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Abstract. We prove that no two-dimensional Stokes and solitary waves exist when the vorticity function is negative and
the Bernoulli constant is greater than a certain critical value given explicitly. In particular, we obtain an upper bound
F ≤ √

2 + ε for the Froude number of solitary waves with a negative constant vorticity, sufficiently large in absolute value.

1. Introduction

We consider the classical water wave problem for two-dimensional steady waves with vorticity on water
of finite depth. We neglect effects of the surface tension and consider a fluid of constant (unit) density.
Thus, in an appropriate coordinate system moving along with the wave, the stationary Euler equations
are given by

(u − c)ux + vuy = −Px, (1a)

(u − c)vx + vvy = −Py − g, (1b)

ux + vy = 0, (1c)

and hold true in a two-dimensional fluid domain Dη = {(x, y) : x ∈ R, 0 < y < η(x)}. Here (u, v) are
components of the velocity field, y = η(x) is the surface profile, c is the wave speed, P is the pressure
and g is the gravitational constant. The corresponding boundary conditions are

v = 0 on y = 0, (1d)

v = (u − c)ηx on y = η, (1e)

P = Patm on y = η. (1f)

It is often assumed in the literature that the flow is irrotational, that is vx − uy is zero everywhere in
the fluid domain. Under this assumption the components of the velocity field are harmonic functions,
which allows to apply methods of complex analysis. Being a convenient simplification it forbids modeling
of non-uniform currents, commonly occurring in nature. In the present paper we will consider rotational
flows, where the vorticity function is defined by

ω = vx − uy. (2)

Throughout the paper we assume that the flow is unidirectional, that is

u − c < 0 (3)

everywhere in the fluid. This forbids the presence of stagnation points an gives an advantage of using the
partial hodograph transform.

In the two-dimensional setup relation (1c) allows to reformulate the problem in terms of a stream
function ψ, defined implicitly by the relations

ψy = c − u, ψx = v.
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This determines ψ up to an additive constant, while relations (1d), (1d) force ψ to be constant along the
boundaries. Thus, by subtracting a suitable constant, we can always assume that

ψ = m, y = η; ψ = 0, y = 0.

Here m > 0 is the mass flux, defined by m =
∫ η

0
(c − u)dy. In what follows we will use non-dimensional

variables proposed by Keady & Norbury [9], where lengths and velocities are scaled by (m2/g)1/3 and
(mg)1/3 respectively; in new units m = 1 and g = 1. For simplicity we keep the same notations for η and
ψ.

Taking the curl of Euler equations (1a)–(1c) one checks that the vorticity function ω defined by (2) is
constant along paths tangent everywhere to the relative velocity field (c − u, v); see [3] for more details.
Having the same property by the definition, the stream function ψ is strictly monotone by (3) on every
vertical interval inside the fluid region. These observations together show that ω depends only on values
of the stream function, that is ω = ω(ψ). This property and Bernoulli’s law allow to express the pressure
P as

P − Patm +
1
2
|∇ψ|2 + y + Ω(ψ) − Ω(1) = const, (4)

where Ω(ψ) =
∫ ψ

0
ω(p) dp is a primitive of the vorticity function ω(ψ). Thus, we can eliminate the pressure

from equations and obtain the following problem:

Δψ + ω(ψ) = 0 for 0 < y < η (5a)
1
2 |∇ψ|2 + y = r on y = η, (5b)

ψ = 1 on y = η, (5c)

ψ = 0 on y = 0, (5d)

ψy > 0 for 0 ≤ y ≤ η. (5e)

Here r > 0 is referred to as Bernoulli’s constant. As for the regularity we will assume that ω ∈ Cγ([0, 1]),
ψ ∈ C2,γ(Dη) and η ∈ C2,γ(R) for some γ ∈ (0, 1) being fixed throughout the paper.

