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Abstract. Convergence of a system of particles, interacting with a fluid, to Navier–Stokes–Vlasov–Fokker–Planck system is
studied. The interaction between particles and fluid is described by Stokes drag force. The empirical measure of particles
is proved to converge to the Vlasov–Fokker–Planck component of the system and the velocity of the fluid coupled with
the particles converges in the uniform topology to the the Navier–Stokes component. A new uniqueness result for the PDE
system is added.
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1. Introduction

In the theory of multiphase flows, the coupled PDE system called Navier–Stokes–Vlasov–Fokker–Planck
is a way of modeling the behavior of a large number of particles immersed into a fluid. It is made by two
major components: a vector field u, representing the velocity of the fluid at a given time and position,
and a scalar valued function F , representing the density on phase space of the particles immersed in the
fluid. In the incompressible case, when the interaction between particles and fluid is modelled by Stokes
drag force, the system is given by the following equations

⎧
⎪⎨

⎪⎩

∂tu = Δu − u · ∇u − ∇π − ∫

Rd(u − v)F dv;
div(u) = 0;
∂tF + v · ∇xF + divv((u − v)F ) = σ2

2 ΔvF.

(1)

Often the case σ = 0 is considered in the literature. Here we deal with the case σ > 0 because of
technical reasons. The case σ = 0 is usually called Vlasov–Navier–Stokes (VNS); the case σ > 0, Navier–
Stokes–Vlasov–Fokker–Planck. In the sequel, for simplicity of notations, we will often call VNS also the
system above with σ > 0.

The PDE description for the density of particles is reasonable when the number of particles is very
large and overcomes the problem of describing the details of each single particle. The aim of this paper
is to prove that this simplification is correct: we prove that a system composed by Newtonian particles
and fluid converges to the PDE system when the number of particles tends to infinity.

The mathematical analysis of the coupled system (1) in dimension d = 2, 3 has received much attention
in the past years. A first result of global existence of weak solutions and large asymptotic for Stokes–
Vlasov system in a bounded domain appeared in [20]. Existence of weak solutions has been extended to
the Navier–Stokes case, hence including the convection term in the equation for the fluid, in a periodic
domain in [5]. Global existence of smooth solutions with small data for Navier–Stokes–Vlasov–Fokker–
Planck was obtained first in [17]. In [27] global existence for smooth solutions is generalized for large data.
Recent results on the topic of uniqueness have been obtained in the case σ = 0 in [21]. We shall prove a
variant of these results adapted to the regularity of our solutions. Uniqueness plays a fundamental role
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in the mathematical problem we are interested in; existence is less relevant because it is obtained as a
byproduct of our convergence result.

As said above, the aim of this work is to investigate a coupling between the fluid and a particle system,
which converges, in the limit of large number of particles, to system (1). The literature on this topic is still
fragmentary. The works [18,19], present results of PDE to PDE convergence, only implicitly motivated
by particle arguments. The works [1–3,9–11,22] aim to treat links between particles and fluid but, in the
trade-off between different levels of mathematical complexity and physical realism: there in a simplified
fluid regime, the correct boundary condition for the interaction between finite size particle and the fluid is
included. Compared to these works, our choice here is a sort of phenomenological description of interaction
between particles and fluid, that keeps the structure of Stokes drag force and that maintains the usual
Navier–Stokes regime. Our attention is devoted to others technical problems related to the macroscopic
limit, instead of the very difficult problem of the precise boundary conditions between particles and fluid.
The microscopic system considered here has the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂uN

∂t = ΔuN − uN · ∇uN − ∇πN − 1
N

∑N
i=1

(
uN

εN
(t,Xi,N

t ) − V i
t

)
δεN

Xi,N
t

,

div(uN ) = 0,
{

dXi,N
t = V i,N

t dt,

dV i,N
t =

(
uN

εN

(
t,Xi,N

t

)
− V i,N

t

)
dt + σdBi

t

where N is the number of particles and (Xi,N
t , V i,N

t ) are position and velocity of the particles. The
equations for the fluid velocity and pressure (uN , πN ) are given by the classical Navier–Stokes equations
for an incompressible Newtonian fluid with an interaction with particles of discrete type. We choose a
phenomenological description of the interaction:

i) the intensity of the force exerted by the fluid on each single particle is given by the difference between
the particle velocity and a local average of fluid velocity around particle position

uN
εN

(t,Xi,N
t ) = (θ0,εN ∗ uN

t )(Xi,N
t );

ii) viceversa the force exerted by each single particle on the fluid is given by Newton’s third law: the
intensity of the force is the same oh (i), but with the opposite sign. Moreover we impose an action
distributed in a small neighbor of particle position, as described by the mollified delta Dirac function

δεN

Xi,N
t

(x) = θ0,εN (x − Xi,N
t ).

The choice to use local averages and locally distributed action is obviously an artefact, convenient for
the mathematical investigation; still it preserves the idea that particles are not just points but finite
objects, or at least objects with a finite action radius, a sort of small boundary layer of interaction
with the fluid.
Finally, let us comment on our previous works [13,14]. They both deal with a similar particle system
coupled with the fluid and the question of its scaling limit. However, they are affected by important
restrictions. The paper [13] discusses only the so called two steps approach. In this setting one
keeps ε fixed when N → ∞ and removes ε only later, as a second step. As usual, the analysis of
such disjoint limits is much simpler: the first step is a classical mean field problem (opposite to
the problem considered here, see the next section on the technical difficulties), the second step is
a question of convergence of PDEs to PDEs (essentially a repetition of schemes known from the
proofs of existence theorems for the limit system). One can mix the parameters a posteriori, taking
subsequences, but the conditions on the link are quite unrealistic and restrictive. As in the present
work, the paper [14] treats the joint limit in the two parameters, but a special bounded modification
of Stokes law is required and due to lack of a suitable uniqueness result, we prove only convergence of
subsequences. Compared to [13,14], the result proved here is complete, without the main restrictions
of those works. For future research, however, it would be interesting to extend further the range of
the parameter β that quantifies the radius of interaction between a particle and the surrounding
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fluid. See below and in the same vein how to treat more realistic boundary conditions between
particles and fluid.

1.1. Difficulties

In this subsection we aim to highlight the difficulties we met in proving the convergence from the discrete
to the continuous model. Apparently it looks a mean field result but several aspects are far from standard,
as we now describe.

1.1.1. Uniform Control on Velocity and Vorticity Creation by Particles. The rough structure of the
particle approximation used here is of a mean field type. The empirical measure SN

t of the particles

SN
t =

1
N

N∑

i=1

δ(Xi,N
t ,V i,N

t )

(see also Sect. 2) will be proved to converge to the solution Ft (x, v) of the Vlasov component of our system
(in parallel, the approximation of the velocity field will converge to the limit velocity field). However in
classical mean field problems, first it is proved that SN

t converges to Ft (x, v) in the weak sense of measures,
then one can pass to the limit, thanks to the non-local structure of the nonlinear terms. In our problem,
there is a main difficulty: SN

t is coupled with the approximation uN
εN

of the Navier–Stokes component, in
a local way. The term in the Navier–Stokes equation takes the form (see system of equations (PS − NS)
in Section 2)

θ0,εN ∗ ((
uN

εN
− v

)
SN

t

)

and the corresponding term in the identity satisfied by the empirical measure SN
t (Lemma 3.2) has the

form
〈
SN

t ,
(
uN

εN
− v

)∇vϕ
〉
.

In order to pass to the limit in the previous terms we need uniform convergence of uN
εN

to u.
This is a demanding property that we approach, using Sobolev embedding theorem, by controlling

the first derivatives of uN
εN

. We approach it by means of the equation for the vorticity ωN . This strategy
reveals a conceptual problem with physical content: the presence of particles in the fluid may produce
vorticity. The estimates on the vorticity are far from being obvious, due to the interaction with the
particles. The equation for the vorticity contains the interaction term

1
N

N∑

i=1

(
uN

εN

(
Xi,N

t

)
− V i,N

t

)
∇⊥ · δεN

Xi,N
t

where δεN

Xi,N
t

is a smooth approximation of the delta Dirac δXi,N
t

. Hence the term ∇⊥ ·δεN

Xi,N
t

may induce a
blow-up in the estimates, a priori. This is a key conceptual difficulty we had to overcome, among others of
more technical nature. The fact that an infinitesimal particle in a fluid may produce vorticity is the topic
of recent research, see [16]. These works are restricted to single particle for very difficult technical reasons;
it may be that some link with the present research will be possible in the future after due progresses.

Thanks to the fact that ∇ωN has a control due to the viscous term, the energy type estimate leads
to control the term ∥

∥
∥
∥
∥

1
N

N∑

i=1

(
uN

εN

(
Xi,N

t

)
− V i,N

t

)
δεN

Xi,N
t

∥
∥
∥
∥
∥

L2(T2)

. (2)

This is not a simple task; just to mention, the trivial estimate

≤ 1
N

N∑

i=1

(
uN

εN

(
Xi,N

t

)
− V i,N

t

)∥
∥
∥δεN

Xi,N
t

∥
∥
∥

L2(T2)
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leads to diverging quantities. This introduces a new ingredient with its own difficulties, as explained in
the next subsection.

1.1.2. The Regularized Empirical Measure. We control the term (2) by introducing the regularized em-
pirical measure FN

t (x, v)

FN
t (x, v) = θεN ∗ SN

t

(see details in Sect. 2), inspired by works of Karl Oelschleger, see for instance [24]. It allows us to write
∣
∣
∣
∣
∣

1
N

N∑

i=1

(
uN

εN

(
t,Xi,N

t

)
− V i,N

t

)
δεN

Xi,N
t

(x)

∣
∣
∣
∣
∣

≤ ∥
∥uN

εN
(t, ·)∥∥∞

1
N

N∑

i=1

δεN

Xi,N
t

(x) +

∣
∣
∣
∣
∣

1
N

N∑

i=1

V i,N
t δεN

Xi,N
t

(x)

∣
∣
∣
∣
∣

=
∥
∥uN

εN
(t, ·)∥∥∞

∫

R2
FN

t (x, v) dv +
∣
∣
∣
∣

∫

R2
vFN

t (x, v) dv

∣
∣
∣
∣ .

The proof of the last line is given in Lemma 5.3.
Now the problem is to prove suitable estimates on the regularized empirical measure FN

t (x, v). Con-
trols on SN

t are essentially amounts to suitable estimates on the SDEs satisfied by particles, while a
full treatment of FN

t (x, v) requires both SDEs properties and PDEs arguments applied to the identity
satisfied by FN

t (x, v) (Lemma 3.2). This identity however is not closed; commutators appear and several
technical difficulties arise, which perhaps are new here with respect to previous literature.

1.1.3. The Cut-Off and its Removal. We are able to perform the estimates outlined above only when a
suitable cut-off on velocity is introduced; see χR(u) introduced in Sect. 3 and appearing in the rest of the
paper. The idea is to use this truncated system as a bridge to the original one. By using the truncation
in the interaction between particles and fluid we managed to produce an a priori bound independently
on the number of particles N

∣
∣
∣
∣uN,R

∣
∣
∣
∣
∞ ≤ CR, (Lemma 5.9) (3)

which we used to obtain a suitable tightness criterion, needed for the convergence. We remark that this
bound was only possible due to the presence of the cut-off, since the constant provided in (3) depends on
the threshold R of the truncation.

Therefore the preliminary result is that the PDE-particle system with cut-off converges to the PDE
system with cut-off. However, by showing that the velocity field of the PDE system with the cut-off
satisfies

∣
∣
∣
∣uR

∣
∣
∣
∣ ≤ C (Proposition 5.13)

independently on R, it is possible to prove that the PDE system with cut-off is also solution without cut-
off. In summary we can prove that the PDE-particle system with cut-off converges to the PDE system
without cut-off, see Proposition 5.1. The proof of this step is organized differently from the previous
description but here we have explained the concept behind the proof.

The final problem is to prove that the cut-off can be removed also from the approximating PDE-particle
system. This seems to be a difficult question. Here we use a special trick.

To appreciate the difficulty and the trick, think for a second to a different problem where the approx-
imations are not random. Assume we have proved that uN,R converges uniformly to the limit u. Since u
is uniformly bounded by a constant R0 we deduce that, eventually in N , also uN,R is bounded, say, by
R0 + 1. Hence eventually in N , the function uN,R solves the equation without cut- off, hence it is equal
to the unique solution uN of such equation. Next, consider the full approximating sequence (uN )N≥1

solving the equations without cut-off; this sequence converges uniformly to u, because the property of
limit involves only the tail of the sequence and the tail coincides with the tail of the sequence

(
uN,R

)

N≥1
,
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which we know to converge to u. This idea resemble us the method used to prove well-posedness of 3D
Navier–Stokes equations with strong rotation, see for instance [15].

Unfortunately this simple idea does not work when the approximations are random. Forget about
the fact that our convergence is in law; go to another probability space where it is almost sure. Thus,
almost surely, eventually we may transfer the uniform bound R0 of the limit solution to a bound R0 + 1
for the approximations. But this time the “eventually” qualification is random! Hence, given a large N ,
we cannot claim that the stochastic process uN,R coincides with the unique solution uN of the equation
without cut-off, because the bound on uN,R is true only for certain ω’s.

So the problem is that we have two families of stochastic processes,
(
uN,R

)

N≥1
and

(
uN

)

N≥1
and we

know that for a.e. ω there is N0 (ω) such that for N ≥ N0 (ω) the paths of the sequence
(
uN,R (ω)

)

N≥N0(ω)

are bounded, say, by R0 + 1 < R. We want to deduce a relation between
(
uN,R

)

N≥1
and

(
uN

)

N≥1
from

this property. To this aim we invoke a property of path-by-path uniqueness (see [12]) opposite to the
usual concept of pathwise uniqueness: given ω, for N ≥ N0 (ω) the path uN,R (ω) satisfies the equation
without cut-off (formulated for that single ω) and by path-by-path uniqueness it coincides with uN (ω).
The conclusion is the same as in the deterministic case: consider the sequence of processes

(
uN

)

N≥1
; for

a.e. ω, the sequence of functions
(
uN (ω)

)

N≥1
converges to u because it coincides, eventually, with the

sequence
(
uN,R (ω)

)

N≥1
. The first major result of path-by-path uniqueness for SDEs has been proved

by [13] and it is a very sophisticated result; however, here we have additive noise and relatively smooth
coefficients, hence path-by-path uniqueness in our case is not difficult. We isolated the idea behind this
reasoning into a general criterion, that we applied to transfer the convergence from the particle system
where the cut-off is present, to the system without the cut-off.

The structure of this paper is the following: In Sect. 2 we introduce all the notation that we will use
and we present our main result, Theorem 2.3. In Sect. 3 we collect some preliminary result that will
be needed in the rest of the manuscript, while Sect. 4 is devoted to a theorem of uniqueness for the
Vlasov–Navier–Stokes system. In Sect. 5 we prove a first intermediate result, that is the convergence of
the particle system with the cut-off to the Vlasov–Navier–Stokes system without the cut off. Finally,
in Sect. 6 we manage to remove the cut-off also from the approximating system, ending the proof of
Theorem 2.3.

2. Notation and Main Results

We begin this section by introducing rigorously the Vlasov–Navier–Stokes system and its associated parti-
cle model. We will always assume the framework of a filtered probability space, denoted by (Ω,F , {Ft} ,P).
For the whole manuscript we will also work on the two dimensional torus T2 = R

2/Z2. The case of other
bounded domains is more delicate due to creation of vorticity at the boundaries. Some of the interme-
diate results stated here will work also in higher dimension. However, to obtain the full result, due to
uniqueness and smoothness obstacles, dimension d = 2 is needed, so we will always keep the dimension
fixed for a matter of simplicity.

