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Abstract. We are interested in studying a system coupling the compressible Navier–Stokes equations with an elastic structure
located at the boundary of the fluid domain. Initially the fluid domain is rectangular and the beam is located on the upper
side of the rectangle. The elastic structure is modeled by an Euler–Bernoulli damped beam equation. We prove the local in
time existence of strong solutions for that coupled system.
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1. Introduction

1.1. Statement of the Problem

Our objective is to study a fluid structure interaction problem in a 2d channel. The fluid flow here
is modeled by the compressible Navier–Stokes equations. Concerning the structure we will consider an
Euler–Bernoulli damped beam located on a portion of the boundary. As remarked in [2], such dynamical
models arise in the study of many engineering systems (e.g., aircraft, bridges etc). In the present article
we establish a result on the local in time existence of strong solutions of such a fluid structure interaction
problem. To the best of our knowledge, this is the first article dealing with the existence of local in time
strong solutions for the complete non-linear model considered here.

We consider data and solutions which are periodic in the ‘channel direction’, (with period L, where
L > 0 is a constant). Here L-periodicity of a function f (defined on R) means that f(x + L) = f(x) for
all x ∈ R.

We now define a few notations. Let Ω be the domain TL×(0, 1) ⊂ R
2, where TL is the one dimensional

torus identified with (0, L) with periodic conditions. The boundary of Ω is denoted by Γ. We set

Γs = TL × {1}, Γ� = TL × {0}, Γ = Γs ∪ Γ�.

Now for a given function η : Γs × (0,∞) → (−1,∞), which will correspond to the displacement of the
one dimensional beam, let us denote by Ωt and Γs,t the following sets

Ωt = {(x, y) | x ∈ (0, L), 0 < y < 1 + η(x, t)} = domain of the fluid
at time t,

Γs,t = {(x, y) | x ∈ (0, L), y = 1 + η(x, t)} = the beam at time t.

The reference configuration of the beam is Γs, and we set

ΣT = Γ × (0, T ), Σs
T = Γs × (0, T ),

˜Σs
T = ∪t∈(0,T )Γs,t × {t}, Σ�

T = Γ� × (0, T ),
QT = Ω × (0, T ), ˜QT = ∪t∈(0,T )Ωt × {t}.

(1.1)
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Fig. 1. Domain Ωt

We consider a fluid with density ρ and velocity u. The fluid structure interaction system coupling the
compressible Navier–Stokes and the Euler–Bernoulli damped beam equation is modeled by
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ρt + div(ρu) = 0 in ˜QT ,

(ρut + ρ(u.∇)u) − (2μdiv(D(u)) + μ′∇divu) + ∇p(ρ) = 0 in ˜QT ,

u(·, t) = (0, ηt) on ˜Σs
T ,

u(·, t) = (0, 0) on Σ�
T ,

u(·, 0) = u0 in Ω,
ρ(·, 0) = ρ0 in Ω,

ηtt − βηxx − δηtxx + αηxxxx = (Tf )2 on Σs
T ,

η(·, 0) = 0 and ηt(·, 0) = η1 in Γs,

(1.2)

where Ω = Ωη(0). The initial condition for the density is assumed to be positive and bounded. We fix the
positive constants m and M such that

0 < m = min
Ω

ρ0(x, y), M = max
Ω

ρ0(x, y). (1.3)

In our model the fluid adheres to the plate and is viscous. This implies that the velocities corresponding
to the fluid and the structure coincide at the interface and hence the condition (1.2)3 holds. In the system
(1.2), D(u) = 1

2 (∇u + ∇Tu) is the symmetric part of the gradient and the real constants μ, μ′ are the
Lamé coefficients which are supposed to satisfy

μ > 0, μ′ � 0.

In our case the fluid is isentropic i.e. the pressure p(ρ) is only a function of the fluid density ρ and is
given by

p(ρ) = aργ ,

where a > 0 and γ > 1 are positive constants.
We assume that there exists a constant external force pext > 0 which acts on the beam. The external

force pext can be written as follows

pext = aργ ,

for some positive constant ρ.
To incorporate this external forcing term pext into the system of equations (1.2), we introduce the

following
P (ρ) = p(ρ) − pext = aργ − aργ . (1.4)



JMFM Local Existence of Strong Solutions of a Fluid–Structure Interaction Model Page 3 of 38 60

Since ∇p(ρ) = ∇P (ρ), from now onwards we will use ∇P (ρ) instead of ∇p(ρ) in the equation (1.2)2.
In the beam equation the constants, α > 0, β � 0 and δ > 0 are respectively the adimensional rigidity,

stretching and friction coefficients of the beam. The non-homogeneous source term of the beam equation
(Tf )2 is the net surface force on the structure which is the resultant of force exerted by the fluid on the
structure and the external force pext and it is assumed to be of the following form

(Tf )2 = ([−2μD(u) − μ′(divu)Id] · nt + Pnt) |Γs,t

√

1 + η2
x · �e2 on Σs

T , (1.5)

where Id is the identity matrix, nt is the outward unit normal to Γs,t given by

nt = − ηx
√

1 + η2
x

�e1 +
1

√

1 + η2
x

�e2

(�e1 = (1, 0) and �e2 = (0, 1)).
Observe that (ρ,u, η) = (ρ, 0, 0) is a stationary solution to (1.2)–(1.4)–(1.5).

Remark 1.1. Now we can formally derive a priori estimates for the system (1.2)–(1.4)–(1.5) and show the
following energy equality

1
2

d

dt

⎛

⎝

∫

Ωt

ρ|u|2 dx

⎞

⎠+
d

dt

⎛

⎝

∫

Ωt

a

(γ − 1)
ργ dx

⎞

⎠+
1
2

d

dt

⎛

⎝

L
∫

0

|ηt|2 dx

⎞

⎠

+
β

2
d

dt

⎛

⎝

L
∫

0

|ηx|2 dx

⎞

⎠+
α

2
d

dt

⎛

⎝

L
∫

0

|ηxx|2 dx

⎞

⎠+ 2μ

∫

Ωt

|Du|2 dx

+ μ′
∫

Ωt

|divu|2 dx + δ

L
∫

0

|ηtx|2 dx = −pext

∫

Γs

ηt. (1.6)

The equality (1.6) underlines the physical interpretation of each coefficient and in particular of the
viscosity coefficients, μ, μ′ and δ.

Remark 1.2. Observe that in (1.2) we have considered the initial displacement η(0) of the beam to be
zero. This is because we prove the local existence of strong solution of the system (1.2) with the beam
displacement η close to the steady state zero. There are several examples in the literature where the
authors consider the initial displacement of the structure (in a fluid–structure interaction problem) to
be equal to zero. For instance the readers can look into the articles [26] and [8]. We also refer to the
article [3] where the initial displacement of the structure is non zero but is considered to be suitably
small. The issues involving the existence of strong solution for the model (1.2) but with a non zero initial
displacement η(0) of the beam is open. The case of a system coupling the incompressible Navier–Stokes
equations and an Euler–Bernoulli damped beam with a non zero initial beam displacement is addressed
in [11].

Our interest is to prove the local in time existence of a strong solution to system (1.2)–(1.4)–(1.5) i.e
we prove that given a prescribed initial datum (ρ0,u0, η1), there exists a solution of system (1.2)–(1.4)–
(1.5) with a certain Sobolev regularity in some time interval (0, T ), provided that the time T is small
enough.

We study the system (1.2)–(1.4)–(1.5) by transforming it into the reference cylindrical domain QT .
This is done by defining a diffeomorphism from Ωt onto Ω. We adapt the diffeomorphism used in [3]
in the study of an incompressible fluid–structure interaction model. The reader can also look at [23,34]
where the authors use a similar map in the context of a coupled fluid–structure model comprising an
incompressible fluid.
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1.2. Transformation of the Problem to a Fixed Domain

To transform the system (1.2)–(1.4)–(1.5) in the reference configuration, for η satisfying 1 + η(x, t) > 0
for all (x, t) ∈ Σs

T , we introduce the following change of variables

Φη(t) : Ωt −→ Ω defined by Φη(t)(x, y) = (x, z)

=
(

x,
y

1 + η(x, t)

)

,

Φη : ˜QT −→ QT defined by Φη(x, y, t) = (x, z, t)

=
(

x,
y

1 + η(x, t)
, t

)

.

(1.7)

Remark 1.3. It is easy to prove that for each t ∈ [0, T ), the map Φη(t) is a C1− diffeomophism from Ωt

onto Ω provided that (1 + η(x, t)) > 0 for all x ∈ TL and that η(·, t) ∈ C1(Γs).

Notice that since η(·, 0) = 0, Φη(0) is just the identity map. We set the following notations

ρ̂(x, z, t) = ρ(Φ−1
η (x, z, t)), û(x, z, t) = (û1, û2) = u(Φ−1

η (x, z, t)). (1.8)

After transformation and using the fact that û1,x = 0 on Σs
T (since û = ηt �e2 on Σs

T ) the nonlinear system
(1.2)–(1.4)–(1.5) is rewritten in the following form
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⎪
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⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪
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ρ̂t +
[

û1
1

(1+η) (û2 − ηtz − û1zηx)

]

· ∇ρ̂ + ρ̂divû = F1(ρ̂, û, η) in QT ,

ρ̂ût − μΔû − (μ′ + μ)∇(divû) + ∇P (ρ̂) = F2(ρ̂, û, η) in QT ,
û = ηt �e2 on Σs

T ,
û(·, t) = 0 on Σ�

T ,
û(·, 0) = u0 in Ω,
ρ̂(·, 0) = ρ0 in Ω,
ηtt − βηxx − δηtxx + αηxxxx = F3(ρ̂, û, η) on Σs

T ,
η(0) = 0 and ηt(0) = η1 in Γs,

(1.9)

where
F1(ρ̂, û, η) =

1
(1 + η)

(û1,zzηxρ̂ + ηρ̂û2,z),

F2(ρ̂, û, η) = − ηρ̂ût + zρ̂ûzηt − ηρ̂û1ûx + û1ûzηxρ̂z + μ
(

ηûxx

− ηûzz

(1 + η)
− 2ηxzûzx +

ûzzz
2η2

x

(1 + η)

− ûz

( (1 + η)zηxx − 2η2
xz

(1 + η)
))− ρ̂(û.∇)û + (μ + μ′)

·

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ηû1,xx − û1,xzzηx − ηxz
(

û1,zx − û1,zzzηx

(1 + η)
)

+û1,z

( (1 + η)zηxx − 2η2
xz

(1 + η)
)− ηxû2,z

(1 + η)
− ηxzû2,zz

(1 + η)

− ηxû1,z

(1 + η)
− ηxzû1,zz

(1 + η)
− ηû2,zz

(1 + η)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

− (ηPx(ρ̂) − Pz(ρ̂)zηx) �e1,

F3(ρ̂, û, η) = − μ
(− û2,z + ηxû2,x +

û2,z

(1 + η)
η2

xz − 2ηû2,z

(1 + η)

− ηxû1,z

(1 + η)
)− μ′(− 2û2,z +

û1,z

(1 + η)
ηxz − ηû2,z

(1 + η)
)

+ P (ρ̂).

(1.10)
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The transport equation for density (1.9)1–(1.9)6 is of the form
⎧

⎨

⎩

ρ̂t +
[

û1
1

(1+η) (û2 − ηtz − û1zηx)

]

· ∇ρ̂ + ρ̂divû = F1 in QT ,

ρ̂(·, 0) = ρ0 in Ω.

(1.11)

Due to the interface condition, û = ηt �e2 on Σs
T , we get that the velocity field (û1,

1
(1+η) (û2 −ηtz− û1zηx))

satisfies
[

û1
1

(1+η) (û2 − ηtz − û1zηx)

]

· n = 0 on Σs
T ,

where n is the unit outward normal to Ω. Hence we shall not prescribe any boundary condition on the
density for the system (1.11) to be well posed.

To avoid working in domains which deform when time evolves, the meaning of solutions for (1.2)–
(1.4)–(1.5) will be understood as follows: The triplet (ρ,u, η) solves (1.2)–(1.4)–(1.5) if and only if (ρ̂, û, η)
solves (1.9). This notion will be detailed in the next section.