Beside the Bernoulli constant r, the water wave problem (5) admits another spatial constant of motion
known as the flow force, given by

S =
∫ η

0

(ψ2
y − ψ2

x − y + Ω(1) − Ω(ψ) + r) dy. (6)

This constant is important in several ways; for instance, it plays the role of the Hamiltonian in spatial
dynamics; see [1]. The flow force constant is also involved in a classification of steady motions; see [2].

In what follows we will consider Stokes waves, periodic solutions to (5) that are monotone between
each neighbouring crest and trough and symmetric around every vertical line passing through crests and
troughs; see [4,6] for related results on the symmetry of Stokes waves.

Now it is convenient to define a solitary wave as a Stokes wave with the infinite period. More precisely,
each solitary wave (ψ, η) has symmetric profile (around the vertical line passing through the single crest),
monotone on sides, and is subject to the asymptotic relation

η(x) → d, x → ±∞, (7)

where d is the depth of the limiting shear flow. Note that we do not require any decay properties for ψx,
such as

ψx → 0 as x → ±∞ (8)

uniformly in y. In fact, (8) follows from our regularity assumptions and relation (5e). A short argumen-
tation is that if (8) is false one can find a family of shifts of the solution (in partial hodograph transform
variables) converging over compact subsets to a solution with flat surface. The latter solution must be a
stream by the maximum principle, which leads to a contradiction.
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Every solitary wave is known to be symmetric and supercritical; see [7,13]. It is worth mentioning
that the depth d in (7) is necessarily the same at both infinities, so that no monotone fronts exist for the
problem (5); this fact follows from a recent study [13].

The asymptotic depth in (7) supports a stream solution U = U(y) solving (5) with the same Bernoulli
constant r. It is essential that this stream and the solitary wave have the same flow force constant, which
follows from (8) (by passing to the limit in (6)).

1.1. Stream solutions

Laminar flows or shear currents, for which the vertical component v of the velocity field is zero play
an important role in the theory of steady waves. Let us recall some basic facts about stream solutions
ψ = U(y) and η = d, describing shear currents. It is convenient to parameterize the latter solutions by
the relative speed at the bottom. Thus, we put Uy(0) = s and find that U = U(y; s) is subject to

U ′′ + ω(U) = 0, 0 < y < d; U(0) = 0, U(d) = 1. (9)

Our assumption (3) implies U ′ > 0 on [0; d], which puts a natural constraint on s. Indeed, multiplying
the first equation in (9) by U ′ and integrating over [0; y], we find U ′2 = s2 − 2Ω(U). This shows that the
expression s2 − 2Ω(p) is positive for all p ∈ [0; 1], which requires s > s0 =

√
maxp∈[0,1] 2Ω(p). On the

other hand, every s > s0 gives rise to a monotonically increasing function U(y; s) solving (9) for some
unique d = d(s), given explicitly by

d(s) =
∫ 1

0

1
√

s2 − 2Ω(p)
dp.

This formula shows that d(s) monotonically decreases to zero with respect to s and takes values between
zero and

d0 = lim
s→s0+

d(s).

The latter limit can be finite or not. For instance, when ω = 0 we have d(s) = 1/s and s0 = 0, so that
d0 = +∞. On the other hand, when ω = −b for some positive constant b �= 0, then s0 = 0 but d0 < +∞.
We note that our main theorem is concerned with the case d0 < +∞.

Every stream solution U(y; s) determines the Bernoulli constant R(s), which can be found from the
relation (5b). This constant can be computed explicitly as R(s) = 1

2s2 − Ω(1) + d(s). As a function of s
it decreases from R0 to Rc when s changes from s0 to sc and increases to infinity for s > sc. Here the
critical value sc is determined by the relation

∫ 1

0

1
(s2 − 2Ω(p))3/2

dp = 1.

