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Abstract. Convergence of a system of particles, interacting with a fluid, to Navier—Stokes—Vlasov—Fokker—Planck system is
studied. The interaction between particles and fluid is described by Stokes drag force. The empirical measure of particles
is proved to converge to the Vlasov—Fokker—Planck component of the system and the velocity of the fluid coupled with
the particles converges in the uniform topology to the the Navier—-Stokes component. A new uniqueness result for the PDE
system is added.
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1. Introduction

In the theory of multiphase flows, the coupled PDE system called Navier-Stokes—Vlasov—Fokker-Planck
is a way of modeling the behavior of a large number of particles immersed into a fluid. It is made by two
major components: a vector field u, representing the velocity of the fluid at a given time and position,
and a scalar valued function F', representing the density on phase space of the particles immersed in the
fluid. In the incompressible case, when the interaction between particles and fluid is modelled by Stokes
drag force, the system is given by the following equations

Ou=Au—u-Vu—Vr— [o,(u—v)Fdv;
div(u) = 0; (1)
OF +v -V, F +div,((u — v)F) = S A,F.

Often the case o = 0 is considered in the literature. Here we deal with the case ¢ > 0 because of
technical reasons. The case o = 0 is usually called Vlasov—Navier—Stokes (VNS); the case o > 0, Navier—
Stokes—Vlasov—Fokker—Planck. In the sequel, for simplicity of notations, we will often call VNS also the
system above with o > 0.

The PDE description for the density of particles is reasonable when the number of particles is very
large and overcomes the problem of describing the details of each single particle. The aim of this paper
is to prove that this simplification is correct: we prove that a system composed by Newtonian particles
and fluid converges to the PDE system when the number of particles tends to infinity.

The mathematical analysis of the coupled system (1) in dimension d = 2, 3 has received much attention
in the past years. A first result of global existence of weak solutions and large asymptotic for Stokes—
Vlasov system in a bounded domain appeared in [20]. Existence of weak solutions has been extended to
the Navier—Stokes case, hence including the convection term in the equation for the fluid, in a periodic
domain in [5]. Global existence of smooth solutions with small data for Navier-Stokes—Vlasov—Fokker—
Planck was obtained first in [17]. In [27] global existence for smooth solutions is generalized for large data.
Recent results on the topic of uniqueness have been obtained in the case o = 0 in [21]. We shall prove a
variant of these results adapted to the regularity of our solutions. Uniqueness plays a fundamental role
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in the mathematical problem we are interested in; existence is less relevant because it is obtained as a
byproduct of our convergence result.

As said above, the aim of this work is to investigate a coupling between the fluid and a particle system,
which converges, in the limit of large number of particles, to system (1). The literature on this topic is still
fragmentary. The works [18,19], present results of PDE to PDE convergence, only implicitly motivated
by particle arguments. The works [1-3,9-11,22] aim to treat links between particles and fluid but, in the
trade-off between different levels of mathematical complexity and physical realism: there in a simplified
fluid regime, the correct boundary condition for the interaction between finite size particle and the fluid is
included. Compared to these works, our choice here is a sort of phenomenological description of interaction
between particles and fluid, that keeps the structure of Stokes drag force and that maintains the usual
Navier—Stokes regime. Our attention is devoted to others technical problems related to the macroscopic
limit, instead of the very difficult problem of the precise boundary conditions between particles and fluid.
The microscopic system considered here has the form

2t = AV —uV VN = v — Ly (ud (XN = V) 65
div(u™) =0,

dx;N =viNat,

avi N = (ud, (6. X)) = Vi) dt + oaB;

where N is the number of particles and (XZ’N,Vti’N) are position and velocity of the particles. The
equations for the fluid velocity and pressure (u, ") are given by the classical Navier-Stokes equations
for an incompressible Newtonian fluid with an interaction with particles of discrete type. We choose a
phenomenological description of the interaction:

i) the intensity of the force exerted by the fluid on each single particle is given by the difference between
the particle velocity and a local average of fluid velocity around particle position

ull, (6, X7 = (0% ) (X

ii) viceversa the force exerted by each single particle on the fluid is given by Newton’s third law: the
intensity of the force is the same oh (i), but with the opposite sign. Moreover we impose an action
distributed in a small neighbor of particle position, as described by the mollified delta Dirac function

5;5,N(33) = HO’EN(:E — XZ’N).
t

The choice to use local averages and locally distributed action is obviously an artefact, convenient for
the mathematical investigation; still it preserves the idea that particles are not just points but finite
objects, or at least objects with a finite action radius, a sort of small boundary layer of interaction
with the fluid.

Finally, let us comment on our previous works [13,14]. They both deal with a similar particle system
coupled with the fluid and the question of its scaling limit. However, they are affected by important
restrictions. The paper [13] discusses only the so called two steps approach. In this setting one
keeps ¢ fixed when N — oo and removes € only later, as a second step. As usual, the analysis of
such disjoint limits is much simpler: the first step is a classical mean field problem (opposite to
the problem considered here, see the next section on the technical difficulties), the second step is
a question of convergence of PDEs to PDEs (essentially a repetition of schemes known from the
proofs of existence theorems for the limit system). One can mix the parameters a posteriori, taking
subsequences, but the conditions on the link are quite unrealistic and restrictive. As in the present
work, the paper [14] treats the joint limit in the two parameters, but a special bounded modification
of Stokes law is required and due to lack of a suitable uniqueness result, we prove only convergence of
subsequences. Compared to [13,14], the result proved here is complete, without the main restrictions
of those works. For future research, however, it would be interesting to extend further the range of
the parameter § that quantifies the radius of interaction between a particle and the surrounding
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fluid. See below and in the same vein how to treat more realistic boundary conditions between
particles and fluid.

1.1. Difficulties

In this subsection we aim to highlight the difficulties we met in proving the convergence from the discrete
to the continuous model. Apparently it looks a mean field result but several aspects are far from standard,
as we now describe.

1.1.1. Uniform Control on Velocity and Vorticity Creation by Particles. The rough structure of the
particle approximation used here is of a mean field type. The empirical measure S}V of the particles

1N
N _ — ) )
S =5 20 vy
i=1

(see also Sect. 2) will be proved to converge to the solution F} (z,v) of the Vlasov component of our system
(in parallel, the approximation of the velocity field will converge to the limit velocity field). However in
classical mean field problems, first it is proved that S{¥ converges to F; (z,v) in the weak sense of measures,
then one can pass to the limit, thanks to the non-local structure of the nonlinear terms. In our problem,
there is a main difficulty: SV is coupled with the approximation u of the Navier—Stokes component, in
a local way. The term in the Navier-Stokes equation takes the form (see system of equations (PS — NJS)
in Section 2)

OOV ((uN — v) StN)

EN

and the corresponding term in the identity satisfied by the empirical measure S;¥ (Lemma 3.2) has the

form
<S , ( v) Vvap> .

In order to pass to the limit in the previous terms we need uniform convergence of u?}fv to u.

This is a demanding property that we approach, using Sobolev embedding theorem, by controlling
the first derivatives of ugv We approach it by means of the equation for the vorticity w?. This strategy
reveals a conceptual problem with physical content: the presence of particles in the fluid may produce
vorticity. The estimates on the vorticity are far from being obvious, due to the interaction with the
particles. The equation for the vorticity contains the interaction term

Y () ) 7

where §¢ “ﬁ ~ 1s a smooth approximation of the delta Dirac 5XL ~. Hence the term V+ - 5€N v may induce a

blow—up in the estimates, a priori. This is a key conceptual difficulty we had to overcome, among others of
more technical nature. The fact that an infinitesimal particle in a fluid may produce vorticity is the topic
of recent research, see [16]. These works are restricted to single particle for very difficult technical reasons;
it may be that some link with the present research will be possible in the future after due progresses.
Thanks to the fact that Vw? has a control due to the viscous term, the energy type estimate leads

to control the term
N
1 )
= (uffv (XE’N) -V ) R

(2)

L2(T2)
This is not a simple task; just to mention, the trivial estimate

1 N
< 7 2 (o (X)) o
i=1

L2(T2)
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leads to diverging quantities. This introduces a new ingredient with its own difficulties, as explained in
the next subsection.

1.1.2. The Regularized Empirical Measure. We control the term (2) by introducing the regularized em-
pirical measure F}N (z,v)

FN(z,v) = 6°V « SN

(see details in Sect. 2), inspired by works of Karl Oelschleger, see for instance [24]. It allows us to write

N
1 i i €
LS5 (1 30) ) 0
1=1
N

1
< JJull @)l 57 Do 0%5n (@) +

i=1
= o () [P @)+

The proof of the last line is given in Lemma 5.3.

Now the problem is to prove suitable estimates on the regularized empirical measure F}¥ (x,v). Con-
trols on S} are essentially amounts to suitable estimates on the SDEs satisfied by particles, while a
full treatment of F/N (x,v) requires both SDEs properties and PDEs arguments applied to the identity
satisfied by FN (x,v) (Lemma 3.2). This identity however is not closed; commutators appear and several
technical difficulties arise, which perhaps are new here with respect to previous literature.

N

1 i, N ce
N Z Ve 5XJE"N ()
i=1

/ vFN (z,v) dvl.
R2

1.1.3. The Cut-Off and its Removal. We are able to perform the estimates outlined above only when a
suitable cut-off on velocity is introduced; see xg(u) introduced in Sect. 3 and appearing in the rest of the
paper. The idea is to use this truncated system as a bridge to the original one. By using the truncation
in the interaction between particles and fluid we managed to produce an a priori bound independently
on the number of particles N

HuN’RHOO < Cg, (Lemma 5.9) (3)

which we used to obtain a suitable tightness criterion, needed for the convergence. We remark that this
bound was only possible due to the presence of the cut-off, since the constant provided in (3) depends on
the threshold R of the truncation.

Therefore the preliminary result is that the PDE-particle system with cut-off converges to the PDE
system with cut-off. However, by showing that the velocity field of the PDE system with the cut-off
satisfies

HuRH <C (Proposition 5.13)

independently on R, it is possible to prove that the PDE system with cut-off is also solution without cut-
off. In summary we can prove that the PDE-particle system with cut-off converges to the PDE system
without cut-off, see Proposition 5.1. The proof of this step is organized differently from the previous
description but here we have explained the concept behind the proof.

The final problem is to prove that the cut-off can be removed also from the approximating PDE-particle
system. This seems to be a difficult question. Here we use a special trick.

To appreciate the difficulty and the trick, think for a second to a different problem where the approx-
imations are not random. Assume we have proved that u™f converges uniformly to the limit u. Since u
is uniformly bounded by a constant Ry we deduce that, eventually in N, also u™>® is bounded, say, by
Ry + 1. Hence eventually in N, the function u™'¥ solves the equation without cut- off, hence it is equal
to the unique solution u”" of such equation. Next, consider the full approximating sequence (u™) N>1
solving the equations without cut-off; this sequence converges uniformly to u, because the property of

limit involves only the tail of the sequence and the tail coincides with the tail of the sequence (u™f) .
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which we know to converge to u. This idea resemble us the method used to prove well-posedness of 3D
Navier—Stokes equations with strong rotation, see for instance [15].

Unfortunately this simple idea does not work when the approximations are random. Forget about
the fact that our convergence is in law; go to another probability space where it is almost sure. Thus,
almost surely, eventually we may transfer the uniform bound Ry of the limit solution to a bound Ry + 1
for the approximations. But this time the “eventually” qualification is random! Hence, given a large NV,
we cannot claim that the stochastic process u™N'® coincides with the unique solution u™v of the equation
without cut-off, because the bound on ™ is true only for certain w’s.

So the problem is that we have two families of stochastic processes, (uN’R)N>1 and (uN)N>1 and we

know that for a.e. w there is Ny (w) such that for N > Ny (w) the paths of the sequence (™" (w))
ulN-R)

N>No(w)
N

N>1 and (u >N21 from
this property. To this aim we invoke a property of path-by-path uniqueness (see [12]) opposite to the
usual concept of pathwise uniqueness: given w, for N > Ny (w) the path uV'F (w) satisfies the equation
without cut-off (formulated for that single w) and by path-by-path uniqueness it coincides with u” (w).

The conclusion is the same as in the deterministic case: consider the sequence of processes (uN for

are bounded, say, by Ry + 1 < R. We want to deduce a relation between (

N>17

a.e. w, the sequence of functions (uN (w)) converges to u because it coincides, eventually, with the

N>1

sequence (uN R (w)) The first major result of path-by-path uniqueness for SDEs has been proved

N>1"
by [13] and it is a very sophisticated result; however, here we have additive noise and relatively smooth
coefficients, hence path-by-path uniqueness in our case is not difficult. We isolated the idea behind this
reasoning into a general criterion, that we applied to transfer the convergence from the particle system
where the cut-off is present, to the system without the cut-off.