1.3. Functional Settings and the Main Result

In the fixed domain Ω we have the following spaces of functions with values in R
2,

Hs(Ω) = Hs(Ω; R2) for all s � 0.

We also introduce the following spaces of vector valued functions

H1
0(Ω) = {z ∈ H1(Ω) | z = 0 on Γ},

H2,1(QT ) = L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω)),
H2,1

ΣT
(QT ) = {z ∈ H2,1(QT ) | z = 0 on ΣT }.

(1.12)

Similarly for s � 0, we can define Hs(Ω), the Sobolev space for the scalar valued functions defined on Ω.
Now for θ, τ � 0, we introduce the following spaces which we use to analyze the beam equation

Hθ,τ (Σs
T ) = L2(0, T ;Hθ(Γs)) ∩ Hτ (0, T ;L2(Γs)).

Remark 1.4. Since Ω = TL × (0, 1) and Γs = TL × {1}, the above definitions of the functional spaces
implicitly assert that the functions are L− periodic in the x variable.

Proposition 1.5. Let T > 0. If η is regular enough in the space variable, say η(·, t) ∈ Hm(Γs) for m � 2
and the following holds

1 + η(x, t) � δ0 > 0 on Σs
T , (1.13)

for some constant δ0, the map g 	→ ĝ = g(Φ−1
η(t)(x, z)) is a homeomorphism from Hs(Ωt) to Hs(Ω) for

any s � m.

The proposition stated above can be proved in the same spirit of [23, Proposition 2, Section 3].
Now in view of Proposition 1.5, we define the notion of strong solution of the system (1.2)–(1.4)–(1.5)

in terms of the strong solution of the system (1.9).

Definition 1.6. The triplet (ρ,u, η) is a strong solution of the system (1.2)–(1.4)–(1.5) if

η ∈ C0
(

[0, T ];H9/2(Γs)
)

, ηt ∈ L2
(

0, T ;H4(Γs)
)

∩C0
(

[0, T ];H3(Γs)
)

,
ηtt ∈ L2(0, T ;H2(Γs)), ηttt ∈ L2

(

0, T ;L2(Γs)
)

,
∩C0

(

[0, T ];H1(Γs)
)

(1.14)
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(1.13) holds for every (x, t) ∈ Σs
T and the triplet (ρ̂, û, η) = (ρ ◦ Φ−1

η ,u ◦ Φ−1
η , η) solves (1.9) in the

following Sobolev spaces

ρ̂ ∈ C0
(

[0, T ];H2(Ω)
)

, ρ̂t ∈ C0
(

[0, T ];H1(Ω)
)

,
û ∈ L2

(

0, T ;H3(Ω)
) ∩ C0

(

[0, T ];H5/2(Ω)
)

,
ût ∈ L2

(

0, T ;H2(Ω)
) ∩ C0

(

[0, T ];H1(Ω)
)

,
ûtt ∈ L2

(

0, T ;L2(Ω)
)

.

(1.15)

(η is in the space mentioned in (1.14)). Note that (ρ,u) can then be obtained from (ρ̂, û) by (ρ,u) =
(ρ̂ ◦ Φη, û ◦ Φη).

In relation with Definition 1.6, we introduce the following functional spaces

Y T
1 ={ρ ∈ C0([0, T ];H2(Ω)) | ρt ∈ C0([0, T ];H1(Ω))},

Y T
2 ={u ∈ L2(0, T ;H3(Ω)) ∩ C0([0, T ];H5/2(Ω)) | ut ∈ L2(0, T ;H2(Ω))

∩ C0([0, T ];H1(Ω)),utt ∈ L2(0, T ;L2(Ω))},

Y T
3 ={η ∈ C0([0, T ];H9/2(Γs)), η(x, 0) = 0 | ηt ∈ L2(0, T ;H4(Γs))

∩ C0([0, T ];H3(Γs)), ηtt ∈ L2(0, T ;H2(Γs)) ∩ C0([0, T ];H1(Γs)),

ηttt ∈ L2(0, T ;L2(Γs))}. (1.16)

The spaces Y T
1 , Y T

2 and Y T
3 correspond to the spaces in which the unknowns ρ̂, û and η respectively.

Now we precisely state the main result of the article.

Theorem 1.7. Assume that
⎧
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⎪

⎪

⎪

⎪

⎨
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⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪
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(i) (a) Regularity of initial conditions :
ρ0 ∈ H2(Ω), η1 ∈ H3(Γs),u0 ∈ H3(Ω).

(b) Compatibility between initial and boundary
conditions :

(b)1

(

u0 −
[

0
zη1

])

= 0 onΓ,

(b)2 − P ′(ρ0)∇ρ0 − (δη1,xx − (μ + 2μ′)(u0)2,z

+P (ρ0))zρ0�e2 + zρ0(u0)zη1 − ρ0(u0 · ∇)u0

−(−μΔ − (μ + μ′)∇div)u0 = 0 onΓ,
(ii) (1.3) holds,

(1.17)

where we use the notations P ′(ρ0) = ∇P (ρ0), P (ρ0) = (aργ
0 − aργ) and u0 = ((u0)1, (u0)2). Then there

exists T > 0 such that the system (1.9) admits a solution (ρ̂, û, η) ∈ Y T
1 × Y T

2 × Y T
3 . Consequently in the

sense of Definition 1.6 the system (1.2)–(1.4)–(1.5) admits a strong solution (ρ,u, η).

Remark 1.8. In Theorem 1.7, the interval [0, T ] for the existence of strong solution depends on the
coefficients α, β and δ of the damped beam equation. We will not write this dependence explicitly since
α, β and δ are assumed to be constants.

Remark 1.9. Our analysis throughout the article can be suitably adapted to consider any pressure law
p(·) ∈ C2(R+) (in this article we present the proofs with the pressure law given by p(ρ) = aργ , with
γ > 1) such that there exists a positive constant ρ satisfying p(ρ) = pext, where pext(> 0) is the external
force acting on the beam. The adaptation is possible since we only consider the case where the fluid
density ρ has a positive lower and upper bound.

Now let us sketch the strategy towards the proof of Theorem 1.7.
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1.4. Strategy

(i) Changing (1.9) to a homogeneous boundary value problem: Recall that (see Remark 1.2) we will
prove the existence of local in time strong solution of the system (1.2)–(1.4)–(1.5) only when the beam
displacement η is close to zero. Again observe that (ρ̂ = ρ, û = 0, η̂ = 0) is a steady state solution of the
system (1.2)–(1.4)–(1.5) and hence of the system (1.9). So to work in a neighborhood of η = 0, we make
the following change of unknowns in (1.9),

σ = ρ̂ − ρ, v = (v1, v2) = û − 0, η = η − 0. (1.18)

In view of the change of unknowns (1.18) one obtains
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σt +
[

v1
1

(1+η) (v2 − ηtz − v1zηx)

]

· ∇σ + (σ + ρ)div(v)

= F1(σ + ρ,v, η) in QT ,
(σ + ρ)vt − μΔv − (μ + μ′)∇divv

= −P ′(σ + ρ)∇σ + F2(σ + ρ,v, η) in QT ,
v = ηt �e2 on Σs

T ,
v = 0 on Σ�

T ,
v(·, 0) = u0 in Ω,
σ(·, 0) = σ0 = ρ0 − ρ in Ω,
ηtt − βηxx − δηtxx + αηxxxx = F3(σ + ρ,v, η) on Σs

T ,
η(0) = 0 and ηt(0) = η1 in Γs.

(1.19)

We transform the system (1.19) into a homogeneous Dirichlet boundary value problem by performing
further the following change of unknown

w = (w1, w2) = v − zηt �e2. (1.20)

Since v and ηt both are L-periodic in the x−direction, the new unknown w is also L-periodic in the
x−direction. With the new unknown w, we write the transformed system in the following form

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σt +
[

w1
1

(1+η) (w2 − w1zηx)

]

· ∇σ = G1(σ,w, η) in QT ,

(σ + ρ)wt − μΔw − (μ + μ′)∇divw = G2(σ,w, η) in QT ,
w = 0 on ΣT ,
w(·, 0) = w0 = u0 − zη1�e2 in Ω,
σ(·, 0) = σ0 = ρ0 − ρ in Ω,
ηtt − βηxx − δηtxx + αηxxxx = G3(σ,w, η) on Σs

T ,
η(0) = 0 and ηt(0) = η1 in Γs,

(1.21)

where

G1(σ,w, η) = −(σ + ρ)div(w + zηt �e2) + F1(σ + ρ,w + zηt �e2, η),

G2(σ,w, η) = −P ′(σ + ρ)∇σ − zηtt(σ + ρ) �e2

− (−μΔ − (μ + μ′)∇div)(zηt �e2) + F2(σ + ρ,w + zηt �e2, η),

G3(σ,w, η) = F3(σ + ρ,w + ηt �e2, η). (1.22)

(ii) Study of some decoupled linear problems: Observe that in the new system (1.21) the coupling between
the velocity of the fluid and the elastic structure appears only as source terms. In order to solve the system
(1.21) we first study some linear equations in Sect. 2. In order to analyze the local in time existence of
strong solution the difficulty is to track the dependence of the constants (appearing in the inequalities)
with respect to the time parameter ‘T’. In this direction we first obtain a priori estimates for the linear
density and velocity equations with non homogeneous source terms in the spirit of [39]. Then we prove the
existence of strong solutions for a linear beam equation. The proof strongly relies on the analyticity of the
corresponding beam semigroup (see [13] for details). At this point we refer the readers to the articles [18]
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(maximal Lp − Lq regularity of structurally damped beam equation), [19] (analyticity and exponential
stability of beam semigroup), [34] (study of beam equation in the context of an incompressible fluid
structure interaction problem) and the references therein for the existence and regularity issues of the
damped beam equation. In our case to obtain estimates with the constants independent of ‘T’ for the
beam equation we first fix a constant T > 0 and restrict ourselves to work in the time interval (0, T )
where

T < T . (1.23)

This technique is inspired from [35].
(iii) Fixed point argument : In Sect. 3 we prove the existence of a strong solution of (1.21) by using

the Schauder’s fixed point theorem based on (1.21)–(1.22).

Remark 1.10. Since η(0) = 0 the regularity (1.14) of η guarantees that

‖η‖L∞(Σs
T ) � CT‖ηt‖L∞(0,T ;H3(Γs)), (1.24)

for a constant C independent of T. For small enough time T, (1.24) furnishes η ≈ 0 and hence during
small times, the beam stays close to the steady state zero.

1.5. Comments on Initial and Compatibility Conditions

(i) Recall from (1.17)(i)(a) that we assume u0 ∈ H3(Ω). Also observe that in our solution (see (1.15))
the vector field û ∈ C0([0, T ];H5/2(Ω)) i.e for the velocity field there is a loss of 1

2 space regularity as
the time evolves. One can find such instances of a loss of space regularity in many other articles in the
literature, for instance we refer the readers to [7,26] (for the coupling of fluid-elastic structure comprising
a compressible fluid) and [14,15,35] (for incompressible fluid structure interaction models).

(ii) We use (1.22)3 to obtain the following expression of G3 |t=0 (the value of G3(σ,w, η) at time t = 0)

G3 |t=0= −(μ + 2μ′)(u0)2,z + P (ρ0). (1.25)

Using ρ0 ∈ H2(Ω), u0 ∈ H3(Ω) (see (1.17)(i)(a)) and standard trace theorems one easily checks that

G3 |t=0∈ H3/2(Γs). (1.26)

We will use the regularity of G3 |t=0 (in fact we will only use G3 |t=0∈ H1(Γs)) to prove the regularity
of η. This will be detailed in Theorem 2.7.

(iii) We use (1.25) and the equation (1.21)6 to check that

ηtt(·, 0) = δη1,xx − (μ + 2μ′)(u0)2,z + P (ρ0).