The constants R0 and Rc are of special importance for the theory. For example, it is proved in [11] that
r > Rc for any steady motion other than a laminar flow. In the present paper we will consider the water
wave problem (5) for r > R0, provided R0 < +∞. The latter is true, for instance, for a negative constant
vorticity.

For any r ∈ (Rc, R0] there are exactly two solutions s−(r) < s+(r) to the equation R(s) = r, while
for r > R0 one finds only one solution s = s+(r). The laminar flow corresponding to s−(r) is called
subcritical and it’s depth is denoted by d+(r) = d(s−(r)). The other flow, with s = s+(r) is called
supercritical and it’s depth is d−(r) = d(s+(r)). According to the definition, we have d−(r) < d+(r). The
flow force constants corresponding to flows with d = d± are denoted by S±(r).

It was recently proved in [13] that all solitary waves are supported by supercritical depths d−(r) and
the corresponding flow force constant equals to S−(r); here r is the Bernoulli constant of a solitary wave.
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1.2. Formulations of main results.

Just as in [11] we split the set of all vorticity functions into three classes as follows: (i) maxp∈[0,1] Ω(p) is
attained either at an inner point of (0, 1) or at an end-point, where ω attains zero value; (ii) Ω(p) < 0
for all p ∈ (0, 1] and ω(0) �= 0; (iii) Ω(p) < Ω(1) for all p ∈ [0, 1) (and so ω(1) �= 0). The first class can be
characterized by relations R0 = +∞ and d0 = +∞, while R0, d0 < +∞ for all vorticity functions that
belong to the second and third classes. Our main result states

Theorem 1.1. Let ω ∈ Cγ([0, 1]) be such that R0 < +∞. Then there exist no Stokes waves with r ≥
R0 − Ω(1). Furthermore, there are no solitary waves with r ≥ R0.

A part of the statement, when ω is subject to (iii) was proved in [11], where it was shown that no
steady waves exist for r ≥ R0 (under condition (iii)). We note that there is no analogues statement for
irrotational waves. A typical example of a vorticity function satisfying condition (ii) (for which R0 < +∞)
is a negative constant vorticity ω(p) = −b, b > 0. It is known (see [16]) that vorticity distributions of
this type give rise to Stokes waves over flows with internal stagnation points, that exist for all Bernoulli
constants r > R0. Furthermore, a recent study [12] shows that there exist continuous families of such
Stokes waves that approach a solitary wave in the long wavelength limit. The latter solitary wave has
r > R0 and rides a supercritical unidirectional flow (corresponding to one of stream solutions U(y; s)
with s > sc) but has a near-bottom stagnation point on a vertical line passing through the crest. Thus,
even though there are no unidirectional waves for r > R0, there exist Stokes and solitary waves with
r > R0 violating assumption (3). These considerations show that the statement of Theorem 1.1 is sharp
in a certain sense. On the other hand, inequality r ≥ R0 − Ω(1) is not sharp and probably can be
improved further. However it is not clear if one can omit completely the term −Ω(1) from the bound on
the Bernoulli constant.

Inequality r ≤ R0 for solitary waves puts a natural upper bound for the Froude number

F 2(s) =

(∫ d

0

(Uy(y; s))−2dy

)−1

.

It is well known that for irrotational solitary waves F <
√

2; see [14], [10]. Furthermore, the bound
F < 2 for rotational waves with a negative vorticity was obtained in [17]. For small negative vorticity
distributions inequality 1 < F (s) < 2 is stronger than Rc < R(s) < R0. However, already for ω(p) = −1
the inequality R(s) < R0 becomes stronger. For ω(p) = −b with a large b > 0 we find that inequality
Rc < R(s) < R0 is equivalent to 1 < F (s) < F (s0), where F (s0) → √

2 as b → +∞, which is significantly
better than F < 2.

2. Preliminaries

2.1. Reformulation of the problem

Under assumption (3) we can apply the partial hodograph transform introduced by Dubreil-Jacotin [5].
More precisely, we present new independent variables

q = x, p = ψ(x, y),

while new unknown function h(q, p) (height function) is defined from the identity

h(q, p) = y.