The structure of this paper is the following: In Sect. 2 we introduce all the notation that we will use
and we present our main result, Theorem 2.3. In Sect. 3 we collect some preliminary result that will
be needed in the rest of the manuscript, while Sect. 4 is devoted to a theorem of uniqueness for the
Vlasov—Navier—Stokes system. In Sect. 5 we prove a first intermediate result, that is the convergence of
the particle system with the cut-off to the Vlasov—Navier—Stokes system without the cut off. Finally,
in Sect. 6 we manage to remove the cut-off also from the approximating system, ending the proof of
Theorem 2.3.

2. Notation and Main Results

We begin this section by introducing rigorously the Vlasov—Navier—Stokes system and its associated parti-
cle model. We will always assume the framework of a filtered probability space, denoted by (2, F, {F:}, P).
For the whole manuscript we will also work on the two dimensional torus T? = R?/Z2. The case of other
bounded domains is more delicate due to creation of vorticity at the boundaries. Some of the interme-
diate results stated here will work also in higher dimension. However, to obtain the full result, due to
uniqueness and smoothness obstacles, dimension d = 2 is needed, so we will always keep the dimension
fixed for a matter of simplicity.

We start by recalling the Vlasov-Navier-Stokes PDE-system

du=Au—u-Vu—Vr— [o,(u—0v)F(z,v)dv (t,x)€[0,T] xT?
OF +v -V, F +div,((u —v)F) = TA,F (t,z,v) € [0,T] x T2 x R2 (VNS)
div(u) = 0,

o > 0, with initial condition u(0,-) = uo and F(0,-,-) = Fy. We also introduce the continuous-discrete
Particle System approximating (VNS):
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oulN = AulN — N . VuN — vV — L Zivzl(ugv (X} — Vti’N)éi(Nm

div(uV) =0, t
dxN =viN dt

{dv:’N = @, (XPY) — VM) dt + odB

(PS — NS)

1=1 N

ey

with initial condition
uN(0,) = ug, (XN, VENY LY F(0, -, ) dodv iid

namely the random variables (XS’N,VJ’N) are independent and identically distributed with density
F(0,z,v). In the previous equations, (B{):>o is a sequence of independent Brownian motions, 6" is a
mollifier over the torus, ey € RT is a sequence converging to zero, and

09N (1) := e20° (v /en) ugv = x OO 6;”1-,N(x) = 005N (2 — X)),
t

All the hypothesis and requirements on the objects introduced above are collected in Sect. 2.3.

2.1. Definition of Weak Solutions

Definition 2.1 (Definition of weak solution of (VNS)). We say a pair (u, F)) is a weak solution of (VNS)
if the following conditions are satisfied:
a)
u € L([0,T]; L*(T%)) N L*([0, T); H'(T?));
F e L>([0,T); LY(T? x R?) N L>=(T? x R?)), F >0;
F o> € L([0, T]; L' (T? x R?));

b) for all p € C>°(]0,T] x T?;R?) with divg = 0 we have

t 8 s t t
(wesir) = (uosoo) + [ e So)ds 4 [ s Bpadds + [ fun Tiunds
0 0 0

/Ot/RQ /T (@) (us () — 0)Fy (2, v) de dv ds,

c) for all ¢» € C*([0,T] x T? x R?;R) with compact support in v we have

s
Os

t

+/Ot<st~Vz1/Js>d8+/0 (Fs, (us —v) - Vyibg)ds;

t 2 t
() = (Fown) + [ (P G205+ 5 [ (Po s

Definition 2.2 (Definition of Bounded weak solution of (VNS)). We say a pair (u, F') is a bounded weak
solution of (VNS) if it is a weak solution and

u € L*([0,T] x T?).

We refer to Theorem 4.1 for an uniqueness result for bounded weak solutions. Existence of bounded
weak solutions for system (V' N.S) will be obtained as a consequence of our main convergence result.
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2.2. The Empirical Measure of the Particle System

Before stating our main result we introduce some function spaces defined as follows. Given the space
E =T? x R? we introduce

P(E) = {u probability measure on (E, B(E)) | / |z| p(dz) < oo}

the space of all probability measure on the Borel sets of E, with finite first moment. We endow this space
with the Wasserstein—1 metric, that can be defined equivalently as

Wi(p,v) = sup /cpdu*/sodv
E E

[S"]Lipgl

where [¢] i is the usual Lipschitz seminorm. Endowed with this metric the space Py becomes a complete
separable metric space, whose convergence implies the weak convergence of probability measures.

From now on, when u is a measure and f is a function, we will denote by (f, u) the integration in full
space of f with respect to p.

We now introduce the empirical measure of the particle system

N
N
= Z(S(Xti,N7Vti,N), (4)
i=1

which is random measure on (€2, F,P), on the space C ([0, T]; P1(T? x R?)). We will consider a smoothed
version of the empirical measure: let us introduce two functions ° : T2 — R and 6! : R?> — R which are
C°, non negative and integrate one. Introduce also

0(z,v) = 0°(x)0" (v)
which is a function on the product space T? x R2. Consider then
6N (z,0) = en’0" ey x)en 0" (e v) = 05N ()05~ (v) (5)

and let us define

1 N

FN (@,0) = 05 x5 = =) 0% (@ = XpM)0bex (v = V)
i=1

the mollified empirical measure.

Remark 2.1. Note that the function #°°¥ in the previous equation, appear in system (PS — NS) in the
coupling term.

In what follows and in the rest of the manuscript we will adopt the following notation for the moments
on the v component for the function F":

mpF(x / ¥ F(z,v)dv, MpF ::/ ¥ F(z,v) dv da.
T2 JR2

where my, F(x) is function over T2 while M, F € R.

2.3. Main Result

We summarize all the main hypotheses of our framework:
1) uo € H?(T?);
2) Fo € (L' N L®)(T? x R?) and MgFy < oo;
3) O(z,v) = 0°(x)8" (v), 6° and 6 mollifiers on T? and R? respectively, such that |V§( )’ < 0%(z) and
supp(#') € B(0,1). Moreover ' (v) satisfies the following symmetry assumption [o, 0" (v)v = 0;
4) The scaling factor ey satisfies ey = N~7 with 8 < 1/4;
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Remark 2.2. We remark that hypothesis (3) is needed in Lemma 5.5 to obtain the first a priori estimate
on the mollified empirical measure. Regarding the scaling factor in (4), this hypothesis is also needed
for Lemma 5.5: the bound on f is strictly related to the space dimension and to the LP norm that is
computed. In our case, we will compute the L* norm, and the general requirement in dimension d is
Bt
3d+2

In what follows we will always use the notation < to indicate that the inequality holds, up to a

~

multiplicative constant that does not depend on any of the key parameters involved. To emphasize the
dependence on one of those parameter we will adopt the convention <x to denote the dependence on
the parameter X. Moreover we will make use of the letter C' to mark a constant, whose value does not
matter for the argument.

We are finally able to present our main result:

Theorem 2.3. Under hypothesis of Sect. 2.3, the family of laws {QN}NGN of the couple (u™,SN)nen is
tight on C([0,T] x T?) x C([0,T); P1(T? x R?)). Moreover {QN}NeN converges weakly to 6¢, ), where
the couple (u, F') is the unique bounded weak solution of system of equation (VINS).

3. Preliminary Results

In this section we collect the basic results about our particle systems, and all the technical inequality
that will be used in the rest of the paper.

In order to obtain Theorem 2.3, it is necessary to introduce another coupled system of PDE-SDE,
where the interaction between the particles and fluid is truncated. Introduce for R > 0 the cut-off function
X% : R — [0, 1] defined as

o {1 HrSRo1
xTr) =
XR 0 ifz>R

and that is C°°(R). Define also xg(u) = X%(||u||Lw(,ﬂ-2)). With this choice of notation one has

HUXR(U)HLoo(T?) <R.
Introduce now the truncated PDE-system:
ot = Auft — Pt - Vult — Vr — [, (uf — v)xr(uf) FE (2, v) dv
OFR = CAFR — 0.V, FE — div,((uPxp(uft) — 0) FR) (VNSR)
div(uft) =0,
with the same initial conditions as system (V' NS). We also introduce the continuous-discrete truncated
Particle System approximating (VN S%):

atuN,R — AUN’R _ uN,R . qu,R _ V?TN’R
N i,N,R i,N,R N,R
& it (X)) = VI xR (g )6;’?]\,1}%

div(u-?) =0, (PST — NSE)

{dXti,N,R _ Vti,N,R dt

1=1 N

geeey

aV = @l BN xRl ) = VIV dt 4 0d B
using the same notation and initial condition as (P.S — N.S).

Definition 3.1 (Definition of bounded weak solution of (VNST)). We say a pair (uf', F?) is a bounded
weak solution of (VNS%) if the following condition are satisfied:
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uf € L>=([0,T] x T?) n L*([0, T); H*(T?));
FR e L>=([0,T); LY(T? x R*) N L>=(T? x R?)), F&>0;
F o> € L=([0,T]; L' (T? x R?));

b) for each divergence free, C°° vector field ¢ : [0, T] x T? — R? we have
a s t t
(Fp) = oo+ [ (0, G+ / (Wl Apuds + [ (- T, ulyds
0
/ (s, Vips)ds —/ / / ps(a = v)XR(u{)F (2, v) do dv ds,
r2 JT2
c) for each C°° function % : [0,T] x T? x R? — R, we have

s 2ot
(Ft) = () + [ R S yas T [ s

t t
+/ <FsRa'U : vx'l/}s>ds +/ <FsR7 (U§XR(U§) - U) : vvws>ds
0 0

Applying the maximum principle to system of equation (VNSF) we have
HFR(t7 €L, U)| |L7’(']1‘2><]R2) <Cr HFO(I ’U)HLP(']I‘2 xR2) vp >1
so that
R
|7 (tvxvv)HLw(WxR?) =C
independently on R. We now introduce the empirical measure of the truncated particle system

N
R
= Z 5(Xti,N,R7Vti,N,R)
i=1
and its associated mollified empirical measure
FNE(z,0) =657 « SR,
We now recall the identity satisfied by the empirical measure S}.

Lemma 3.2. For every test function ¢ : T? x R?2 — R the empirical measure S{¥ satisfies the following
identity

ST, @) = (S, v V) dt +(SF, (ul, —v) - Vo) dt

51\/

+?<Siv ,Ayip) dt + dM?,
with
3= 25 [V (X0 ) -a
i=170
Moreover FN(x,v) = (05N + SN)(x,v) satisfies:
2
dFN = %Ath — divy (65~ * (u, — v)SN) dt
—divg (05~ % vSN) dt + dM]NEN |
with M} = MO e,

Proof. The first part follows easily by applying It6 formula to @(XZ’N, Vf’N) and using linearity. The
second part follows by taking ¢(-,-) = 0¥ (z — -, v — -). O
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The analogue of the previous result holds for the empirical measure of the truncated system S™ %, as
well as for it mollified version FN-. We now state the kinetic energy balance for the truncated system:

Lemma 3.3. With the previous notation, we denote with EV the kinetic energy of the microscopic system,

N
EN(t) = 1/ uN’R(x)r dm+iz
2 Jp2 |t 2N

i=1

yiN.R

2
t ‘

One has formally

Proof. The lemma follows by Ité formula and by classical energy estimates for u™>%. O

Remark 3.1. The last inequality guarantees that, even if the truncated system has no direct interpretation
for the dynamics of particle—fluid, it maintains the basics physical properties such as the conservation of
the kinetic energy in the average.

An analogue of the previous result holds for the limit PDE system (VNSE), as well as for (VNS).
We state it in the case of system (VNS®) and omit the proof, which is classical.

Lemma 3.4. If (u*, F&) is a weak solution of (VNS%), denoting with £ the kinetic energy of the macro-

scopic system
1
Elt) == (/ |uf|2 dx—i—/ / |v|2Fthde) ,
2 T2 R2 JT2

d 2 2 o?
gé'(t)+/ V| dach/ / FE uft — vl XR(uf)dxdv:7||Fo||L1(szT2).
T2 r? JT2

Moreover there exists a constant C, independent on R such that

T
///|v|2Fthxdvdt§C.
0 R2 JT2

Remark 3.2. By the previous lemma we have a bound on u® in the norm L2([0, T]; H'(T?)) independently
on R. By Sobolev embedding in dimension two we also have an uniform bound with respect to R on u/?
in the space L?([0,7T]; LP(T?)) for all p < cc.

one has

We now collect all the inequalities concerning the marginal distributions of the function F': some of
them are classical, see [20,27], while others have been used in [14].