Hence using (1.22)2 one obtains the following expression of G2 |t=0 (the value of G2(σ,w, η) at time
t = 0)

G2 |t=0 = −P ′(ρ0)∇ρ0 − (δη1,xx − (μ + 2μ′)(u0)2,z + P (ρ0))zρ0�e2

+ zρ0(u0)zη1 − ρ0(u0 · ∇)u0 − (−μΔ − (μ + μ′)∇div)(zη1 �e2). (1.27)

This gives

G2 |t=0 −(−μΔ − (μ + μ′)∇div)
(

u0 −
[

0
zη1

])

= −P ′(ρ0)∇ρ0

− (δη1,xx − (μ + 2μ′)(u0)2,z + P (ρ0))zρ0�e2 + zρ0(u0)zη1

− ρ0(u0 · ∇)u0 − (−μΔ − (μ + μ′)∇div)u0. (1.28)

The regularity assumptions (1.17)(i)(a) and (1.28) furnish the following

G2 |t=0 −(−μΔ − (μ + μ′)∇div)
(

u0 −
[

0
zη1

])

∈ H1(Ω). (1.29)
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Hence one obtains (recalling that w0 = u0 − zη1�e2)

the assumption (1.17)(i)(a) and (1.17)(i)(b)2

=⇒ G2 |t=0 −(−μΔw0 − (μ + μ′)∇divw0) ∈ H1
0(Ω). (1.30)

We need this to prove some regularity of w and hence of û. This will be detailed in Theorem 2.1.

1.6. Bibliographical Comments

Here we mainly focus on the existing literature devoted to the study of fluid structure interaction problems.
To begin with we quote a few articles dedicated to the mathematical study of compressible Navier–

Stokes equations. The existence of local in time classical solutions for the compressible Navier–Stokes
equations in a time independent domain was first proved in [32] and the uniqueness was established
in [36]. The global existence of strong solutions for a small perturbation of a stable constant state was
established in the celebrated work [30]. In the article [39] the authors established the local in time existence
of strong solutions in the presence of inflow and outflow of the fluid through the boundary. In the same
article they also present the proof of global in time existence for small data in the absence of the inflow.
P.-L. Lions proved (in [29]) the global existence of renormalized weak solution with bounded energy for
an isentropic fluid (i.e p(ρ) = ργ) with the adiabatic constant γ > 3d/(d + 2), where d is the space
dimension. E. Feireisl et al . generalized the approach to cover the range γ > 3/2 in dimension 3 and
γ > 1, in dimension 2 in [20]. The well-posedness issues of the compressible Navier–Stokes equations for
critical regularity data can be found in [16,17]. For further references and a very detailed development of
the mathematical theory of compressible flow we refer the reader into the books [33] and [10].

In the last decades the fluid–structure interaction problems have been an area of active research. There
is a rich literature concerning the motion of a structure inside or at the boundary of a domain containing
a viscous incompressible Newtonian fluid, whose behavior is described by Navier–Stokes equations. For
instance local existence and uniqueness of strong solutions of incompressible fluid–structure models with
the structure immersed inside the fluid are studied in [14] (the elastic structure is modeled by linear
Kirchhoff equations) and [15] (the elastic structure is governed by quasilinear elastodynamics). There
also exist articles dealing with incompressible fluid–structure interaction problems where the structure
appears on the fluid boundary and is modeled by Euler–Bernoulli damped beam equations (1.2)7–(1.2)8.
For example we refer the readers to [3] (local in time existence of strong solutions), [12] (existence of
weak solutions), [34] (feedback stabilization), [23] (global in time existence) and the references therein
for a very detailed discussion of such problems.

Despite of the growing literature on incompressible fluids the number of articles addressing the com-
pressible fluid–structure interaction problems is relatively limited and the literature has been rather
recently developed. One of the fundamental differences between the incompressible and compressible
Navier–Stokes equations is that the pressure of the fluid in incompressible Navier–Stokes equations is
interpreted as the Lagrange multiplier whereas in the case of compressible Navier–Stokes equations the
pressure is given as a function of density with the density modeled by a transport equation of hyperbolic
nature. The strong coupling between the parabolic and hyperbolic dynamics is one of the intricacies in
dealing with the compressible Navier–Stokes equations and this results in the regularity incompatibilities
between the fluid and the solid structure. However in the past few years there have been works exploring
the fluid–structure interaction problems comprising the compressible Navier–Stokes equations with an
elastic body immersed in the fluid domain. For instance in the article [6] the authors prove the existence
and uniqueness of strong solutions of a fluid structure interaction problem for a compressible fluid and a
rigid structure immersed in a regular bounded domain in dimension 3. The result is proved in any time
interval (0, T ), where T > 0 and for a small perturbation of a stable constant state provided there is no
collision between the rigid body and the boundary ∂Ω of the fluid domain. In [5] the existence of weak
solution is obtained in three dimension for an elastic structure immersed in a compressible fluid. The
structure equation considered in [5] is strongly regularized in order to obtain suitable estimates on the
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elastic deformations. In a very recent article [25], the authors prove both local and global existence (for
small initial data) of a strong solution in Lp − Lq regularity framework for a compressible fluid structure
interaction problem where the rigid structure is immersed inside the fluid and follows Newton’s law. A
result concerning the local in time existence and uniqueness of strong solutions for a problem coupling
compressible fluid and an elastic structure (immersed inside the fluid) can be found in [7]. In the article
[7] the equation of the structure does not contain any extra regularizing term. The flow corresponding
to a Lagrangian velocity is used in [7] in order to transform the fluid structure interaction problem in
a reference fluid domain ΩF (0), whereas in the present article we use the non physical change of vari-
ables (1.7) for the similar purpose of writing the entire system in a reference configuration. A similar
Navier–Stokes–Lamé system as that of [7] is analyzed in [26] to prove the existence of local in time strong
solutions but in a different Sobolev regularity framework. In the article [26] the authors deal with less
regular initial data. We also quote a very recent work [8] where the authors prove the local in time exis-
tence of a unique strong solution of a compressible fluid structure interaction model where the structure
immersed inside the fluid is governed by the Saint-Venant Kirchhoff equations.

On the other hand there is a very limited number of works on the compressible fluid–structure inter-
action problems with the structure appearing on the boundary of the fluid domain. The article [21] deals
with a 1-D structure governed by plate equations coupled with a bi-dimensional compressible fluid where
the structure is located at a part of the boundary. Here the authors consider the velocity field as a
potential and in their case the non linearity occurs only in the equation modeling the density. Instead of
writing the system in a reference configuration in [21] the authors proved the existence and uniqueness of
solution in Sobolev-like spaces defined on time dependent domains. The existence of weak solution for a
different compressible fluid structure interaction model (with the structure appearing on the boundary)
is studied in dimension three by the same authors in [22]. In the model considered in [22], the fluid
velocity v satisfies curlv ∧n = 0 on the entire fluid boundary and the plate is clamped everywhere on the
structural boundary. In a recent article [2] the authors prove the Hadamard well posedness of a linear
compressible fluid structure interaction problem (three dimensional compressible fluid interacting with
a bi-dimensional elastic structure) defined in a fixed domain and considering the Navier-slip boundary
condition at the interactive boundary. They write the coupled system in the form

d

dt

⎛

⎜

⎜

⎝

ρ
u
η
ηt

⎞

⎟

⎟

⎠

= A

⎛

⎜

⎜

⎝

ρ
u
η
ηt

⎞

⎟

⎟

⎠

in (0, T ), and

⎛

⎜

⎜

⎝

ρ(0)
u(0)
η(0)
ηt(0)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

ρ0

u0

η1

η2

⎞

⎟

⎟

⎠

,

and prove the existence of mild solution (ρ,u, η, ηt) in the space C0([0, T ];D(A)) where D(A) is the
domain of the operator A. Their approach is based on using the Lumer–Phillips theorem to prove that A
generates a strongly continuous semigroup. In yet another recent article [9] the authors consider a three
dimensional compressible fluid structure interaction model where the structure located at the boundary
is a shell of Koiter-type with some prescribed thickness. In the spirit of [29] and [20] the authors prove
the existence of a weak solution for their model with the adiabatic constant restricted to γ > 12

7 . They
show that a weak solution exists until the structure touches the boundary of the fluid domain.

To the best of our knowledge there is no existing work (neither in dimension 2 nor in 3) proving the
existence of strong solutions for the non-linear compressible fluid–structure interaction problems (defined
in a time dependent domain) considering the structure at the boundary of the fluid domain. In the present
article we address this problem in the case of a fluid contained in a 2d channel and interacting with a 1d
structure at the boundary. Our approach is different from that of [2] and [9]. In [2], since the problem
itself is linearized in a fixed domain, the authors can directly use a semigroup formulation to study
the existence of mild solution, whereas [9] considers weak solutions and a 4 level approximation process
(using artificial pressure, artificial viscosity, regularization of the boundary and Galerkin approximation
for the momentum equation). In the study of weak solutions (in [9,20,29]) one of the major difficulties
is to pass to the limit in the non-linear pressure term which is handled by introducing a new unknown
called the effective viscous flux. In our case of strong regularity framework we do not need to introduce
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the effective viscous flux and for small enough time T, the term ∇P (σ + ρ) can be treated as a non
homogeneous source term. Our approach is based on studying the regularity properties of a decoupled
parabolic equation, continuity equation and a beam equation. This is done by obtaining some apriori
estimates and exploiting the analyticity of the semigroup corresponding to the beam equation. Then
the existence result for the non-linear coupled problem is proved by using the Schauder’s fixed point
argument. We prove the existence of the fixed point in a suitable convex set, which is constructed very
carefully based on the estimates of the decoupled problems and the estimates of the non-homogeneous
source terms. This led us to choose this convex set as a product of balls (in various functional spaces) of
different radius. In the present article we prove a local in time existence result of strong solutions whose
incompressible counterpart was proved in [3].

Let us also mention the very recent article [37] where the global existence for the compressible viscous
fluids (without any structure on the boundary) in a bounded domain is proved in the maximal Lp − Lq

regularity class. In this article the authors consider a slip type boundary condition. More precisely the
fluid velocity u satisfies the following on the boundary

D(u)n − 〈D(u)n,n〉n = 0, and u · n = 0 on ∂Ω × (0, T ).

In a similar note one can consider a fluid structure interaction problem with slip type boundary condition.
In that case the velocity field u solves the following

D(u)n − 〈D(u)n,n〉n = 0, and u · n = ηt on Γs × (0, T ), (1.31)

where ηt is the structural velocity at the interactive boundary Γs×(0, T ). To the best of our knowledge for
a compressible fluid structure interaction problem the condition (1.31) is treated only in [2], proving the
existence of mild solution. Of course the boundary condition (1.31) is different from the one we consider
in the present article since in our case we do not allow the fluid to slip tangentially through the fluid
structure interface (i.e recall in our case u1 = 0 on Σs

T ).
A more generalized slip boundary condition is considered in [31] in the context of an incompressible

fluid structure interaction problem. In the model examined in [31] the structural displacement has both
tangential and normal components with respect to the reference configuration. At the interface the fluid
and the structural velocities are coupled via a kinematic coupling condition and a dynamic coupling
condition (stating that the structural dynamics is governed by the jump of the normal stress at the
interface). The kinematic coupling conditions at the interface treated in [31] consists of continuity of the
normal velocities and a second condition stating that the slip between the tangential components of the
fluid and structural velocities is proportional to the fluid normal stress. The authors in [31] prove the
existence of a weak solution for their model.

1.7. Outline

Section 2 contains results involving the existence and uniqueness of some decoupled linear equations. We
state the existence and uniqueness result for a parabolic equation in Sect. 2.1, continuity equation in
Sect. 2.2, linear beam equation in Sect. 2.3. In Sect. 3 we prove Theorem 1.7 by using the Schauder fixed
point theorem.

2. Analysis of Some Linear Equations

We will prove the existence and uniqueness of strong solutions of a parabolic equation, a continuity
equation and a damped beam equation with prescribed initial data and source terms in appropriate
Sobolev spaces.