We start by recalling the Vlasov–Navier–Stokes PDE-system

⎧
⎪⎨

⎪⎩

∂tu = Δu − u · ∇u − ∇π − ∫

R2(u − v)F (x, v) dv (t, x) ∈ [0, T ] × T
2

∂tF + v · ∇xF + divv((u − v)F ) = σ2

2 ΔvF (t, x, v) ∈ [0, T ] × T
2 × R

2

div(u) = 0,
(V NS)

σ > 0, with initial condition u(0, ·) = u0 and F (0, ·, ·) = F0. We also introduce the continuous-discrete
Particle System approximating (V NS):
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu
N = ΔuN − uN · ∇uN − ∇πN − 1

N

∑N
i=1(u

N
εN

(Xi,N
t ) − V i,N

t )δεN

Xi,N
t

div(uN ) = 0,
{

dXi,N
t = V i,N

t dt

dV i,N
t = (uN

εN
(Xi,N

t ) − V i,N
t ) dt + σdBi

t

i = 1, . . . , N

(PS − NS)

with initial condition

uN (0, ·) = u0, (Xi,N
0 , V i,N

0 ) Law∼ F (0, ·, ·) dx dv i.i.d

namely the random variables (Xi,N
0 , V i,N

0 ) are independent and identically distributed with density
F (0, x, v). In the previous equations, (Bi

t)t≥0 is a sequence of independent Brownian motions, θ0 is a
mollifier over the torus, εN ∈ R

+ is a sequence converging to zero, and

θ0,εN (x) := ε−2
N θ0 (x/εN ) , uN

εN
:= u ∗ θ0,εN , δεN

Xi,N
t

(x) := θ0,εN (x − Xi,N
t ),

All the hypothesis and requirements on the objects introduced above are collected in Sect. 2.3.

2.1. Definition of Weak Solutions

Definition 2.1 (Definition of weak solution of (V NS)). We say a pair (u, F ) is a weak solution of (V NS)
if the following conditions are satisfied:

a)

u ∈ L∞([0, T ];L2(T2)) ∩ L2([0, T ];H1(T2));
F ∈ L∞([0, T ];L1(T2 × R

2) ∩ L∞(T2 × R
2)), F ≥ 0;

F |v|2 ∈ L∞([0, T ];L1(T2 × R
2));

b) for all ϕ ∈ C∞([0, T ] × T
2;R2) with divϕ = 0 we have

〈ut, ϕt〉 = 〈u0, ϕ0〉 +
∫ t

0

〈us,
∂ϕs

∂s
〉ds +

∫ t

0

〈us,Δϕs〉ds +
∫ t

0

〈us · ∇ϕs, us〉ds

−
∫ t

0

∫

R2

∫

T2
ϕs(x)(us(x) − v)Fs(x, v) dx dv ds,

c) for all ψ ∈ C∞([0, T ] × T
2 × R

2;R) with compact support in v we have

〈Ft, ψt〉 = 〈F0, ψ0〉 +
∫ t

0

〈Fs,
∂ψs

∂s
〉ds +

σ2

2

∫ t

0

〈Fs,Δvψs〉ds

+
∫ t

0

〈Fs, v · ∇xψs〉ds +
∫ t

0

〈Fs, (us − v) · ∇vψs〉ds;

Definition 2.2 (Definition of Bounded weak solution of (V NS)). We say a pair (u, F ) is a bounded weak
solution of (V NS) if it is a weak solution and

u ∈ L∞([0, T ] × T
2).

We refer to Theorem 4.1 for an uniqueness result for bounded weak solutions. Existence of bounded
weak solutions for system (V NS) will be obtained as a consequence of our main convergence result.
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2.2. The Empirical Measure of the Particle System

Before stating our main result we introduce some function spaces defined as follows. Given the space
E = T

2 × R
2 we introduce

P1(E) =
{

μ probability measure on (E,B(E)) |
∫

E

|x| μ(dx) < ∞
}

the space of all probability measure on the Borel sets of E, with finite first moment. We endow this space
with the Wasserstein−1 metric, that can be defined equivalently as

W1(μ, ν) = sup
[ϕ]Lip≤1

∣
∣
∣
∣

∫

E

ϕdμ −
∫

E

ϕdν

∣
∣
∣
∣

where [ϕ]Lip is the usual Lipschitz seminorm. Endowed with this metric the space P1 becomes a complete
separable metric space, whose convergence implies the weak convergence of probability measures.
From now on, when μ is a measure and f is a function, we will denote by 〈f, μ〉 the integration in full
space of f with respect to μ.
We now introduce the empirical measure of the particle system

SN
t =

N∑

i=1

δ(Xi,N
t ,V i,N

t ), (4)

which is random measure on (Ω,F ,P), on the space C([0, T ];P1(T2 ×R
2)). We will consider a smoothed

version of the empirical measure: let us introduce two functions θ0 : T2 → R and θ1 : R2 → R which are
C∞, non negative and integrate one. Introduce also

θ(x, v) := θ0(x)θ1(v)

which is a function on the product space T
2 × R

2. Consider then

θεN (x, v) = ε−2
N θ0(ε−1

N x)ε−2
N θ1(ε−1

N v) = θ0,εN (x)θ1,εN (v) (5)

and let us define

FN
t (x, v) := θεN ∗ SN

t =
1
N

N∑

i=1

θ0,εN (x − Xi,N
t )θ1,εN (v − V i,N

t )

the mollified empirical measure.

Remark 2.1. Note that the function θ0,εN in the previous equation, appear in system (PS − NS) in the
coupling term.

In what follows and in the rest of the manuscript we will adopt the following notation for the moments
on the v component for the function F :

mkF (x) :=
∫

R2
|v|k F (x, v) dv, MkF :=

∫

T2

∫

R2
|v|k F (x, v) dv dx.

where mkF (x) is function over T
2 while MkF ∈ R.

2.3. Main Result

We summarize all the main hypotheses of our framework:
1) u0 ∈ H2(T2);
2) F0 ∈ (L1 ∩ L∞)(T2 × R

2) and M6F0 < ∞;
3) θ(x, v) = θ0(x)θ1(v), θ0 and θ1 mollifiers on T

2 and R
2 respectively, such that

∣
∣∇θ0(x)

∣
∣ ≤ θ0(x) and

supp(θ1) ⊆ B(0, 1). Moreover θ1(v) satisfies the following symmetry assumption
∫

R2 θ1(v)v = 0;
4) The scaling factor εN satisfies εN = N−β with β ≤ 1/4;
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Remark 2.2. We remark that hypothesis (3) is needed in Lemma 5.5 to obtain the first a priori estimate
on the mollified empirical measure. Regarding the scaling factor in (4), this hypothesis is also needed
for Lemma 5.5: the bound on β is strictly related to the space dimension and to the Lp norm that is
computed. In our case, we will compute the L4 norm, and the general requirement in dimension d is

β ≤ d

3d + 2
.

In what follows we will always use the notation � to indicate that the inequality holds, up to a
multiplicative constant that does not depend on any of the key parameters involved. To emphasize the
dependence on one of those parameter we will adopt the convention �X to denote the dependence on
the parameter X. Moreover we will make use of the letter C to mark a constant, whose value does not
matter for the argument.

We are finally able to present our main result:

Theorem 2.3. Under hypothesis of Sect. 2.3, the family of laws
{
QN

}

N∈N
of the couple (uN , SN )N∈N is

tight on C([0, T ] × T
2) × C([0, T ];P1(T2 × R

2)). Moreover
{
QN

}

N∈N
converges weakly to δ(u,F ), where

the couple (u, F ) is the unique bounded weak solution of system of equation (V NS).

3. Preliminary Results

In this section we collect the basic results about our particle systems, and all the technical inequality
that will be used in the rest of the paper.

In order to obtain Theorem 2.3, it is necessary to introduce another coupled system of PDE-SDE,
where the interaction between the particles and fluid is truncated. Introduce for R > 0 the cut-off function
χ0

R : R → [0, 1] defined as

χ0
R(x) =

{
1 if x ≤ R − 1
0 if x ≥ R

and that is C∞(R). Define also χR(u) = χ0
R(||u||L∞(T2)). With this choice of notation one has

||uχR(u)||L∞(T2) ≤ R.

Introduce now the truncated PDE-system:
⎧
⎪⎨

⎪⎩

∂tu
R = ΔuR − uR · ∇uR − ∇π − ∫

R2(uR − v)χR(uR
t )FR(x, v) dv

∂tF
R = σ2

2 ΔvFR − v · ∇xFR − divv((uRχR(uR) − v)FR)
div(uR) = 0,

(V NSR)

with the same initial conditions as system (V NS). We also introduce the continuous-discrete truncated
Particle System approximating (V NSR):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu
N,R = ΔuN,R − uN,R · ∇uN,R − ∇πN,R

− 1
N

∑N
i=1(u

N,R
εN

(Xi,N,R
t ) − V i,N,R

t )χR(uN,R
t ) δεN

Xi,N,R
t

div(uN,R) = 0,
{

dXi,N,R
t = V i,N,R

t dt

dV i,N,R
t = (uN,R

εN
(Xi,N,R

t )χR(uN,R
t ) − V i,N ;R

t ) dt + σdBi
t

i = 1, . . . , N

(PSR − NSR)

using the same notation and initial condition as (PS − NS).

Definition 3.1 (Definition of bounded weak solution of (V NSR)). We say a pair (uR, FR) is a bounded
weak solution of (V NSR) if the following condition are satisfied:
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a)

uR ∈ L∞([0, T ] × T
2) ∩ L2([0, T ];H1(T2));

FR ∈ L∞([0, T ];L1(T2 × R
2) ∩ L∞(T2 × R

2)), FR ≥ 0;

F |v|2 ∈ L∞([0, T ];L1(T2 × R
2));

b) for each divergence free, C∞ vector field ϕ : [0, T ] × T
2 → R

2 we have

〈uR
t , ϕt〉 = 〈uR

0 , ϕ0〉 +
∫ t

0

〈uR
s ,

∂ϕs

∂s
〉ds +

∫ t

0

〈uR
s ,Δϕs〉ds +

∫ t

0

〈uR
s · ∇ϕs, u

R
s 〉ds

+
∫ t

0

〈πs,∇ϕs〉ds −
∫ t

0

∫

R2

∫

T2
ϕs(x)(uR

s (x) − v)χR(uR
s )FR

s (x, v) dx dv ds,

c) for each C∞ function ψ : [0, T ] × T
2 × R

2 → R, we have

〈FR
t , ψt〉 = 〈FR

0 , ψ0〉 +
∫ t

0

〈FR
s ,

∂ψs

∂s
〉ds +

σ2

2

∫ t

0

〈FR
s ,Δvψs〉ds

+
∫ t

0

〈FR
s , v · ∇xψs〉ds +

∫ t

0

〈FR
s , (uR

s χR(uR
s ) − v) · ∇vψs〉ds;

Applying the maximum principle to system of equation (V NSR) we have
∣
∣
∣
∣FR(t, x, v)

∣
∣
∣
∣
Lp(T2×R2)

≤ CT ||F0(x, v)||Lp(T2×R2) ∀p > 1

so that
∣
∣
∣
∣FR(t, x, v)

∣
∣
∣
∣
L∞(T2×R2)

≤ C

independently on R. We now introduce the empirical measure of the truncated particle system

SN,R
t =

N∑

i=1

δ(Xi,N,R
t ,V i,N,R

t )

and its associated mollified empirical measure

FN,R
t (x, v) = θεN ∗ SN,R

t .

We now recall the identity satisfied by the empirical measure SN
t .

Lemma 3.2. For every test function ϕ : T2 × R
2 → R the empirical measure SN

t satisfies the following
identity

d〈SN
t , ϕ〉 = 〈SN

t , v · ∇xϕ〉 dt + 〈SN
t , (uN

εN
− v) · ∇vϕ〉 dt

+
σ2

2
〈SN

t ,Δvϕ〉 dt + dMN,ϕ
t ,

with

MN,ϕ
t =

σ

N

N∑

i=1

∫ t

0

∇vϕ
(
Xi,N

t , V i,N
t

)
· dBi

t.

Moreover FN
t (x, v) = (θεN ∗ SN

t )(x, v) satisfies:

dFN
t =

σ2

2
ΔvFN

t − divv(θεN ∗ (uN
εN

− v)SN
t ) dt

−divx(θεN ∗ vSN
t ) dt + dMN,εN

t ,

with MN,εN

t = M
N,θεN (x−·,v−·)
t .

Proof. The first part follows easily by applying Itô formula to ϕ(Xi,N
t , V i,N

t ) and using linearity. The
second part follows by taking ϕ(·, ·) = θεN (x − ·, v − ·). �
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The analogue of the previous result holds for the empirical measure of the truncated system SN,R, as
well as for it mollified version FN,R. We now state the kinetic energy balance for the truncated system:

Lemma 3.3. With the previous notation, we denote with EN the kinetic energy of the microscopic system,

EN (t) =
1
2

∫

T2

∣
∣
∣u

N,R
t (x)

∣
∣
∣
2

dx +
1

2N

N∑

i=1

∣
∣
∣V

i,N,R
t

∣
∣
∣
2

.

One has formally
1
2

d

dt
EN (t) +

∫

T2

∣
∣
∣∇uN,R

t (x)
∣
∣
∣ dx dt

+
1
N

N∑

i=1

∣
∣
∣uN,R

εN
(Xi,N,R

t )χR(uN,R
t ) − V i,N,R

t

∣
∣
∣
2

dt ≤

≤ 2σ2

2
dt +

σ

N

N∑

i=1

V i,N,R
t · dBi

t.

Proof. The lemma follows by Itô formula and by classical energy estimates for uN,R. �

Remark 3.1. The last inequality guarantees that, even if the truncated system has no direct interpretation
for the dynamics of particle–fluid, it maintains the basics physical properties such as the conservation of
the kinetic energy in the average.

An analogue of the previous result holds for the limit PDE system (V NSR), as well as for (V NS).
We state it in the case of system (V NSR) and omit the proof, which is classical.

Lemma 3.4. If (uR, FR) is a weak solution of (V NSR), denoting with E the kinetic energy of the macro-
scopic system

E(t) =
1
2

(∫

T2

∣
∣uR

t

∣
∣2 dx +

∫

R2

∫

T2
|v|2 FR

t dx dv

)

,

one has
d

dt
E(t) +

∫

T2

∣
∣∇uR

t

∣
∣2 dx +

∫

R2

∫

T2
FR

t

∣
∣uR

t − v
∣
∣2 χR(uR

t ) dx dv =
σ2

2
||F0||L1(R2×T2) .

Moreover there exists a constant C, independent on R such that
∫ T

0

∫

R2

∫

T2
|v|2 FR

t dx dv dt ≤ C.

Remark 3.2. By the previous lemma we have a bound on uR in the norm L2([0, T ];H1(T2)) independently
on R. By Sobolev embedding in dimension two we also have an uniform bound with respect to R on uR

in the space L2([0, T ];Lp(T2)) for all p < ∞.

We now collect all the inequalities concerning the marginal distributions of the function F : some of
them are classical, see [20,27], while others have been used in [14].