Note that it is related to the stream function ψ through the formulas

ψx = −hq

hp
, ψy =

1
hp

, (10)
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where hp > 0 throughout the fluid domain by (3). An advantage of using new variables is in that instead
of two unknown functions η(x) and ψ(x, y) with an unknown domain of definition, we have one function
h(q, p) defined in a fixed strip S = R × [0, 1]. An equivalent problem for h(q, p) is given by

(
1 + h2

q

2h2
p

+ Ω

)

p

−
(

hq

hp

)

q

= 0 in S, (11a)

1 + h2
q

2h2
p

+ h = r on p = 1, (11b)

h = 0 on p = 0. (11c)

The wave profile η becomes the boundary value of h on p = 1:

h(q, 1) = η(q), q ∈ R.

Using (10) and Bernoulli’s law (4) we recalculate the flow force constant S defined in (6) as

S =
∫ 1

0

(
1 − h2

q

h2
p

− h − Ω + Ω(1) + r

)

hp dp. (12)

Laminar flows defined by stream functions U(y; s) correspond to height functions h = H(p; s) that are
independent of horizontal variable q. The corresponding equations are

(
1

2H2
p

+ Ω
)

p

= 0, H(0) = 0, H(1) = d(s),
1

2H2
p (1)

+ H(1) = R(s).

Solving equations for H(p; s) explicitly, we find

H(p; s) =
∫ p

0

1
√

s2 − 2Ω(τ)
dτ.

Given a height function h(q, p) and a stream solution H(p; s), we define

w(s)(q, p) = h(q, p) − H(p; s). (13)

This notation will be frequently used in what follows. In order to derive an equation for w(s) we first
write (11a) in a non-divergence form as

1 + h2
q

h2
p

hpp − 2
hq

hp
hqp + hqq − ω(p)hp = 0.

Now using our ansatz (13), we find

1 + h2
q

h2
p

w(s)
pp − 2

hq

hp
w(s)

qp + w(s)
qq − ω(p)w(s)

p +
(w(s)

q )2Hpp

h2
p

− w
(s)
p (hp + Hp)Hpp

h2
pH

2
p

= 0. (14)

Thus, w(s) solves a homogeneous elliptic equation in S and is subject to a maximum principle; see [15] for
an elliptic maximum principle in unbounded domains. The boundary conditions for w(s) can be obtained
directly from (11b) and (11c) by inserting (13) and using the corresponding equations for H. This gives

(w(s)
q )2

2h2
p

− w
(s)
p (hp + Hp)

2h2
pH

2
p

+ w(s) = r − R(s) for p = 1, (15a)

w(s) = 0 for p = 0. (15b)

Concerning the regularity, we will always assume that ω ∈ Cγ([0; 1]) and h ∈ C2,γ(S), where C2,γ(S) is
the usual subspace of C2(S) (all partial derivatives up to the second order are bounded and continuous
in S) of functions with Hölder continuous second-order derivatives with a finite Hölder norm, calculated
over the whole strip S. The exponent γ ∈ (0; 1) will be fixed throughout the paper.
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2.2. Auxiliary function σ

For a given r > Rc and s > s0 we define

σ(s; r) =
∫ 1

0

(
1

2H2
p (p; s)

− H(p; s) − Ω(p) + Ω(1) + r

)

Hp(p; s) dp. (16)

This expression coincides with the flow force constant for H(p; s), but with the Bernoulli constant R(s)
replaced by r. We note that σ(s∓(r); r) = S±(r). The key property of σ(s; r) is stated below.

Lemma 2.1. For a given r ≥ R0 the function s 
→ σ(s; r) decreases for s ∈ (s0, s+(r)) and increases to
infinity for s ∈ (s+(r),+∞).