From now onwards all the constants appearing in the inequalities will be independent of the final time
T, unless specified. We also comment that we will denote many of the constants in the inequalities using
the same notation although they might vary from line to line.
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2.1. Study of a Parabolic Equation

At first we consider the following linear problem
⎧

⎨

⎩

σwt − μΔw − (μ + μ′)∇divw = G2 in QT ,
w = 0 on ΣT ,
w(0) = w0 in Ω,

(2.1)

where σ, w0 and G2 are known functions which are L-periodic in the x direction.
Let m and M be positive constants such that m < M. We are going to study (2.1) where σ, w0 and

G2 satisfy the following
{

σ ∈ L∞(QT ), 0 < m/2 � σ � 2M in QT , 0 < m � σ(·, 0) � M in Ω,
∇σ ∈ L2(0, T ;L3(Ω)), σt ∈ L2(0, T ;L3(Ω)), (2.2)

and
⎧

⎨

⎩

G2 ∈ L2(0, T ;H1(Ω)), G2,t ∈ L2(0, T ;L2(Ω)),
w0 ∈ H1

0(Ω),
(G2 |t=0 −(−μΔw0 − (μ + μ′)∇divw0)) ∈ H1

0(Ω).
(2.3)

The following theorem corresponds to the existence and the regularity properties of the solution w of the
system (2.1).

Theorem 2.1. Let m, M be positive constants such that m < M. Then for all σ, G2 and w0 satisfying
(2.2) and (2.3), there exists a unique solution w of (2.1) which satisfies the following

w ∈ L2(0, T ;H3(Ω)) ∩ C0([0, T ];H5/2(Ω)),

wt ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1(Ω)), wtt ∈ L2(0, T ;L2(Ω)). (2.4)

Besides, there exists a constant c1 (depending on m and M but independent of T, σ, G2 and w0) such
that w satisfies the following inequality

‖w‖L∞(0,T ;H2(Ω)) + ‖w‖L2(0,T ;H3(Ω)) + ‖wt‖L∞(0,T ;H1(Ω))

+ ‖wt‖L2(0,T ;H2(Ω)) + ‖wtt‖L2(0,T ;L2(Ω))

� c1{‖G2‖L2(0,T ;H1(Ω)) + ‖G2‖L∞(0,T ;L2(Ω))

+

(

‖G2,t‖L2(0,T ;L2(Ω)) +
∥

∥

∥

∥

G2 |t=0 −(−μΔw0 − (μ + μ′)∇divw0)
σ(0)

∥

∥

∥

∥

H1(Ω)

)

· (1 + ‖σt‖L2(0,T ;L3(Ω)) + ‖∇σ‖L2(0,T ;L3(Ω))) · exp(c1‖σt‖2
L2(0,T ;L3(Ω)))}. (2.5)

Remark 2.2. Observe from (2.4) that w ∈ C0([0, T ];H5/2(Ω)) but in (2.5) we only include the estimate
of ‖w‖L∞(0,T ;H2(Ω)) and not of ‖w‖L∞(0,T ;H5/2(Ω)). Using interpolation one can recover an estimate of
‖w‖L∞(0,T ;H5/2(Ω)) from the estimates of ‖w‖L2(0,T ;H3(Ω)) and ‖wt‖L2(0,T ;H2(Ω)) where the constant of
interpolation may depend on the final time T.

Remark 2.3. Using (2.3) let us observe that G2 ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) and hence by inter-
polation G2 |t=0∈ H1/2(Ω). Now from (2.3)3 one gets that

(−μΔw0 − (μ + μ′)∇divw0) ∈ H1/2(Ω).

The elliptic regularity result furnishes that w0 ∈ H5/2(Ω). Since w ∈ C0([0, T ];H5/2(Ω)), for the linear
equation (2.1) we do not loose any regularity as time evolves.

Proof of Theorem 2.1. In the context of a smooth domain and with homogeneous Dirichlet boundary
condition Theorem 2.1 is proved in the article [39]. There is no particular difficulty to adapt the same
proof in Ω with L-periodic (in the x direction) boundary condition. Hence we refer the readers to the
proofs of [39, Lemma 2.1]. For a related result we also refer the reader to [38, Lemma 2.2]. �
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2.2. Study of a Continuity Equation

In this section we consider the following linear problem
{

σt + w · ∇σ = G1 in QT ,
σ(0) = σ0 in Ω,

(2.6)

where the functions w, G1 and σ0 are L-periodic (in the x direction) functions. The following theorem
asserts the existence and regularity of the solution σ of the density equation (2.6).

Theorem 2.4. Let w ∈ L1(0, T ;H3(Ω)), w · n = 0 onΣT , σ0 ∈ H2(Ω) and G1 ∈ L1(0, T ;H2(Ω)). Then
there exists a unique solution σ of (2.6) such that σ ∈ C0([0, T ];H2(Ω)) and

‖σ‖L∞(0,T ;H2(Ω)) � (‖σ0‖H2(Ω) + c2‖G1‖L1(0,T ;H2(Ω)))
·exp(c2‖w‖L1(0,T ;H3(Ω))).

(2.7)

If in addition G1 ∈ L∞(0, T ;H1(Ω)) and w ∈ L∞(0, T ;H2(Ω)) then σt ∈ L∞(0, T ;H1(Ω)) and

‖σt‖L∞(0,T ;H1(Ω)) �c3‖w‖L∞(0,T ;H2(Ω))(‖σ0‖H2(Ω) + c2‖G1‖L1(0,T ;H2(Ω)))

· exp(c2‖w‖L1(0,T ;H3(Ω))) + ‖G1‖L∞(0,T ;H1(Ω)). (2.8)

The constants c2 and c3 appearing respectively in (2.7) and (2.8) are independent of T, w, σ0 and G1.

Proof. The theorem is proved in [39, Lemma 2.4] with a particular expression of the function G1. In our
case we adapt the same proof with minor changes.

The existence of solution of (2.6) follows from the method of characteristics. The representation
formula for the solution σ is

σ(x, t) = σ0(U(x, 0, t)) +

t
∫

0

G1(U(x, s, t), s)ds, (2.9)

where U(x, t, s) solves the following ODE
{

d

dt
U(x, t, s) = w(U(x, t, s), t) in QT ,

U(x, s, s) = x in Ω.
(2.10)

Observe

U(·, ·, ·) ∈ C0([0, T ] × [0, T ];H3(Ω))

and consequently

σ(·, ·) ∈ C0([0, T ];H2(Ω)).

Now to prove the estimate (2.7), we multiply (2.6)1 by σ and integrate in Ω. Integrating by parts the

term
∫

Ω

w · ∇σσ and using the fact that w · n = 0 we obtain

1
2

d

dt
‖σ‖2

L2(Ω) � 1
2

∫

Ω

divwσ2 + ‖G1‖L2(Ω)‖σ‖L2(Ω).

Due to the embedding H3(Ω) ↪→ C1(Ω) one has

d

dt
‖σ‖2

L2(Ω) � c(‖w‖H3(Ω)‖σ‖2
L2(Ω) + ‖G1‖L2(Ω)‖σ‖L2(Ω)). (2.11)

Before going into the next estimate let us observe that
∫

Ω

[(w · ∇)∇σ] · ∇σ = −1
2

∫

Ω

(divw)|∇σ|2. (2.12)
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Now take the gradient of (2.6)1, multiply by ∇σ and integrate in Ω. Using (2.12) one obtains

d

dt

∫

Ω

|∇σ|2 � c(‖w‖H3(Ω)‖∇σ‖2
L2(Ω) + ‖∇G1‖L2(Ω)‖∇σ‖L2(Ω)). (2.13)

In a similar way for the second derivative we have

d

dt

∫

Ω

|D2σ|2 � c
(‖w‖H3(Ω)‖D2σ‖2

L2(Ω) +
∫

Ω

|D2w||∇σ||D2σ|

+‖D2G1‖L2(Ω)‖D2σ‖L2(Ω)

)

.

(2.14)

One has the following estimate
∫

Ω

|D2w||∇σ||D2σ| � ‖D2w‖L3(Ω)‖∇σ‖L6(Ω)‖D2σ‖L2(Ω)

� c‖D2w‖L3(Ω)‖∇σ‖H1(Ω)‖D2σ‖L2(Ω). (2.15)

The estimates (2.11) and (2.13)–(2.14)–(2.15) furnish the following

1
2

d

dt
‖σ‖2

H2(Ω) � c(‖w‖H3(Ω)‖σ‖2
H2(Ω) + ‖G1‖H2(Ω)‖σ‖H2(Ω)). (2.16)

Now (2.7) is a consequence of (2.16) and Gronwall lemma. Finally the estimate (2.8) is a direct conse-
quence of (2.6)1 and (2.7). �

The following corollary directly follows from (2.6)1 and the regularity σ ∈ C0([0, T ];H2(Ω)) which we
have obtained in Theorem 2.4.

Corollary 2.5. In addition to the assumptions of Theorem 2.4 if G1 ∈ C0([0, T ];H1(Ω)) and w ∈
C0([0, T ];H2(Ω)) then σt ∈ C0([0, T ];H1(Ω)).

2.3. Study of a Linear Beam Equation

The linearized beam equation with a non homogeneous source term is the following
{

ηtt − βηxx − δηtxx + αηxxxx = G3 in Σs
T ,

η(0) = 0 and ηt(0) = η1 in Γs,
(2.17)

where G2 and η1 are known L-periodic (in the x direction) functions. Let us denote

A =
[

0 I
−αΔ2 + βΔ δΔ

]

. (2.18)

The unbounded operator (A,D(A)) is defined in

Hs = H2(Γs) × L2(Γs), (2.19)

with domain

D(A) = H4(Γs) × H2(Γs).

Hence with the notations

Y(t) =
[

η(t)
ηt(t)

]

, Y0 =
[

0
η1

]

and ˜G3 =
[

0
G3

]

, (2.20)

we can equivalently write (2.17) as
{

Yt(t) = AY(t) + ˜G3 on (0, T ),
Y(0) = Y0.

(2.21)
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Lemma 2.6. Let

˜G3 ∈ L2(0, T ;H2(Γs) × L2(Γs)) and Y0 ∈ H3(Γs) × H1(Γs). (2.22)

Then the equation (2.21) admits a unique solution Y which satisfies

Y ∈ L2(0, T ;H4(Γs) × H2(Γs)) ∩ H1(0, T ;H2(Γs) × L2(Γs))
∩C0([0, T ];H3(Γs) × H1(Γs)).

(2.23)

In addition if
˜G3,t ∈ L2(0, T ;H2(Γs) × L2(Γs))
and AY0 + ˜G3 |t=0∈ H3(Γs) × H1(Γs),

(2.24)

the solution Y of the problem (2.21) has the following additional regularities

Yt ∈ L2(0, T ;H4(Γs) × H2(Γs)) ∩ C0([0, T ];H3(Γs) × H1(Γs)),
Ytt ∈ L2(0, T ;H2(Γs) × L2(Γs)).

(2.25)

Proof. To prove this result we will use the maximal parabolic regularity results from [4]. Recall the
definition of Hs in (2.19). The unbounded operator (A,D(A)) is the infinitesimal generator of an analytic
semigroup on Hs (for the proof see [13]). Hence using the isomorphism theorem [4, Theorem 3.1, p. 143]
and the assumption (2.22), which can be read as ˜G3 ∈ L2(0, T ;Hs) and Y0 ∈ D(A1/2), we get that the
equation (2.21) admits a unique solution Y satisfying the following:

Y ∈ L2(0, T ;H4(Γs) × H2(Γs)) ∩ H1(0, T ;H2(Γs) × L2(ΓS)).

Using interpolation (see [28]) one also obtains that

Y ∈ C0([0, T ];H3(Γs) × H1(Γs)).

This proves (2.23).
Now we assume that (2.24) holds. In order to obtain the time regularity of Y let us differentiate (2.21)

with respect to t and write Z = Yt,
{

Zt(t) = AZ(t) + ˜G3,t on (0, T ),
Z(0) = Z0 = AY0 + ˜G3 |t=0 .

(2.26)

Due to the assumptions (2.24), ˜G3,t ∈ L2(0, T ;Hs) and AY0 + ˜G3 |t=0∈ D(A1/2) (= H3(Γs) × H1(Γs)).
We can use the isomorphism theorem [4, Theorem 3.1, p. 143] again to conclude

Z = Yt ∈ L2(0, T ;H4(Γs) × H2(Γs)) ∩ H1(0, T ;H2(Γs) × L2(Γs)).