Lemma 3.5. If F is positive, defined on T
2 × R

2, the followings hold
1.

||m0F ||2L2(T2) � (||F ||L∞(T2×R2) + 1)2M2F,

||m0F ||4L4(T2) � (||F ||L∞(T2×R2) + 1)4M6F ;

2.

||m1F ||2L2(T2) � (||F ||L∞(T2×R2) + 1)2M4F ;
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3.

||m0F ||2L2(T2) � ||F ||4L4(T2×R2) + M3F ;

4.

||m1F ||2L2(T2) � ||F ||4L4(T2×R2) + M6F ;

5. For all k < k′

MkF � ||F ||L1(T2×R2) + Mk′F.

Proof. All the inequalities are derived through the same strategy: 1. and 2. are classical, see [20], while
the proof of 3. can be found in [14], so we only outline the main idea. For inequality 1. and 3. let us
consider the following decomposition

∫

R2
F dv =

∫

|v|≤r(x)

F dv +
∫

|v|>r(x)

F dv

≤
∫

|v|≤r(x)

F dv +
1

r(x)k

∫

|v|>r(x)

|v|k F dv

where r(x) will be chosen in the next lines. Now one can estimates the integral on the ball of radius r(x)
using the infinity norm of F for inequality 1. or using Holder inequality to obtain ||F ||L4 for inequality
3. To obtain the desired result, one has to take the square both sides, integrate on T

2 and choose r(x) in
order to group all the terms. For inequality 2. and 4. one has just to decompose

∫ |v|F dv and apply the
same strategy, while for 5 is enough to take r(x) ≡ 1. �

Remark 3.3. Inequality 3. and 4. will be used to prove a first tightness result in Sect. 5. Motivated by
the fact that the infinity norm is not available on the mollified empirical measure, we propose a variant
of 1. and 2., avoiding the use of such norm. Inequalities 1. and 2. will be used in Section 5 in order to
prove a bound on the infinity norm of uR, while 5. will be used in the next lemma.

We now state and prove a variant of Lemma 2.1 in [20]. This variation is needed due to the presence
of the noise on the diffusion on the particle velocity, i.e. the presence of Δv in the equation for FR.

Lemma 3.6. If (uR, FR) is a bounded weak solution of (V NSR), k > 2 and if MkF0 is finite, then there
exists a constant Ck, independent on R, such that

sup
t∈[0,T ]

MkFR
t ≤ Ck.

The same result holds for any (u, F ) weak solutions of (V NS).

Proof. In this proof we omit the superscript R in (uR, FR) to short the notation. We start by computing

d

dt

∫

R2

∫

T2
|v|k Ft dx dv �

∫

T2
|u(t, x)|

∫

R2
|v|k−1

Ft dv dx +
∫

R2

∫

T2
|v|k Ft dx dv

+
∫

R2

∫

T2
|v|k−2

Ft dx dv.

Following [20] we have
∫

T2
|u(t, x)|

∫

R2
|v|k−1

Ft dv dx � ||ut||Lk+2(T2)

(∫

R2

∫

T2
|v|k Ft dx dv

)1− 1
k+2

,

while, using Lemma 3.5 inequality 5. we have
∫

R2

∫

T2
|v|k−2

Ft dx dv ≤
∫

R2

∫

T2
|v|k Ft dx dv + ||Ft||L1(T2×R2) .
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Hence we get

MkFt � MkF0 +
∫ t

0

||us||Lk+2(T2)

(∫

R2

∫

T2
|v|k Fs dx dv

)1− 1
k+2

dt

+
∫ t

0

MkFs ds + C.

We now note that
(∫

R2

∫

T2
|v|k Fs dx dv

)1− 1
k+2

≤ C

(∫

R2

∫

T2
|v|k Fs dx dv + 1

)

,

hence we obtain

MkFt ≤ MkF0 + C

∫ t

0

(||us||Lk+2(T2) + 1)MkFs ds + C

∫ t

0

(||us||Lk+2(T2) + 1) ds ≤

≤ C(MkF0 + ||u||L2([0,T ];Lk+2(T2))) + C

∫ t

0

(||us||Lk+2(T2) + 1)MkFs ds.

We conclude by classical Gronwall Lemma applied to the function MkFt and by Remark 3.2. �

3.1. Maximum Principle for Weak Solutions of the Linear Vlasov–Fokker–Plank Equation

We now focus on boundedness of weak solutions for the linear Vlasov–Fokker–Plank equation

∂tF + v · ∇xF + divv(a(t, x, v)F ) = ΔvF.

Boundedness of solutions will be fundamental in the latter when we will prove that the limit points, in the
appropriate sense, of particle system (PSR −NSR) are supported on bounded weak solutions of (V NS).

While this topic is classical in the case of smooth solutions, the case of weak solutions is more delicate.
What follows is mainly an adaptation of the work [8], Appendix A, Proposition A.3.
In that work the author assumed the vector field a to be

a ∈ L∞([0, T ] × T
2 × R

2), divv(a) ∈ L∞([0, T ] × T
2 × R

2),

and solutions F are assumed to belong to the set

Y :=
{

F ∈ L2([0, T ] × T
2;H1(R2)) s.t. ∂tF + v · ∇xF ∈ L2([0, T ] × T

2;H−1(R2))
}

.

On these solutions, a maximum principle is proved,

||Ft||L∞(T2×R2) ≤ C ||F0||L∞(T2×R2) .

In our case, we have to consider
a(t, x, v) = u(t, x) − v (6)

hence, we cannot apply directly the result presented in [8] since the function a(t, x, v) is not globally
bounded. However, it is possible to recover the same result by considering some estimates on higher
moments for the function F . If a satisfies (6), where u is uniformly bounded, one can consider

Ỹ :=
{

F ∈ L2([0, T ] × T
2;H1(R2)) s.t. vF ∈ L2([0, T ] × T

2 × R
2),

∂tF + v · ∇xF ∈ L2([0, T ] × T
2;H−1(R2))

}

.

Namely, in this setup the same result proved in [8] still works, provided that one can consider solutions
satisfying

∫ T

0

∫

T2

∫

R2
|v|2 F 2

s dx dv ds < ∞.
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Without going into the details of this adaptation, we only remark that this additional condition is
achievable under our hypothesis, since

∫ T

0

∫

T2

∫

R2
|v|2 F 2

s dx dv ds =
∫ T

0

∫

T2

∫

R2
|v|2 F

1
2

s F
3
2

s dx dv ds

≤
(∫ T

0

∫

T2

∫

R2
|v|4 Fs dx dv ds

) 1
2
(∫ T

0

∫

T2

∫

R2
F 3

s dx dv ds

) 1
2

,

and we will show how to control the last two terms when needed.

4. Uniqueness for Bounded Weak Solutiosn of System of Equations (V NS)

In this section we isolate a first major result needed to prove Theorem 2.3. We preferred to isolate it here,
because it has some interest by itself. We present an uniqueness result for (V NS) in the class of bounded
weak solutions (Definition (2.2)). This result is required in order to prove that converging subsequences
of the laws of (uNk , SNk) are all supported on the same limit, which are in fact weak solutions of (V NS).

Before going into the details of this Theorem let us make some remark about the hypothesis. We
first highlight that the boundedness of solutions on the fluid component is strictly needed: we will make
frequent of the fact that u ∈ L∞([0, T ] × T

2) in order to close some of the estimates needed to end the
proof. We also remark that, even if in the proof we used the uniform bound ||u||L∞([0,T ]×T2), with a
bit more effort it is possible to complete the proof using only u ∈ L2([0, T ];L∞(T2)). Motivated by the
fact that in this work we prove existence of solutions uniformly bounded in time and space, we prefer to
choose u ∈ L∞([0, T ] × T

2). Regarding the assumptions on weak derivatives, we require only

u ∈ L∞([0, T ] × T
2) ∩ L2([0, T ];H1(T2))

avoiding any assumption on the second derivative of u.
Also in the following proof we will make frequent use of Gagliardo–Nirenberg inequality in dimension
two

||u||Lp � ||u||
2
p

L2 ||∇u||
2
q

L2

where 1
p + 1

q = 1
2 . However, this is only needed to minimize the hypothesis on MkF0, required to be

finite only for some k strictly bigger than 4. One could have used the classical Ladyzhenskaya’s inequality
(p = q = 4) with the downside of requiring higher-order moments to be finite.
The proof of this result is mainly inspired by the work [6].

Theorem 4.1. Let (u1, F1) and (u2, F2) be two bounded weak solutions (Definition 2.2) with the same
initial conditions, of system (V NS). If

M4+εFi(0) < ∞
for some ε > 0, then u1 = u2 and F1 = F2.

Proof. We introduce the new variables F = F1 − F2 and u = u1 − u2. Then the pair (u, F ) satisfies in
the weak sense

∂tu = Δu − u · ∇u1 − u2 · ∇u − ∇(π1 − π2) −
∫

R2
(uF1 + u2F − vF ) dv,

∂tF = ΔvF − v · ∇xF − divv(uF1 + u2F − vF )

with (u(0, ·), F (0, ·, ·)) = 0. We prove uniqueness by applying Gronwall Lemma to the quantity

||ut||2L2(T2) +
∣
∣
∣

∣
∣
∣〈v〉k

Ft

∣
∣
∣

∣
∣
∣
2

L2(T2×R2)

for some k > 2 which will be chosen later and where 〈v〉 = (1 + |v|2) 1
2 .
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We start by estimating ||ut||2L2(T2): computing the time derivative we have

d

dt
||u||2L2(T2) + ||∇u||2L2(T2)

� −
∫

T2
u(u · ∇u1) dx −

∫

T2
u(u2 · ∇u) dx

−
∫

T2
u

∫

R2
vF dvdx −

∫

T2
u

∫

R2
uF1 dvdx −

∫

T2
u

∫

R2
u2F dvdx. (7)

Integrating by parts the term

∫

T2
u(u2 · ∇u) dx = 0

vanishes, while the term

−
∫

T2
u

∫

R2
uF1 dvdx = −

∫

T2

∫

R2
u2F1 dvdx ≤ 0

can be neglected due to positivity of F1. Hence we can estimate the remaining terms as

(7) � −
∫

T2
u(u · ∇u1) dx −

∫

T2
u

∫

R2
vF dvdx

−
∫

T2
u

∫

R2
u2F dvdx = (I) + (II) + (III).

where

(I) ≤
∫

T2
|u| |∇u| |u1| dx ≤ ||u1||∞

∫

T2
|u| |∇u| dx

� 1
δ

||u||2L2(T2) + δ ||∇u||2L2(T2)

and δ > 0 can be taken arbitrarily small.

(II) ≤
∫

R2

∫

T2
|u| |v|F dxdv ≤

∫

R2

∫

T2

|u|
〈v〉k−1

〈v〉k
F dxdv

≤
∫

T2
|u|2 dx

∫

R2

1

〈v〉2(k−1)
dv +

∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(T2×R2)

� ||u||2L2(T2) +
∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
,

because 2(k − 1) > 2 being k > 2.

(III) ≤
∫

R2

∫

T2
|u| |u2|F dxdv ≤ ||u2||∞

∫

R2

∫

T2

|u|
〈v〉k

〈v〉k
F dxdv

�
∫

T2
|u|2 dx

∫

R2

1

〈v〉2k
dv +

∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
� ||u||2L2(T2) +

∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
.
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This ends the estimate for ||u||2L2(T2). Concerning
∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
we proceed by computing the time

derivative

d

dt

∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
+

∣
∣
∣

∣
∣
∣〈v〉k ∇vF

∣
∣
∣

∣
∣
∣
2

L2(T2)

� +
∫

R2

∫

T2
〈v〉2k−2

F 2 dxdv −
∫

R2

∫

T2
〈v〉2k

Fv · ∇xF dxdv

−
∫

R2

∫

T2
〈v〉2k

Fdivv(u2F ) dxdv −
∫

R2

∫

T2
〈v〉2k

Fdivv(uF1) dxdv

+
∫

R2

∫

T2
〈v〉2k

Fdivv(vF ) dxdv. (8)

The first term on the r.h.s. can be estimated with
∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
, being 〈v〉 ≥ 1. By a standard

integration by parts argument, it is proved that the second term is equal to zero. Hence, what is left from
(8) is

−
∫

R2

∫

T2
〈v〉2k

Fdivv(u2F ) dxdv −
∫

R2

∫

T2
〈v〉2k

Fdivv(uF1) dxdv

+
∫

R2

∫

T2
〈v〉2k

Fdivv(vF ) dxdv = (IV ) + (V ) + (V I).

Now we proceed by treating each term separately:

(IV ) = −1
2

∫

R2

∫

T2
〈v〉2k

u2 · ∇vF 2 dxdv ≤
∫

R2

∫

T2
〈v〉2k−1 |u2|F 2 dxdv

� ||u2||∞
∫

R2

∫

T2
〈v〉2k

F 2 dxdv �
∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
.

(V ) =
∫

R2

∫

T2
∇v(〈v〉2k

F ) · uF1 dxdv ≤
∫

R2

∫

T2
〈v〉2k−1

F |u| F1 dxdv

+
∫

R2

∫

T2
〈v〉2k |∇vF | |u| F1 dxdv.

The first term on the r.h.s. of the last inequality can be treated in the following way
∫

R2

∫

T2
〈v〉2k−1

F |u| F1 dxdv =
∫

R2

∫

T2

(
〈v〉k

F
) |u|

〈v〉
(
〈v〉k

F2

)
dxdv

≤
∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
L2(T2×R2)

||u||Lp(T2)

(∫

R2

1
〈v〉p dv

) 1
p ∣
∣
∣

∣
∣
∣〈v〉k

F2

∣
∣
∣

∣
∣
∣
Lq(T2×R2)

(9)

where p and q are such that 1
p + 1

q + 1
2 = 1. Note that p > 2 so that 1/ 〈v〉p is integrable in dimension

two. Applying Gagliardo–Niremberg inquality to the previous identity we have

(9) ≤
∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
L2(T2×R2)

||u||
2
p

L2(T2) ||∇u||
2
q

L2(T2)

∣
∣
∣

∣
∣
∣〈v〉k

F2

∣
∣
∣

∣
∣
∣
Lq(T2×R2)

�
∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
+

1
δ

||u||2L2(T2) + δ
∣
∣
∣

∣
∣
∣〈v〉k

F2

∣
∣
∣

∣
∣
∣
q

Lq(T2×R2)
||∇u||2L2(T2)

where δ can be taken arbitrarily small. In order to control the quantity
∣
∣
∣

∣
∣
∣〈v〉k

F2

∣
∣
∣

∣
∣
∣
q

Lq(T2×R2)
at the end of

the proof we will impose that kq < 4 + ε. On the other hand for the second term on the r.h.s. of (V ),
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introduce α > 0 such that αp > 2 so that
∫

R2

∫

T2
〈v〉2k |∇vF | |u| F1 dxdv =

∫

R2

∫

T2
〈k〉 |∇vF | |u|

〈v〉α 〈v〉k+α
F1 dxdv

≤
∣
∣
∣

∣
∣
∣〈v〉k |∇vF |

∣
∣
∣

∣
∣
∣
L2(T2×R2)

||u||Lp(T2)

(∫

R2

1
〈v〉αp dv

) 1
p ∣
∣
∣

∣
∣
∣〈v〉k+α

F1

∣
∣
∣

∣
∣
∣
Lq(T2×R2)

.