Lemma 3.5. If F is positive, defined on T? x R2, the followings hold
1.

2

ImoF 72012y S (1F]| e p2 ey + 1) MaF,
1

ImoF|[1aerey S (1F]| oo (r2 xme) + 1) Mo F;

2
llm1 |72 2y S (1F|| oo p2 xrey + 1)2 My F;
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2 4
HmOFHm(Tz) S HFHL‘l(']I‘?xR?) + M3 F;

M1 FI[2ap2y S NI Lapz ey + MoF
5. Forallk <K
MpF SF|| g pe ey + My F.
Proof. All the inequalities are derived through the same strategy: 1. and 2. are classical, see [20], while

the proof of 3. can be found in [14], so we only outline the main idea. For inequality 1. and 3. let us
consider the following decomposition

/de:/ de+/ Fdv
R2 [v|<r(x) [v]>r(z)

1
s/ de+—k/ lv|* F dv
o] <r(a) (@)% J o> r(a)

where 7(z) will be chosen in the next lines. Now one can estimates the integral on the ball of radius r(x)
using the infinity norm of F' for inequality 1. or using Holder inequality to obtain ||F'||, . for inequality
3. To obtain the desired result, one has to take the square both sides, integrate on T? and choose 7(x) in
order to group all the terms. For inequality 2. and 4. one has just to decompose [ |v| F'dv and apply the
same strategy, while for 5 is enough to take r(z) = 1. O

Remark 3.3. Inequality 3. and 4. will be used to prove a first tightness result in Sect. 5. Motivated by
the fact that the infinity norm is not available on the mollified empirical measure, we propose a variant
of 1. and 2., avoiding the use of such norm. Inequalities 1. and 2. will be used in Section 5 in order to
prove a bound on the infinity norm of «%, while 5. will be used in the next lemma.

We now state and prove a variant of Lemma 2.1 in [20]. This variation is needed due to the presence
of the noise on the diffusion on the particle velocity, i.e. the presence of A, in the equation for FZ.

Lemma 3.6. If (u”*, FT) is a bounded weak solution of (VNST), k> 2 and if My F, is finite, then there
exists a constant Cy, independent on R, such that

sup MkFtR < Cy.
t€[0,T]

The same result holds for any (u, F) weak solutions of (VINS).

Proof. In this proof we omit the superscript R in (uf, F) to short the notation. We start by computing

d _
%/ |v|kFtdde§/ \u(t,x)|/ v|* 1Ftdvdx+/ | F, dz dv
R2 JT? T2 R2 R2 JT2
+/ |2 F, dx dv.
R2 JT2

Following [20] we have

, -
/ |U(t,1‘)|/ |’U|k_1Ft dv dx 5 ||Ut||Lk+2(T2) </ / ‘fU|kFt dx d’U) y
T2 R2 R2 JT?

while, using Lemma 3.5 inequality 5. we have

/]R2 - |’U|k_2 Ft dx dv S /R2 /T[‘2 |U‘kFt dxdv+ ||Ft||L1(']I‘2><lR2)'
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Hence we get

t l_kj—2
MkFt S MkFo +/ ||U;s||Lk+2(T2) (/ / |1}|sz dxdv) dt
0 R2 JT?

t
0

k 1w k
[v|” Fy dx dv <C || Fsdxdv+1),
R2 JT? R2 JT?

t t
MiFe < MiFo 4 C [ (ull e + DMFuds +C [ (sl pooagesy + s <
0 0

‘We now note that

hence we obtain

t
< C(MyFo + |ull g2 o 7y, Lr+2(r2))) + C/ (sl rro(pey + 1) My Fy ds.
0

We conclude by classical Gronwall Lemma applied to the function My F; and by Remark 3.2. (]

3.1. Maximum Principle for Weak Solutions of the Linear Vlasov—Fokker—Plank Equation

We now focus on boundedness of weak solutions for the linear Vlasov—Fokker—Plank equation
OF +v -V, F+divy(a(t,z,v)F) = A, F.

Boundedness of solutions will be fundamental in the latter when we will prove that the limit points, in the

appropriate sense, of particle system (PS® — NS®) are supported on bounded weak solutions of (VN S).
While this topic is classical in the case of smooth solutions, the case of weak solutions is more delicate.

What follows is mainly an adaptation of the work [8], Appendix A, Proposition A.3.

In that work the author assumed the vector field a to be

a € L®([0,T] x T? x R?), divy(a) € L=([0,T] x T? x R?),

and solutions F' are assumed to belong to the set
Y = {F € L*([0,T] x T, H'(R?)) s.t. O F +v -V, F € L*([0,T] x TQ;Hl(RQ))}.

On these solutions, a maximum principle is proved,
1E4 | oo (72 x2) < ClIF0l] poo (72 xR2) -
In our case, we have to consider
a(t,x,v) =u(t,x) —v (6)
hence, we cannot apply directly the result presented in [8] since the function a(t,z,v) is not globally

bounded. However, it is possible to recover the same result by considering some estimates on higher
moments for the function F. If a satisfies (6), where u is uniformly bounded, one can consider

Y = {F € L2([0,T] x T? H'(R?)) s.t. vF € L*([0,T] x T? x R?),

O F +v-V,F € L*([0,T)] x TQ;HI(RQ))}.

Namely, in this setup the same result proved in [8] still works, provided that one can consider solutions

satisfying
T
/ / lv|? F2 dz dv ds < co.
0o Jr2 Jr2



JMFM The Navier—Stokes—Vlasov-Fokker—Planck System Page 13 of 39 40

Without going into the details of this adaptation, we only remark that this additional condition is
achievable under our hypothesis, since

T T 13
/ //|v|2F3dxdvds=/ //\UFFgFg dz dv ds
0 T2 JRR2 0 T2 JR2
< ///|v\4Fsdxdvds ///Fjdxduds ,
0 T2 JR2 0 T2 JR2

and we will show how to control the last two terms when needed.

4. Uniqueness for Bounded Weak Solutiosn of System of Equations (V IN S)

In this section we isolate a first major result needed to prove Theorem 2.3. We preferred to isolate it here,
because it has some interest by itself. We present an uniqueness result for (V. N.S) in the class of bounded
weak solutions (Definition (2.2)). This result is required in order to prove that converging subsequences
of the laws of (uVt, SN*) are all supported on the same limit, which are in fact weak solutions of (VNJS).

Before going into the details of this Theorem let us make some remark about the hypothesis. We
first highlight that the boundedness of solutions on the fluid component is strictly needed: we will make
frequent of the fact that u € L>°([0,T] x T?) in order to close some of the estimates needed to end the
proof. We also remark that, even if in the proof we used the uniform bound Hu||Loo([0,T]XT2), with a
bit more effort it is possible to complete the proof using only u € L?([0,T]; L>(T?)). Motivated by the
fact that in this work we prove existence of solutions uniformly bounded in time and space, we prefer to
choose u € L>([0,T] x T?). Regarding the assumptions on weak derivatives, we require only

u € L°°([0,T] x T?) N L*([0, T]; H'(T?))
avoiding any assumption on the second derivative of w.
Also in the following proof we will make frequent use of Gagliardo—Nirenberg inequality in dimension
two
lull o S 1l 72 IVull 72

where % + % = % However, this is only needed to minimize the hypothesis on My Fj, required to be
finite only for some k strictly bigger than 4. One could have used the classical Ladyzhenskaya’s inequality
(p = g = 4) with the downside of requiring higher-order moments to be finite.

The proof of this result is mainly inspired by the work [6].

Theorem 4.1. Let (u1, Fy) and (ug, F3) be two bounded weak solutions (Definition 2.2) with the same
initial conditions, of system (VNS). If

My F3(0) < o0
for some ¢ > 0, then u; = ug and Fy = F5.

Proof. We introduce the new variables F' = F; — Fy and u = u; — us. Then the pair (u, F') satisfies in
the weak sense

815U:A’U,7’UJ'VU17U2'VU7V(7T1771'2)7/ (uFy + usF — vF) dv,
R2
OF = A,F —v -V, F —div,(uFy + usF' — vF)

with (u(0,-), F(0,-,-)) = 0. We prove uniqueness by applying Gronwall Lemma to the quantity
2

2 k
el gy + (00 B[, e

for some k > 2 which will be chosen later and where (v) = (1 + |v[?)2.
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We start by estimating ||Ut||i2(1rz)1 computing the time derivative we have

d 2 2
P |[ull 722y + [[VullT2(pe

5—/ u(u~Vu1)dx—/ u(ug - Vu) dz
T2 T2

—/ u/ devdm—/ u/ uFldvda:—/ u/ us F' dudz.
T2 JR2 T2 JR2 T JR2

Integrating by parts the term

/ w(ug - Vu)de =0
T2

vanishes, while the term

—/ u/ uFldvdx:—/ / u?F) dvdz < 0
T2 JR2 T2 JR2

can be neglected due to positivity of F;. Hence we can estimate the remaining terms as

(7) */ U(U'Vul)dl’*/ u/ vF dvdz
T2 T2 R2

_ / " / wsF dvde = (1) + (IT) + (IT1).
T2 R2
where
I) < / lul [Vul [ua] do < ||U1||Oo/ ul [Vu| dz
T2 T2
1 2 2
S 5 [ull72 w2y + 6 |[Vull72 (g2

and 0 > 0 can be taken arbitrarily small.

/ / |l |U\Fdxdv</ / |u| ¥ F dadv
r2 J12 (V)

< [ juf? dx/ ! ( )kF’ ’
u — v
- Jr R ()2 L2(T2 xR?)
2
2 k
< Ml ey + | @ F| oy

because 2(k — 1) > 2 being k > 2.

(I17) //|u||u2|Fdacdv<||U2|| // Ll g% P dado
T2 U
< [ o dx/ o [ e ||L2T2)+H il

L2(T2 xRR2)

L2(T2xR?)

JMFM
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This ends the estimate for Hu||2LQ(T2). Concerning H(v)k F’ iQ(TZXRZ) we proceed by computing the time
derivative
0 F e + 100 90
dt L2(T2xR2) L2(T2)

S—l—/ / <v>2k_2F2dacdv—/ / <’U>2kF’U'vde$d’U
R2 JT?2 T2
/ / V2 Fdiv, (uyF) da:dv—/ / ()** Fdiv, (uFy) dzdv
R2 JT?2 T2
+/ / (v)Qk Fdiv,(vF) dzdv. (8)
RrR2 JT2

2
The first term on the r.h.s. can be estimated with H<v>kF being (v) > 1. By a standard

L2(T2xR2)’
integration by parts argument, it is proved that the second term is equal to zero. Hence, what is left from

(8) is
/ / ¥ Fdiv, (usF) dxdv—/ / W) Fdiv, (uFy) dedv
R JT2 T2

2% 11 B
[ [0 PR oo = (4V) + )+ V1)

Now we proceed by treating each term separately:

1 _
(IV):—f/ / <U>2kuz-va2dmdv§/ / (W) ug| F? dadv
2 R2 JT2 R2 JT2

< |lusl| / / () F? dedv < || )" F | ’

~ 112l ~ L2(T2xR2)
//v yR R uFld:cdv</ / W)L F |u| Fy dedv
R2 T2
+/ / () |V, F| |u| Fy dzdv.

R2 JT2

The first term on the r.h.s. of the last inequality can be treated in the following way

/RQ /T (V)" F Jul Fld:cdv:/ /T IUI (<U>kF2) dnde

. ;
P

—q kg ‘

g Tl ([ 7 ) ()" F

where p and ¢ are such that % + % + 1 = 1. Note that p > 2 so that 1/ (v)” is integrable in dimension

< s

(9)

La(T?xR2)

two. Applying Gagliardo—Niremberg inquality to the previous identity we have

k : z k
(9) < H<v> F’ L2(T? xR?) 1z ) [IVellZe ’<v> FQ‘ La(T? xR?)
ko2 2 2
S ’ (w) F‘ L2(T2xR2) & ellz2 2HLq(T2xR?) Vallzaes

q
where § can be taken arbitrarily small. In order to control the quantity H(v)k Fg’ at the end of

L4(T? xR?)
the proof we will impose that k¢ < 4 + . On the other hand for the second term on the r.h.s. of (V),
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introduce o > 0 such that ap > 2 so that

/ / )% |V, | |ul Flda:dv:/ / ) 190 F| 1L 0yE+e By dad
R2 JT2 R2 JT2

(0)°

1
Ly Ul (/Rz (v)? dv)

Now we apply Gagliardo—Niremberg inequality and Young inequality, in the same manner as we treated
(9), obtaining

<||@* 19|

<v>k+a FI’

La(T2xR?)