Proof. Because Hp(p; s) = 1√
s2−2Ω(p)

and ∂sHp(p; s) = −sH3
p (p; s), we can compute the derivative

σs(s; r) =
∫ 1

0

(
1

2H2
p (p; s)

− H(p; s) − Ω(p) + Ω(1) + r

)

∂sHp(p; s) dp

+
∫ 1

0

(

−∂sHp(p; s)
H3

p (p; s)
− ∂sH(p; s)

)

Hp(p; s) dp

=
∫ 1

0

(

− 1
2H2

p (p; s)
− Ω(p) + Ω(1) + r

)

∂sHp(p; s) dp − d(s)d′(s)

=
∫ 1

0

(− 1
2s2 + Ω(1) + r

)
∂sHp(p; s) dp − d(s)

∫ 1

0

∂sHp(p; s)

= −s(r − R(s))
∫ 1

0

H3
p (p; s) dp.

Finally, because R(s) < r for s0 < s < s+(r) and R(s) > r for s > s+(r) we obtain the statement of the
lemma. Note that since R(s) = 1

2s2 + O(1) and Hp(p; s) = 1
s + O( 1

s2 ) we have σs(s; r) ∼ 1 as s → +∞.
Therefore, we conclude that lims→+∞ σ(s; r) = +∞. �

Our function σ(s; r) and it’s role is similar to the function σ(h) introduced by Keady and Norbury in
[8]. The main purpose of the latter is to be used for a comparison with the flow force constant S.

2.3. Flow force flux functions

Our aim is to extract some information by comparing the flow force constant S (of a given solution with
the Bernoulli constant r ≥ R0) to σ(s; r) for different values of s > s0. For this purpose we first compute
the difference

S − σ(s; r) =
∫ 1

0

(
1 − (w(s)

q )2

2h2
p

− w(s) − 1
2H2

p

)

Hp dp

+
∫ 1

0

(
1 − (w(s)

q )2

2h2
p

− h − Ω + Ω(1) + r

)

w(s)
p dp

=
∫ 1

0

(
(w(s)

p )2

2hpH2
p

− (w(s)
q )2

2hp
− w(s)Hp

)

dp

+
∫ 1

0

(

− 1
2H2

p

− w(s) − H − Ω + Ω(1) + r

)

w(s)
p dp.

Now using the identity

−Ω(p) + Ω(1) + R(s) =
1

2H2
p

+ H(1)
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and integrating first-order terms, we conclude that

2(S − σ(s; r)) = 2(r − R(s))w(s)(q, 1) − (w(s)(q, 1))2 +
∫ 1

0

(
(w(s)

p )2

hpH2
p

− (w(s)
q )2

hp

)

dp.

Let us define the (relative) flow force flux function Φ(s) by setting

Φ(s)(q, p) =
∫ p

0

(
(w(s)

p (q, p′))2

hp(q, p′)(Hp(p′; s))2
− (w(s)

q (q, p′))2

hp(q, p′)

)

dp′. (17)

An analog (partial case with s = s+(r)) of this function was recently introduced in [13]. The same
computation as in [13] gives

Φ(s)
q = −w(s)

q

(
1 + (w(s)

q )2

h2
p

− 1
H2

p

)

, Φ(s)
p =

(w(s)
p )2

hpH2
p

− (w(s)
q )2

hp
. (18)

A surprising fact about Φ(s) is that it solves a homogeneous elliptic equation as stated in the next
proposition.

Proposition 2.2. There exist functions b1, b2 ∈ L∞(S) such that

1 + h2
q

h2
p

Φ(s)
pp − 2

hq

hp
Φ(s)

qp + Φ(s)
qq + b1Φ(s)

q + b2Φ(s)
p = 0 in S. (19)

Furthermore, Φ(s) satisfies the boundary conditions

Φ(s) = 2(S − σ(s; r)) − 2(r − R(s))w(s)(q, 1) + (w(s)(q, 1))2 for p = 1, (20a)

Φ(s) = 0 for p = 0. (20b)

In the irrotational case b1, b2 = 0 and (19) is equivalent to the Laplace equation in the original physical
variables.

