m→+∞ E(um(t1), Qm(t1)) + lim inf

m→+∞

∫ t1

t0

(ν‖∇um‖2
L2 + γ‖H(Qm)‖2

L2)

≤ lim sup
m→+∞

E(um(t0), Qm(t0)).
(22)

By using (20) and (21) in (22), we obtain (18). �

3. An Improved Energy Inequality

In this section, we obtain an improved time-integral energy inequality for all time, in a rigorous manner,
for the weak solutions furnished by the Galerkin approximations. From this integral version we also obtain
a time-differential version for almost every time. The new integral inequality (23) differs from (18) in
that while (18) holds almost everywhere t0, t1, (23) holds for all t0, t1. This fact allows to obtain the
differential inequality (24) a.e. t ≥ 0, which is essential to prove the Theorem 6 below.

Lemma 3. Let (u, Q) be a weak solution in (0,+∞) of problem (1)–(3) then, there exists an appropriate
function Ẽ = Ẽ(t) ∈ R defined for all t ≥ 0, which satisfies the following integral inequality:

Ẽ(t1) − Ẽ(t0) +
∫ t1

t0

(ν‖∇u(s)‖2
L2 + γ‖H(Q(s))‖2

L2) ds ≤ 0, ∀ t1, t0 : t1 ≥ t0 ≥ 0 (23)

and the following differential version:
d

dt
Ẽ(t) + ν‖∇u(t)‖2

L2 + γ‖H(Q(t))‖2
L2 ≤ 0, a.e. t ≥ 0. (24)

Proof. Since the inequality (18) is satisfied for all t0, t1 ∈ [0,+∞)\N , where N is a set of null Lebesgue
measure, then the map t ∈ [0,+∞)\N → E(u(t), Q(t)) ∈ R is a real decreasing (and bounded) function.
Then, we can define a special function Ẽ(t) for all t ∈ [0,+∞) as:

Ẽ(0) := E(u0, Q0), Ẽ(t) := lim
s→t−

s∈[0,+∞)\N

E(u(s), Q(s)), ∀ t > 0.

The function Ẽ , thus defined, is “continuous from the left” and decreasing for all t ≥ 0. Indeed, for any
t1, t2 ∈ [0,+∞), for instance t1 < t2, we can choose sequences {s1

n}, {s2
n} ⊂ [0,+∞)\N such that s1

n → t−1 ,
s2

n → t−2 and, s1
n ≤ s2

n for all n ≥ n0. Since s1
n and s2

n are not in N , we know that E(u(s1
n), Q(s1

n)) ≥
E(u(s2

n), Q(s2
n)). By taking limit as s1

n → t−1 and s2
n → t−2 , we obtain that Ẽ(t1) ≥ Ẽ(t2).

Since Ẽ(t) is decreasing for all t ∈ [0,+∞), it is differentiable almost everywhere t ∈ (0,+∞).
Since the inequality (18) is satisfied for all t0, t1 ∈ [0,+∞)\N where the measure of N is zero, given

any t0 < t1, we can take δn > 0 and ηn > 0 such that t0 − δn, t1 − ηn �∈ N and δn, ηn → 0, hence

Ẽ(t1 − ηn) − Ẽ(t0 − δn) +
∫ t1−ηn

t0−δn

(ν‖∇u(s)‖2
L2 + γ‖H(s)‖2

L2) ds ≤ 0.

By taking δn → 0 and ηn → 0, we obtain (23).
In particular, by choosing t0 = t and t1 = t + h in (23), we obtain

Ẽ(t + h) − Ẽ(t)
h

+
1
h

∫ t+h

t

(ν‖u(s)‖2
L2 + γ‖H(s)‖2

L2) ds ≤ 0, ∀ t, h ≥ 0. (25)

Observe that

lim
h→0

1
h

∫ t+h

t

(ν‖∇u(s)‖2
L2 + γ‖H(s)‖2

L2) ds = ν‖∇u(t)‖2
L2 + γ‖H(t)‖2

L2 ,

a.e. t ≥ 0 because the map, s ∈ [0,+∞) → ν‖∇u(s)‖2
L2 + γ‖H(s)‖2

L2 ∈ R, belongs to L1(0,+∞).
Accordingly, by taking h → 0 in (25), we obtain (24) a.e. t ≥ 0. �
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4. Convergence at Infinite Time