Now we apply Gagliardo–Niremberg inequality and Young inequality, in the same manner as we treated
(9), obtaining

� δ
∣
∣
∣

∣
∣
∣〈v〉k |∇vF |

∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
+

1
δ2

||u||2L2(T2) + δ
∣
∣
∣

∣
∣
∣〈v〉k+α

F1

∣
∣
∣

∣
∣
∣
q

Lq(T2×R2)
||∇u||2L2(T2) .

We require that (k + α)q < 4 + ε in order to match our hypothesis on M4+εF (0). This ends the term in
(V ). For the last one, by the product rule

(V I) �
∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(R2×T2)
+

∫

R2

∫

T2
〈v〉2k+1 ∇v(F 2) dxdv �

∣
∣
∣

∣
∣
∣〈v〉k

F
∣
∣
∣

∣
∣
∣
2

L2(R2×T2)
.

What is left, before applying Gronwall Lemma, is only to find parameters (k, p, q, α) matching all the
needed constraints:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k > 2;
1
p + 1

q + 1
2 = 1;

αp > 2;
(k + α)q < 4 + ε.

The rationale behind this is the following: k and q can be taken arbitrarily close to 2. Doing so, p will be
very large and hence α can be take arbitrarily small preserving the condition αp > 2, and having (k + α)
close to 2.

These conditions allow us obtain that
∣
∣
∣

∣
∣
∣〈v〉k+α

F1

∣
∣
∣

∣
∣
∣
q

Lq(T2×R2)
,
∣
∣
∣

∣
∣
∣〈v〉k

F2

∣
∣
∣

∣
∣
∣
q

Lq(T2×R2)
,

∫

R2

1
〈v〉αp dv ≤ C,

being
∣
∣
∣

∣
∣
∣〈v〉k+α

F1

∣
∣
∣

∣
∣
∣
q

Lq(T2×R2)
≤ ||F1||q−1

L∞(T2×R2)

∫

R2

∫

T2
〈v〉(k+α)q

F1 dxdv

� ||F1||q−1
L∞(T2×R2) (||F1||L1(T2×R2) + M(k+α)qF1) ≤ C.

Summarizing we have obtained

d

dt
||ut||2L2(T2) +

d

dt

∣
∣
∣

∣
∣
∣〈v〉k

Ft

∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
≤

≤ C1 ||ut||2L2(T2) + C2

∣
∣
∣

∣
∣
∣〈v〉k

Ft

∣
∣
∣

∣
∣
∣
2

L2(T2×R2)
,

hence by Gronwall Lemma we obtain u ≡ 0 and F ≡ 0, proving uniqueness. �

5. Scaling Limit for the Truncated System

In this section we focus on the proof of a first tightness result. As remarked in the introduction, first we
will prove the convergence of (PSR −NSR) to (V NS). To do so, we will show that, if the cutoff threshold
R is large enough, then the system (V NSR) coincides with (V NS). This whole section is devoted to the
proof of this intermediate result:
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Proposition 5.1. Under hypothesis of Sect. 2.3 and if R ≥ Ku +1, where the constant Ku will be specified
later (Proposition 5.13), the family of laws

{
QN,R

}
of the couple (uN,R, SN,R)N∈N is tight on C([0, T ] ×

T
2) × C([0, T ];P1(T2 × R

2)). Moreover
{
QN,R

}

N∈N
converges weakly to δ(u,F ), where the couple (u, F )

is the unique weak solution of system of equation (V NS).

With a special argument we will be finally able to remove the cut-off also in the approximating system
and to get our main result, Theorem 2.3.

5.1. Tightness

In order to prove Proposition 5.1 we have to establish the tightness of the laws of the empirical measure
SN,R and that of uN,R. First we deal with the empirical measure, the easier of the two. The tightness
of SN,R follows easily by a well known criterion, [26], being the particles exchangeable and due to the
presence of the cut-off.

Proposition 5.2. The family of laws {QN,R,S}N∈N of the empirical measure {SN,R
· }N∈N is relatively com-

pact with respect of the weak convergence on C
(
[0, T ];P1(T2 × R

2)
)
.

We now focus on the tightness of the laws of uN,R. To get an idea of what is the right topology to
work with, we focus on the coupling term that appears in the equation for uN,R in (PSR − NSR). The
term can be rewritten as

χR(uN,R
t )

1
N

N∑

i=1

(uN,R
εN

(Xi,N,R
t ) − V i,N,R

t ) δεN

Xi,N,R
t

= χR(uN,R
t )

∫

R2

∫

T2
(uN,R

εN
(x′) − v′)θ0,εN (x − x′)SN,R

t (dx′, dv′) =

= χR(uN,R
t )(θ0,εN ∗ (uN,R

εN
− v)SN,R

t )(x).

In order to pass to the limit in the previous term, it is required that uN,R is converging uniformly over
T

2, since SN,R is converging only weakly as probability measure. Hence, we look for a tightness criterion
for {uN,R}N∈N in C(T2). By Sobolev embedding in dimension two we have H2(T2) ↪→ C(T2) (and also in
the space of holder continuous functions). Thus, to get estimates on second derivative of uN,R, we start
by looking at the equation for uN,R in vorticity form:

∂tω
N,R = ΔωN,R − uN,R · ∇ωN,R

−χR(uN,R
t )

N

N∑

i=1

(
uN,R

εN
(Xi,N,R

t ) − V i,N,R
t )

)∇⊥ · δεN

Xi,N,R
t

. (10)

In order to be able to obtain a priori estimates on ωN,R we need first to rewrite the coupling term in (10)
as a function of the mollified empirical measure FN,R. We highlight that this is one of the most important
key steps in this work, that remarks the importance to introduce the mollified empirical measure, and
justify all the following computations.

Lemma 5.3.

1
N

N∑

i=1

V i,N,R
t δεN

Xi,N,R
t

(x) =
∫

R2
vFN,R

t (x, v) dv = m1F
N,R
t (x)

1
N

N∑

i=1

δεN

Xi,N,R
t

(x) =
∫

R2
FN,R

t (x, v) dv = m0F
N,R
t (x)
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Proof. Notice that

1
N

N∑

i=1

V i,N,R
t δεN

Xi,N,R
t

(x) =
∫

R2

∫

T2
θ0,εN (x − x′)v′SN,R

t (dx′, dv′)

=
∫

R2

∫

R2

∫

T2
θ0,εN (x − x′)θ1,εN (v − v′)v′SN,R

t (dx′, dv′) dv,

and
∫

R2
vFN,R

t (x, v) dv =
∫

R2

∫

R2

∫

T2
θ0,εN (x − x′)θ1,εN (v − v′)vSN,R

t (dx′, dv′)dv

so that to complete the proof we only need to prove
∫

R2

∫

R2

∫

T2
θ0,εN (x − x′)θ1,εN (v − v′)(v − v′)SN,R

t (dx′, dv′)dv = 0.

However this is true due to
∫

R2
θ1,εN (v − v′)(v − v′) dv = 0

by the hypothesis of symmetry (3) in 2.3. The second identity of the Lemma follows by the very definition
of δεN

Xi,N,R
t

. This ends the proof. �

As stated above, we look for an estimate in H2(T2) for uN . This is obtained by energy type estimates
for the fluid in the vorticity form.

Lemma 5.4.

E

[

sup
t∈[0,T ]

∣
∣
∣

∣
∣
∣ω

N,R
t

∣
∣
∣

∣
∣
∣
2

L2(T2)
+

∫ T

0

∣
∣
∣
∣∇ωN,R

s

∣
∣
∣
∣2
L2(T2)

ds

]

� E
[∣
∣
∣

∣
∣
∣ω

N,R
0

∣
∣
∣

∣
∣
∣
2

L2(T2)

]

+E
[∣
∣
∣
∣m1F

N,R
∣
∣
∣
∣2
L2([0,T ]×T2)

]
+ RE

[∣
∣
∣
∣m0F

N,R
∣
∣
∣
∣2
L2([0,T ]×T2)

]
.

Proof. The thesis follows by classical energy inequality for ωN,R and by using lemma 5.3. �
We remark that the previous computation was only possible due to the presence of the cuf-off. The

truncation is needed to decouple the fluid and particles in (PSR − NSR), hence allowing us to close
estimates for fluid and particles separately.
From Lemma 5.4 it is clear that it is necessary to control the L2 norm of both m1F

N,R and m0F
N,R.

To do so we will exploit Lemma 3.5 and thus look for an estimate for M6F
N,R and for (FN,R)4. This is

exactly the goal of the next lemmas.

Lemma 5.5. There exists a constant CT,R,4, independent on N , such that

sup
t∈[0,T ]

E
[∣
∣
∣

∣
∣
∣F

N,R
t

∣
∣
∣

∣
∣
∣
4

L4(T2×R2)

]

≤ CT,R,4.

Proof. This proof strictly follows the proof of Lemma 3.3 in [14]. By Itô formula and integration by parts
we have

1
4
d

∫

R2

∫

T2
(FN,R

t )4 dxdv +
3σ2

2

∫

R2

∫

T2
(FN,R

t )2
∣
∣
∣∇vFN,R

t

∣
∣
∣
2

dxdvdt

= −
∫

R2

∫

T2
(FN,R

t )3divx(θεN ∗ (vSN,R
t )) dxdvdt (11)

−
∫

R2

∫

T2
(FN,R

t )3divv(θεN ∗ (uN,R
εN

(t, x)χR(uN,R
t ) − v)SN,R

t ) dxdvdt (12)

+
∫

R2

∫

T2
(FN,R

t )3 dMN,εN

t dxdv +
∫

R2

∫

T2
(FN,R

t )2 d[MN,εN ]t dxdv. (13)
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We estimate each of the terms above separately. Concerning (11), we can rewrite the convolution inside
the integral as

divx(θεN ∗ (vSN,R
t )) = v · ∇x(θεN ∗ SN,R

t ) − ((∇xθεN · v) ∗ SN,R
t ).

Hence, for the first term on the r.h.s. we have

−
∫

R2

∫

T2
(FN,R

t )3∇xFN,R
t · v dx dv dt =

∫

R2

∫

T2
∇x(FN,R

t )4 · v dx dv dt = 0.

For the second one, note that due to our hypothesis on the mollifiers θ0(x) and θ1(v) we have
∣
∣∇xθ0,εN (x − x′)

∣
∣ θ1,εN (v − v′) |(v − v′)|

= ε−1
N ε−d

N

∣
∣∇xθ0(ε−1

N (x − x′))
∣
∣ ε−d

N θ1(ε−1
N (v − v′)) |v − v′|

≤ ε−d
N

∣
∣θ0(ε−1

N (x − x′))
∣
∣ ε−d

N θ1(ε−1
N (v − v′))

|v − v′|
εN

≤ θ0,εN (x − x′)θ1,εN (v − v′)2

implying

|(11)| �
∣
∣
∣

∣
∣
∣F

N,R
t

∣
∣
∣

∣
∣
∣
4

L4(R2×T2)
.

The main differences with respect to the proof of [14] concerns the term (12): we split it into two parts.
One contains the fluid velocity u and the other one contains the velocity variable: the first one follows
easily by the truncation, being

∣
∣
∣
∣

∫

R2

∫

T2
(FN,R

t )3divv(θεN ∗ uN,R
εN

(t, x)χR(uN,R
t )SN,R

t ) dxdv

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

R2

∫

T2
∇v(FN,R

t )3(θεN ∗ uN,R
εN

(t, x)χR(uN,R
t )SN,R

t ) dxdv

∣
∣
∣
∣

≤
∫

R2

∫

T2

∣
∣
∣∇v(FN,R

t )3
∣
∣
∣ (θεN ∗

∣
∣
∣uN,R

εN
(t, x)χR(uN,R

t )
∣
∣
∣S

N,R
t ) dxdv

≤ R

∫

R2

∫

T2

∣
∣
∣∇vFN,R

t FN,R
t

∣
∣
∣ (FN,R

t )2 dx dv � 1
δ

∣
∣
∣

∣
∣
∣F

N,R
t

∣
∣
∣

∣
∣
∣
4

L4(T2×R2)

+δ

∫

R2

∫

T2
(FN,R

t )2
∣
∣
∣∇vFN,R

t

∣
∣
∣
2

dxdv

and by choosing δ small enough we can take the second term to the l.h.s. maintaining the positivity. For
the other one we again split it into a basic term plus a commutator

∫

R2

∫

T2
(FN,R

t )3divv(θεN ∗ vSN,R
t ) dxdv

=
∫

R2

∫

T2
(FN,R

t )3divv(v(θεN ∗ SN,R
t )) dxdv

−
∫

R2

∫

T2
(FN,R

t )3divv(θεN v ∗ SN,R
t ) dxdv. (14)

The first term on the r.h.s. on (14) is easily handled by direct computation

= −
∫

R2

∫

T2
∇v(FN,R

t )3 · v FN,R
t dxdv =

−1
4

∫

R2

∫

T2
∇v(FN,R

t )4 · v dxdv =
1
2

∣
∣
∣

∣
∣
∣F

N,R
t

∣
∣
∣

∣
∣
∣
4

L4(T2×R2)
,
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while the second one is more tricky: we compute the divergence on v and obtain
∫

R2

∫

T2
(FN,R

t )3divv(θεN v ∗ SN,R
t ) dxdv = 2

∫

R2

∫

T2
(FN,R

t )4 dxdv

∫

R2

∫

T2
(FN,R)3

∫

R2

∫

T2
θ0,εN (x − x′)∇vθ1,εN (v − v′) · (v − v′)SN,R

t (dx′, dv′)dxdvdt

≤ 2
∣
∣
∣

∣
∣
∣F

N,R
t

∣
∣
∣

∣
∣
∣
4

L4(T2×R2)

+
∫

R2

∫

T2

∣
∣∇(FN,R)3

∣
∣
∫

R2

∫

T2
θ0,εN (x − x′)θ1,εN (v − v′) |v − v′|SN,R

t (dx′, dv′)dxdvdt.

Now we just look at the most inner term in the last inequality: using the compact support assumption
for θ1(v), see 2.3 hypothesis (3), we get

θ0,εN (x − x′)θ1,εN (v − v′) |v − v′| ≤ 2εNθ0,εN (x − x′)θ1,εN (v − v′),

which leads to (14) being

(14) �
∣
∣
∣

∣
∣
∣F

N,R
t

∣
∣
∣

∣
∣
∣
4

L4(T2×R2)
+ εN

∫

R2

∫

T2

∣
∣
∣∇(FN,R

t )3
∣
∣
∣F

N,R
t dxdv

�
∣
∣
∣

∣
∣
∣F

N,R
t

∣
∣
∣

∣
∣
∣
4

L4(T2×R2)
+ 2εN

∫

R2

∫

T2

∣
∣
∣∇vFN,R

t

∣
∣
∣
2

(FN,R
t )2 dxdv.

We now deal with the two last term in (13): the integral with respect to the martingale MN,εN

t vanishes
when computing the expected value, while for the integral with respect to the quadratic variation we
have

∫

R2

∫

Πd

(FN
t )2 d[MN,εN ]t dxdv =

σ2

N

∫

R2

∫

Πd

(FN
t )2(|∇vθεN |2 ∗ SN

t ) dxdvdt ≤

σ4
∣
∣
∣
∣FN

t

∣
∣
∣
∣4
L4 dt +

1
N2

∫

R2

∫

Πd

(|∇vθεN |2 ∗ SN
t )2 dxdvdt.