For the proof we refer to [13, Proposition 3.1], where a similar statement was proved for the special
case s = s±(r). More precisely, it is shown that the function Φ defined by (17) with s = s±(r) solves
a homogenous elliptic equation, which only requires the interior relation (11a) from the laminar stream
H. Thus, if we replace H(p; s±) by an arbitrary stream solution H(p; s) (still solving the same equation
(11a)) the corresponding statement of [13, Proposition 3.1] remains true. Thus, to prove (20a) it is enough
to repeat the argument in [13, Proposition 3.1] but for H(p; s) instead of H(p; s±). On the other hand,
the boundary relation (20a) is different from the one in [13, Proposition 3.1] and follows directly from
the computation given above.

We also note that Φ(s) ∈ C2,γ(S), provided h ∈ C2,γ(S) and ω ∈ Cγ([0, 1]).

Proposition 2.3. Let h ∈ C2,γ(S) be a solution to (11) with r > Rc. Assume that the flow force flux
function Φ(s) for some s > s0 satisfies infq∈R Φ(s)(q; 1) ≤ 0. Then

inf
q∈R

Φ(s)(q; 1) = 2(S − σ(s; r)) − (r − R(s))2. (21)

Proof. First, we assume that the infimum is attained at some point (q0; 1), where Φ(s)
q (q0; 1) = 0. Differ-

entiating the boundary condition (20a), we find

Φ(s)
q (q0, 1) = 2w(s)

q (q0, 1)(w(s)(q0, 1) − (r − R(s))) = 0. (22)

Because Φ(s) attains it’s global minimum at (q0, 1), then the maximum principle and the Hopf lemma
give Φ(s)

p (q0, 1) < 0. In particular, we find that w
(s)
q (q0, 1) �= 0 by the second formula (18). Thus, we

necessarily obtain w(s)(q0, 1) = (r − R(s)). Using this equality in (20a), we conclude (21) as required.
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Now we assume that the infimum is attained over a sequence {qj}∞
j=1 accumulating at the positive

infinity (without loss of generality). Passing to a subsequence, if necessary, we can assume that

lim
j→+∞

Φ(s)
q (qj , 1) = 0, lim

j→+∞
Φ(s)

p (qj , 1) ≤ 0. (23)

Indeed, if this is not possible, we can consider a sequence of functions fj(q, p) = Φ(s)(q + qj , p) such that
for all j ≥ 1 either |∂qfj(0, 1)| ≥ ε or ∂pfj(0, 1) ≥ ε for some ε > 0 independent of j. Because the norms
‖fj‖C2,γ(S) are uniformly bounded for j ≥ 1 we can use a compactness argument to find a subsequence
fjk

converging to a function f ∈ C2,γ(S) as k → +∞. The convergence is in every space C2(K) over
compact all subsets K ⊂ S. Thus, the limiting function solves the same elliptic equation, attains global
minimum at q = 0, while fq(0, 1) �= 0 or fp(0, 1) > 0. In both cases we clearly obtain a contradiction with
the regularity assumption or the Hopf lemma respectively.

Now there are two possibilities:

(i) lim
j→+∞

w(s)
q (qj , 1) = 0 and (ii) lim

j→+∞
w(s)

q (qj , 1) �= 0.