< 5||w* 19,7 V22 5oy
S L2(12)

q
<v>k‘+OLF1 ‘
L2(T2xR?)

1 2
+ 53 [l faz2) + a] S

We require that (k 4+ )¢ < 4 + ¢ in order to match our hypothesis on My, F(0). This ends the term in
(V). For the last one, by the product rule

//W’f“ Vo (F?) dado 5 || (0)* P
R2JT2

What is left, before applying Gronwall Lemma, is only to find parameters (k,p, ¢, «) matching all the
needed constraints:

2 2

(VD) 5 ||w)" F

L2(R2xT2) * L2(R2xT2)

k> 2;

1,011 _ 9.

» + 7 +3= 1;

ap > 2;

(k+a)g<4d+e.
The rationale behind this is the following: k£ and ¢ can be taken arbitrarily close to 2. Doing so, p will be
very large and hence « can be take arbitrarily small preserving the condition ap > 2, and having (k + «)

close to 2.
These conditions allow us obtain that

H<U>k+a F g

o5

q 1
’ a/ TNap dv S Oa
La(T2 xR2) La(T2xR?) " Jpa (V)

being

e

! q—1 (k+a)q
La(T2 xR?) < ||F1||LOO(T2XR2) o S <’U> Fy dxdv
—1
N ||F1||%°°(T2><R2) (||F1HL1(T2><R2) + M(k+a)qF1) <C.

Summarizing we have obtained

2
<
L2(T2 xR2)

d d k
el oy + 2 || ) B

2
2 k
< O uelfagesy + o || 00 Bl

hence by Gronwall Lemma we obtain v = 0 and F' = 0, proving uniqueness. (]

5. Scaling Limit for the Truncated System

In this section we focus on the proof of a first tightness result. As remarked in the introduction, first we
will prove the convergence of (PS®— NST) to (VNS). To do so, we will show that, if the cutoff threshold
R is large enough, then the system (VN S%) coincides with (V' NS). This whole section is devoted to the
proof of this intermediate result:
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Proposition 5.1. Under hypothesis of Sect. 2.3 and if R > K, + 1, where the constant K, will be specified
later (Proposition 5.13), the family of laws {Q~T} of the couple (w1, SN-T) e is tight on C([0,T] x
T?) x C([0,T); P1(T? x R?)). Moreover {QN’R}NGN converges weakly to 0(,, ry, where the couple (u, F)
is the unique weak solution of system of equation (VNS).

With a special argument we will be finally able to remove the cut-off also in the approximating system
and to get our main result, Theorem 2.3.

5.1. Tightness

In order to prove Proposition 5.1 we have to establish the tightness of the laws of the empirical measure
SN and that of u™>E. First we deal with the empirical measure, the easier of the two. The tightness
of SN:E follows easily by a well known criterion, [26], being the particles exchangeable and due to the
presence of the cut-off.

Proposition 5.2. The family of laws {QN 5} yen of the empirical measure {S.N’R}NGN is relatively com-
pact with respect of the weak convergence on C ([0,T]; P1(T? x R?)).

We now focus on the tightness of the laws of u™*%. To get an idea of what is the right topology to
work with, we focus on the coupling term that appears in the equation for «™'% in (PS® — NST). The
term can be rewritten as

N

1 ) )
N,R , i,N,R i,N,R
Xr(uy )N E (ung(Xt )=V )5;2,1\1,&
i=1

R)/ / (ulyR (@) = 000 (@ — 2') S (da!, dv') =
R2

= xr(ul )07 x () —0)S ) ().

In order to pass to the limit in the previous term, it is required that u™'%* is converging uniformly over

T2, since SV'% is converging only weakly as probability measure. Hence, we look for a tightness criterion
for {u"%} xey in C(T?). By Sobolev embedding in dimension two we have H?(T?) — C(T?) (and also in
the space of holder continuous functions). Thus, to get estimates on second derivative of u™'®, we start
by looking at the equation for u™N*® in vorticity form:

BN = ANE _  NR g, VR
N

N,R
Xr(u; ") i,N,R i,N,R en
_Tt ; ( f{:\zva(X ) Vt ))VL : 5XZ,N.,R' (10)

In order to be able to obtain a priori estimates on w™¥'# we need first to rewrite the coupling term in (10)
as a function of the mollified empirical measure FV>®, We highlight that this is one of the most important
key steps in this work, that remarks the importance to introduce the mollified empirical measure, and

justify all the following computations.

Lemma 5.3.

Z VNS wnla) = [ 0B a0 do = ma )

~ Z 0w /]Rz FNE(2,0) dv = moFNF (2)
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Proof. Notice that

Z‘/tz NR(S;\Z N, R( ) — / 00,61\1 (1, _ x’)U/SthR(d;E"dU/)
R2 JT?

— / / / 005N (2 — /)01 (v — o' )0’ SR (da!, du') d,
Rr2 Jr2 JT2

/ thN’R(l',U)d’U:/ / / QO’EN(x )9161\{( )SNR(d.’E d’l})d
R2 R2 JR2 JT2

so that to complete the proof we only need to prove

/ / / 005N (2 — )05~ (v — ') (v — v') S (da!, dv')dv = 0.
R2 JR2 JT2

However this is true due to

and

01N (v — ") (v — v ) dv =0

R2
by the hypothesis of symmetry (3) in 2.3. The second identity of the Lemma follows by the very definition
of 5? ~.n- This ends the proof. O

As stated above, we look for an estimate in H?(T?) for . This is obtained by energy type estimates
for the fluid in the vorticity form.
sup

T
N,R||?
0 [ [y + 19 g

+E [||m1FN’R||L2<[O,m2J + RE [|moF™ 2|17 o s |-

Lemma 5.4.

E

<o [l

N,R

Proof. The thesis follows by classical energy inequality for w and by using lemma 5.3. O

We remark that the previous computation was only possible due to the presence of the cuf-off. The
truncation is needed to decouple the fluid and particles in (PST — NS), hence allowing us to close
estimates for fluid and particles separately.

From Lemma 5.4 it is clear that it is necessary to control the L? norm of both m; and mg
To do so we will exploit Lemma 3.5 and thus look for an estimate for MgFY:# and for (F™:%)%. This is
exactly the goal of the next lemmas.

FN,R FN’R

Lemma 5.5. There exists a constant Cr g4, independent on N, such that
sup E U ‘

t€[0,T]
Proof. This proof strictly follows the proof of Lemma 3.3 in [14]. By It6 formula and integration by parts

we have
2
,d/ / (ENBY dudy +—/ (FtNﬁ)?(vthNﬁ‘ dzdvdt
R2 JT2 T2

} < Cr Ra.

LA(T2 xR2)

—/ / (ENY3div, (05 * (0S8N 1Y) dadvdt (11)
RrR2 JT2
/ / )3 divy, (6N * (ul (¢, 2)xr (W) = 0) SN dedvdt (12)
R2 JT2

+ / / FNRY aMNeN dado + / / (FENY2 g MN5~), dadv. (13)
R2 JT2 T2
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We estimate each of the terms above separately. Concerning (11), we can rewrite the convolution inside
the integral as

divg (05 % (VSN F)) = v - Vo (0°Y % SN — (V078 - v) « SN,

Hence, for the first term on the r.h.s. we have

/ / FNEY ENE oy de do dt = // ~vdz dvdt = 0.
R2 JT?2 R2 JT?

For the second one, note that due to our hypothesis on the mollifiers §°(x) and 6'(v) we have
|V20%5N (x — 2')| 05N (v — v') |(v = 0')
=en'en’ [Vat ey (z = o)) e 0! (3" (v = ') o - /|
< e (R @ — )| 50 et (o — )
<N (1 — )0V (v — )2

implying

D] <

FNR‘

LA(R2xT?)

The main differences with respect to the proof of [14] concerns the term (12): we split it into two parts.
One contains the fluid velocity v and the other one contains the velocity variable: the first one follows
easily by the truncation, being

/ / FN®y3divy, (0°N % ul (¢, 2)xr(ur SN dedo
R2 JT?

/ / 207N« ul B (¢ 2) xR (u NBYSNRY dady
R2 JT2

/ / o (FNF)3 ‘(HEN « [ul B (¢, ) xr(ul )’SNR)dxdv
r2 JT2
4
<R / / VthN’RFtN’R‘ (ENBY2 g do < = ‘ ‘
RrR2 JT2 (5 L4(T? xR?)

2
) / / (FthR)Q’vthNvR‘ dzdv
R2 JT?

and by choosing § small enough we can take the second term to the l.h.s. maintaining the positivity. For
the other one we again split it into a basic term plus a commutator

/ / (ENY3div, (05 % vSNR) dadv
R2 JT?
= / / (FENY3div, (v(0°N + SN dedv
R2 JT?2

— / / (EN)3div, (055 v« SN dado. (14)
R2 JT2

The first term on the r.h.s. on (14) is easily handled by direct computation
—~ / Vo (FNY3 o ENE dedy =
R2 JT2

—f/ Vo (FNY pded = = HFNR’
R2 JT2

LA(T2xR2)
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while the second one is more tricky: we compute the divergence on v and obtain

/ / FNY3div, 05V 0 « SN dado = 2 / / (FN Y dedo

R? JT2 T2

/ / (FN-F)3 / 005N (2 — 2" )V, 05N (v — o) - (v — ') SR (da!, dv”)dadvdt
R? JT2 R? JT2

<2HFNR‘

L4(T? xR2)
/ [V (FNH)3 / /00 SN (g — 20V (v — o) [o — o' | R (da! du')dadvdt.
r2JT2 R2JT2

Now we just look at the most inner term in the last inequality: using the compact support assumption
for 61 (v), see 2.3 hypothesis (3), we get

005N (2 — 2)01EN (v — ') [ — V| < 26075 (2 — 2")OEN (v — o),

which leads to (14) being
4
FVE| / / v
t L4(T2xR2) TEN R2 JT2 (

4 2
2 V,,FMR‘ FNEBY2 g dy.
L4(T2XR2) + SN /]Rz /]I‘Z ¢ ( ¢ ) rav

We now deal with the two last term in (13): the integral with respect to the martingale MtN N vanishes
when computing the expected value, while for the integral with respect to the quadratic variation we
have

(14) 5

FtN’R)ff‘ FNE dady

s |

2
//(FtN)Qd[MN’EN}tdxdv:%/ / (ENY2(|V 05~ |2 % SN dedvdt <
R2 JTI4 R2 J114
1
o [N dt+m/2/d<lvv9”|2*5£v>2 dxdvdt.
R2 JII

The square outside the convolution (|V,6°¥ |2 * S]V)? can be troublesome, but we can handle it using the
property of compact support of §%(v) and the separation of variables, in the following way:

//(|VU9€N|2*S§V)2dm
R2 JT2
1 N
<
w2 (L

1 N
vl

, 2 ‘ 2
V0" (v — V;“N’R)‘ 0% (z — XMV 1)? da dv)

, 4 .
V01N (v — VZ’N’R)‘ dv | 0% (z — XN dg,

T2
J.
0%~ (z — X,V ) dw = CN®P,
I1d

Now we compute

. 4
V01N (v — I/;“N)‘ dv = CN,

e substitute into the integral for the quadratic variation
1 2 gN)2 L 58738
W/W /Hd(|VU9€N| * S ) drdv < WN N

which is bounded for g < i.
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Summarizing we have obtained

4
d’ FtN’R’

2
L4(T?xR?) + C/ / (F1)? ‘VuFtN’R‘ dxdvdt <
2>< 2 R2 'H‘Q

4
< Cg HFtN,R

L4(T2xR?) i+ / / (FVT)3 dM =N dwdv + Cdt
X R2 JT2

which, after taking the average, ends the proof by standard Gronwall lemma. O

By interpolation between LP spaces, and the fact that FtN’R is a probability density function, we obtain
the following corollary:

Corollary 5.6. There exists a constant Cr g2, independent on N, such that

sup E U FtN’R‘
t€[0,T]

2

<C .
L2(T2 ><]R2):| = ~T,R2

We now proceed to bound the moments on the v-component of the mollified empirical measure FV-%.
The proof of the next Lemma follows by the very definition of M, EF™ - by using change of variable
formula.