The square outside the convolution (|∇vθεN |2 ∗ SN
t )2 can be troublesome, but we can handle it using the

property of compact support of θ1(v) and the separation of variables, in the following way:
∫

R2

∫

T2
(|∇vθεN |2 ∗ SN

t )2 dx dv

� 1
N

N∑

i=1

(∫

R2

∫

T2

∣
∣
∣∇vθ1,εN (v − V i,N,R

t )
∣
∣
∣
2

θ0,εN (x − Xi,N,R
t )2 dx dv

)2

� 1
N

N∑

i=1

∫

R2

∣
∣
∣∇vθ1,εN (v − V i,N,R

t )
∣
∣
∣
4

dv

∫

T2
θ0,εN (x − Xi,N,R

t )4 dx.

Now we compute
∫

R2

∣
∣
∣∇vθ1,εN (v − V i,N

t )
∣
∣
∣
4

dv = CN5β ,

∫

Πd

θ0,εN (x − Xi,N
t )4 dx = CN3β ,

e substitute into the integral for the quadratic variation

1
N2

∫

R2

∫

Πd

(|∇vθεN |2 ∗ SN
t )2 dxdv � 1

N2
N5βN3β

which is bounded for β ≤ 1
4 .
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Summarizing we have obtained

d
∣
∣
∣

∣
∣
∣F

N,R
t

∣
∣
∣

∣
∣
∣
4

L4(T2×R2)
+ C

∫

R2

∫

T2
(FN,R

t )2
∣
∣
∣∇vFN,R

t

∣
∣
∣
2

dxdvdt ≤

� CR

∣
∣
∣

∣
∣
∣F

N,R
t

∣
∣
∣

∣
∣
∣
4

L4(T2×R2)
dt +

∫

R2

∫

T2
(FN,R

t )3 dMN,εN

t dxdv + Cdt

which, after taking the average, ends the proof by standard Gronwall lemma. �
By interpolation between Lp spaces, and the fact that FN,R

t is a probability density function, we obtain
the following corollary:

Corollary 5.6. There exists a constant CT,R,2, independent on N , such that

sup
t∈[0,T ]

E
[∣
∣
∣

∣
∣
∣F

N,R
t

∣
∣
∣

∣
∣
∣
2

L2(T2×R2)

]

≤ CT,R,2.

We now proceed to bound the moments on the v-component of the mollified empirical measure FN,R.
The proof of the next Lemma follows by the very definition of MkFN,R by using change of variable
formula.

Lemma 5.7. For all k ≤ 6 and for all N and R, there exists a constant CT,R
k , independent on N such

that

E

[

sup
t∈[0,T ]

MkFN,R
t

]

≤ CT,R
k .

Proof. The proof follows by expanding FN,R as a summation, and by a change of variables inside the
integral with respect to v. This allow to bound the k-th moments along v of FN,R by

E

[

sup
t∈[0,T ]

∣
∣
∣V

i,N,R
t

∣
∣
∣
k
]

.

Moreover, we can bound the expected value in the previous formula using the SDEs for the particles
velocity, by using the truncation and the hypothesis on the initial conditions. �

Summarizing, up to this point we were able to prove the following bounds, independently on N :

sup
t∈[0,T ]

E
[∣
∣
∣

∣
∣
∣m0F

N,R
t

∣
∣
∣

∣
∣
∣
2

L2(T2)

]

≤ CT,R,

sup
t∈[0,T ]

E
[∣
∣
∣

∣
∣
∣m1F

N,R
t

∣
∣
∣

∣
∣
∣
2

L2(T2)

]

≤ CT,R,

by Lemmas 5.5, 5.7 and inequality 3. and 4. from Lemma 3.5. Also

E

[

sup
t∈[0,T ]

∣
∣
∣

∣
∣
∣ω

N,R
t

∣
∣
∣

∣
∣
∣
2

L2(T2)
+

∫ T

0

∣
∣
∣
∣∇ωN,R

s

∣
∣
∣
∣2
L2(T2)

ds

]

≤ CT,R.

by Lemma 5.4.
Hence we have obtained the desired bound for the fluid in vorticity form. However, in order to obtain

convergence, we need to apply an appropriate tightness criterion.
Classical Aubin–Lions Lemma states that when E0 ⊆ E ⊆ E1 are three Banach spaces with contin-

uous embedding, and E0 compactly embedded into E, then for all p, q < ∞ the space Lp([0, T ];E0) ∩
W 1,q([0, T ];E1) is compactly embedded into Lp([0, T ];E). Hence, we can apply this criterion choosing
p = q = 2 and E0 = H2(T2), E = C(T2) and E1 = H−1(T2) to obtain

L2([0, T ];H2(T2)) ∩ W 1,2([0, T ];H−1(T2)) ↪→ L2([0, T ];C(T2))

and the embedding is compact. Thus, in order to obtain the required tightness result, we also need an a
priori estimate for the time derivative of ωN,R:
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Lemma 5.8. For every ε > 0 there exists Z > 0, such that

P
(∣
∣
∣
∣ωN,R

∣
∣
∣
∣
W 1,2([0,T ];H−1(T2))

> Z
)

≤ ε

Proof. By Lemma 5.4 we already have the result for the L2([0, T ];L2(T2)) norm of ωN . Since H1 ↪→
L2 ↪→ H−1 we already know that

P
(∣
∣
∣
∣ωN,R

∣
∣
∣
∣
L2([0,T ];H−1(T2))

> Z
)

≤ ε.

Hence we only need to estimate
∣
∣
∣
∣∂tω

N,R
∣
∣
∣
∣
L2([0,T ];H−1(T2))

. Thus we compute the H−1 norm both sides
in the equation for ωN,R, obtaining

∣
∣
∣

∣
∣
∣∂tω

N,R
t

∣
∣
∣

∣
∣
∣
H−1(T2)

�
∣
∣
∣

∣
∣
∣ΔωN,R

t

∣
∣
∣

∣
∣
∣
H−1(T2)

+
∣
∣
∣

∣
∣
∣u

N,R
t · ∇ωN,R

t

∣
∣
∣

∣
∣
∣
H−1(T2)

+R
∣
∣
∣

∣
∣
∣m0F

N,R
t

∣
∣
∣

∣
∣
∣
L2(T2)

+
∣
∣
∣

∣
∣
∣m1F

N,R
t

∣
∣
∣

∣
∣
∣
L2(T2)

by classical argument and integration by parts. Taking the square and integrating both sides we obtain
∫ T

0

∣
∣
∣

∣
∣
∣∂tω

N,R
t

∣
∣
∣

∣
∣
∣
2

H−1(T2)
dt �

∫ T

0

∣
∣
∣

∣
∣
∣∇ωN,R

t

∣
∣
∣

∣
∣
∣
2

L2(T2)
dt

+ sup
t∈[0,T ]

∣
∣
∣

∣
∣
∣ω

N,R
t

∣
∣
∣

∣
∣
∣
2

L2(T2)

∫ T

0

∣
∣
∣

∣
∣
∣u

N,R
t

∣
∣
∣

∣
∣
∣
2

C(T2)
dt

+R

∫ T

0

∣
∣
∣

∣
∣
∣m0F

N,R
t

∣
∣
∣

∣
∣
∣
2

L2(T2)
dt +

∫ T

0

∣
∣
∣

∣
∣
∣m1F

N,R
t

∣
∣
∣

∣
∣
∣
2

L2(T2)
dt.

Finally, We compute probability both sides

P

(∫ T

0

∣
∣
∣

∣
∣
∣∂tω

N,R
t

∣
∣
∣

∣
∣
∣
2

H−1(T2)
dt > R

)

and use the fact that we can split product term inside probabilities

P

(

sup
t∈[0,T ]

∣
∣
∣

∣
∣
∣ω

N,R
t

∣
∣
∣

∣
∣
∣
2

L2(T2)

∫ T

0

∣
∣
∣

∣
∣
∣u

N,R
t

∣
∣
∣

∣
∣
∣
2

C(T2)
dt > R

)

≤ P

(

sup
t∈[0,T ]

∣
∣
∣

∣
∣
∣ω

N,R
t

∣
∣
∣

∣
∣
∣
2

L2(T2)
>

√
R

)

+ P

(∫ T

0

∣
∣
∣

∣
∣
∣u

N,R
t

∣
∣
∣

∣
∣
∣
2

C(T2)
dt >

√
R

)

.

Since all the terms above are bounded in expected value, we can apply Chebyshev inequality to make
each term smaller than ε. This ends the proof. �

At this point, thanks to Aubin’s Lemma, we are able to obtain a first tightness result for the law of
uN,R in L2([0, T ];C(T2)). L2 estimates on time are enough to prove a convergence result (as partially done
in [14]), but they are not sufficient to remove the cutoff at the particle level, thus obtaining Theorem 2.3.
Hence we will have to improve our estimates in order to obtain stronger time convergence. We apply
Corollary 8 in [25] by taking

X = H1+2α(T2), B = H1+2α−ε(T2), Y = H−1(T2),

where ε < 2α and where X ↪→ Y is compact. The interpolation inequality between the space B and X,Y ,
required in Corollary 8, it is an easy result of Fourier analysis since we are on the torus. Hence we have
that

L∞([0, T ];H1+2α(T2)) ∩ W 1,2([0, T ];H−1(T2)) ↪→ C([0, T ];H1+2α−ε(T2))

with a compact embedding. Hence, by Sobolev embedding in dimension two of H1+2α−ε(T2) into C(T2)
we also have that

L∞([0, T ];H1+2α(T2)) ∩ W 1,2([0, T ];H−1(T2)) ↪→ C([0, T ] × T
2)
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with a compact embedding. Clearly the result also holds when H1+2α(T2) is replaced by H2(T2). However
we were not able to obtain a uniform in time result for the H2 norm and hence we tried to trim our
requirements. To do so, we first rewrite the equation for ωN,R in its mild formulation

ωN,R
t = etΔωN,R

0 −
∫ t

0

e(t−s)ΔuN,R
s · ∇ωN,R

s ds

−
∫ t

0

e(t−s)Δ∇⊥ · 1
N

N∑

i=1

(uN,R
εN

(Xi,N,R
s )χR(uN,R

s ) − V i,N,R
s )δεN

Xi,N,R
s

ds. (15)

Lemma 5.9. For all α < 1
2 and for each ε, there exists Z such that

P
(∣
∣
∣
∣uN,R

∣
∣
∣
∣
L∞([0,T ],H1+2α)

> Z
)

≤ ε

Proof. We apply a generalized Gronwall Lemma to the function of the only time variable
∣
∣
∣

∣
∣
∣u

N,R
t

∣
∣
∣

∣
∣
∣
H1+2α(T2)

.

Since
∣
∣
∣

∣
∣
∣u

N,R
t

∣
∣
∣

∣
∣
∣
H1+2α(T2)

∼
∣
∣
∣

∣
∣
∣ω

N,R
t

∣
∣
∣

∣
∣
∣
H2α(T2)

we apply the operator (I −Δ)α on the mild formulation of vor-

ticity equation (15), obtaining

∣
∣
∣

∣
∣
∣(I − Δ)αωN,R

t

∣
∣
∣

∣
∣
∣
L2(T2)

≤
∣
∣
∣

∣
∣
∣(I − Δ)αetΔωN,R

0

∣
∣
∣

∣
∣
∣
L2(T2)

+
∫ t

0

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
(I − Δ)αe(t−s)Δ∇⊥ · 1

N

N∑

i=1

(uN,R
εN

(Xi,N,R
s )χR(uN,R

s ) − V i,N,R
s )δεN

Xi,N,R
s

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
L2(T2)

ds

+
∫ t

0

∣
∣
∣

∣
∣
∣(I − Δ)αe(t−s)ΔuN,R

s · ∇ωN,R
s

∣
∣
∣

∣
∣
∣
L2(T2)

ds. (16)

We start by estimating the initial conditions:

∣
∣
∣

∣
∣
∣(I − Δ)αωN,R

0

∣
∣
∣

∣
∣
∣
L2(T2)

≤ ∣
∣
∣
∣etΔ

∣
∣
∣
∣
L2(T2)→L2(T2)

∣
∣
∣

∣
∣
∣(I − Δ)αωN,R

0

∣
∣
∣

∣
∣
∣
L2(T2)

�
∣
∣
∣

∣
∣
∣ω

N,R
0

∣
∣
∣

∣
∣
∣
H2α(T2)

. (17)

Regarding the second term of the r.h.s. of (16)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
(I − Δ)αe(t−s)Δ∇⊥· 1

N

N∑

i=1

(uN,R
εN

(Xi,N,R
s )χR(uN,R

s ) − V i,N,R
s )δεN

Xi,N,R
s

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
L2(T2)

≤
∣
∣
∣

∣
∣
∣∇(I − Δ)−1/2

∣
∣
∣

∣
∣
∣
L2(T2)→L2(T2)

∣
∣
∣

∣
∣
∣(I − Δ)α+1/2e(t−s)Δ

∣
∣
∣

∣
∣
∣
L2(T2)→L2(T2)

×
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1
N

N∑

i=1

(uN,R
εN

(Xi,N,R
s )χR(uN,R

s ) − V i,N,R
s )δεN

Xi,N,R
s

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
L2(T2)

≤ C

(t − s)α+1/2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1
N

N∑

i=1

(uN,R
εN

(Xi,N,R
s )χR(uN,R

s ) − V i,N,R
s )δεN

Xi,N,R
s

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
L2(T2)

≤ C

(t − s)α+1/2

(

R
∣
∣
∣

∣
∣
∣m0F

N,R
t

∣
∣
∣

∣
∣
∣
L2(T2)

+
∣
∣
∣

∣
∣
∣m1F

N,R
t

∣
∣
∣

∣
∣
∣
L2(T2)

)

, (18)
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while for the last one of (16) we have
∣
∣
∣

∣
∣
∣(I − Δ)αe(t−s)ΔuN,R

s · ∇ωN,R
s

∣
∣
∣

∣
∣
∣
L2(T2)

≤
∣
∣
∣

∣
∣
∣(I − Δ)α+1/2e(t−s)Δ

∣
∣
∣

∣
∣
∣
L2(T2)→L2(T2)

∣
∣
∣

∣
∣
∣(I − Δ)−1/2uN,R

s · ∇ωN,R
s

∣
∣
∣

∣
∣
∣
L2(T2)

≤ C

(t − s)α+1/2

∣
∣
∣

∣
∣
∣(I − Δ)−1/2uN,R

s · ∇ωN,R
s

∣
∣
∣

∣
∣
∣
L2(T2)

,

and ∣
∣
∣

∣
∣
∣(I − Δ)−1/2uN,R

s · ∇ωN,R
s

∣
∣
∣

∣
∣
∣
L2(T2)

= sup
ϕ∈L2(T2)

∣
∣
∣〈(I − Δ)−1/2uN,R

s · ∇ωN,R
s , ϕ〉

∣
∣
∣ .