In the first case relations in (23) give

lim
j→+∞

w(s)
q (qj , 1) = lim

j→+∞
w(s)

p (qj , 1) = 0,

which then require limj→+∞ w(s)(qj , 1) = r − R(s) by the Bernoulli equation (15a). In this case
one obtains (21) as before. The remaining option (ii) provides with a subsequence {qjk

} such that
limk→+∞ w(s)(qjk

, 1) = r − R(s), which follows from the first relation in (23) and (22). Similarly, this
leads to (21). �

3. Proof of Theorem 1.1

Assume that the vorticity function ω satisfies condition (ii) of the theorem. In this case d0, R0 < +∞,
s0 = 0 and

sup
s>s0

Hp(0; s) = +∞. (24)

First we prove the claim about solitary waves. Thus, we assume that there exists a solitary wave
solution h with r ≥ R0. Choosing s = s+(r), we put

w(q, p) = h(q, p) − H(p; s+(r)).

It follows from Theorem 1 in [11] that w(q, 1) > 0 for all q ∈ R. Now because for a supercritical solitary
wave S = σ(s+(r); r) and the relation (20a) is then reduced to Φ(s+(r)) = (w(s+(r)))2, we find that Φ(s+(r))

is strictly positive along the top boundary. On the other hand, we can choose s ∈ (s0, s+(r)) sufficiently
small so that w

(s)
p (q0, 0) = 0 for some q0 ∈ R, which follows from (24). Then the corresponding flow force

flux function Φ(s) must attain negative values somewhere along the top boundary, because otherwise
Φ(s)

p (q, 0) > 0 for all q ∈ R by the Hopf lemma, leading to a contradiction with w
(s)
p (q0, 0) = 0 in view of

the second formula (18). Since Φ(s) depends smoothly on s, by the continuity we can find s� ∈ (s0, s+(r))
for which infq∈R Φ(s�)(q, 1) = 0. By Proposition 2.3 we obtain 2(S − σ(s�; r)) − (r − R(s�))2 = 0 so that
S > σ(s�; r). Now Lemma 2.1 gives σ(s�; r) > σ(s+(r); r) and then S > σ(s+(r); r) = S−(r), which is
false, since S = S−(r) for any solitary wave.

Now we consider the case of a Stokes wave h for some r ≥ R0. Our aim is to show that r < R0 −Ω(1).
We start by proving
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Lemma 3.1. There exists s� ∈ (s0, s+(r)) such that S < σ(s�; r).

Proof. Let qt < qc be coordinates for some adjacent trough and crest respectively, so that h(q, 1) is
monotonically increasing on the interval (qt, qc). By (24) we can choose a stream solution H(p; s�) with
s� ∈ (s0, s+(r)) such that hp(q�, 0) = Hp(0; s�) for some q� ∈ (qt, qc). For the function w(�)(q, p) =
h(q, p) − H(p; s�) we consider the zero level set

Γ = {(q, p) ∈ (qt, qc) × (0, 1) : w(�)(q, p) = 0}
inside the rectangle Q = (qt, qc) × (0, 1). We claim that Γ is a graph {(f(p), p), p ∈ (0, 1)} of some
function f ∈ C2,γ([0, 1]) such that f(0) = q� and f(1) ∈ (qt, qc). Thus, the curve Γ connects a point on
the bottom with the surface. To explain this fact we need to recall some properties of Stokes waves. Let
Ql, Qr, Qt and Qb be the left, right, top and bottom boundaries of Q, excluding corner points. Then the
following properties are true:

(a) w
(�)
q > 0 on Q, while w

(�)
q = 0 on Ql, Qr and Qb;

(b) w
(�)
qq > 0 on Ql and w

(�)
qq < 0 on Qr;

(c) w
(�)
qp > 0 on Qb.