Lemma 5.7. For all k < 6 and for all N and R, there exists a constant C,f’R, independent on N such
that

E | sup M FN| <clR
t€[0,T)
Proof. The proof follows by expanding FN:® as a summation, and by a change of variables inside the

integral with respect to v. This allow to bound the k-th moments along v of FN'E by

4 k
E | sup VZ’N’R‘ ]

te[0,T]

Moreover, we can bound the expected value in the previous formula using the SDEs for the particles
velocity, by using the truncation and the hypothesis on the initial conditions. (Il

Summarizing, up to this point we were able to prove the following bounds, independently on N:

2
< Crg,

L2(T2)

2
< Crg,

L2(T?)

sup E U ‘moFtN’R‘
t€[0,T]

sup E U ‘mlFtN’R‘
t€[0,T]

by Lemmas 5.5, 5.7 and inequality 3. and 4. from Lemma 3.5. Also

E ) Ve, d
L2(T2)+/O vas HLr"('ﬂ'z) 5

< Cr,g.

N.,R
sup ‘ ‘wt ‘
te[0,7

by Lemma 5.4.

Hence we have obtained the desired bound for the fluid in vorticity form. However, in order to obtain
convergence, we need to apply an appropriate tightness criterion.

Classical Aubin—Lions Lemma states that when Ey C E C E; are three Banach spaces with contin-
uous embedding, and Fy compactly embedded into E, then for all p,q < oo the space L?([0,T]; Eg) N
Wha([0,T); 1) is compactly embedded into LP([0,T]; E). Hence, we can apply this criterion choosing
p=¢q=2and Ey = H*(T?), E = C(T?) and E; = H~!(T?) to obtain

L2([0, T]; H*(T?)) n W2([0, T]; H~'(T?)) — L*([0, T]; C(T?))

and the embedding is compact. Thus, in order to obtain the required tightness result, we also need an a
priori estimate for the time derivative of w™ f:
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Lemma 5.8. For every € > 0 there exists Z > 0, such that

P <||WN’R||W1,2([0,T]§H_1(T2)) > Z) S &

Proof. By Lemma 5.4 we already have the result for the L2([0,T]; L?(T?)) norm of w¥. Since H' —
L? — H~! we already know that

(HWNRHLz (10,T;H~1(T2)) = Z) se

Hence we only need to estimate Hatw Thus we compute the H~! norm both sides

HL?(OT] -1(12))"

m the equatlon fOI' UJN obtalnlng
t T2) wi H-1(T2) t t H-1(T2)
Hmo A ‘ H
L2(T2) L2(T?)

by classical argument and integration by parts. Taking the square and integrating both sides we obtain

T 9 T
[ et s ot
0 H~1(T?)
2
+ sup / H NRH dt
L2(T2) C(T?)

t€[0,T
T

—|—R/ ‘moFtNR‘ dt+/ HmlFNR‘
0 L2(T2)

Finally, We compute probability both sides

T 2
3 / ‘atth»RH dt >R
0 H1(T2)

and use the fact that we can split product term inside probabilities

2 T
P sup Hin’R‘ , / ‘ iVRH dt > R
te[0,7) L2(T2) Jo C(T?)

T
<P| sup ‘ >VR|+P / ‘ 0
te[0,T) L2(T?) 0

Since all the terms above are bounded in expected value, we can apply Chebyshev inequality to make
each term smaller than e. This ends the proof. (]

2

L2(T?)

N,R
Wy

L2(T2)

2
[}y 0> VR).
C(T?)

At this point, thanks to Aubin’s Lemma, we are able to obtain a first tightness result for the law of
ulNin L2([0, T]; C(T?)). L? estimates on time are enough to prove a convergence result (as partially done
in [14]), but they are not sufficient to remove the cutoff at the particle level, thus obtaining Theorem 2.3.
Hence we will have to improve our estimates in order to obtain stronger time convergence. We apply
Corollary 8 in [25] by taking

X = H1+20¢(T2)7 B = H1+2a7€(T2)’ Y = 1771(?]1‘12)7
where £ < 2a and where X — Y is compact. The interpolation inequality between the space B and X,Y,

required in Corollary 8, it is an easy result of Fourier analysis since we are on the torus. Hence we have
that

L2([0, T]; HYF24(T2)) n WH([0, T]; H~(T?)) < C([0, T]; H'T275(T?))

with a compact embedding. Hence, by Sobolev embedding in dimension two of H!*22~¢(T?) into C(T?)
we also have that

L([0, 7] HH2(T2)) n WH2((0, T); H(T?)) — C([0,T] x T?)
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with a compact embedding. Clearly the result also holds when H'*2%(T?) is replaced by H?(T?). However
we were not able to obtain a uniform in time result for the H? norm and hence we tried to trim our
requirements. To do so, we first rewrite the equation for w™ ¥ in its mild formulation

t
N,R N,R -
w, = etAwO’ —/ elt S)Auév’R-Vwév’Rds
0

N

t

—s 1 7 7,

—/0 elm9Ayt. N E (XN xR (u ) = V] NR)5§(A§NRdS (15)
i=1

Lemma 5.9. For all a < % and for each e, there exists Z such that

p <||“N’R||Loo([o,T],H1+2a) = Z) <€

Proof. We apply a generalized Gronwall Lemma to the function of the only time variable ‘ ‘uiv ’R‘ ‘ T
H «@

N,R

; we apply the operator (I — A)® on the mild formulation of vor-

Since

~ ‘

‘ ‘HH'?"(TQ) ’ ‘HZO‘(TQ)

ticity equation (15), obtaining

a N,R a tA N,R
H(I_A> we ‘LQ(’]I‘Q)SH(I_A> € % ‘L2(1r2)
t N
+/ (I _ A)ae(t—s)AvL Z NR Xz NR)XR(uiV,R) Vz N, R)(S;\g oo ds
’ i=1 12(12)
t
+/ H(I — A)oet=9)Ay MR Vwév’R‘ (16)
0 L2(T2)
We start by estimating the initial conditions:
I — A N,R’
H( )7 L2(T2)
tA Ao, N,R < || ,N.R
< [le HLQ(W)—’N(TQ) ‘(I A)%w ’ L2(12) ~ Hwo HH”"(TQ). )
Regarding the second term of the r.h.s. of (16)
1 & .
(I o A)ae(t—s)AvL.N Z(uéV]\;R(X;,N,R)XR(uéV,R) Vz N, R)(S;A{ .
i=1 L2(T2
L2(T2)
< HV(I_ A)_l/Q‘ ‘(I— A)(x+1/2e(t—s)A‘
L?(T?)—L?(T?) L2(T?)—L*(T?)
N
1 7 i, £
e SN () VNS
i=1 L2(T?)
¢ 1o N,R(vi,N,R N,R i,N,R\ sen
< (t — S)a+1/2 N Z(ufj\’] ()(s7 ’ )XR(us ’ ) V )5XL N.R
i=1 L2(T2)

C
< O (| ror®

+ HmlFN’R’

18
L?(T?)) ’ (18)

L2(T2)
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while for the last one of (16) we have

H(I ~ At ANR vw;\f,R‘

L2(T?)

< H(I _ A)a+1/2€(t—s)A’

‘(I — A)_l/zui\r’R . Vu)N’R‘

S

L2(T2)—L2(T2) L2(T2)

C

< - 8y e

L2(T2)’

and
[EENETER R

= sup
L2(T?) pEL2(T2)

Now, notice that
(W V(1= 8) %) =~ Wl (1 = A) )

< g N,R N,R '
B ||wHL;l<§2)31||w||L2(T2> [ o [l o
Combining (17),(18),(19):
[T [
H2o(T2) ™ H2o(T2)
N t (RHmOFSN’RHm(Tz) + HmlFSN’RHLz(T?)) ds
(t — s)a+1/2
/ [l 7| Lo (T2) ||w? HL?(T?)dS
(t — 5)ot1/2
T (R{[moFX | ooy + |ma Y| aira))
N,R ( s L2(T?) s L2(T?)
S CHUJO HHQ‘)‘(']IQ) +A (T—s)a+1/2 dS"‘
H“ ||H1+2a(1r2)
o ) [
Finally,
T R[moF | oo
N,R < H N,RH / L2(T?)
‘ e HHH%(T?) S Cllwn H2(T?) + 0 (T — s)at1/2 ds+

+/T}|m1FsN7R||L2(T2) H NR / HU ||H1+2a Tz)d

o (T —s)tl/2 t€[0 T] LQ(T2 (t —s)atl/2 °

(1= 8) 72 VR, )|

JMFM

(19)

Notice that in the expression above the terms involved above are random (for simplicity we have

omitted w € ). Introduce, to short the notation, the random function

’ ’H1+2a ']1‘2)
We have proved that the function ¢ satisfies

t
©(s)
So(t) <Xy +X2/O mds

where

™ (R moF R paggay + [ Vo))
o N,R ( s L2(T?) s L2(T?)
1= Hw HHza(Tz Jr/0 (T — s)ot1/2 ds

Xo = sup
t€[0,T)

N,R
Wy

L2(T2)
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Notice that, by the uniform estimates proved in this section, there exist two constant C7 and Cy, inde-
pendent on N, such that

E[X:])<C;, E[X3] <Oy,
so that, for fixed ¢ we can chose Ri, Ry > 0 in order to have
P(X;>R)< g, P(Xs > Ry) < g
For a fixed w € Q applying Gronwall Lemma to the function ¢ we obtain

sup o(t)(w) < f(X1, X2)(w).
te[0,T)

We now claim that

P ( sup o(t) > f(Rl,R2)> <e.

te[0,T]

In fact we have the following chain of inequalities

t
P| sup p(t) < f(R,R2) | >P <g0(t) <R +R2/ SD(S)H/QdS>
t€[0,T] o (t—s)
ZP((Xl < Rl)ﬂ(Xg < RQ)) > 1—P<X1 > R1> —P(XQ > RQ) >1—e.
We end the proof by taking the complement set both sides. (I
We are finally able to obtain the following tightness result:

Lemma 5.10. The family of laws {Q™ %Y nen of {ulN"BY nen, is tight, and hence is relatively compact as
a probability measure on C([0,T] x T?).

Proof. The proof is just an application of Simons embedding in [25]. For each M, Z > 0 we can consider
the following set, for all @ < 1/2

Kz = {u € C([0,T) % T2) | |[ull o (o rys1r1-20 (r2) < M,

ullwr.2 o, 7551 (m2)) < Z}-
By the Simons Lemma Ky 7 is relatively compact in C([0,77] x T?). Notice that
QN’R’M(KKJ,Z) =P e Kjy.7)
<P ("”N’R|’Loo([o,T};HlHu(W)) > M) +P (|’“N’R||W1’2([0,T];H*1(TF2)) = Z) <
E

[||“N’R‘|L&([07T1;H1+2Q<T2>>} te

- M
by lemma 5.8. By Lemma 5.9 the expected values on the r.h.s. is uniformly bounded with respect to N,
hence the sequence {Q™"%"} vy is tight and proof is concluded. O

Combining Proposition 5.2 and Lemma 5.10 we obtain the following:

Corollary 5.11. The family of laws {Q™ %} nen of the couple (u™-T, SN-E) is tight, and hence relatively
compact as a probability measures on C([0,T] x T?) x C([0,T); P1(T? x R?)).
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5.2. Convergence of (PSF — NSE) to (VINS)

We will now prove that, under hypothesis on Section 2.3, and if R is large enough, then the solution
(uft, FB) of (VNS%) coincide with the solution (u, F) of (VNS). To do so we will prove that u? is
bounded in L*([0, 7] x T?), independently on R. First we summarize all the intermediate results needed
for the proof. We remark that all the following bounds hold independently on R:

e For all £k <6

sup MkFtR <C
te[0,7)

by Lemma 3.6 and hypothesis 2.3;

moF™],.. <Cand [, <o

([0,T];L2(T2) ([0,T];L2(T2)

by Lemma 3.6 and inequality 1. and 2. in Lemma 3.5;
e forallp>1

HURHL2([O,T];L"(T2)) <G

by Remark 3.2.
We can now formulate a further result, needed in the proof of Theorem 5.14.

Lemma 5.12. There exists a constant C, independent on R, such that
R
||w ||L°°([0,T];L2(’JI‘2)) =C.

Proof. Computing the time derivative of fm |th|2 dx we obtain

T
oy + [ [ 195" dods < e

+/ / wva-/ (uft — v)xr(W® FE dv d ds. (20)
o Jr2 R?