Once again using interpolation we verify that

Yt ∈ C0([0, T ];H3(Γs) × H1(Γs)).

This completes the proof of Lemma 2.6. �

We are going to use the representation (2.21) of (2.17) to state the existence and regularity result for
the problem (2.17).

Theorem 2.7. Assume that T < T (recall that T was fixed in (1.23)), G3 ∈ L∞(0, T ;H1/2(Γs)) and
G3,t ∈ L2(0, T ;L2(Γs)). Also suppose that η1 ∈ H3(Γs) and G3 |t=0∈ H1(Γs). Then the equation (2.17)
admits a unique solution η which satisfies

η ∈ L∞(0, T ;H9/2(Γs)),
ηt ∈ L2(0, T ;H4(Γs)) ∩ C0([0, T ];H3(Γs)),
ηtt ∈ L2(0, T ;H2(Γs)) ∩ C0([0, T ];H1(Γs)),
ηttt ∈ L2(0, T ;L2(Γs)),

(2.27)
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and for some positive constant c4 independent of T, G3 and η1 we have the following estimate

‖η‖L∞(0,T ;H9/2(Γs)) + ‖ηt‖L2(0,T ;H4(Γs)) + ‖ηt‖L∞(0,T ;H3(Γs))

+ ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L∞(0,T ;H1(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

� c4

(‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + ‖G3‖L∞(0,T ;H1/2(Γs))

+ ‖G3,t‖L2(0,T ;L2(Γs))

)

. (2.28)

Proof. We first consider

G3 ∈ L2(0, T ;L2(Γs)) and η1 ∈ H1(Γs). (2.29)

In view of the notations (2.20), (2.29) corresponds to the case (2.22) of Lemma 2.6. Hence we can use
(2.23) to obtain

‖η‖L2(0,T ;H4(Γs)) + ‖ηt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L2(0,T ;L2(Γs))

� c
(‖η1‖H1(Γs) + ‖G3‖L2(0,T ;L2(Γs))

)

, (2.30)

where the constant c might depend on the final time T. We want to show that there exists a constant
c independent of T such that the inequality (2.30) is true. For that we extend G3 by defining it zero in
(T, T ) and denote the extended function also by G3. Observe that G3 ∈ L2(0, T ;L2(Γs)). We can solve
(2.17) in the time interval (0, T ) and consequently

‖η‖L2(0,T ;H4(Γs)) + ‖ηt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L2(0,T ;L2(Γs))

� ‖η‖L2(0,T ;H4(Γs))
+ ‖ηt‖L2(0,T ;H2(Γs))

+ ‖ηtt‖L2(0,T ;L2(Γs))

� c(T )
(‖η1‖H1(Γs) + ‖G3‖L2(0,T ;L2(Γs))

)

= c(T )
(‖η1‖H1(Γs) + ‖G3‖L2(0,T ;L2(Γs))

)

. (2.31)

So we are able to get a constant c(T ) which is independent of T.

To prove the regularity estimates of ηt, we will use

G3,t ∈ L2(0, T ;L2(Γs)), η1 ∈ H3(Γs) and G3 |t=0∈ H1(Γs). (2.32)

Indeed, observe that (2.32) implies δΔη1 + G3 |t=0∈ H1(Γs). Now differentiate the equation (2.17) with
respect to t,

{

(ηt)tt − β(ηt)xx − δ(ηt)txx + α(ηt)xxxx = G3,t on Σs
T ,

ηt(0) = η1 and ηtt(0) = δΔη1 + G3 |t=0 in Γs.
(2.33)

In view of the notations (2.20), (2.32) and (2.33) correspond respectively to (2.24) and (2.26) in Lemma
2.6. Hence we can use (2.25) to furnish the following

‖ηt‖L2(0,T ;H4(Γs)) + ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

� c
(‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + ‖G3,t‖L2(0,T ;L2(Γs))

)

, (2.34)

where the constant c might depend on the final time T. Since we are interested in proving (2.34) with a
constant c independent of T, we extend the function G3,t by defining it zero in the interval (T, T ) and
denote the extended function also by G3,t. In a similar spirit of the computation (2.31) one can prove

‖ηt‖L2(0,T ;H4(Γs)) + ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

� c(T )
(‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + ‖G3,t‖L2(0,T ;L2(Γs))

)

(2.35)

for some constant c(T ) independent on T.

In order to get explicit bounds on the L∞(0, T ) norms of η, ηt and ηtt we first multiply (2.17)1 by
ηtxx and integrate over Γs. We use the L-periodicity (in the x direction) of η and integrate the terms by
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parts to obtain
1
2

d

dt

∫

Γs

η2
txdx +

β

2
d

dt

∫

Γs

η2
xxdx + δ

∫

Γs

η2
txxdx +

α

2
d

dt

∫

Γs

η2
xxxdx

� δ

8
‖ηtxx(t)‖2

L2(Γs)
+

2
δ
‖G3‖2

L2(Γs)
.

(2.36)

Now integrating (2.36) with respect to t,

‖ηtx‖2
L∞(0,T ;L2(Γs))

+ ‖ηxx‖2
L∞(0,T ;L2(Γs))

+ ‖ηtxx‖2
L2(0,T ;L2(Γs))

+ ‖ηxxx‖2
L∞(0,T ;L2(Γs))

� c
(‖ηtx(0)‖2

L2(Γs)
+ ‖G3‖2

L2(0,T ;L2(Γs))

)

. (2.37)

From (2.37) we get in particular

‖η‖2
L∞(0,T ;H3(Γs))

� c
(‖η1‖2

H1(Γs)
+ ‖G3‖2

L2(0,T ;L2(Γs))

)

. (2.38)

Now consider the equations (2.33). One imitates the analysis used to obtain (2.37) to find

‖ηttx‖2
L∞(0,T ;L2(Γs))

+ ‖ηtxx‖2
L∞(0,T ;L2(Γs))

+ ‖ηttxx‖2
L2(0,T ;L2(Γs))

+ ‖ηtxxx‖2
L∞(0,T ;L2(Γs))

� c
(‖η1‖2

H3(Γs)
+ ‖G3 |t=0 ‖2

H1(Γs)

+ ‖G3,t‖2
L2(0,T ;L2(Γs))

)

. (2.39)

Hence in particular

‖ηt‖2
L∞(0,T ;H3(Γs))

+ ‖ηtt‖2
L∞(0,T ;H1(Γs))

�c
(‖η1‖2

H3(Γs)
+ ‖G3 |t=0 ‖2

H1(Γs)

+ ‖G3,t‖2
L2(0,T ;L2(Γs))

)

. (2.40)

Now we will use that
G3 ∈ L∞(0, T ;H1/2(Γs)). (2.41)

Write (2.17)1 as

ηxxxx =
1
α

(

G3 + δηtxx + βηxx − ηtt

)

. (2.42)

In view of (2.41) one observes that all the terms appearing in the right hand side of (2.42) belongs to
L∞(0, T ;H1/2(Γs)). As the beam in our problem is one dimensional, η ∈ L∞(0, T ;H9/2(Γs)) and the
estimates (2.38) and (2.40) furnish the following

‖η‖L∞(0,T ;H9/2(Γs)) � c
(‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + ‖G3,t‖L2(0,T ;L2(Γs))

+ ‖G3‖L∞(0,T ;H1/2(Γs))

)

. (2.43)

Hence combining all the above estimates we here conclude the proof of Theorem 2.7. �

The following corollary follows directly by using the regularities (2.27) and the expression (2.42) of
ηxxxx.

Corollary 2.8. In addition to the assumptions of Theorem 2.7 if G3 further satisfies the regularity assump-
tion G3 ∈ C0([0, T ];H1/2(Γs)) then η ∈ C0([0, T ];H9/2(Γs)).

3. Local Existence of the Non linear Coupled System

From now on up to the end of this article, we fix the initial data (ρ0,u0, η1) such that they satisfy the
assumptions stated in (1.17). We also fix the constant

δ0 ∈ (0, 1). (3.1)

The constant δ0 will be used to keep a positive distance between the beam and the bottom Γ� of the
domain Ω. Also recall that the positive constants m and M were fixed in (1.3) and T was fixed in (1.23).
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Proof of Theorem 1.7. This section is devoted to the study of the non linear system (1.21). We will prove
here that the system (1.21) admits a strong solution in a time interval (0, T ), for some T > 0 small
enough and hence we will conclude Theorem 1.7.

Now we sketch the steps towards the proof of Theorem 1.7:

(i) First in Sect. 3.1 we define a suitable map for which a fixed point gives a solution of the system
(1.21).

(ii) Next we design a suitable convex set such that the map defined in step (i) maps this set into itself.
This is done in Sect. 3.2.

(iii) In Sect. 3.3 we show that the convex set defined in step (ii) is compact in some appropriate topology.
We further prove that the fixed point map from step (i), is continuous in that topology.

(iv) At the end in Sect. 3.4 we draw the final conclusion to prove Theorem 1.7.

In what follows all the constants appearing in the inequalities may vary from line to line but will never
depend on T.

At this point we would also like to stress that the final time of existence T will depend on the
constants δ0, m and M, which corresponds respectively to the non degeneracy of the beam displacement
(1 + η)(x, t), non degeneracy and the upper bound of the fluid density. This non degeneracy and the
boundedness relations play a very crucial role in order to prove our existence result.

3.1. Definition of the Fixed Point Map

For (σ̃, w̃, η̃) satisfying
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ̃ ∈ L∞(0, T ;H2(Ω)) ∩ W 1,∞(0, T ;H1(Ω)),
w̃ ∈ L∞(0, T ;H5/2(Ω)) ∩ L2(0, T ;H3(Ω)) ∩ W 1,∞(0, T ;H1(Ω))

∩H1(0, T ;H2(Ω)) ∩ H2(0, T ;L2(Ω)),
η̃ ∈ L∞(0, T ;H9/2(Γs)) ∩ W 1,∞(0, T ;H3(Γs))

∩H1(0, T ;H4(Γs)) ∩ W 2,∞(0, T ;H1(Γs))
∩H2(0, T ;H2(Γs)) ∩ H3(0, T ;L2(Γs)),

(3.2)

we consider the following problem:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σt +˜W (w̃, η̃) · ∇σ = G1(σ̃, w̃, η̃) in QT ,
(σ̃ + ρ)wt − μΔw − (μ + μ′)∇divw = G2(σ̃, w̃, η̃) in QT ,
w = 0 on ΣT ,
w(·, 0) = w0 = u0 − zη1�e2 in Ω,
σ(·, 0) = σ0 = ρ0 − ρ in Ω,
ηtt − βηxx − δηtxx + αηxxxx = G3(σ̃, w̃, η̃) on Σs

T ,
η(0) = 0 and ηt(0) = η1 in Γs,

(3.3)

where G1, G2, G3 are as defined in (1.22) and ˜W (w̃, η̃) is defined as follows

˜W (w̃, η̃) =
[

w̃1
1

(1+η̃) (w̃2 − w̃1zη̃x)

]

,

(

w̃ =
(

w̃1

w̃2

))

. (3.4)

It turns out that it will be important for us to check that G2(σ̃, w̃, η̃) and G3(σ̃, w̃, η̃) respectively
coincide at time t = 0 with the values G0

2 and G0
3 computed in (1.27) and (1.25), and given as follows:

G0
2 = −P ′(ρ0)∇ρ0 − (δη1,xx − (μ + 2μ′)(u0)2,z + P (ρ0))zρ0�e2 + zρ0(u0)zη1

− ρ0(u0 · ∇)u0 − (−μΔ − (μ + μ′)∇div)(zη1 �e2), (3.5)

G0
3 = −(μ + 2μ′)(u0)2,z + P (ρ0). (3.6)
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This will be imposed by assuming (σ̃, w̃, η̃, η̃t)(·, 0) = (σ0,w0, 0, η1) and

η̃tt(·, 0) = δη1,xx − (μ + 2μ′)(u0)2,z + P (ρ0) in Ω,

w̃t(·, 0) =
1
ρ0

(

G0
2 − (−μΔ − (μ + μ′)∇div)(u0 − zη1 �e2)

)

in Ω,
(3.7)

Indeed, under the above conditions, one can check from the expressions of G2(σ̃, w̃, η̃) and G3(σ̃, w̃, η̃)
that G2(σ̃, w̃, η̃) |t=0= G0

2 and G3(σ̃, w̃, η̃) |t=0= G0
3.