4.1. Convergence Towards the Rest State

Let (u , Q) be a weak solution of (1)–(3) in (0,+∞) associated to an initial data (u0, Q0) ∈ H × H
1

(see Definition 1). From the energy inequality (18) and the weak-continuity of (u , Q) in H × H
1, one

can prove that the energy E(u(t), Q(t)) is well-defined for all t > 0 and is decreasing in time (using the
weakly lower semicontinuity of ‖u(t)‖2

L2 and ‖∇Q(t)‖2
L2 and the continuity of

∫

Ω
F (Q(t))). Therefore,

there exists a real number E∞ ≥ 0 such that the total energy evaluated in the trajectory (u(t), Q(t)) for
all t ∈ [0,+∞) satisfies

E(u(t), Q(t)) ↘ E∞ in R as t ↑ +∞. (26)

Let us define the ω-limit set of this global weak solution (u , Q) as follows:

ω(u , Q) = {(u∞, Q∞) ∈ H × H
1 : ∃{tn} ↑ +∞ s.t.

(u(tn), Q(tn)) → (u∞, Q∞) weakly in L2 × H
1}.

Observe that this ω-limit set is defined with respect to weak convergences.
Let S be the set of critical points of the energy E(Q) defined in (4), that is

S = {Q ∈ H
2 : −εΔQ + f(Q) = 0 in Ω, ∂nQ|Γ = 0}.

Note that the elements of S are symmetric and traceless tensors.

Theorem 4. Assume that (u0, Q0) ∈ H × H
1. Fixed (u, Q) a weak solution of (1)–(3) in (0,+∞), then

ω(u, Q) is nonempty and ω(u, Q) ⊂ {0} × S. Moreover, for any Q∞ ∈ S such that (0, Q∞) ∈ ω(u, Q), it
holds

E(0, Q∞) = E∞.

In particular,

u(t) → 0 weakly in L2 and Eμ(Q(t)) → Eμ(Q∞) in R

as t ↑ +∞.

Proof. Observe that since

(u , Q) ∈ L∞(0,+∞;H × H
1),

for any sequence {tn} ↑ +∞, there exists a subsequence (equally denoted) and suitable limit functions
(u∞, Q∞) ∈ H × H

1, such that

u(tn) → u∞ weakly in H , Q(tn) → Q∞ weakly in H
1. (27)

We consider the initial and boundary-value problem associated to (1)–(3) restricted on the time interval
[tn, tn + 1] with initial values u(tn) and Q(tn). If we define

un(s) := u(s + tn), Qn(s) := Q(s + tn), Hn(s) := H(s + tn), a.e. s ∈ [0, 1],

Observe that the meaning of this notation for Hn is

Hn(s) = H(Qn(s)) := H(Q(s + tn)).

Then (un, Qn) is a weak solution to the problem (1)–(3) in the time interval [0, 1]. From the energy
inequality (18) and the convergence of the energy (26), we have that

∫ 1

0

(ν‖∇un(s)‖2
L2 + γ‖H(Qn(s))‖2

L2) ds =
∫ tn+1

tn

(ν|‖∇u(t)‖2
L2 + γ‖H(Q(t))‖2

L2) dt

≤ E(u(tn), Q(tn)) − E(u(tn + 1), Q(tn + 1)) −→ 0 as n → ∞,

hence,

∇un → 0 strongly in L2(0, 1;L2)
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and

H(Qn) → 0 strongly in L2(0, 1;L2). (28)

In particular, by using Poincaré inequality, one has

un → 0 strongly in L2(0, 1;V ). (29)

Moreover, since un and ∂tun are bounded in L∞(0, 1;H ) and L4/3(0, 1;V ′) respectively, then by using
Aubin-Lions compactness,

un → 0 strongly in C([0, 1];V ′).

In particular, u(tn) = un(0) → 0 in V ′, hence u∞ = 0 (owing to (27)). Consequently, the whole
trajectory u(t) → 0 as t → +∞, weakly in H .