Focusing only on the last term of the previous inequality we have

t t
20)5// |w§]|u§\/ Ff‘dvdxds—k// |w§|/ lv| FF dv da ds
/ / |VwE|* dxds+/ / [l </ FRdv> dzds
T2 R2

+/ |VwR| da:ds+/ / ( |’U|FRd’U> dx ds.
0o JT2 T2 \JR2
Let us notice that

g R2 R 2 < T R 2 R 4 %
/0 TZ|us| </}R2FS dv> dxdsi/o ||USHL4(T2) /T2 </R2FS dv> dx | ds

< sup ||m0FtRHi4(1r2)H”

R
sel0.T] 2 o.ziizecooy

)? ||uRHL2([O,T];L4(T2)) =C

T 2
/ / (/ lv| FE dv) drds <r sup MyFlr<C
0o J12 \JR2 t€[0,T]

again by Lemma 3.5. We conclude the proof by classical Gronwall Lemma. (I

and
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We emphasize that, even if it is possible to prove the uniform bound with respect the parameter R,
it is not possible to obtain the same result directly at the particle level. In other terms, we were not able
to obtain directly any bound on the vorticity in the particle system (PS — NJS)

E [HWN||Loc([o,T];L2(1r2))

without using the cut off. This result would have allowed us to remove the cut off directly at the particle

level, without any further complication.

We finally prove the uniform bound on u*:

Proposition 5.13. There exists a constant K,,, independent on R, such that

[[0"]]oq < Ko

Proof. In order to produce the required bound we bound uniformly the norm of w® in the space
L>([0,T); H'2%(T?)) for any o < 1/2. Hence we use the mild formulation for the vorticity equation
associated with uf*:

Ol = AWl —uft . VWl — v+ / (u® — v)xr(W® FE do.
R2
Following the same argument of Lemma 5.9 we get

||“?HH1+2@(T2) N ||“’tRHH2a(T2) N |’W§||H2a(1r2)

+/t ||u§||L°°(']I‘2) ||W§HL2(T2)
0

(t — s)ot1/2 ds

+/t ‘|“§HLOO(11‘2) HmUFsRHm(T?) /t HmlFsRHm(W)
N AT

< R R ¢ ||u§||H1+2a(T2)
S 1100 gz oy + 1905 e oryazcnsyy |~ gyari 98

o L e :
+| sup MoFE / ———ds+ | sup MyFE)| |
t€[0,7) K o (t—s)otl/2 te[0,7) k
by neglecting the cutoff function x g which is bounded by one. By using the uniform bound described at
the beginning of Sect. 5.2, Lemma 5.12 and Lemma 3.5 inequality 1. and 2. we see that all the expression

above are bounded independently on R and we conclude by a Gronwall type argument applied to the
function ||uﬂ !HHQQ(TZ). O

In conclusion we have the following Theorem:

Theorem 5.14. If R > K, + 1, then any weak solution (ut, FX) of system of PDE (VNS%) coincide
with the unique bounded weak solutions of system of equations (VNS).

Proof. By proposition 5.13, taking R > K, + 1 we have that the function yg(u®) = 1, hence system
of equation (VNS®) reduce to (VNS). Hence, we obtain that the couple (uf, F¥) satisfies system of
equation (VNS). By the uniqueness of solution for system of equations (V NS), we obtain v = u’* and
F=FE O

In order to complete the proof of Proposition 5.1 we need only to verify that limit points of the
sequence {QY'7) ycy are supported on weak solutions of system of equations (VNS).

Proposition 5.15. If R > K, +1 limit points of subsequences of {Q~"F} yen are supported on the bounded
weak solutions of system of PDE (VNS) (see Definition 2.2).
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Proof. In order to prove that weak limits are supported on weak solutions, we have to prove that those
object satisfies equation (VNS) in the weak sense, and that they have the correct regularity. The fact
that limit objects satisfy system of equations (VN.S) is classical, see [23]. Let us focus on the regularity
issue.

First, by By Lemma 5.4 together with Lemma 3.5 inequality 3. and 4, limit points on the component
corresponding to uV*% satisfy the regularity properties of Definition 2.2. Similarly from a priori estimates
in Corollary 5.6 limit points of subsequences have a density on their particle component (corresponding
to SN:F) which is also in L2([0,7] x T? x R?). In order to complete the proof we need to verify that
such density is uniformly bounded, as required in Definition 2.2. This follows by the maximum principle
argued in Sect. 3.1. Namely, the fact that the limit points along the particles component satisfies system
of equations (VNS), where w is uniformly bounded, yields to an uniform bound for the density in
L>(]0,T] x T? x R?). Denoting by F one of the limit points, we only need to verify that

T
///|v\2Fs2dacdvds<oo. (21)
o Jrz Jr2

By using Lemma 5.5 F' is in L*([0,T] x T? x R?). By interpolation inequality of L spaces we also have
F € L3([0,T] x T? x R?). Also, the uniform bound on the v-moments of FN'% provided in Lemma 5.7,
grants also M4 F to be finite. Hence, by an easy computation (see Section 3.1), we see that (21) is satisfied.
Thus by the maximum principle we have F' € L>([0,T] x T? x R?), hence ending the proof. O

Combining Proposition 5.15 with Theorem 4.1 we complete the proof of Proposition 5.1.

6. Scaling Limit for the Full System

The aim of this section is to prove that the cut-off can be removed also in the approximating system
(uN-B SNE): the uniform convergence result proved in the previous section, Proposition 5.1, gives a
simple but relevant hint to prove the final result of convergence. We expect that the converging object
(uN R SN.R) inherits the property of boundedness, independently on the parameter R, that holds for
the limit object. If so, we can remove the cut-off, choosing R large enough from the beginning. The first
difficulty in the realization of this intuition is given by the type of convergence which we are dealing
with: convergence in law. We will overcome this technicality, appealing to the Skorohod’s Theorem to
strengthen the convergence.

We will first state and prove a general result for almost sure convergence of random variables. Then, in
order to utilize such criterion, we will make us Skorohod’s Theorem and we will understand our particle
systems in a path-by-path sense: we will give a precise definition of path-by-path solutions and prove a
uniqueness result for such kind of solutions. The application of the above mentioned criterion to our case
will let us transfer the property of convergence from the sequence (u™'%#, SN:F) to (u, S™N).

In the rest of the section we will always assume to have taken

R =max(K, + 1,]||ul|, + 1)

where the constant K, has been defined in Proposition 5.13. This choice will assure that Proposition 5.1
is verified. The condition that R is greater than ||u||  + 1 is needed in order to let the sequence of u™#
to inherit the uniform boundedness of the limit u. This process will be clarified later.

6.1. Convergence Criterion

We now present the general criterion that we will use to obtain the convergence of the sequence (u, S™) nen
from that of (u™"% SN:B)cn. The framework of this criterion is pretty general. We preferred to isolate
it an state it in its general form, rather than in our specific case, in order to make the underlying idea
more evident.
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Theorem 6.1. (General Principle) Let (Q,F,P) a probability space and let (E,dg) a separable metric
space. Let {Xn}nen and {Yn}nen two sequences of random variables taking values in E and let x be a
point in E. Moreover, suppose that for each N € N, there exist two collections of subset S])\? (w) C E and
SY(w) C E, indezed by w € Q. Assume further that the following conditions are satisfied:

1.

N—o0
Xy ——x € E P-as;
2. denoting
Qs = {weQ|iSX(w) <1 VN eN}

where by A we mean the cardinality of the set A, we have

P(Qs) = 1;
3. denoting
Qx = {w e Q| Xn(w) € Sy (w) VN € N},
Qy = {weQ|Yy(w) € Sy(w) VN € N},
we have
PQx)=PQy)=1;
4.

Bp(z,1) N Sx(w) C Sk(w) VN €N, Ywe Q.
Then the sequence {Yn}nen converges in E to the same limit of the sequence {Xn}Nen
YN oo, reFE P-as.
Proof. Consider the set
Qcx —{weQ|d(XN Ve o}
and
Qcy —{wemd(YN 2)p N 0}

Note that, by property 1. the set Q¢ x has full measure P(Q2¢ x) = 1.
We will prove that

QsﬂQC,XﬂQXﬁQY - QC,Y (22)
thus implying the thesis being P(Qg) = P(2x) = P(Qy) = 1 by property 2. and 3. To do so let us
consider the set

O ={weQ|INw)d(Xny(w),z) <1VYN > N(w)}
and note that
Qx.c C .
Now define
Dy ={we Q| Xn(w) =Yn(w)VN > N(w)}

where N(w) is defined for each w, in the set 3. We claim that

QsﬂQX,CﬂQXrTngQQ. (23)
Take w € Qg N Qx,c NQx N Qy. Hence if N > N(w), given that w lies in Qx ¢, it also lies in €2y, thus
we have Xy (w) € Bgr(z,1)g. Moreover, w lies also in Qx, hence Xy(w) € Sx (w). By property 4. we
conclude Xy (w) € Sk (w). Furthermore w € Qy implies Yy (w) € S¥ (w), but w is also in Qg hence by
property 2. S¥(w) is a singleton, hence S¥ (w) = {Vy(w)}. Since Xn(w) € Sx (w) and S¥(w) = {Vn(w)}
we obtain X (w) = Yx(w) and we have proven condition (23).
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Finally, we can prove condition (22): taking w € Qs N Qx,c NQx NNy, we have that Ve > 0 there exists
N, (w), such that

d(Xn(w),z)p <e VN > N (w)
By condition (23) w lies also in €, hence

Xn(w) =Yn(w) VN > N(w).
Calling N (w) = max(N.(w), N(w)) we conclude

dYy(w),z2)g <& VN > N.(w)

and hence w € Qy ¢. Thus the proof is concluded. O

6.2. Path by Path Solutions for (PS — NS)

We will now focus on the problem of uniqueness for path-by-path solutions. The issue of uniqueness for
this class of solutions is very difficult: very few result are know before the work of [7]. The analysis of
such kind of problem for (PS — NS) will be a key point of the proof of Theorem 2.3. In fact, to apply
Theorem 6.1 to our case, we will see that strong uniqueness in the sense of SDEs, which is more classical
than that path-by-path, will not be enough. We now recall the concept of path-by-path solutions and
uniqueness in this class. We will discuss this topic in the specific case that is needed here, the system of
PDE-SDEs (PS — NS).

Recall system of equation (PS — NS) and note that, in the equation for the particle position and
velocity (XZ N V,fN) the noise is pure additive Brownian motion, i.e. the diffusion coefficient is constant.
For this reason It6 integral is not involved into the equations and one can understand system of equations
(PS — NS) in its integral form as a coupling PDE-ODEs, where the Brownian motions plays the role of
a given external force. This perspective is outlined in the following system

ol = AulN —uN . VoV — vV — L z‘j\;1(“évzv (X)) - Vti’N)(S;E’N
div(u¥) =0,

XN = Xi+ [y VN ds

VN = Vi [l (XEN) = VEN) ds + o Bj(w)

(24)
i=1,...,N

where B}(w) stands for a single realization of a Brownian path for fixed w € Q. We now introduce the
set of path-by-path solutions for a given realization of w € 2 and for fixed N € N:

Sn(w) = {(w, (z?,v?)i_ly_“’N) € C([0,T] x T?) x C([0,T); T? x R*)N s.t.

(w, (z0!),_, N) solves (24) with additive noise (Bz(w))Lle} (25)

Roughly speaking Sy (w) is the set of curves that solves (24) in a deterministic setting for a prescribed
realization of a Brownian path (identified by w). We do not give a precise definition of existence of path-
by-path solutions. We remark that existence of weak or strong solutions in an SDE settings imply that
the set Sy (w) is non empty with probability one. We now focus our attention to the topic of uniqueness.

Definition 6.2. (Uniqueness of path-by-path solutions) Given a natural number N we say that there is
path-by-path uniqueness for system of equations (PS — N.S) with N particles, if there exist a set 2g C 2
with probability one P(2g) = 1 such that

SN (w) <1 Vw e Qg
where fA stands for the cardinality of the set A.
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Opposite to the case of existence, uniqueness of path-by-path solutions is a much more difficult topic:
uniqueness in this class is a stronger notion that weak or strong uniqueness for SDE. In Definition 6.2 no
measurability with respect to the probability space (2, F,{F:}, P) is required. In case of uniqueness for
SDE a much more richer structure is available, given that solutions are required at least to be adapted
to the filtration F;.