Lemma 3.1. Let the constant δ0 be fixed by (3.1). For T < T , let us assume the following

(σ̃, w̃, η̃) satisfies (3.2), (3.8)
w̃ = 0 on ΣT , (3.9)
(σ̃(·, 0), w̃(·, 0), η̃(·, 0), η̃t(·, 0)) = (ρ0 − ρ,u0 − zη1�e2, 0, η1) in Ω, (3.10)
(3.7) holds, (3.11)
1 + η̃(x, t) � δ0 > 0 on Σs

T , (3.12)

0 <
m

2
� σ̃ + ρ � 2M in QT , (3.13)

where m and M were fixed in (1.3).
Then G1(σ̃, w̃, η̃), G2(σ̃, w̃, η̃) and G3(σ̃, w̃, η̃) satisfy the following

G1(σ̃, w̃, η̃) ∈ L1(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)),

G2(σ̃, w̃, η̃) ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;L2(Ω)),

G3(σ̃, w̃, η̃) ∈ L∞(0, T ;H1/2(Γs)) ∩ H1(0, T ;L2(Γs)),

˜W (w̃, η̃) ∈ L1(0, T ;H3(Ω)) ∩ L∞(0, T ;H2(Ω)),

G2(σ̃, w̃, η̃) |t=0= G0
2 and G3(σ̃, w̃, η̃) |t=0= G0

3. (3.14)

Proof. The detailed computations to verify (3.14) follows from Lemma 3.8 (for estimates of G1), Lemma
3.10 (for estimates of G2), Lemma 3.12 (for estimates of G3) and Lemma 3.14 (for estimates of ˜W ) in
the Sect. 3.2.2. �

Observe that the condition (3.9) implies that ˜W (w̃, η̃) ·n = 0 (where ˜W is as defined in (3.4)) on ΣT .
Hence in view of Lemma 3.1, for all (σ̃, w̃, η̃) satisfying the conditions (3.8)–(3.9)–(3.10)–(3.11)–(3.12)
-(3.13), the system (3.3) admits a unique solution as a consequence of Theorem 2.1, Theorem 2.4 and
Theorem 2.7 in the space ZT

1 ×Y T
2 ×ZT

3 , where Y T
2 is defined in (1.16), ZT

1 and ZT
3 are defined as follows

ZT
1 = {ρ ∈ C0([0, T ];H2(Ω)) | ρt ∈ L∞(0, T ;H1(Ω))},

ZT
3 = {η ∈ L∞(0, T ;H9/2(Γs)), η(x, 0) = 0 | ηt ∈ L2(0, T ;H4(Γs))

∩ C0([0, T ];H3(Γs)), ηtt ∈ L2(0, T ;H2(Γs)) ∩ C0([0, T ];H1(Γs)),

ηttt ∈ L2(0, T ;L2(Γs))}. (3.15)

Observe that the only difference between Y T
1 (defined in (1.16)) and ZT

1 is that the elements of Y T
1

belongs to C1([0, T ];H1(Ω)) while the elements of ZT
1 are in W 1,∞(0, T ;H1(Ω)). Also one observes

that the elements of Y T
3 (defined in (1.16)) are in C0([0, T ];H9/2(Γs)) while ZT

3 is only a subset of
L∞(0, T ;H9/2(Γs)).

Before defining a suitable fixed point map (in order to solve the non-linear problem (1.21)), we will
introduce a convex set CT (where we will show the existence of a fixed point). The set CT will be defined
as a subset of L2(0, T ;L2(Ω)) × L2(0, T ;L2(Ω)) × L2(0, T ;L2(Γs)) such that the elements of CT satisfy
some norm bounds and some conditions at initial time t = 0.

Let us make precise the assumptions which will be used to define the set CT .
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Regularity assumptions and norm bounds of (σ̃, w̃, η̃):

‖σ̃‖L∞(0,T ;H2(Ω)) � B1, ‖σ̃t‖L∞(0,T ;H1(Ω)) � B2, (3.16a)
‖w̃‖L∞(0,T ;H2(Ω)) + ‖w̃‖L2(0,T ;H3(Ω)) + ‖w̃t‖L∞(0,T ;H1(Ω))

+‖w̃t‖L2(0,T ;H2(Ω)) + ‖w̃tt‖L2(0,T ;L2(Ω)) � B3, (3.16b)
‖η̃‖L∞(0,T ;H9/2(Γs)) + ‖η̃t‖L∞(0,T ;H3(Γs)) + ‖η̃t‖L2(0,T ;H4(Γs))

+‖η̃tt‖L∞(0,T ;H1(Γs)) + ‖η̃tt‖L2(0,T ;H2(Γs)) + ‖η̃ttt‖L2(0,T ;L2(Γs)) � B4, (3.16c)

0 <
m

2
� σ̃ + ρ � 2M in QT , (3.16d)

where Bi’s (1 � i � 4) are positive constants and will be chosen in the sequel. The norm bound (3.16b)
implicitly asserts (by interpolation) that w̃ is in C0([0, T ];H5/2(Ω)).

Assumptions on initial and boundary conditions:

w̃ = 0 on ΣT , (3.17a)
(σ̃(·, 0), w̃(·, 0), η̃(·, 0), η̃t(·, 0)) = (ρ0 − ρ,u0 − zη1�e2, 0, η1) in Ω, (3.17b)
η̃tt(·, 0) = δη1,xx − (μ + 2μ′)(u0)2,z + P (ρ0) in Ω, (3.17c)

w̃t(·, 0) =
1
ρ0

(

G0
2 − (−μΔ − (μ + μ′)∇div)(u0 − zη1 �e2)

)

in Ω. (3.17d)

For T < T , let us define the following set

CT (B1, B2, B3, B4)

= {(σ̃, w̃, η̃) ∈ L2(0, T ;L2(Ω)) × L2(0, T ;L2(Ω)) × L2(0, T ;L2(Γs)) |
1 + η̃(x, t) � δ0 > 0 on Σs

T , the relations (3.16) − (3.17) are true}. (3.18)

Now for (σ̃, w̃, η̃) ∈ CT (B1, B2, B3, B4), let (σ,w, η) ∈ ZT
1 × Y T

2 × ZT
3 (recall the definition of Y T

2 , from
(1.16) and ZT

1 , ZT
3 are defined in (3.15)) be the solution of the problem (3.3) corresponding to (σ̃, w̃, η̃).

This defines the map
L : CT (B1, B2, B3, B4) −→ ZT

1 × Y T
2 × ZT

3

(σ̃, w̃, η̃) 	→ (σ,w, η). (3.19)

Now observe that if the map L admits a fixed point (σf ,wf , ηf ) on the set CT (B1, B2, B3, B4), then the
triplet (σf ,wf , ηf ) is a solution to the system (1.21). Thus, our goal from now is to prove the existence
of a fixed point to the map L. In that direction we first show that for suitable parameters Bi (1 � i � 4)
and T, the set CT (B1, B2, B3, B4) is non-empty.

Lemma 3.2. There exists a constant B∗
0 > 0 such that for all Bi � B∗

0 (1 � i � 4) there exists
T ∗

0 (B1, B2, B3, B4) ∈ (0,min{1, T}) such that for all 0 < T � T ∗
0 (B1, B2, B3, B4) the set CT (B1, B2, B3, B4)

is non empty.

Proof. The choice of the constant B∗
0 will be done based on the calculations performed in the following

steps.
Step 1. In this step we will prove the existence of a function w∗ which satisfies the norm bound

(3.16b) and the condition (3.17d) at time t = 0. We begin by recalling that (ρ0,u0, η1) satisfies (1.17)
and hence one observes that (u0 − zη1�e2) ∈ H3(Ω). As G0

2 is given by the expression (3.5), using (1.29)
one has G0

2 ∈ H1(Ω). We can thus find a lifting h ∈ L2(R+;H1(Ω)) and ht ∈ L2(R+;L2(Ω)) (see e.g.
[27, Theorem 3.2, p. 21]) such that h(0) = G0

2 in Ω. (In fact, we only need G0
2 ∈ H1/2(Ω) in this step.)

Let w∗ be the solution of the following system
⎧

⎨

⎩

ρ0w∗
t − μΔw∗ − (μ + μ′)∇divw∗ = h in Q∞,

w∗ = 0 on Σ∞,
w∗(0) = w0 = (u0 − zη1 �e2) in Ω.

(3.20)
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In view of (1.30) one can uniquely solve (3.20) such that the function w∗ satisfies the following estimate

‖w∗‖L∞(0,∞;H2(Ω)) + ‖w∗‖L2(0,∞;H3(Ω)) + ‖w∗
t ‖L∞(0,∞;H1(Ω))

+‖w∗
t ‖L2(0,∞;H2(Ω)) + ‖w∗

tt‖L2(0,∞;L2(Ω))

� c(‖h‖L2(0,∞;H1(Ω)) + ‖ht‖L2(0,∞;L2(Ω)) + ‖G2 |t=0 ‖H1(Ω)

+‖u0 − zη1 �e2‖H3(Ω))
� c5(‖G2 |t=0 ‖H1(Ω) + ‖u0 − zη1 �e2‖H3(Ω)).

(3.21)

Using (3.20) one also observes the following

w∗
t (·, 0) =

1
ρ0

(

G0
2 − (−μΔ − (μ + μ′)∇div)(u0 − zη1 �e2)

)

. (3.22)

In view of (3.21) and (3.22) one observes that w∗ satisfies (3.16b) and (3.17d) respectively.
Step 2. In this step we will prove the existence of a function η∗ which satisfies the norm bound (3.16c),

the condition (3.17c) at time t = 0 and the norm bound:

1 + η∗ � δ0 > 0 on Σs
T .

In that direction first recall that G0
3 ∈ H1(Γs). We use in particular the regularity G0

3 ∈ H1/2(Γs) to
obtain a lifting h1 of G0

3 such that h1 ∈ L2(R+;H1(Γs)) ∩ H1(R+;L2(Γs)) ∩ L∞(R+;H1/2(Γs)) and
h1(0) = G0

3 in Γs. Let η∗ be the solution of equation (2.17) with G3 replaced by h1. From Theorem 2.7
and inequality (2.28) one obtains

‖η∗‖L∞(0,T ;H9/2(Γs)) + ‖η∗
t ‖L2(0,T ;H4(Γs)) + ‖η∗

t ‖L∞(0,T ;H3(Γs))

+ ‖η∗
tt‖L2(0,T ;H2(Γs)) + ‖η∗

tt‖L∞([0,T ];H1(Γs)) + ‖η∗
ttt‖L2(0,T ;L2(Γs))

� c(‖(h1)t‖L2(0,∞;L2(Γs)) + ‖h1‖L∞(0,∞;H1/2(Γs)) + ‖G0
3‖H1(Γs)

+ ‖η1‖H3(Γs)) � c4(‖G0
3‖H1(Γs) + ‖η1‖H3(Γs)), (3.23)

where the constant c4 is independent of T. One further uses (3.6) to check that

η∗
tt(·, 0) = δη1,xx − (μ + 2μ′)(u0)2,z + P (ρ0). (3.24)

In view of (3.23) and (3.24) we get that η∗ satisfies (3.16c) and (3.17c).
Since η∗(., 0) = 0, we observe the following by interpolation

‖η∗‖C0(Σ
s
T ) � c‖η∗‖1/3

L∞(0,T ;H1(Γs))
‖η∗‖2/3

L∞(0,T ;H2(Γs))

� cT 1/3
(‖η∗

t ‖L∞(0,T ;H1(Γs))

)1/3 · (‖η∗‖L∞(0,T ;H2(Γs))

)2/3
. (3.25)

At this point we set

B∗
0 = max{c5(‖G0

2‖H1(Ω) + ‖u0 − zη1 �e2‖H3(Ω)), ‖ρ0 − ρ‖H2(Ω),

c4(‖G0
3‖H1(Γs) + ‖η1‖H3(Γs))} (3.26)

and for all 1 � i � 4, Bi � B∗
0 .