Now, notice that

〈uN,R
s · ∇ωN,R

s , (I − Δ)−1/2ϕ〉 = −〈ωN,R
s , uN,R

s · ∇(I − Δ)−1/2ϕ〉
≤ sup

||ϕ||L2(T2)≤1

||ϕ||L2(T2)

∣
∣
∣
∣uN,R

s

∣
∣
∣
∣
∞

∣
∣
∣
∣ωN,R

∣
∣
∣
∣
L2(T2)

. (19)

Combining (17),(18),(19):
∣
∣
∣

∣
∣
∣ω

N,R
t

∣
∣
∣

∣
∣
∣
H2α(T2)

�
∣
∣
∣

∣
∣
∣ω

N,R
0

∣
∣
∣

∣
∣
∣
H2α(T2)

+
∫ t

0

(
R
∣
∣
∣
∣m0F

N,R
s

∣
∣
∣
∣
L2(T2)

+
∣
∣
∣
∣m1F

N,R
s

∣
∣
∣
∣
L2(T2)

)

(t − s)α+1/2
ds

+
∫ t

0

∣
∣
∣
∣uN,R

s

∣
∣
∣
∣
L∞(T2)

∣
∣
∣
∣ωN,R

s

∣
∣
∣
∣
L2(T2)

(t − s)α+1/2
ds

≤ C
∣
∣
∣

∣
∣
∣ω

N,R
0

∣
∣
∣

∣
∣
∣
H2α(T2)

+
∫ T

0

(
R
∣
∣
∣
∣m0F

N,R
s

∣
∣
∣
∣
L2(T2)

+
∣
∣
∣
∣m1F

N,R
s

∣
∣
∣
∣
L2(T2)

)

(T − s)α+1/2
ds +

+C

(

sup
t∈[0,T ]

∣
∣
∣

∣
∣
∣ω

N,R
t

∣
∣
∣

∣
∣
∣
L2(T2)

)∫ t

0

∣
∣
∣
∣uN,R

s

∣
∣
∣
∣
H1+2α(T2)

(t − s)α+1/2
ds.

Finally,
∣
∣
∣

∣
∣
∣u

N,R
t

∣
∣
∣

∣
∣
∣
H1+2α(T2)

� C
∣
∣
∣

∣
∣
∣ω

N,R
0

∣
∣
∣

∣
∣
∣
H2α(T2)

+
∫ T

0

R
∣
∣
∣
∣m0F

N,R
s

∣
∣
∣
∣
L2(T2)

(T − s)α+1/2
ds +

+
∫ T

0

∣
∣
∣
∣m1F

N,R
s

∣
∣
∣
∣
L2(T2)

(T − s)α+1/2
ds +

(

sup
t∈[0,T ]

∣
∣
∣

∣
∣
∣ω

N,R
t

∣
∣
∣

∣
∣
∣
L2(T2)

)∫ t

0

∣
∣
∣
∣uN,R

s

∣
∣
∣
∣
H1+2α(T2)

(t − s)α+1/2
ds.

Notice that in the expression above the terms involved above are random (for simplicity we have
omitted ω ∈ Ω). Introduce, to short the notation, the random function

ϕ(t) :=
∣
∣
∣

∣
∣
∣u

N,R
t

∣
∣
∣

∣
∣
∣
H1+2α(T2)

.

We have proved that the function ϕ satisfies

ϕ(t) ≤ X1 + X2

∫ t

0

ϕ(s)
(t − s)α+1/2

ds

where

X1 =
∣
∣
∣

∣
∣
∣ω

N,R
0

∣
∣
∣

∣
∣
∣
H2α(T2)

+
∫ T

0

(
R
∣
∣
∣
∣m0F

N,R
s

∣
∣
∣
∣
L2(T2)

+
∣
∣
∣
∣m1F

N,R
s

∣
∣
∣
∣
L2(T2)

)

(T − s)α+1/2
ds

X2 = sup
t∈[0,T ]

∣
∣
∣

∣
∣
∣ω

N,R
t

∣
∣
∣

∣
∣
∣
L2(T2)

.
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Notice that, by the uniform estimates proved in this section, there exist two constant C1 and C2, inde-
pendent on N , such that

E [X1] ≤ C1, E [X2] ≤ C2,

so that, for fixed ε we can chose R1, R2 > 0 in order to have

P(X1 > R1) <
ε

2
, P(X2 > R2) <

ε

2
.

For a fixed ω ∈ Ω applying Gronwall Lemma to the function ϕ we obtain

sup
t∈[0,T ]

ϕ(t)(ω) ≤ f(X1,X2)(ω).

We now claim that

P

(

sup
t∈[0,T ]

ϕ(t) > f(R1, R2)

)

< ε.

In fact we have the following chain of inequalities

P

(

sup
t∈[0,T ]

ϕ(t) ≤ f(R1, R2)

)

≥ P
(

ϕ(t) ≤ R1 + R2

∫ t

0

ϕ(s)
(t − s)α+1/2

ds

)

≥ P ((X1 ≤ R1) ∩ (X2 ≤ R2)) ≥ 1 − P(X1 > R1) − P(X2 > R2) ≥ 1 − ε.

We end the proof by taking the complement set both sides. �

We are finally able to obtain the following tightness result:

Lemma 5.10. The family of laws {QN,R,u}N∈N of {uN,R}N∈N, is tight, and hence is relatively compact as
a probability measure on C([0, T ] × T

2).

Proof. The proof is just an application of Simons embedding in [25]. For each M,Z > 0 we can consider
the following set, for all α < 1/2

KM,Z =
{

u ∈ C([0, T ] × T
2) | ||u||L∞([0,T ];H1+2α(T2)) ≤ M,

||u||W 1,2([0,T ];H−1(T2)) ≤ Z

}

.

By the Simons Lemma KM,Z is relatively compact in C([0, T ] × T
2). Notice that

QN,R,u(Kc
M,Z) = P(uN,R ∈ Kc

M,Z)

≤ P
(∣
∣
∣
∣uN,R

∣
∣
∣
∣
L∞([0,T ];H1+2α(T2))

> M
)

+ P
(∣
∣
∣
∣uN,R

∣
∣
∣
∣
W 1,2([0,T ];H−1(T2))

> Z
)

≤

≤
E
[∣
∣
∣
∣uN,R

∣
∣
∣
∣
L∞([0,T ];H1+2α(T2))

]

M
+ ε

by lemma 5.8. By Lemma 5.9 the expected values on the r.h.s. is uniformly bounded with respect to N ,
hence the sequence {QN,R,u}N∈N is tight and proof is concluded. �

Combining Proposition 5.2 and Lemma 5.10 we obtain the following:

Corollary 5.11. The family of laws {QN,R}N∈N of the couple (uN,R, SN,R) is tight, and hence relatively
compact as a probability measures on C([0, T ] × T

2) × C([0, T ];P1(T2 × R
2)).
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5.2. Convergence of (PSR − NSR ) to (V NS)

We will now prove that, under hypothesis on Section 2.3, and if R is large enough, then the solution
(uR, FR) of (V NSR) coincide with the solution (u, F ) of (V NS). To do so we will prove that uR is
bounded in L∞([0, T ] ×T

2), independently on R. First we summarize all the intermediate results needed
for the proof. We remark that all the following bounds hold independently on R:

• For all k ≤ 6

sup
t∈[0,T ]

MkFR
t ≤ C

by Lemma 3.6 and hypothesis 2.3;
•

∣
∣
∣
∣m0F

R
∣
∣
∣
∣
L∞([0,T ];L2(T2)

≤ C, and
∣
∣
∣
∣m1F

R
∣
∣
∣
∣
L∞([0,T ];L2(T2)

≤ C

by Lemma 3.6 and inequality 1. and 2. in Lemma 3.5;
• for all p > 1

∣
∣
∣
∣uR

∣
∣
∣
∣
L2([0,T ];Lp(T2))

≤ Cp

by Remark 3.2.
We can now formulate a further result, needed in the proof of Theorem 5.14.

Lemma 5.12. There exists a constant C, independent on R, such that
∣
∣
∣
∣ωR

∣
∣
∣
∣
L∞([0,T ];L2(T2))

≤ C.

Proof. Computing the time derivative of
∫

T2

∣
∣ωR

t

∣
∣2 dx we obtain

∣
∣
∣
∣ωR

t

∣
∣
∣
∣2
L2(T2)

+
∫ T

0

∫

T2

∣
∣∇ωR

s

∣
∣2 dx ds � ||ω0||2L2(T2)

+
∫ t

0

∫

T2
ωR

s ∇⊥ ·
∫

R2
(uR

s − v)χR(uR)FR
s dv dx ds. (20)

Focusing only on the last term of the previous inequality we have

(20) �
∫ t

0

∫

T2

∣
∣∇ωR

s

∣
∣
∣
∣uR

s

∣
∣
∫

R2
FR

s dv dx ds +
∫ t

0

∫

T2

∣
∣∇ωR

s

∣
∣
∫

R2
|v|FR

s dv dx ds

�
∫ T

0

∫

T2

∣
∣∇ωR

s

∣
∣2 dx ds +

∫ T

0

∫

T2

∣
∣uR

s

∣
∣2

(∫

R2
FR

s dv

)2

dx ds

+
∫ T

0

∫

T2

∣
∣∇ωR

s

∣
∣2 dx ds +

∫ T

0

∫

T2

(∫

R2
|v|FR

s dv

)2

dx ds.

Let us notice that
∫ T

0

∫

T2

∣
∣uR

s

∣
∣2

(∫

R2
FR

s dv

)2

dxds ≤
∫ T

0

∣
∣
∣
∣uR

s

∣
∣
∣
∣2
L4(T2)

(∫

T2

(∫

R2
FR

s dv

)4

dx

) 1
2

ds

≤ sup
t∈[0,T ]

∣
∣
∣
∣m0F

R
t

∣
∣
∣
∣2
L4(T2)

∣
∣
∣
∣uR

∣
∣
∣
∣
L2([0,T ];L4(T2))

� sup
t∈[0,T ]

(M6F
R
t )

1
2
∣
∣
∣
∣uR

∣
∣
∣
∣
L2([0,T ];L4(T2))

≤ C

and ∫ T

0

∫

T2

(∫

R2
|v|FR

s dv

)2

dx ds �T sup
t∈[0,T ]

M4F
R
t ≤ C

again by Lemma 3.5. We conclude the proof by classical Gronwall Lemma. �
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We emphasize that, even if it is possible to prove the uniform bound with respect the parameter R,
it is not possible to obtain the same result directly at the particle level. In other terms, we were not able
to obtain directly any bound on the vorticity in the particle system (PS − NS)

E
[∣
∣
∣
∣ωN

∣
∣
∣
∣
L∞([0,T ];L2(T2))

]

without using the cut off. This result would have allowed us to remove the cut off directly at the particle
level, without any further complication.
We finally prove the uniform bound on uR:

Proposition 5.13. There exists a constant Ku, independent on R, such that
∣
∣
∣
∣uR

∣
∣
∣
∣
∞ ≤ Ku.

Proof. In order to produce the required bound we bound uniformly the norm of uR in the space
L∞([0, T ];H1+2α(T2)) for any α < 1/2. Hence we use the mild formulation for the vorticity equation
associated with uR:

∂tω
R = ΔωR − uR · ∇ωR − ∇⊥ ·

∫

R2
(uR − v)χR(uR)FR dv.

Following the same argument of Lemma 5.9 we get
∣
∣
∣
∣uR

t

∣
∣
∣
∣
H1+2α(T2)

�
∣
∣
∣
∣ωR

t

∣
∣
∣
∣
H2α(T2)

�
∣
∣
∣
∣ωR

0

∣
∣
∣
∣
H2α(T2)

+
∫ t

0

∣
∣
∣
∣uR

s

∣
∣
∣
∣
L∞(T2)

∣
∣
∣
∣ωR

s

∣
∣
∣
∣
L2(T2)

(t − s)α+1/2
ds

+
∫ t

0

∣
∣
∣
∣uR

s

∣
∣
∣
∣
L∞(T2)

∣
∣
∣
∣m0F

R
s

∣
∣
∣
∣
L2(T2)

(t − s)α+1/2
ds +

∫ t

0

∣
∣
∣
∣m1F

R
s

∣
∣
∣
∣
L2(T2)

(t − s)α+1/2
ds

�
∣
∣
∣
∣ωR

0

∣
∣
∣
∣
H2α(T2)

+
∣
∣
∣
∣ωR

∣
∣
∣
∣
L∞([0,T ];L2(T2))

∫ t

0

∣
∣
∣
∣uR

s

∣
∣
∣
∣
H1+2α(T2)

(t − s)α+1/2
ds

+

(

sup
t∈[0,T ]

M2F
R
t

) 1
2 ∫ t

0

∣
∣
∣
∣uR

s

∣
∣
∣
∣
H1+2α(T2)

(t − s)α+1/2
ds +

(

sup
t∈[0,T ]

M4F
R
t

) 1
2

,

by neglecting the cutoff function χR which is bounded by one. By using the uniform bound described at
the beginning of Sect. 5.2, Lemma 5.12 and Lemma 3.5 inequality 1. and 2. we see that all the expression
above are bounded independently on R and we conclude by a Gronwall type argument applied to the
function

∣
∣
∣
∣uR

t

∣
∣
∣
∣
H1+2α(T2)

. �

In conclusion we have the following Theorem:

Theorem 5.14. If R ≥ Ku + 1, then any weak solution (uR, FR) of system of PDE (V NSR) coincide
with the unique bounded weak solutions of system of equations (V NS).

Proof. By proposition 5.13, taking R ≥ Ku + 1 we have that the function χR(uR) ≡ 1, hence system
of equation (V NSR) reduce to (V NS). Hence, we obtain that the couple (uR, FR) satisfies system of
equation (V NS). By the uniqueness of solution for system of equations (V NS), we obtain u = uR and
F = FR. �

In order to complete the proof of Proposition 5.1 we need only to verify that limit points of the
sequence {QN,R}N∈N are supported on weak solutions of system of equations (V NS).

Proposition 5.15. If R ≥ Ku +1 limit points of subsequences of {QN,R}N∈N are supported on the bounded
weak solutions of system of PDE (V NS) (see Definition 2.2).
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Proof. In order to prove that weak limits are supported on weak solutions, we have to prove that those
object satisfies equation (V NS) in the weak sense, and that they have the correct regularity. The fact
that limit objects satisfy system of equations (V NS) is classical, see [23]. Let us focus on the regularity
issue.

First, by By Lemma 5.4 together with Lemma 3.5 inequality 3. and 4, limit points on the component
corresponding to uN,R satisfy the regularity properties of Definition 2.2. Similarly from a priori estimates
in Corollary 5.6 limit points of subsequences have a density on their particle component (corresponding
to SN,R) which is also in L2([0, T ] × T

2 × R
2). In order to complete the proof we need to verify that

such density is uniformly bounded, as required in Definition 2.2. This follows by the maximum principle
argued in Sect. 3.1. Namely, the fact that the limit points along the particles component satisfies system
of equations (V NS), where u is uniformly bounded, yields to an uniform bound for the density in
L∞([0, T ] × T

2 × R
2). Denoting by F one of the limit points, we only need to verify that

∫ T

0

∫

T2

∫

R2
|v|2 F 2

s dx dv ds < ∞. (21)

By using Lemma 5.5 F is in L4([0, T ] × T
2 × R

2). By interpolation inequality of Lp spaces we also have
F ∈ L3([0, T ] × T

2 × R
2). Also, the uniform bound on the v-moments of FN,R, provided in Lemma 5.7,

grants also M4F to be finite. Hence, by an easy computation (see Section 3.1), we see that (21) is satisfied.
Thus by the maximum principle we have F ∈ L∞([0, T ] × T

2 × R
2), hence ending the proof. �

Combining Proposition 5.15 with Theorem 4.1 we complete the proof of Proposition 5.1.

6. Scaling Limit for the Full System

The aim of this section is to prove that the cut-off can be removed also in the approximating system
(uN,R, SN,R): the uniform convergence result proved in the previous section, Proposition 5.1, gives a
simple but relevant hint to prove the final result of convergence. We expect that the converging object
(uN,R, SN,R) inherits the property of boundedness, independently on the parameter R, that holds for
the limit object. If so, we can remove the cut-off, choosing R large enough from the beginning. The first
difficulty in the realization of this intuition is given by the type of convergence which we are dealing
with: convergence in law. We will overcome this technicality, appealing to the Skorohod’s Theorem to
strengthen the convergence.