Furthermore, Qn is bounded in L2(0, 1;H2)
⋂

L∞(0, 1;H1) and ∂tQn is bounded in
L4/3(0, 1;L). Therefore, by using again Aubin-Lions compactness, there exists a subsequence of Qn

(equally denoted) and a limit function Q such that Qn → Q strongly in C0([0, 1];L2) ∩ L2(0, 1;H1)
and weakly in L2(0, 1;H2).

In particular, Q(tn) = Qn(0) → Q(0) in L
2, hence Q(0) = Q∞ (owing to (27)) in H

1. On the other
hand, ∂tQn converges weakly to ∂tQ in L4/3(0, 1;L2), hence taking limits in the variational formulation:

(∂tQn, Q̃) + ((un · ∇)Qn, Q̃) − (S(W (un), Qn), Q̃) + (H(Qn), Q̃) = 0

for all Q̃ ∈ L
2 and taking into account (28) and (29), we have that ∂tQn → 0 in L4/3(0, 1;L2) weakly.

Therefore, ∂tQ = 0 and Q(t) is a constant function of L1 for all t ∈ [0, 1], hence since Q(0) = Q∞, we
have

Q(t) = Q∞ ∈ H
1 for all t ∈ [0, 1]. (30)

Finally, since f(Qn) converges to f(Q) weakly* in L∞(0, 1;L2), by taking limit as n → +∞ in the
variational formulation (H(Qn), Q̃) = ε (∇Qn,∇Q̃) + (f(Qn), Q̃) for all Q̃ ∈ H

1, we deduce

ε (∇Q,∇Q̃) + (f(Q), Q̃) = 0, ∀ Q̃ ∈ H
1, a.e. t ∈ (0, 1).

Then, from (30), Q∞ ∈ H
1 and ε (∇Q∞,∇Q̃) + (f(Q∞), Q̃) = 0, ∀ Q̃ ∈ H

1. Finally, by applying H2-
regularity of the Poisson problem:

{−ε ΔQ + Q = −f(Q) + Q in Ω, ∂nQ|Γ = 0

we deduce that Q∞ ∈ H
2, hence Q∞ ∈ S and the proof is finished. �

4.2. Convergence of the Tensor

In the next theorem we apply the following Lojasiewicz-Simon’s result that can be found in [17].

Lemma 5 (Lojasiewicz-Simon inequality). Let Q∗ ∈ S and K > 0 fixed. Then, there exists positive
constants β1, β2 and C and θ ∈ (0, 1/2], such that for all Q ∈ H

2 symmetric and traceless with ‖Q‖H1 ≤
K, ‖Q − Q∗‖L2 ≤ β1 and |Eμ(Q) − Eμ(Q∗)| ≤ β2, it holds

|Eμ(Q) − Eμ(Q∗)|1−θ ≤ C ‖H(Q)‖H−1

where H(Q) is defined in (4).

Now, we are in position to prove that Q(t) → Q∞ as t ↑ +∞.
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Theorem 6. Assume the following regularity hypothesis of the energy of the weak solution:

Ẽ(t) = E(u(t), Q(t)) a.e. t ≥ 0,

where Ẽ(t) is defined in Lemma 3. Then, under the hypotheses of Theorem 4, there exists a unique limit
Q∞ ∈ S such that Q(t) → Q∞ in H

1-weakly as t ↑ +∞, i.e.

ω(u, Q) = {(0, Q∞)}.

Proof. Let Q∞ ∈ S such that (0, Q∞) ∈ ω(u , Q), i.e. there exists tn ↑ +∞ such that u(tn) → 0 weakly
in L2 and Q(tn) → Q∞ weakly in H

1 (and strongly in L
2).

It can be assumed that Ẽ(t) > Eμ(Q∞)(= E∞) for all t > 0, because otherwise, if it exists some t̃ > 0
such that Ẽ(t̃) = E∞, then the energy inequality (23) implies

Ẽ(t) = E∞, ‖∇u(t)‖2
L2 = 0 and ‖H(Q(t))‖2

L2 = 0, ∀ t ≥ t̃.