These properties are true for all Stokes waves and follow from the symmetry (guaranteed by [4]) and the
maximum principle applied to the function w

(�)
q . First of all, (a) ensures that Γ (if not empty) is locally

the graph of a function as desired. We only need to show that it connects Qt and Qb. Note that w(�)

attains a unique zero value at some point (q†, 1) on Qt. Otherwise, we would find that w
(�)
p (q, 0) has a

constant sign by the Hopf lemma, contradicting to the equality w
(�)
p (q�, 0) = 0. Thus, Γ bifurcates locally

from (q†, 1) inside Q. On the other hand, (c) shows that Γ also bifurcates inside Q from (q�, 0) on the
bottom. Now it is easy to see that theses two curves must be connected with each other. Indeed, relations
(b) and inequalities w

(�)
p (qt, 0) < 0 < w

(�)
p (qc, 0) guarantee that w

(�)
p has constant sign on the vertical

sides Ql and Qr. Indeed, taking the difference of (11a) and the corresponding equation for H, we obtain
that

(
1

2h2
p

− 1
2H2

p

)

p

=
(

hq

hp

)

q

.

Therefore, taking into account (b), we conclude that the function

1
2h2

p

− 1
2H2

p

= −w
(�)
p (hp + Hp)

2h2
pH

2
p

is increasing for p ∈ [0, 1] on Ql and decreasing on Qr. Now relations w
(�)
p (qt, 0) < 0 < w

(�)
p (qc, 0) show

that w
(�)
p is strictly negative on Ql and positive on Qr. Thus, Γ can not approach sides Ql and Qr and

must connect Qt and Qb as desired.
Now we can prove that Φ(s�)(q†, 1) < 0 and then S < σ(s�; r) by (20a), since w(�)(q†, 1) = 0. For that

purpose we compute Φ(s�)(q†, 1) by changing a contour of integration as follows:

Φ(s�)(q†, 1) =
∫ 1

0

Φ(s�)
p (q†, p) dp =

∫

Γ

(Φ(s�)
p ,−Φ(s�)

q ) · n dl,

where dl is the length element and n = (n1, n2) is the unit normal to Γ with n1 > 0 (because Γ is the
graph of f(p)). Note that n is proportional with (w(�)

q , w
(�)
p ) along Γ and is oriented in the same way.

Therefore, (Φ(s�)
p ,−Φ(s�)

q ) · n has the same sign as

(Φ(s�)
p ,−Φ(s�)

q ) · (w(�)
q , w(�)

p ) = −
(

(w(�)
p )2

h2
pHp

+
(w(�)

q )2Hp

h2
p

)

w(�)
q < 0, (25)
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which is a matter of a straightforward computation based on (18). To see that we first rewrite Φ(s)
q as

Φ(s�)
q = w(s�)

q

(
Φ(s�)

p

hp
+

2w
(s�)
p

h2
pHp

)

.

Using this formula we compute

(Φ(s�)
p ,−Φ(s�)

q ) · (w(�)
q , w(�)

p ) = Φ(s�)
p w(s�)

q − w(s�)
q w(s�)

p

(
Φ(s�)

p

hp
+

2w
(s�)
p

h2
pHp

)

= w(s�)
q

(
HpΦ

(s�)
p

hp
− 2(w(s�)

p )2

h2
pHp

)

It is left to use formula (18) for Φ(s�)
p to conclude (25). Thus, (Φ(s�)

p ,−Φ(s�)
q ) · n is negative along Γ and

then Φ(s�)(q†, 1) < 0. The lemma is proved. �

Using Lemma 3.1 it is easy to complete the proof of the theorem. Indeed, for all s ∈ (s0, s�) we
have S < σ(s�; r) < σ(s; r) (see Lemma 2.1), while at the every crest we have Φ(s)(qc, 1) > 0, because
of (17) and that w

(s)
q (qc, p) = 0 for all p ∈ [0, 1]. Thus, the boundary condition (20a) then implies

w(s)(qc, 1) > 2(r − R(s)), which is true for all s ∈ (s0, s�). Here we used the fact that w(s)(qc, 1) > 0 that
was proved in [11, Proposition 3]. Passing to the limit s → s0, we find η(qc) > d0 + 2(r − R0). Finally,
because η(qc) < r by (11b) and R0 = d0 − Ω(1), we obtain r < R0 − Ω(1), which finises the proof of the
theorem.
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