We will first state and prove a general result for almost sure convergence of random variables. Then, in
order to utilize such criterion, we will make us Skorohod’s Theorem and we will understand our particle
systems in a path-by-path sense: we will give a precise definition of path-by-path solutions and prove a
uniqueness result for such kind of solutions. The application of the above mentioned criterion to our case
will let us transfer the property of convergence from the sequence (uN,R, SN,R) to (uN , SN ).

In the rest of the section we will always assume to have taken

R = max(Ku + 1, ||u||∞ + 1)

where the constant Ku has been defined in Proposition 5.13. This choice will assure that Proposition 5.1
is verified. The condition that R is greater than ||u||∞ + 1 is needed in order to let the sequence of uN,R

to inherit the uniform boundedness of the limit u. This process will be clarified later.

6.1. Convergence Criterion

We now present the general criterion that we will use to obtain the convergence of the sequence (uN , SN )N∈N

from that of (uN,R, SN,R)N∈N. The framework of this criterion is pretty general. We preferred to isolate
it an state it in its general form, rather than in our specific case, in order to make the underlying idea
more evident.
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Theorem 6.1. (General Principle) Let (Ω,F ,P) a probability space and let (E, dE) a separable metric
space. Let {XN}N∈N and {YN}N∈N two sequences of random variables taking values in E and let x be a
point in E. Moreover, suppose that for each N ∈ N, there exist two collections of subset SX

N (ω) ⊆ E and
SY

N (ω) ⊆ E, indexed by ω ∈ Ω. Assume further that the following conditions are satisfied:
1.

XN
N→∞−−−−→ x ∈ E P-a.s.;

2. denoting

ΩS =
{
ω ∈ Ω | �SY

N (ω) ≤ 1 ∀N ∈ N
}

where by �A we mean the cardinality of the set A, we have

P(ΩS) = 1;

3. denoting

ΩX =
{
ω ∈ Ω |XN (ω) ∈ SX

N (ω) ∀N ∈ N
}

,

ΩY =
{
ω ∈ Ω |YN (ω) ∈ SY

N (ω) ∀N ∈ N
}

,

we have

P(ΩX) = P(ΩY ) = 1;

4.

BE(x, 1) ∩ SX
N (ω) ⊆ SY

N (ω) ∀N ∈ N, ∀ω ∈ Ω.

Then the sequence {YN}N∈N converges in E to the same limit of the sequence {XN}N∈N

YN
N→∞−−−−→ x ∈ E P-a.s.

Proof. Consider the set

ΩC,X :=
{

ω ∈ Ω | d(XN (ω), x)E
N→ 0

}

and

ΩC,Y :=
{

ω ∈ Ω | d(Y N (ω), x)E
N→ 0

}

Note that, by property 1. the set ΩC,X has full measure P(ΩC,X) = 1.
We will prove that

ΩS ∩ ΩC,X ∩ ΩX ∩ ΩY ⊆ ΩC,Y (22)
thus implying the thesis being P(ΩS) = P(ΩX) = P(ΩY ) = 1 by property 2. and 3. To do so let us
consider the set

Ω1 = {ω ∈ Ω | ∃N(ω) d(XN (ω), x) ≤ 1∀N > N(ω)}
and note that

ΩX,C ⊆ Ω1.

Now define

Ω2 = {ω ∈ Ω |XN (ω) = YN (ω)∀N > N(ω)}
where N(ω) is defined for each ω, in the set Ω1. We claim that

ΩS ∩ ΩX,C ∩ ΩX ∩ ΩY ⊆ Ω2. (23)

Take ω ∈ ΩS ∩ ΩX,C ∩ ΩX ∩ ΩY . Hence if N > N(ω), given that ω lies in ΩX,C , it also lies in Ω1, thus
we have XN (ω) ∈ BE(x, 1)E . Moreover, ω lies also in ΩX , hence XN (ω) ∈ SX

N (ω). By property 4. we
conclude XN (ω) ∈ SY

N (ω). Furthermore ω ∈ ΩY implies YN (ω) ∈ SY
N (ω), but ω is also in ΩS hence by

property 2. SY
N (ω) is a singleton, hence SY

N (ω) = {YN (ω)}. Since XN (ω) ∈ SX
N (ω) and SY

N (ω) = {YN (ω)}
we obtain XN (ω) = YN (ω) and we have proven condition (23).
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Finally, we can prove condition (22): taking ω ∈ ΩS ∩ ΩX,C ∩ ΩX ∩ ΩY , we have that ∀ε > 0 there exists
Nε(ω), such that

d(XN (ω), x)E < ε ∀N > Nε(ω)

By condition (23) ω lies also in Ω2, hence

XN (ω) = YN (ω) ∀N > N(ω).

Calling N(ω) = max(Nε(ω), N(ω)) we conclude

d(YN (ω), x)E < ε ∀N > Nε(ω)

and hence ω ∈ ΩY,C . Thus the proof is concluded. �

6.2. Path by Path Solutions for (PS − NS)

We will now focus on the problem of uniqueness for path-by-path solutions. The issue of uniqueness for
this class of solutions is very difficult: very few result are know before the work of [7]. The analysis of
such kind of problem for (PS − NS) will be a key point of the proof of Theorem 2.3. In fact, to apply
Theorem 6.1 to our case, we will see that strong uniqueness in the sense of SDEs, which is more classical
than that path-by-path, will not be enough. We now recall the concept of path-by-path solutions and
uniqueness in this class. We will discuss this topic in the specific case that is needed here, the system of
PDE-SDEs (PS − NS).

Recall system of equation (PS − NS) and note that, in the equation for the particle position and
velocity (Xi,N

t , V i,N
t ) the noise is pure additive Brownian motion, i.e. the diffusion coefficient is constant.

For this reason Itô integral is not involved into the equations and one can understand system of equations
(PS − NS) in its integral form as a coupling PDE-ODEs, where the Brownian motions plays the role of
a given external force. This perspective is outlined in the following system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu
N = ΔuN − uN · ∇uN − ∇πN − 1

N

∑N
i=1(u

N
εN

(Xi,N
t ) − V i,N

t )δεN

Xi,N
t

div(uN ) = 0,
{

Xi,N
t = Xi

0 +
∫ t

0
V i,N

s ds

V i,N
t = V i

0 +
∫ t

0
(uN

εN
(Xi,N

s ) − V i,N
s ) ds + σBi

t(ω)
i = 1, . . . , N

(24)

where Bi
t(ω) stands for a single realization of a Brownian path for fixed ω ∈ Ω. We now introduce the

set of path-by-path solutions for a given realization of ω ∈ Ω and for fixed N ∈ N:

SN (ω) =
{(

w,
(
xi

· , v
i
·
)

i=1,...,N

)

∈ C([0, T ] × T
2) × C([0, T ];T2 × R

2)N s.t.
(

w,
(
xi

· , v
i
·
)

i=1,...,N

)

solves (24) with additive noise (Bi
t(ω))i=1,...,N

}

. (25)

Roughly speaking SN (ω) is the set of curves that solves (24) in a deterministic setting for a prescribed
realization of a Brownian path (identified by ω). We do not give a precise definition of existence of path-
by-path solutions. We remark that existence of weak or strong solutions in an SDE settings imply that
the set SN (ω) is non empty with probability one. We now focus our attention to the topic of uniqueness.

Definition 6.2. (Uniqueness of path-by-path solutions) Given a natural number N we say that there is
path-by-path uniqueness for system of equations (PS −NS) with N particles, if there exist a set ΩS ⊆ Ω
with probability one P(ΩS) = 1 such that

�SN (ω) ≤ 1 ∀ω ∈ ΩS

where �A stands for the cardinality of the set A.
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Opposite to the case of existence, uniqueness of path-by-path solutions is a much more difficult topic:
uniqueness in this class is a stronger notion that weak or strong uniqueness for SDE. In Definition 6.2 no
measurability with respect to the probability space (Ω,F , {Ft},P) is required. In case of uniqueness for
SDE a much more richer structure is available, given that solutions are required at least to be adapted
to the filtration Ft.

We now prove a path-by-path uniqueness result for system of equation (PS −NS). Some result about
path-by-path uniqueness for SDEs are already known: Davie in [7] prove the result for a single SDE with
pure additive Brownian noise and only bounded measurable drift. This type of result for low regularity
drift functions, less than locally Lipschitz, are very difficult. In our case, the drift appearing into the
particle equations (Xi,N

t , V i,N
t ) is even more regular than Lipschitz: in fact the function uN

εN
(t, x) is

C∞ in the space variable due to the convolution with the C∞ function θεN (x). However, the case here
is slightly different from the case of a single SDE due to the strong coupling with the Navier–Stokes
equation that introduce additional difficulty.

Proposition 6.3. Let us consider on the probability space (Ω,F , {Ft} ,P)

ΩB =
{
ω ∈ Ω |Bi

t(ω) is continuous on [0, T ]∀i ∈ N
} ⊆ Ω

the set where all the Brownian motion (Bi)i∈N are continuous, which is of full measure with respect to P.
Then, for all N ∈ N we have uniqueness path-by-path for system of equation (PS −NS) with N particles,
namely

�SN (ω) ≤ 1 ∀ω ∈ ΩB.

Proof. For a matter of simplicity we prove the result in the case N = 1: the generalization for general N ,
is straightforward. Moreover, to make the notation less heavy, we will omit the dependence on N and ω
indicating with ut the variable uN

t (ω) and with (Xt, Vt) the couple of variables (X1,1
t , V 1,1

t )(ω). Also the
mollifier θ0,εN will be labeled simply by θ. In our simplification, the system becomes:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu = Δu − u · ∇u − ∇π − ((θ ∗ u)(Xt) − Vt) θ(x − Xt)
div(u) = 0
{

Ẋt = Vt

V̇t = ((θ ∗ ut)(Xt) − Vt) + Bt.

Now we consider two solutions (u,X, V ) and (u′,X ′, V ′), with (u0,X0, V0) = (u′
0,X

′
0, V

′
0), and we apply

Gronwall Lemma to the quantity

|Xt − X ′
t| + |Vt − V ′

t | + ||ut − u′
t||H1+2α(T2) ,

for α < 1
2 .

We start by computing the distance of velocities, recalling that V0 = V ′
0 and Bt is the same given function

for the two solutions

|Vt − V ′
t | ≤

∫ t

0

[(θ ∗ us)(Xs) − (θ ∗ u′
s)(X

′
s)] ds +

∫ t

0

|Vs − V ′
s | ds

≤
∫ t

0

[(θ ∗ us)(Xs) − (θ ∗ u′
s)(Xs)] ds +

∫ t

0

[(θ ∗ u′
s)(Xs) − (θ ∗ u′

s)(X
′
s)] ds

+
∫ t

0

|Vs − V ′
s | ds

�
∫ t

0

||us − u′
s||H1+2α(T2) ds +

∫ t

0

|Xs − X ′
s| ds +

∫ t

0

|Vs − V ′
s | ds

where we have used both the Lipschitzianity and boundedness in L∞(T2) of θ∗us, as well as the embedding
H1+2α(T2) ↪→ C(T2).
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Regarding the X component we simply have

|Xt − X ′
t| ≤

∫ t

0

|Vs − V ′
s | ds.

The main difficulty consists in estimating ||ut − u′
t||H1+2α(T2). As done in previous sections we approach

the problem through the vorticity formulation. Call ω and ω′ the vorticity associated to u and u′. As in
Lemma 5.9, by the mild formulation of ω − ω′ we have

||ωt − ω′
t||H2α(T2) ≤

∫ t

0

∣
∣
∣

∣
∣
∣(I − Δ)αe(t−s)Δus · ∇(ωs − ω′

s)
∣
∣
∣

∣
∣
∣
L2(T2)

ds (26)

+
∫ t

0

∣
∣
∣

∣
∣
∣(I − Δ)αe(t−s)Δ(us − u′

s) · ∇ω′
s

∣
∣
∣

∣
∣
∣
L2(T2)

ds (27)

+
∫ t

0

∣
∣
∣
∣

∣
∣
∣
∣(I − Δ)αe(t−s)Δ∇⊥ · Λu,X,V (s)

∣
∣
∣
∣

∣
∣
∣
∣
L2(T2)

ds (28)

where

Λu,X,V (s) :=
[

((θ ∗ u)(Xs) − Vs) θ(x − Xs) − ((θ ∗ u′)(X ′
s) − V ′

s ) θ(x − X ′
s)
]

.

We now deal with each of the terms above separately. We strictly follow the same computation of
Lemma 5.9, starting from (26):

(26) �
∫ t

0

||us||C(T2) ||ωs − ω′
s||L2(T2)

|t − s|α+1/2
ds

� ||u||∞
∫ t

0

||us − u′
s||H1+2α(T2)

|t − s|α+1/2
ds,

(27) �
∫ t

0

||us − u′
s||C(T2) ||ω′

s||L2(T2)

|t − s|α+1/2
ds

� ||ω′||L∞([0,T ];L2(T2))

∫ t

0

||us − u′
s||H1+2α(T2)

|t − s|α+1/2
ds.

In the same way we have

(28) �
∫ t

0

||Λu,X,V (s)||L2(T2)

|t − s|α+1/2
ds

We proceed now by adding and subtracting the right quantities from Λu,X,V (s) obtaining
∣
∣
∣

[
(θ ∗ us)(Xs) − Vs

]
θ(x − Xs) −

[
(θ ∗ u′

s)(X
′
s) − V ′

s

]
θ(x − X ′

s)
∣
∣
∣ ≤

≤ θ(x − Xs) |(θ ∗ us)(Xs) − (θ ∗ u′
s)(Xs)|

+ θ(x − Xs) |(θ ∗ u′
s)(Xs) − (θ ∗ u′

s)(X
′
s)|

+ u′
s(X

′
s) |θ(x − Xs) − θ(x − X ′

s)|
+ θ(x − Xs) |Vs − V ′

s |
+ |Vs| |θ(x − Xs) − θ(x − X ′

s)|
� ||us − u′

s||H1+2α(T2) + |Xs − X ′
s| + |Vs − V ′

s |
by using the boundedness of u and u′, the Lipschitzianity of (θ ∗ u), the boundedness of |Vs| and that of
θ. Hence we obtained

(28) �
∫ t

0

||us − u′
s||H1+2α(T2) + |Xs − X ′

s| + |Vs − V ′
s |

|t − s|1/2+α
ds
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We conclude by a standard Gronwall type inequality. �

6.3. Proof of Theorem 2.3

We finally have all the ingredients to prove Theorem 2.3. Since the proof is quite technical we first outline
the general strategy.
From Proposition 5.1 we have obtained convergence in Law of the sequence (uN,R, SN,R) to the unique
weak solution of (V NS), call it (u, F ). We aim to obtain the same result for the sequence (uN , SN ),
namely to prove Theorem 2.3. To do so, we will apply the convergence criterion stated in Theorem 6.1, to
transfer the convergence from one sequence to another. However, Theorem 6.1 requires the sequences of
random variables involved, to converge almost surely in the appropriate topology, while Proposition 5.1
grants us only convergence in law. Hence, to overcome this problem, we will first appeal to a slight
variation of Skorohod representation Theorem, Lemma 6.4, applied to the sequence (uN,R, SN,R)N∈N

in order to obtain almost sure convergence from convergence in law. Let us omit some technicalities
concerning Skorohod Theorem, whose details will be clarified later, and assume now that the sequence
(uN,R, SN,R) is converging almost surely to (u, F ). We will apply Theorem 6.1 by taking

XN = (uN,R, SN,R), YN = (uN , SN ), x = (u, F ).