Therefore, u(t) = 0 and H(Q(t)) = 0 for all t ≥ t̃, and by using the Q-equation of (1), ∂tQ(t) = 0, hence
Q(t) = Q∞ for all t ≥ t̃. Then, the convergence of the whole Q-trajectory towards Q∞ is trivial and
Ẽ(t) > E∞ is assumed for all t ≥ 0.

The proof will be divided into three steps.
Step 1 On the assumption that there exists t1 > 0 such that

‖Q(t) − Q∞‖L2 ≤ β1 and |Eμ(Q(t)) − Eμ(Q∞)| ≤ β2 ∀t ≥ t1 > 0

where β1 > 0, β2 > 0 are the constants appearing in Lemma 5, then the following inequalities hold:

d

dt

(
(E(u(t), Q(t)) − E∞)θ

)
+ C θ (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0, (31)

a.e. t ∈ (t1,∞) and
∫ t2

t1

‖∂tQ‖H−1 ≤ C

θ
((E(u(t1), Q(t1)) − E∞)θ, (32)

for all t2 ∈ (t1,∞), where θ ∈ (0, 1/2] is the constant appearing in Lemma 5.
Proof of Step 1 Since E∞ is constant, we can rewrite the energy inequality (24) as

d

dt
(Ẽ(t) − E∞) + C

(‖∇u(t)‖2
L2 + ‖H(t)‖2

L2

) ≤ 0, a.e. t ≥ 0,

By taking into account that

‖∇u(t)‖2
L2 + ‖H(t)‖2

L2 ≥ 1
2

(‖∇u(t)‖L2 + ‖H(t)‖L2)2

and
1
2
(‖∇u(t)‖L2 + ‖H(t)‖L2) ≥ C(‖u(t)‖L2 + ‖H(t)‖H−1),

we obtain
d

dt
(Ẽ(t) − E∞) + C(‖u(t)‖L2 + ‖H(t)‖H−1) (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0, a.e. t ≥ 0.

Using the time derivative of the (Ẽ(t) − E∞)θ, we get

d

dt

(
(Ẽ(t) − E∞)θ

)

+θ(Ẽ(t) − E∞)θ−1C(‖u(t)‖L2 + ‖H(t)‖H−1) (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0.
(33)

almost everywhere t ≥ 0.
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On the other hand, since |Ek(u(t))| =
1
2
‖u(t)‖2

L2 and ‖u(t)‖L2 ≤ K, we have that

|Ek(u(t))|1−θ =
1

21−θ
‖u(t)‖2(1−θ)

L2 =
1

21−θ
‖u(t)‖1−2θ

L2 ‖u(t)‖L2 ≤ C‖u(t)‖L2 a.e. t ≥ 0.

This estimate together the Lojasiewicz-Simon inequality |Eμ(Q) − E∞|1−θ ≤ C‖H(Q)‖H−1 , give

(E(u(t), Q(t)) − E∞)1−θ ≤ |Ek(u(t))|1−θ + |Eμ(Q(t)) − E∞|1−θ

≤ C(‖u(t)‖L2 + ‖H(t)‖H−1) a.e. t ≥ t1.

Therefore,

(E(u(t), Q(t)) − E∞)θ−1(‖u(t)‖L2 + ‖H(t)‖H−1) ≥ C a.e. t ≥ t1. (34)

By applying (34) in (33),

d

dt

(
(E(u(t), Q(t)) − E∞)θ

)
+ C θ (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0, a.e. t ≥ t1

and (31) is proved.
In this step, the hypothesis E(u(t), Q(t)) = Ẽ(t) for almost every t is a key point. In particular, this

hypothesis implies that the integral and differential versions of the energy law (23) and (24) are satisfied by
E(u(t), Q(t)) a.e. in time. In fact, energy law (24), changing Ẽ(t) by E(u(t), Q(t)), is the crucial hypothesis
imposed in Remark 2.4 of [17].

Secondly, for any t2 ∈ (t1,+∞), since (E(u(t2), Q(t2)) − E∞)θ > 0, integrating (31) into [t1, t2] we
have

θ C

∫ t2

t1

(‖∇u(t)‖L2 + ‖H(Q(t))‖L2)dt ≤ (E(u(t1), Q(t1)) − E∞)θ. (35)

From (11), by using the weak regularity Q ∈ L∞(0;+∞;L6(Ω)) given in (16), we achieve

‖∂tQ(t)‖H−1 ≤ C(‖u(t)Q(t)‖L2 + ‖W (u(t))‖L2‖Q(t)‖L3 + ‖H(Q(t))‖L2).
≤ C(‖∇u(t)‖L2 + ‖H(Q(t))‖L2) a.e. t ≥ 0.