We now prove a path-by-path uniqueness result for system of equation (PSS — NS). Some result about
path-by-path uniqueness for SDEs are already known: Davie in [7] prove the result for a single SDE with
pure additive Brownian noise and only bounded measurable drift. This type of result for low regularity
drift functions, less than locally Lipschitz, are very difficult. In our case, the drift appearing into the
particle equations (X, V;"") is even more regular than Lipschitz: in fact the function ul (t,z) is
C in the space variable due to the convolution with the C* function 6V (x). However, the case here
is slightly different from the case of a single SDE due to the strong coupling with the Navier—Stokes
equation that introduce additional difficulty.

Proposition 6.3. Let us consider on the probability space (2, F,{F:},P)
Qp = {w € Q| Bj(w) is continuous on [0,T]Vi € N} C Q

the set where all the Brownian motion (B");en are continuous, which is of full measure with respect to P.
Then, for all N € N we have uniqueness path-by-path for system of equation (PS— NS) with N particles,
namely

f1Sn(w) <1 Ywe Qp.

Proof. For a matter of simplicity we prove the result in the case N = 1: the generalization for general NV,
is straightforward. Moreover, to make the notation less heavy, we will omit the dependence on N and w
indicating with u, the variable uN (w) and with (X;, V;) the couple of variables (X', V;"')(w). Also the
mollifier %~ will be labeled simply by 6. In our simplification, the system becomes:

Ou=Au—u-Vu—Vr—((0*u)(Xy) — Vi) 0(x — X3)

div(u) =0

X =V,

Now we consider two solutions (u, X, V) and (v/, X', V'), with (ug, Xo, Vo) = (ug, X, Vy), and we apply
Gronwall Lemma to the quantity

|Xe — X3+ Ve = VI + [lue — ug]] grivea oy »
for a < %

We start by computing the distance of velocities, recalling that V = Vi and B; is the same given function
for the two solutions

M—WIS/O (6% ) (X.) — (6 ) (X0)] ds+/0 Ve — V| ds

< / (6% ) (X.) — (6% ul)(X.)] ds + / (0 ,)(X,) — (0% u)(X0)] ds

0 0
t
+/ Ve V| ds
0
t t t
,s/ Husfu;HHluade/ |Xst;|ds+/ Ve — V7| ds
0 0 0

where we have used both the Lipschitzianity and boundedness in L>(T?) of fxu, as well as the embedding
H1+2a (TQ) (2N C(']I‘Q ) .
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Regarding the X component we simply have
t
Xe-x) < [ Vo vijds
0

The main difficulty consists in estimating |[u; — u4|| 1420 (p2). As done in previous sections we approach
the problem through the vorticity formulation. Call w and w’ the vorticity associated to v and u’. As in
Lemma 5.9, by the mild formulation of w — w’ we have

t
o= Ly < [ ||

I—A)et=9%, . V(w, — )

d 2
L (26)

t
+ I—A)%e=98(u, —ul) - V!, 27
= a2, -y wal]| (21)
t
- / (I — A)*et=927L LA, x v (s) ds (28)
0 L2(T2)

where
Mxy@:kmexamwwxa«wwwxgwwmxﬂ.

We now deal with each of the terms above separately. We strictly follow the same computation of
Lemma 5.9, starting from (26):

(26) 5 Flusl ooy |w|2+172 \|L2(T2)ds
S lull / H - ”f:;;(w)d&
(27) / s — u ||c ml‘Z)JrHlC/‘;HL? )
< HW/HL“’([O,T];LQ(TZ)) /t = It_iLSHfS/Z;(m) ds.

In the same way we have

t Ay S 22
(28)5/ Woxv Ol |
0

|t _ S|a+1/2
We proceed now by adding and subtracting the right quantities from A, x v (s) obtaining
[0 u)(x0) = Va]oa = X0) = [(0 ) (x0) = V] (2 — X2)
< 9($ = Xo) (0% us) (Xs) = (0 ug) (X5
+0(z — Xo) [(0 % uf)(Xs) — (0% ug) (X))
ug(X9) |0z — X) — 0z — XJ)|

+9(l‘ - Xs) “/S - V:e/|

+ Vil 10(z — X) = 0(x — X7))|
S llus — will privza(qey + 1 Xs — Xo| + Ve = V(|

<

by using the boundedness of u and ', the Lipschitzianity of (0 * u), the boundedness of |V;| and that of
f. Hence we obtained

t|us — ul aepey 1 Xs = X+ Vs = V]
(28)5/ I | grr2a g2y + | |+ | |ds
0

|t _ s|1/2+o¢
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We conclude by a standard Gronwall type inequality. 0

6.3. Proof of Theorem 2.3

We finally have all the ingredients to prove Theorem 2.3. Since the proof is quite technical we first outline
the general strategy.

From Proposition 5.1 we have obtained convergence in Law of the sequence (u to the unique
weak solution of (VNS), call it (u, F). We aim to obtain the same result for the sequence (u®,SY),
namely to prove Theorem 2.3. To do so, we will apply the convergence criterion stated in Theorem 6.1, to
transfer the convergence from one sequence to another. However, Theorem 6.1 requires the sequences of
random variables involved, to converge almost surely in the appropriate topology, while Proposition 5.1
grants us only convergence in law. Hence, to overcome this problem, we will first appeal to a slight
variation of Skorohod representation Theorem, Lemma 6.4, applied to the sequence (u:% SN1)ycy
in order to obtain almost sure convergence from convergence in law. Let us omit some technicalities
concerning Skorohod Theorem, whose details will be clarified later, and assume now that the sequence
(uN-F, SN-B) is converging almost surely to (u, F'). We will apply Theorem 6.1 by taking

XN = (UN’R7SN’R)7 YN = (uNaSN)a Tr = (U,F)
Still avoiding some technicalities we will chose

S (w) = the set of path-by-path solutions of(PST — N S*)

N,R’SN,R)

and
SX(w) = the set of path-by-path solutions of(PS — NS).

With this choice we will see that conditions [1-4] stated in Theorem 6.1 will be satisfied. We can now
outline the reasoning behind the hypotheses of Theorem 6.1 in the following scheme:

Condition 1. corresponds to Proposition 5.1, that is the convergence of (uN-f, SV:1)
(u, F);

Condition 2. resembles to the path-by-path uniqueness result, Proposition 6.3;

Condition 3. states that (u’>%, SV:1) is a path-by-path solution of (PS® — N.S) and the analogue for
(u?, §N);

Condition 4. expresses the fact that path-by-path solutions of (PST — NS®) which are also bounded
from above, also satisfies (PS — NS) if the parameter R is large enough. This is the same
idea used to prove Theorem 5.14 when we proved that two PDE system coincide for large
R.

We now remark the importance of dealing with path-by-path uniqueness. Imagine to replace condition
2. in Theorem 6.1, with some condition that mimics the idea of strong uniqueness for SDE, instead of
that for path-by-path uniqueness. A possible modification is the following;:

Condition 2.bis: For all N € N and for every Z E-valued random variable, if

P(Z(w) € Sx(w) =1

to the limit point

then
P(Z(w) =Yn(w)) =1.

Now, following the proof of Theorem 6.1, we can proceed into the proof up to a certain point. Specifically
we can prove that the set

{Xn(w) € Sy(w) VN > N(w)}
is of full measure with respect to P. However, there is no way to apply condition 2.bis, to conclude that
P(Xy(w)=Yn(w) VN >N(w)) =1

as it would be needed to end the proof.
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We now recall and prove a small variation of Skorohod’s Theorem, that we will need in the proof of
Theorem 2.3.

Lemma 6.4. Let (0, F,P) be a probability space and let (Xn,Yn)nen be a sequence of random variables
defined on €1, taking values on a separable metric space E X F. Assume that F is also a Banach space
and Yy € L*(0; F) for each N € N. Let also X : Q — E be a random variable and assume further that

Xy 2 X,
Then, there exist a probability space (Q, F, P) and random variables defined on the new probability space
(X, Yn)nen, X such that
(Xn, Yn) & (Xn, V), XX
and
Xy—X lg—almost—surely.

Proof. The proof relies on the classical Skorohod’s Theorem, see [4].
Call ¢y := E[||Yn||p], and introduce ay = Nen. Consider now the sequence Zy := Yy /an and notice
that

Law

ZNHO

since the convergence also holds in probability. Now, applying Skorohod’s Theorem to the sequence
(Xn, Zn) we obtain that there exist a new probability space (€2, F,P) and random variables (X, Zy ) ven,
X such that

o > Law Law
(Xn,Zn) R (Xn, Zn), X "X

and
X N—JZ' f’—almost—surely.
Introduce ?N = aNZN and observe that ()Z'N, ?N) Law (XN, Yn). This concludes the proof. O

Proof of Theorem 2.3. As explained the above the proof is divided into three steps: first we apply
Lemma 6.4 to the sequence (u™f*, SNV:f) to obtain almost sure convergence on a new probability space.
Second, we will see that the new random variables obtained, on the new probability space satisfies the
same equations as the original one. Lastly7 we apply the general principle Theorem 6.1 to transfer the
convergence from (u™N'%, SN:B) to (ulV, SN).
Step 1: Let us first mtroduce some notatlon. For each N € N we first introduce X¥-%# € C([0,T]; T?)Y
and VVF € C(]0,T); R?*)Y defined as

XNAG) - {X.“N’R if i <N,

0 otherwise,

VAR if i <N,
0 otherwise.

where 0 stands for the function which is identically zero. Roughly speaking X% (respectlvely VN s

the sequence of functions, where the first N elements are the particles trajectories XN , and all the
others are identically zero. Now we apply Lemma 6.4 to the sequence

(UN7R7 SNyRa (Bi)i€N7 XN’R? VN’R)NEN
where

i Law i
(uN’Ra SN’R, (B )iGN) I (U7F7 (B )iGN)
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and we just need to verify that (X% VN:B) ig integrable with respect to P for each N € N. However
this is true because

E {HXN’RHLoo([o,T];W)N} =E

i,N,R
max sup ||X;
SN telo,1)

< NE

sup HXZ’N’RH <C-N
t€[0,T]

|

by using exchangeability and by the fact that E {supte[O’T] HXZ ’ ] < C due to the presence of the

cutoff in system of equations (PS® — NS*). The same result holds for every VN by using the same
argument. o
We can now apply Lemma 6.4. Hence there exists a new filtered probability space (2, F,{F:},P) and
new sequences of random variables
(’ZZN’R7 §N’R7 (E’L’N)ZSNa XN7R7 vNyR)NEN
that shares the same laws of the initial sequences
(ﬂN’Rv §N7Rv (Ei’N)iSNa iN7R7 VN’R) Eﬁ}” (uN’R7 SN’R7 (Bi>i§Na XN7R7 VN’R)
for all N € N, and that satisfies
(aN,RjgN,R) N—oo, (u,F) P-as.

Step 2: We now verify that the new random variables satisfies the same equations as the original ones,
namely system of equations (PS® — N.S). Moreover, in order to apply Theorem 6.1 we also need to have
on the new probability space an analogue of (u”, SY), that still satisfies system of equations (PS — NS)
and of which we will prove the convergence. Namely:
1. Denoting by X#NR and VEN-R the first N components of ()NCN’R,{/'N’R), corresponding to those
that are non zero, we need to check that, for every N € N

N
~ 1
N,R
St = N Zé(fZ,N,Ry‘N/ti,N,R). (29)
i=1

To prove this, consider the functional ®%V defined as:

‘I)S’N(SN’R, (Xi’N’R)igN; (Vi,N,R)iSN)
1 & ) )
(SN, @) = 5 DV

i=1

= sup sup
peCy(T2xR2) t[0,T]

which is a measurable functional, and note that this is identically zero by definition of §N B Now,
by the fact that the random vectors (S™2 (X4NE), N (VENR), n) and (SVE (XENR), oy,
(VENRY, ) share the same law, we have
]Ef) {(I)S,N(S?N,R, ()N(i,N,R)iSN’ (vi,N,R)iSN)}
— EP [(PS,N(SN,R’ (XHNRY, (Vi,N,R)iSN)] —0.
Hence, we conclude that ®SN(SN-A (XON.RY, v (VENR), 1) s identically zero P-almost surely,
which implies (29).
2. To prove that the new object satisfies the same equation as the initial one, for each N € N we consider

a bounded and measurable functional ®V taking as argument the function u™%, the particles
(XENRY, n, (VENY), - and the Brownian motions (Bl)KN, that vanishes in expected value on

solutions of system of equation (PST — NS%). The measurability of ® follows by the path-by-
path formulation while the boundedness requirement can be dealt with by considering a sequence
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OM:N .= N A M and passing to the limit in M inside the expected value by monotone convergence.