Hence in view of (3.25), there exists T ∗
0 (B1, B2, B3, B4) ∈ (0,min{1, T}) such that for all 0 < T �

T ∗
0 (B1, B2, B3, B4) we verify that

1 + η∗ � δ0 > 0 on Σs
T .

Step 3. Let us set σ∗ = ρ0 − ρ. Since ρ0 ∈ H2(Ω) and ρ > 0 is a constant one verifies that σ∗ solves
(3.16a). In view of (1.3) we know that σ∗ satisfies (3.16d).

We further observe that (σ∗,w∗, η∗) satisfies (3.17a) and (3.17b) automatically by construction (follows
from (3.20)2,3, the fact that η∗ solves (2.17) and the definition σ∗ = ρ0 − ρ).

So we have shown that if we choose B∗
0 (and hence Bi � B∗

0 , for all 1 � i � 4) as in (3.26) and
0 < T � T ∗

0 (B1, B2, B3, B4) then (σ∗ = ρ0 − ρ,w∗, η∗) ∈ CT (B1, B2, B3, B4), i.e.

CT (B1, B2, B3, B4) �= ∅.

�
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Remark 3.3. Observe from the proof of Lemma 3.2, the constant T ∗
0 (B1, B2, B3, B4) depends on δ0 ∈

(0, 1). Since δ0 is fixed (see (3.1)) we do not write explicitly the dependence of T ∗
0 (B1, B2, B3, B4) on δ0.

3.2. For Small Enough T, L Maps CT (B1, B2, B3, B4) into Itself

To prove that the map L admits a fixed point we first show that for T small enough and a suitable choice
of parameters (B1, B2, B3, B4), the set CT (B1, B2, B3, B4) is mapped into itself by L.

Provided (σ̃, w̃, η̃) ∈ CT (B1, B2, B3, B4), we have to estimate the terms G1(σ̃, w̃, η̃), G2(σ̃, w̃, η̃),
G3(σ̃, w̃, η̃) and ˜W (w̃, η̃) (recall the definition of G1, G2, G3 and ˜W from (1.22) and (3.4) respectively).
For this purpose we will require some results which we collect in the following section.

3.2.1. Useful Lemmas. The following lemma concerning the Sobolev regularity of the product of two
functions is standard in the literature.

Lemma 3.4. [24, Lemma 4.] Consider a bounded domain Ω0 in R
d (for d = 1, 2). Let r > d

2 , 0 � s � r.
If v ∈ Hr(Ω0) and w ∈ Hs(Ω0) then vw ∈ Hs(Ω0) with

‖vw‖Hs(Ω0) � K(Ω0)‖v‖Hr(Ω0)‖w‖Hs(Ω0).

Similar estimates hold when v and w are vector valued functions i.e for v ∈ Hr(Ω0) and w ∈ Hs(Ω0).

Lemma 3.5. Let T < T (recall that we have fixed T in (1.23)). We assume that f ∈ H2,1
ΣT

(QT ). As usual
we use the notation fz to denote the directional derivative ∂zf of f with respect to z. Also suppose that
Γs is a smooth subset of Γ. Then the trace fz |ΣT

on Γs (i.e the normal derivative of f on Γs) belongs to
H1/6(0, T ;L2(Γs)). In particular there exists a constant K > 0 such that for all f ∈ H2,1

ΣT
(QT ) we have

the following
‖fz |ΣT

‖L2(0,T ;L2(Γs)) � T 1/6K(‖f(0)‖H1
0(Ω) + ‖f‖H2,1

ΣT
(QT )), (3.27)

where f(0) denotes the function f at time t = 0. We specify that in our case the space H2,1
ΣT

(QT ) is
endowed with the following norm

‖f‖H2,1
ΣT

(QT ) = ‖f‖L2(0,T ;H2(Ω)) + ‖ft‖L2(0,T ;L2(Ω)).

Remark 3.6. The appearance of f(0) in the inequality (3.27) might seem redundant since for all, f ∈
H2,1

ΣT
(QT )

‖f(0)‖H1
0(Ω) � KT ‖f‖H2,1

ΣT
(QT ).

But the constant KT there may depend on T while the constant K in (3.27) is independent of T. This is
the reason why we prefer working with (3.27).

Proof of Lemma 3.5. We have to estimate ‖fz |ΣT
‖L2(0,T ;L2(Γs)). Using Hölder’s inequality we get the

following
⎛

⎝

T
∫

0

‖fz |ΣT
‖2

L2(Γs)

⎞

⎠

1/2

�

⎛

⎝

T
∫

0

‖fz |ΣT
‖3

L2(Γs)

⎞

⎠

1/3

T 1/6

� K(Ω)

⎛

⎝

T
∫

0

‖f‖3
H5/3(Ω)

⎞

⎠

1/3

T 1/6.

(3.28)

To prove (3.27), in view of (3.28) it is enough to show the following inequality

‖f‖L3(0,T ;H5/3(Ω)) � K(Ω, T )(‖f‖H2,1
ΣT

(QT ) + ‖f(0)‖H1
0(Ω)). (3.29)
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In order to prove (3.29), first let us consider the solution f∗ of
⎧

⎨

⎩

f∗
t − Δf∗ = 0 in QT ,
f∗ = 0 on ΣT ,
f∗(., 0) = f(0) in Ω.

(3.30)

As f(0) ∈ H1
0(Ω), f∗ ∈ H2,1

ΣT
(QT ). It is also well known that there exists a constant K(Ω) such that f∗

satisfies the following inequalities

(i) ‖f∗‖H2,1
ΣT

(QT ) � K(Ω)‖f(0)‖H1
0(Ω),

(ii) ‖f∗‖L∞(0,T ;H1
0(Ω)) + ‖f∗‖L2(0,T ;H2(Ω)) � K(Ω)‖f(0)‖H1

0(Ω).
(3.31)

Now we will estimate the norm of f∗ in L3(0, T ;H5/3(Ω)).
Using interpolation we have for a.e t

‖f∗(t)‖H5/3(Ω) � K(Ω)‖f∗(t)‖2/3
H2(Ω)‖f∗(t)‖1/3

H1
0(Ω)

.

From the last inequality one obtains the following

‖f∗‖L3(0,T ;H5/3(Ω)) =

⎛

⎝

T
∫

0

‖f∗(t)‖3
H5/3(Ω)

⎞

⎠

1/3

� K(Ω)‖f∗‖1/3

L∞(0,T ;H1
0(Ω))

‖f∗‖2/3
L2(0,T ;H2(Ω)).

(3.32)

Hence using inequality (ii) of (3.31) in (3.32) we obtain

‖f∗‖L3(0,T ;H5/3(Ω)) � K(Ω)‖f(0)‖H1
0(Ω). (3.33)

Now let us observe that (f − f∗)(0) = 0. Extend the function (f − f∗) by defining it zero in the time
interval (T − T , 0) (the extended function is also denoted by (f − f∗)). In what follows we will use the
notation

QT−T ,T = Ω × (T − T , T ).

We also introduce the space H2,1
ΣT

(QT−T ,T ) which is defined as in (1.12) with QT replaced by QT−T ,T .

One can check that the extended function (f − f∗) ∈ H2,1
ΣT

(QT−T ,T ) and

‖(f − f∗)‖H2,1
ΣT

(QT−T,T ) = ‖(f − f∗)‖H2,1
ΣT

(QT ). (3.34)

Again due to the embedding H2,1
ΣT

(QT−T ,T ) ↪→ H1/6(T − T , T ;H5/3(Ω)) we have the following

‖f − f∗‖H1/6(T−T ,T ;H5/3(Ω)) � K(T ,Ω)‖f − f∗‖H2,1
ΣT

(QT−T,T ). (3.35)

Since H1/6(T − T , T ) is continuously embedded into L3(T − T , T ), hence from (3.35)

‖f − f∗‖L3(T−T ,T ;H5/3(Ω)) � K(T ,Ω)‖f − f∗‖H2,1
ΣT

(QT−T,T ). (3.36)

Use of triangle inequality furnishes the following

‖f‖L3(0,T ;H5/3(Ω))

� K(‖f − f∗‖L3(0,T ;H5/3(Ω)) + ‖f∗‖L3(0,T ;H5/3(Ω))).
(3.37)

Incorporate inequalities (3.33) and (3.36) in (3.37) in order to obtain

‖f‖L3(0,T ;H5/3(Ω))

� K(Ω, T )(‖f − f∗‖H2,1
ΣT

(QT−T,T ) + ‖f(0)‖H1
0(Ω)).

(3.38)

In view of the equality (3.34) we can obtain the following from (3.38),

‖f‖L3(0,T ;H5/3(Ω)) � K(Ω, T )(‖f − f∗‖H2,1
ΣT

(QT ) + ‖f(0)‖H1
0(Ω)). (3.39)

Once again use triangle inequality and (3.31) (i), in order to prove (3.29).
Finally use (3.29) in (3.28) to show (3.27). This completes the proof. �



60 Page 24 of 38 S. Mitra JMFM

The following lemma is a simple consequence of the fundamental theorem of calculus, whose proof is
left to the reader.

Lemma 3.7. Fix i � 0 and a domain Ω0 in R
d (d is either 1 or 2). Then there exists a constant K > 0

such that for all ψ ∈ H1(0, T ;Hi(Ω0)), the following holds

‖ψ‖L∞(0,T ;Hi(Ω0)) � K(‖ψ(0)‖Hi(Ω0) + T 1/2‖ψt‖L2(0,T ;Hi(Ω0))), (3.40)

where ψ(0) denotes ψ at time t = 0. The inequality (3.40) is true even for a vector valued function
Ψ ∈ H1(0, T ;Hi(Ω0)).

3.2.2. Estimates of G1, G2, G3 and ˜W .

Lemma 3.8. Let B∗
0 and T ∗

0 are as in Lemma 3.2 and Bi � B∗
0 (∀ 1 � i � 4). Then there exist K1 =

K1(B1, B2, B3, B4) > 0 and K2 > 0 such that for all 0 < T � T ∗
0 (B1, B2, B3, B4) and (σ̃, w̃, η̃) ∈

CT (B1, B2, B3, B4), G1(σ̃, w̃, η̃) (defined in (1.22)) satisfies the following estimates

(i) ‖G1(σ̃, w̃, η̃)‖L1(0,T ;H2(Ω)) � K1(B1, B2, B3, B4)T 1/2,
(ii) ‖G1(σ̃, w̃, η̃)‖L∞(0,T ;H1(Ω)) � K2‖ρ0div(u0)‖H1(Ω)

+K1(B1, B2, B3, B4)T 1/2.
(3.41)

Remark 3.9. In (3.41), the constant K2 does not depend on any of the Bi (1 � i � 4).