By integrating this inequality into [t1, t2] and using (35), we attain (32).
Step 2 There exists a sufficiently large n0 such that ‖Q(t) − Q∞‖L2 ≤ β1 and |Eμ(Q(t)) − Eμ(Q∗)| ≤ β2

for all t ≥ tn0 (β1, β2 given in Lemma 5).
Proof of Step 2 Since Q(tn) → Q∞ strongly in L

2 and E(u(tn), Q(tn)) ↘ E∞ = Eμ(Q∞) as tn → +∞
(see (26)), then for any δ = δ(β1, β2) > 0 such that

δ < β1 and θδ ≤ βθ
2 ,

there exists an integer M(δ) such that, for all n ≥ M(δ),

‖Q(tn) − Q∞‖L2 ≤ δ and
1
θ
(Eμ(Q(tn)) − E∞)θ ≤ δ. (36)

For each n ≥ M(δ), we define

tn := sup{t : t > tn, ‖Q(s) − Q∞‖L2 < β1 ∀s ∈ [tn, t)}.

It suffices to prove that tn0 = +∞ for some n0 sufficiently large. Assume by contradiction that tn < tn <
+∞ for all n, hence ‖Q(tn) − Q∞‖L2 = β1 and ‖Q(t) − Q∞‖L2 < β1 for all t ∈ [tn, tn).

Observe that the hypothesis |Eμ(Q) − Eμ(Q∞)| ≤ β2 holds owing to the constraint θδ ≤ βθ
2 . By

applying Step 1 for all t ∈ [tn, tn], from (32) and (36) we obtain,
∫ tn

tn

‖∂tQ‖H−1 ≤ Cδ, ∀n ≥ N(δ).



JMFM Long-Time Behavior of Global Weak Solutions Page 11 of 12 106

Therefore,

‖Q(tn) − Q∞‖H−1 ≤ ‖Q(tn) − Q∞‖H−1 +
∫ tn

tn

‖∂tQ‖H−1 ≤ (1 + C)δ,

which implies that limn→+∞ ‖Q(tn) − Q∞‖H−1 = 0.
On the other hand, Q(tn) is bounded in H

1. Indeed, since Q ∈ Cw([0,+∞);H1), Q(s) converges weakly
to Q(t) in H

1 as s → t. Owing to the weak lower semi-continuity ‖Q(t)‖H1 ≤ lim inf ‖Q(s)‖H1 ≤ C. But,
since Fμ(Q) is bounded in L∞(L1), then ∇Q(tn) is bounded in L

2(Ω) and Q(tn) is bounded in H
1.

Therefore, Q(tn) is relatively compact in L
2. There exists a subsequence of Q(tn), also denoted Q(tn),

that converges to Q∞ in L
2-strong. Hence ‖Q(tn)−Q∞‖L2 < β1 for a sufficiently large n, which contradicts

the definition of tn.

Step 3 There exists a unique Q∞ such that Q(t) → Q∞ weakly in H
1 as t ↑ +∞.

Proof of Step 3 By using (32) for any t1, t0 : t1 > t0 ≥ tn0 ,

‖Q(t1) − Q(t0)‖H−1 ≤
∫ t1

t0

‖∂tQ‖H−1 → 0, as t0, t1 → +∞.

Therefore, (Q(t))t≥tn0
is a Cauchy sequence in H

−1 as t ↑ +∞, hence, there exists a unique Q∞ ∈ H
−1

such that Q(t) → Q∞ in H
−1 as t ↑ +∞. Finally, the convergence in H

1-weak by sequences of Q(t) proved
in Theorem 4, yields to Q(t) → Q∞ in H

1-weak, and the proof is finished. �
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Universidad de Sevilla
Sevilla
Spain
e-mail: bcliment@us.es

Francisco Guillén-González
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