By the equality in law of the new sequences with respect to the initial one, we have that the
functional ®" vanishes also on the new objects, when averaged with respect to P, namely (we omit
some technical details of integrability)

EP {‘I’N (ﬂN’R, ()?i’N’R)igN, (vi’N’R)igm (Ei’N)igN)]
_ EP |:(I)N <uN,R7 (Xi,N,R)iSN, (Vi,N,R)iSN)’ (Bi)i<N>:| =0.

Hence, (N2 (XPNRY, o (VENR), ) (B"N),< n) satisfies system of equation (PS® — NST) in

the new probability space (Q,]—N' ,{F:},P) which ends this part.

3. Consider now the sequence (u”, (X"N);<n, (V*N);<n))ven, associated with system of equations
(PS—NS), that is the particle system without the cut-off. On the new probability space (Q, F, {F:}, P)
consider the same system of equations (PS — NS), i.e. the system of equation where the Brown-
ian motions (B%);<y are replaced by the Brownian motions (EZN )i<n introduced in Step 1. Call
(@™, ()Z'i’N)Z-SN, (‘~/i7N)Z-§N))N€N the solution of such system, which can be seen as a random vari-

able on (2, F,{F:},P). Since solutions of system (PS — NS) are unique in law we conclude that
forall N e N

@, (XN, (V)i ) 2 @ (XY )ien, (VN )izn)).

Also introduce the analogue of the empirical measure SV on the new space

1N
N -
S = Z;QXZ,N,V;,N).
By the previous definition and by construction of ((X*V);<n, (V#");<n) we immediately have
(u™,SN) L @N §N), VN eN.
Step 3: We can now apply Theorem 6.1. We have to define all the objects needed in the Theorem and

verify all the four conditions required. Let E = C([0,T] x T?) x C([0,T]; P1(T? x R?) and let z € E be
the couple (u, F'). Now we take

Xy = @VE SNFY vy = @, SM).

Now define, for @ € 0

SR(@) = {(w, (z)i<n, (V)icn) € C([0,T] x T?) x C([0, T); T? x R*)V s.t.

(w, (2" i<, (v1)i<n) solves (PST — NST) with additive noise (Bg(&))iSN},

the set of path-by-path solutions for system of equations (PS® — N.S%). We also introduce the analogue
for (PS — NS): call it Sy(w). Now we consider

N
S¥@) = {0 € Bli= 5 3 bt (e (rex) € SH@ .
i=1
and

1 & . A
$5@) = {(wem) € Bl = 5 3 bt 0, e ()ie) € 5v(@) .

i=1

Roughly speaking, Sx (resp. S}) are the set of couples (w, i) where u is a function and p is a measure,
such that p is the empirical measure of a set of particles which, together with wu, are path-by-path solutions
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of (PST—NS). This is just a way of rewriting sets of path-by-path solutions, which match the structure
of the space E where the converging objects belong.
Now we just need to verify rigorously all the four conditions stated in this Theorem:

1. In the first Step of this proof, we saw that
(aN,R7§N,R) N—oo, (u,F) P-as.

which correspond exactly to condition 1.
2. Introduce

Qp = {J) € (Ei’N(@))iSN,NGN are continuous }

and note that, since we are considering a countable set of Brownian Motions, this set is of full
measure with respect to P. Then, by Proposition 6.3, we have that

ﬁSN((T}) <1 Vwe Op.

Hence, the same result holds for the set S} (©).
3. Condition 3. states that (u™, §N’R) belongs to the set S almost surely. However, in Step 2. of
this proof we have verified that on (Q, F, {F;},P)
(aN-E, ()?i’N’R)iSN, (‘N/i’N’R)igN), (éi’N)iSN) satisfies system of equation (PST— N S%) in the sense
of SDEs. This condition implies that for fixed @ € Q the vector (WN-2(®),
(XENR@))icn, (VENE(G))jcn) € SE(®). Since in Step 2. we verified that SN is in fact an
empirical measures on particle solutions of (PST — NST) and by the definition of S3, this imply
the first part of condition 3. The same result holds for (u”, SN ) and S¥ by an analogous argument.
4. Condition 4. is the most delicate. Take a couple (w,u) € Sx (@) N Bg((u, F),1). Since (w,u) €
Bg((u, F),1) we have that

||w||C([0,T]><T2) < ||u||C([O,T]><T2) + 1.

The couple (w, i) also lies in Sx (@), hence there exist ((z%), (v?))i<y € C([0,T]; T?> x R?) such
that (w, (v%);<n, (v})i<n) € SE(D), which means that is a path-by-bath solutions of (PST — NSE).
However, since w is uniformly bounded by ||UHC([O,T]><’J1‘2) + 1, which corresponds exactly to our
choice of R (see at the beginning of this section), we see that the cut off function xyr(w) = 1 is
identically one. Hence system of equation (PST — NS®) reduce to (PS — NS), which is the particle
system without the cut-off. This implies that (w, (z%);<n, (v!);<n) solves also (PS — NS), hence
(w,10) € S} (@)

Since we verified all the necessary conditions, we can apply Theorem 6.1, obtaining
~N gN\| N—oo D
(u S ) — (u, F) P-as.
Since almost sure convergence implies convergence in law, and since we verified in Step 2. that
(™, SN) L @N §N), VN eN.

we can transport this type of convergence to the original probability space (Q,F,{F;},P), hence the
proof is ended. O



40 Page 38 of 39 F. Flandoli et al. JMFM

Funding Open access funding provided by Scuola Normale Superiore within the CRUI-CARE Agreement.
Compliance with Ethical Standards
Conflict of interest The authors declare that there is no conflict of interest.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

(1] Allaire, G.: Homogenization of the Navier—Stokes equations in open sets perforated with tiny holes I. Abstract framework,
a volume distribution of holes. Arch. Ration. Mech. Anal. 113(3), 209-259 (1991)

(2] Allaire, G.: Homogenization of the Navier—Stokes equations in open sets perforated with tiny holes II: non-critical sizes
of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 113(3), 261-298
(1991)

[3] Bernard, E., Desvillettes, L., Golse, F., Ricci, V.: A derivation of the Vlasov-Navier-Stokes model for aerosol flows from
kinetic theory. Communications in Mathematical Sciences 15(6), 1703-1741 (2017)

[4] Billingsley, P.: Convergence of Probability Measures. Wiley, Hoboken (2013)

[5] Boudin, L., Desvillettes, L., Grandmont, C., Moussa, A.: Global existence of solutions for the coupled Vlasov and
Navier—Stokes equations. Differ. Integr. Equ. 22(11/12), 1247-1271 (2009)

[6] Chae, M., Kang, K., Lee, J.: Global existence of weak and classical solutions for the Navier—Stokes—Vlasov—Fokker—
Planck equations. J. Differ. Equ. 251(9), 2431-2465 (2011)

[7] Davie, A.M.: Uniqueness of solutions of stochastic differential equations. International Mathematics Research Notices
(2007)

[8] Degond, P.: Global existence of smooth solutions for the Vlasov—Fokker—Planck equation in 1 and 2 space dimensions.
Annales scientifiques de I’'Ecole Normale Supérieure 19, 519-542 (1986)

[9] Desvillettes, L., Golse, F., Ricci, V.: The mean-field limit for solid particles in a Navier-Stokes flow. J. Stat. Phys.
131(5), 941-967 (2008)

[10] Desvillettes, L., Mathiaud, J.: Some aspects of the asymptotics leading from gas-particles equations towards multiphase
flows equations. J. Stat. Phys. 141(1), 120-141 (2010)

[11] Feireisl, E., Namlyeyeva, Y., Necasova, S.: Homogenization of the evolutionary Navier-Stokes system. Manuscr. Math.
149(1-2), 251-274 (2016)

[12] Flandoli, F.: Random perturbation of pdes and fluid dynamic models. In: Ecole d’été de probabilités de Saint-Flour
2010, vol. 2015. Springer (2011)

[13] Flandoli, F.: A fluid-particle system related to Vlasov—Navier—Stokes equations. In: Maekawa, Y. (ed.) Mathematical
Analysis of Viscous Incompressible Fluid, RIMS Kokytroku 2058. RIMS, Kyoto (2017)

[14] Flandoli, F., Leocata, M., Ricci, C.: The Vlasov—Navier—Stokes equations as a mean field limit. In: Discrete and Con-
tinuous Dynamical Systems - B, 22 (2017)

[15] Flandoli, F., Mahalov, A.: Stochastic three-dimensional rotating Navier—Stokes equations: averaging, convergence and
regularity. Arch. Ration. Mech. Anal. 205(1), 195-237 (2012)

[16] Glass, O., Munnier, A., Sueur, F.: Point vortex dynamics as zero-radius limit of the motion of a rigid body in an
irrotational fluid. Inventiones mathematicae 214(1), 171-287 (2018)

[17] Goudon, T., He, L., Moussa, A., Zhang, P.: The Navier—Stokes—Vlasov—Fokker—Planck system near equilibrium. STAM
J. Math. Anal. 42(5), 2177-2202 (2010)

[18] Goudon, T., Jabin, P.-E., Vasseur, A.: Hydrodynamic limit for the Vlasov—Navier—Stokes equations. Part I: light particles
regime. Indiana Univ. Math. J. 53, 1495-1515 (2004)

[19] Goudon, T., Jabin, P.-E., Vasseur, A.: Hydrodynamic limit for the Vlasov—Navier—Stokes equations. Part II: fine particles
regime. Indiana Univ. Math. J. 53, 1517-1536 (2004)


http://creativecommons.org/licenses/by/4.0/

JMFM The Navier—Stokes—Vlasov-Fokker—Planck System Page 39 of 39 40

[20] Hamdache, K.: Global existence and large time behaviour of solutions for the Vlasov—Stokes equations. Jpn. J. Ind.
Appl. Math. 15(1), 51 (1998)

[21] Han-Kwan, D., Miot, E., Moussa, A., Moyano, I.: Uniqueness of the solution to the 2D Vlasov-Navier-Stokes system.
Revista Matemadtica Iberoamericana 36(1), 37-60 (2020)

[22] Jabin, P.-E., Otto, F.: Identification of the dilute regime in particle sedimentation. Commun. Math. Phys. 250(2),
415-432 (2004)

[23] Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems, vol. 320. Springer, Berlin (2013)

[24] Oelschléager, K.: A law of large numbers for moderately interacting diffusion processes. Zeitschrift fiir Wahrscheinlichkeit-
stheorie und verwandte Gebiete 69(2), 279-322 (1985)

[25] Simon, J.: Compact sets in the spacel Lp(0, T;B). Annali di Matematica 146(1), 65-96 (1986)

[26] Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole d’été de probabilités de Saint-Flour XIX-1989, pp. 165-251.
Springer (1991)

[27] Yu, C.: Global weak solutions to the incompressible Navier—Stokes—Vlasov equations. Journal de Mathématiques Pures
et Appliquées 100(2), 275-293 (2013)

Franco Flandoli Cristiano Ricci

Scuola Normale Superiore of Pisa University of Pisa

Pisa Pisa

Italy Italy

e-mail: franco.flandoli@sns.it e-mail: cristiano.ricci@ec.unipi.it

Marta Leocata

Luiss Guido Carli

Roma

Italy

e-mail: mleocata@luiss.it

(accepted: February 24, 2021; published online: March 17, 2021)



	The Navier–Stokes–Vlasov–Fokker–Planck System as a Scaling Limit of Particles in a Fluid
	Abstract
	1. Introduction
	1.1. Difficulties
	1.1.1. Uniform Control on Velocity and Vorticity Creation by Particles
	1.1.2. The Regularized Empirical Measure
	1.1.3. The Cut-Off and its Removal


	2. Notation and Main Results
	2.1. Definition of Weak Solutions
	2.2. The Empirical Measure of the Particle System
	2.3. Main Result

	3. Preliminary Results
	3.1. Maximum Principle for Weak Solutions of the Linear Vlasov–Fokker–Plank Equation

	4. Uniqueness for Bounded Weak Solutiosn of System of Equations (VNS)
	5. Scaling Limit for the Truncated System
	5.1. Tightness
	5.2. Convergence of (PSR-NSR) to (VNS)

	6. Scaling Limit for the Full System
	6.1. Convergence Criterion
	6.2. Path by Path Solutions for (PS-NS)
	6.3. Proof of Theorem 2.3

	References