Still avoiding some technicalities we will chose

SX
N (ω) = the set of path-by-path solutions of(PSR − NSR)

and

SY
N (ω) = the set of path-by-path solutions of(PS − NS).

With this choice we will see that conditions [1–4] stated in Theorem 6.1 will be satisfied. We can now
outline the reasoning behind the hypotheses of Theorem 6.1 in the following scheme:
Condition 1. corresponds to Proposition 5.1, that is the convergence of (uN,R, SN,R) to the limit point

(u, F );
Condition 2. resembles to the path-by-path uniqueness result, Proposition 6.3;
Condition 3. states that (uN,R, SN,R) is a path-by-path solution of (PSR − NSR) and the analogue for

(uN , SN );
Condition 4. expresses the fact that path-by-path solutions of (PSR − NSR) which are also bounded

from above, also satisfies (PS − NS) if the parameter R is large enough. This is the same
idea used to prove Theorem 5.14 when we proved that two PDE system coincide for large
R.

We now remark the importance of dealing with path-by-path uniqueness. Imagine to replace condition
2. in Theorem 6.1, with some condition that mimics the idea of strong uniqueness for SDE, instead of
that for path-by-path uniqueness. A possible modification is the following:
Condition 2.bis: For all N ∈ N and for every Z E-valued random variable, if

P(Z(ω) ∈ SY
N (ω)) = 1

then

P(Z(ω) = YN (ω)) = 1.

Now, following the proof of Theorem 6.1, we can proceed into the proof up to a certain point. Specifically
we can prove that the set

{
XN (ω) ∈ SY

N (ω) ∀N > N(ω)
}

is of full measure with respect to P. However, there is no way to apply condition 2.bis, to conclude that

P(XN (ω) = YN (ω) ∀N > N(ω)) = 1

as it would be needed to end the proof.
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We now recall and prove a small variation of Skorohod’s Theorem, that we will need in the proof of
Theorem 2.3.

Lemma 6.4. Let (Ω,F ,P) be a probability space and let (XN , YN )N∈N be a sequence of random variables
defined on Ω, taking values on a separable metric space E × F . Assume that F is also a Banach space
and YN ∈ L1(Ω;F ) for each N ∈ N. Let also X : Ω → E be a random variable and assume further that

XN
Law→ X.

Then, there exist a probability space (Ω̃, F̃ , P̃) and random variables defined on the new probability space
(X̃N , ỸN )N∈N, X̃ such that

(X̃N , ỸN ) Law∼ (XN , YN ), X̃
Law∼ X

and

X̃N→X̃ P̃-almost-surely.

Proof. The proof relies on the classical Skorohod’s Theorem, see [4].
Call cN := E [||YN ||F ], and introduce aN = NcN . Consider now the sequence ZN := YN/aN and notice
that

ZN
Law→ 0

since the convergence also holds in probability. Now, applying Skorohod’s Theorem to the sequence
(XN , ZN ) we obtain that there exist a new probability space (Ω̃, F̃ , P̃) and random variables (X̃N , Z̃N )N∈N,
X̃ such that

(X̃N , Z̃N ) Law∼ (XN , ZN ), X̃
Law∼ X

and

X̃N→X̃ P̃-almost-surely.

Introduce ỸN := aN Z̃N and observe that (X̃N , ỸN ) Law∼ (XN , YN ). This concludes the proof. �

Proof of Theorem 2.3. As explained the above the proof is divided into three steps: first we apply
Lemma 6.4 to the sequence (uN,R, SN,R) to obtain almost sure convergence on a new probability space.
Second, we will see that the new random variables obtained, on the new probability space satisfies the
same equations as the original one. Lastly, we apply the general principle Theorem 6.1 to transfer the
convergence from (uN,R, SN,R) to (uN , SN ).
Step 1: Let us first introduce some notation. For each N ∈ N we first introduce XN,R ∈ C([0, T ];T2)N

and VN,R ∈ C([0, T ];R2)N defined as

XN,R(i) =

{
Xi,N,R

· if i ≤ N,

0 otherwise,
VN,R(i) =

{
V i,N,R

· if i ≤ N,

0 otherwise.

where 0 stands for the function which is identically zero. Roughly speaking XN,R (respectively VN,R) is
the sequence of functions, where the first N elements are the particles trajectories Xi,N,R

· , and all the
others are identically zero. Now we apply Lemma 6.4 to the sequence

(uN,R, SN,R, (Bi)i∈N,XN,R,VN,R)N∈N

where

(uN,R, SN,R, (Bi)i∈N) Law−−−→ (u, F, (Bi)i∈N)
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and we just need to verify that (XN,R,VN,R) is integrable with respect to P for each N ∈ N. However
this is true because

E
[∣
∣
∣
∣XN,R

∣
∣
∣
∣
L∞([0,T ];T2)N

]
= E

[

max
i≤N

sup
t∈[0,T ]

∣
∣
∣

∣
∣
∣X

i,N,R
t

∣
∣
∣

∣
∣
∣

]

≤ NE

[

sup
t∈[0,T ]

∣
∣
∣

∣
∣
∣X

i,N,R
t

∣
∣
∣

∣
∣
∣

]

≤ C · N

by using exchangeability and by the fact that E
[
supt∈[0,T ]

∣
∣
∣

∣
∣
∣X

i,N,R
t

∣
∣
∣

∣
∣
∣

]
≤ C due to the presence of the

cutoff in system of equations (PSR − NSR). The same result holds for every VN,R by using the same
argument.
We can now apply Lemma 6.4. Hence there exists a new filtered probability space (Ω̃, F̃ , {F̃t}, P̃) and
new sequences of random variables

(ũN,R, S̃N,R, (B̃i,N )i≤N , X̃N,R, ṼN,R)N∈N

that shares the same laws of the initial sequences

(ũN,R, S̃N,R, (B̃i,N )i≤N , X̃N,R, ṼN,R) Law∼ (uN,R, SN,R, (Bi)i≤N ,XN,R,VN,R)

for all N ∈ N, and that satisfies
(
ũN,R, S̃N,R

)
N→∞−−−−→ (u, F ) P̃-a.s.

Step 2: We now verify that the new random variables satisfies the same equations as the original ones,
namely system of equations (PSR −NSR). Moreover, in order to apply Theorem 6.1 we also need to have
on the new probability space an analogue of (uN , SN ), that still satisfies system of equations (PS − NS)
and of which we will prove the convergence. Namely:

1. Denoting by X̃i,N,R and Ṽ i,N,R the first N components of (X̃N,R, ṼN,R), corresponding to those
that are non zero, we need to check that, for every N ∈ N

S̃N,R
t =

1
N

N∑

i=1

δ
(X̃i,N,R

t ,Ṽ i,N,R
t )

. (29)

To prove this, consider the functional ΦS,N defined as:

ΦS,N (SN,R, (Xi,N,R)i≤N , (V i,N,R)i≤N )

:= sup
ϕ∈Cb(T2×R2)

sup
t∈[0,T ]

∣
∣
∣
∣
∣

〈
SN,R, ϕ

〉 − 1
N

N∑

i=1

ϕ(Xi,N,R
t , V i,N,R

t )

∣
∣
∣
∣
∣

which is a measurable functional, and note that this is identically zero by definition of SN,R. Now,
by the fact that the random vectors (SN,R, (Xi,N,R)i≤N , (V i,N,R)i≤N ) and (S̃N,R, (X̃i,N,R)i≤N ,

(Ṽ i,N,R)i≤N ) share the same law, we have

E
P̃
[
ΦS,N (S̃N,R, (X̃i,N,R)i≤N , (Ṽ i,N,R)i≤N )

]

= E
P
[
ΦS,N (SN,R, (Xi,N,R)i≤N , (V i,N,R)i≤N )

]
= 0.

Hence, we conclude that ΦS,N (S̃N,R, (X̃i,N,R)i≤N , (Ṽ i,N,R)i≤N ) is identically zero P̃-almost surely,
which implies (29).

2. To prove that the new object satisfies the same equation as the initial one, for each N ∈ N we consider
a bounded and measurable functional ΦN taking as argument the function uN,R, the particles
(Xi,N,R)i≤N , (V i,N,R)i≤N and the Brownian motions

(
Bi

)

i≤N
, that vanishes in expected value on

solutions of system of equation (PSR − NSR). The measurability of ΦN follows by the path-by-
path formulation while the boundedness requirement can be dealt with by considering a sequence
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ΦM,N := ΦN ∧M and passing to the limit in M inside the expected value by monotone convergence.
By the equality in law of the new sequences with respect to the initial one, we have that the
functional ΦN vanishes also on the new objects, when averaged with respect to P̃, namely (we omit
some technical details of integrability)

E
P̃

[

ΦN

(

ũN,R, (X̃i,N,R)i≤N , (Ṽ i,N,R)i≤N , (B̃i,N )i≤N )
]

= E
P

[

ΦN

(

uN,R, (Xi,N,R)i≤N , (V i,N,R)i≤N ), (Bi)i≤N

)]

= 0.

Hence, (ũN,R, (X̃i,N,R)i≤N , (Ṽ i,N,R)i≤N ), (B̃i,N )i≤N ) satisfies system of equation (PSR − NSR) in
the new probability space (Ω̃, F̃ , {F̃t}, P̃) which ends this part.

3. Consider now the sequence (uN , (Xi,N )i≤N , (V i,N )i≤N ))N∈N, associated with system of equations
(PS−NS), that is the particle system without the cut-off. On the new probability space (Ω̃, F̃ , {F̃t}, P̃)
consider the same system of equations (PS − NS), i.e. the system of equation where the Brown-
ian motions (Bi)i≤N are replaced by the Brownian motions (B̃i,N )i≤N introduced in Step 1. Call
(ũN , (X̃i,N )i≤N , (Ṽ i,N )i≤N ))N∈N the solution of such system, which can be seen as a random vari-
able on (Ω̃, F̃ , {F̃t}, P̃). Since solutions of system (PS − NS) are unique in law we conclude that
for all N ∈ N

(ũN , (X̃i,N )i≤N , (Ṽ i,N )i≤N )) Law∼ (uN , (Xi,N )i≤N , (V i,N )i≤N )).

Also introduce the analogue of the empirical measure SN on the new space

S̃N
t :=

1
N

N∑

i=1

δ
(X̃i,N

t ,Ṽ i,N
t )

.

By the previous definition and by construction of ((Xi,N )i≤N , (V i,N )i≤N ) we immediately have

(uN , SN ) Law∼ (ũN , S̃N ), ∀N ∈ N.

Step 3: We can now apply Theorem 6.1. We have to define all the objects needed in the Theorem and
verify all the four conditions required. Let E = C([0, T ] × T

2) × C([0, T ];P1(T2 × R
2) and let x ∈ E be

the couple (u, F ). Now we take

XN := (ũN,R, S̃N,R), YN := (ũN , S̃N ).

Now define, for ω̃ ∈ Ω̃

SR
N (ω̃) =

{

(w, (xi)i≤N , (vi)i≤N ) ∈ C([0, T ] × T
2) × C([0, T ];T2 × R

2)N s.t.

(w, (xi)i≤N , (vi)i≤N ) solves (PSR − NSR) with additive noise (Bi
t(ω̃))i≤N

}

,

the set of path-by-path solutions for system of equations (PSR − NSR). We also introduce the analogue
for (PS − NS): call it SN (ω̃). Now we consider

SX
N (ω̃) :=

{

(w, μ) ∈ E |μ =
1
N

N∑

i=1

δ(xi,vi) , (w, (xi)i≤N , (vi)i≤N ) ∈ SR
N (ω̃)

}

,

and

SY
N (ω̃) :=

{

(w, μ) ∈ E |μ =
1
N

N∑

i=1

δ(xi,vi) , (w, (xi)i≤N , (vi)i≤N ) ∈ SN (ω̃)
}

.

Roughly speaking, SX
N (resp. SY

N ) are the set of couples (w, μ) where u is a function and μ is a measure,
such that μ is the empirical measure of a set of particles which, together with u, are path-by-path solutions
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of (PSR−NSR). This is just a way of rewriting sets of path-by-path solutions, which match the structure
of the space E where the converging objects belong.
Now we just need to verify rigorously all the four conditions stated in this Theorem:

1. In the first Step of this proof, we saw that

(
ũN,R, S̃N,R

)
N→∞−−−−→ (u, F ) P̃-a.s.

which correspond exactly to condition 1.
2. Introduce

ΩB =
{

ω̃ ∈ Ω̃ | (B̃i,N (ω̃))i≤N,N∈N are continuous
}

and note that, since we are considering a countable set of Brownian Motions, this set is of full
measure with respect to P̃. Then, by Proposition 6.3, we have that

�SN (ω̃) ≤ 1 ∀ω̃ ∈ ΩB .

Hence, the same result holds for the set SY
N (ω̃).

3. Condition 3. states that (ũN,R, S̃N,R) belongs to the set SX
N almost surely. However, in Step 2. of

this proof we have verified that on (Ω̃, F̃ , {F̃t}, P̃)
(ũN,R, (X̃i,N,R)i≤N , (Ṽ i,N,R)i≤N ), (B̃i,N )i≤N ) satisfies system of equation (PSR−NSR) in the sense
of SDEs. This condition implies that for fixed ω̃ ∈ Ω̃ the vector (ũN,R(ω̃),
(X̃i,N,R(ω̃))i≤N , (Ṽ i,N,R(ω̃))i≤N ) ∈ SR

N (ω̃). Since in Step 2. we verified that S̃N,R is in fact an
empirical measures on particle solutions of (PSR − NSR) and by the definition of SX

N , this imply
the first part of condition 3. The same result holds for (ũN , S̃N ) and SY

N by an analogous argument.
4. Condition 4. is the most delicate. Take a couple (w, μ) ∈ SX

N (ω̃) ∩ BE((u, F ), 1). Since (w, μ) ∈
BE((u, F ), 1) we have that

||w||C([0,T ]×T2) ≤ ||u||C([0,T ]×T2) + 1.

The couple (w, μ) also lies in SX
N (ω̃), hence there exist ((xi), (vi))i≤N ∈ C([0, T ];T2 × R

2) such
that (w, (xi)i≤N , (vi)i≤N ) ∈ SR

N (ω̃), which means that is a path-by-bath solutions of (PSR −NSR).
However, since w is uniformly bounded by ||u||C([0,T ]×T2) + 1, which corresponds exactly to our
choice of R (see at the beginning of this section), we see that the cut off function χR(w) ≡ 1 is
identically one. Hence system of equation (PSR −NSR) reduce to (PS −NS), which is the particle
system without the cut-off. This implies that (w, (xi)i≤N , (vi)i≤N ) solves also (PS − NS), hence
(w, μ) ∈ SY

N (ω̃).

Since we verified all the necessary conditions, we can apply Theorem 6.1, obtaining

(
ũN , S̃N

)
N→∞−−−−→ (u, F ) P̃-a.s.

Since almost sure convergence implies convergence in law, and since we verified in Step 2. that

(uN , SN ) Law∼ (ũN , S̃N ), ∀N ∈ N.

we can transport this type of convergence to the original probability space (Ω,F , {Ft} ,P), hence the
proof is ended. �
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