Proof of Lemma 3.8. (i) We will first prove (3.41)(i).
Estimate of (σ̃+ρ)div(w̃+zη̃t�e2) in L1(0, T ;H2(Ω)): From (3.8), we get that (σ̃+ρ) ∈ L∞(0, T ;H2(Ω))

and (w̃ + zη̃t�e2) ∈ L2(0, T ;H2(Ω)). Hence we have the following inequality

‖(σ̃ + ρ)div(w̃ + zη̃t�e2)‖L1(0,T ;H2(Ω))

� K(‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))‖(w̃ + zη̃t�e2)‖L1(0,T ;H3(Ω))) (using Lemma 3.4)

� KT 1/2(‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))‖(w̃ + zη̃t�e2)‖L2(0,T ;H3(Ω)))

� K(B1, B3, B4)T 1/2, (using (3.16a), (3.16b), (3.16c)). (3.42)

Estimate of F1(σ̃ + ρ, w̃ + zη̃t�e2, η̃) (defined in (1.10)) in L1(0, T ;H2(Ω)): First observe that, as η̃ ∈
L∞(0, T ;H9/2(Γs)) and the following inequality holds (follows from the definition 3.18)

1 + η∗ � δ0 > 0 on Σs
T ,

one can verify the following
1

(1 + η̃)
∈ L∞(0, T ;H9/2(Γs)) (3.43)

and
∥

∥

∥

∥

1
(1 + η̃)

∥

∥

∥

∥

L∞(0,T ;H9/2(Γs))

� K‖η̃‖L∞(0,T ;H9/2(Γs)) � K(B4), (using (3.16c)).
(3.44)

Hence we get the following estimate of
zη̃x(σ̃ + ρ)(w̃1 + zη̃t �e2)z

(1 + η̃)
,

∥

∥

∥

∥

η̃x(σ̃ + ρ)(w̃1 + zη̃t �e2)z

(1 + η̃)

∥

∥

∥

∥

L1(0,T ;H2(Ω))

� K(‖η̃x‖L∞(0,T ;H7/2(Γs))

∥

∥

∥

∥

1
(1 + η̃)

∥

∥

∥

∥

L∞(0,T ;H9/2(Γs))

‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))

‖(w̃1 + zη̃t �e2)z‖L1(0,T ;H2(Ω))) (using Lemma 3.4)

� K(B1, B3, B4)T 1/2,

(using Hölder’s inequality and (3.16a), (3.16b), (3.16c) and (3.44)). (3.45)
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Rest of the terms in the expression of F1(σ̃ + ρ, w̃ + zη̃t�e2, η̃) can be estimated in a similar way. Hence
we can show the following

‖F1(σ̃ + ρ, w̃ + zη̃t�e2, η̃)‖L1(0,T ;H2(Ω)) � K(B1, B3, B4)T 1/2. (3.46)

We combine (3.42) and (3.46) to prove (3.41)(i).
(ii) We will now prove (3.41)(ii).
Estimate of (σ̃ + ρ)div(w̃ + zη̃t�e2) in L∞(0, T ;H1(Ω)): We observe the following

‖((σ̃ + ρ)div(w̃ + zη̃t�e2))t‖L2(0,T ;H1(Ω))

� K(‖σ̃tdiv(w̃ + zη̃t�e2)‖L2(0,T ;H1(Ω))

+ ‖(σ̃ + ρ)div(w̃t + zη̃tt�e2)‖L2(0,T ;H1(Ω)))

� K(‖σ̃t‖L∞(0,T ;H1(Ω))‖div(w̃ + zη̃t�e2)‖L2(0,T ;H2(Ω))

+ ‖σ̃ + ρ‖L∞(0,T ;H2(Ω))‖div(w̃t + zη̃tt�e2)‖L2(0,T ;H1(Ω))) (using Lemma 3.4)

� K(B1, B2, B3, B4), (using (3.16a), (3.16b), (3.16c)). (3.47)

Now apply the inequality (3.40) with ψ = (σ̃ + ρ)div(w̃ + zη̃t�e2). We obtain

‖(σ̃ + ρ)div(w̃ + zη̃t�e2)‖L∞(0,T ;H1(Ω))

� K‖ρ0div(u0)‖H1(Ω) + T 1/2K(B1, B2, B3, B4), (using (3.47)). (3.48)

Estimate of F1(σ̃ + ρ, w̃ + zη̃t�e2, η̃) in L∞(0, T ;H1(Ω)): We can have the following estimate
∥

∥

∥

∥

η̃x(σ̃ + ρ)(w̃1 + zη̃t �e2)z

(1 + η̃)

∥

∥

∥

∥

L∞(0,T ;H1(Ω))

� K(‖η̃x‖L∞(0,T ;H2(Γs))

∥

∥

∥

∥

1
(1 + η̃)

∥

∥

∥

∥

L∞(0,T ;H9/2(Γs))

‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))

‖(w̃1 + zη̃t �e2)z‖L∞(0,T ;H1(Ω))) (using Lemma 3.4)

� KT 1/2(‖η̃xt‖L2(0,T ;H2(Γs))

∥

∥

∥

∥

1
(1 + η̃)

∥

∥

∥

∥

L∞(0,T ;H9/2(Γs))

‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))‖(w̃1 + zη̃t �e2)z‖L∞(0,T ;H1(Ω)))

(using (3.40) with ψ = η̃x and the fact that η̃x(0) = 0)

� K(B1, B3, B4)T 1/2, (using (3.16a), (3.16b), (3.16c) and (3.44)). (3.49)

A similar analysis can be applied to estimate other summands of F1(σ̃ + ρ, w̃ + zη̃t�e2, η̃). Hence we can
now show that

‖F1(σ̃ + ρ, w̃ + zη̃t�e2, η̃)‖L∞(0,T ;H1(Ω)) � K(B1, B2, B4)T 1/2. (3.50)
Combine (3.48) with (3.50) to show (3.41)(ii). �

Lemma 3.10. Let B∗
0 and T ∗

0 are as in Lemma 3.2 and Bi � B∗
0 (∀ 1 � i � 4). Then there exist K3 =

K3(B1, B2, B3, B4) > 0, K4 = K4(B1, B4) > 0 and K5 > 0 such that for all 0 < T � T ∗
0 (B1, B2, B3, B4)

and (σ̃, w̃, η̃) ∈ CT (B1, B2, B3, B4), G2(σ̃, w̃, η̃) (defined in (1.22)) satisfies the following estimates

(i) ‖G2(σ̃, w̃, η̃)‖L2(0,T ;H1(Ω)) � K3(B1, B2, B3, B4)T 1/2,

(ii) ‖(G2(σ̃, w̃, η̃))t‖L2(0,T ;L2(Ω)) � K3(B1, B2, B3, B4)T 1/2 + K4(B1, B4),

(iii) ‖G2(σ̃, w̃, η̃)‖L∞(0,T ;L2(Ω)) � K5‖G0
2‖L2(Ω) + K3(B1, B2, B3, B4)T 1/2. (3.51)

Remark 3.11. The estimates in (3.51) are inspired from the results stated in [39, p. 269] which is done in
absence of the beam unknown η but includes the evolution of the temperature of the fluid.

We further emphasize that the constant K4 does not depend on (B2, B3) and K5 does not depend on
any of the Bi (1 � i � 4).
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Proof of Lemma 3.10. One can use (3.16d) to show that for γ > 1,

(σ̃ + ρ)γ−1 ∈ C0([0, T ];H2(Ω)) and (σ̃ + ρ)γ−2 ∈ C0([0, T ];H2(Ω))

and
‖(σ̃ + ρ)γ−1‖L∞(0,T ;H2(Ω)) � K‖σ̃‖L∞(0,T ;H2(Ω)) � K(B1),
‖(σ̃ + ρ)γ−2‖L∞(0,T ;H2(Ω)) � K‖σ̃‖L∞(0,T ;H2(Ω)) � K(B1).

(3.52)

(i) We first estimate G2(σ̃, w̃, η̃) in L2(0, T ;H1(Ω)).
Estimate of P ′(σ̃ + ρ)∇σ̃ in L2(0, T ;H1(Ω)):

‖P ′(σ̃ + ρ)∇σ̃‖L2(0,T ;H1(Ω))

� T 1/2‖P ′(σ̃ + ρ)∇σ̃‖L∞(0,T ;H1(Ω))

� T 1/2K(‖(σ̃ + ρ)γ−1‖L∞(0,T ;H2(Ω))‖∇σ̃‖L∞(0,T ;H1(Ω)))

(using the definition ofP and Lemma 3.4)

� K(B1)T 1/2, (using (3.16a)). (3.53)

Estimate of zη̃tt(σ̃ + ρ)�e2 − (μΔ + (μ + μ′)∇div)(zη̃t�e2) in L2(0, T ;H1(Ω)):

‖zη̃tt(σ̃ + ρ)�e2 − (μΔ + (μ + μ′)∇div)(zη̃t�e2)‖L2(0,T ;H1(Ω))

� T 1/2‖zη̃tt(σ̃ + ρ)�e2 − (μΔ + (μ + μ′)∇div)(zη̃t�e2)‖L∞(0,T ;H1(Ω))

� T 1/2K(‖η̃tt‖L∞(0,T ;H1(Ω))‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω)) + ‖η̃t‖L∞(0,T ;H3(Ω)))

(using Lemma 3.4)

� K(B1, B4)T 1/2, (using (3.16a), (3.16c)). (3.54)

Estimate of F2(σ̃ + ρ, w̃ + zη̃t�e2, η̃) (defined in (1.10)) in L2(0, T ;H1(Ω)): We will only estimate the
terms of F2(σ̃ + ρ, w̃ + zη̃t�e2, η̃) which are the most intricate to deal with. The others are left to the
reader.

(a) ‖η̃(σ̃ + ρ)(w̃t + zη̃tt �e2)‖L2(0,T ;H1(Ω))

� T 1/2‖η̃(σ̃ + ρ)(w̃t + zη̃tt �e2)‖L∞(0,T ;H1(Ω))

� T 1/2K(‖η̃‖L∞(0,T ;H2(Γs))‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))

‖(w̃t + zη̃tt �e2)‖L∞(0,T ;H1(Ω))) (using Lemma 3.4)
� K(B1, B3, B4)T 1/2, (using (3.16a), (3.16b), (3.16c)).

(3.55)

(b) ‖z(σ̃ + ρ)(w̃z + η̃t �e2)η̃t‖L2(0,T ;H1(Ω))

� T 1/2‖z(σ̃ + ρ)(w̃z + η̃t �e2)η̃t‖L∞(0,T ;H1(Ω))

� T 1/2K(‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))‖(w̃z

+η̃t �e2)‖L∞(0,T ;H1(Ω))‖η̃t‖L∞(0,T ;H2(Γs))) (using Lemma 3.4)
� K(B1, B3, B4)T 1/2, (using (3.16a), (3.16b), (3.16c)).

(3.56)

(c)
∥

∥

∥

∥

w̃zzz
2η2

x

(1 + η̃)

∥

∥

∥

∥

L2(0,T ;H1(Ω))

� K

(

‖w̃zz‖L2(0,T ;H1(Ω))‖η̃2
x‖L∞(0,T ;H2(Γs))

∥

∥

∥

∥

1
(1 + η̃)

∥

∥

∥

∥

L∞(0,T ;H9/2(Γs))

)

(using Lemma 3.4)
� T 1/2K(‖w̃zz‖L2(0,T ;H1(Ω))‖η̃2

xt‖L2(0,T ;H2(Γs))
∥

∥

∥

1
(1+η̃)

∥

∥

∥

L∞(0,T ;H9/2(Γs))
)

(using (3.40) with ψ = η̃2
x and the fact η̃x(, 0) = 0)

� K(B3, B4)T 1/2, (using (3.16a), (3.16b), (3.16c) and (3.44)).

(3.57)

(d) Using arguments similar to that in the computation (3.53) we show the following

‖(η̃P ′σ̃x − P ′σ̃zzη̃x) �e1‖L2(0,T ;H1(Ω)) � K(B1, B4)T 1/2. (3.58)
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Now the reader can deal with the other terms using similar arguments in order to prove

‖F2(σ̃ + ρ, (w̃ + zη̃t �e2), η̃)‖L2(0,T ;H1(Ω)) � K(B1, B3, B4)T 1/2. (3.59)

Combining the estimates (3.53), (3.54) and (3.59) we conclude the proof of the inequality (3.51)(i).
(ii) We now estimate ‖(G2(σ̃, w̃, η̃))t‖L2(0,T ;L2(Ω)).

Estimate of (P ′(σ̃ + ρ)∇σ̃)t in L2(0, T ;L2(Ω)):

‖(P ′(σ̃ + ρ)∇σ̃)t‖L2(0,T ;L2(Ω))

� T 1/2‖(P ′(σ̃ + ρ)∇σ̃)t‖L∞(0,T ;L2(Ω))

� T 1/2K(‖(σ̃ + ρ)(γ−2)σ̃t∇σ̃‖L∞(0,T ;L2(Ω))

+ ‖(σ̃ + ρ)γ−1∇σ̃t‖L∞(0,T ;L2(Ω)))

� T 1/2K(‖(σ̃ + ρ)γ−2‖L∞(0,T ;H2(Ω))‖σ̃t‖L∞(0,T ;H1(Ω))

‖∇σ̃‖L∞(0,T ;H1(Ω)) + ‖(σ̃ + ρ)γ−1‖L∞(0,T ;H2(Ω))

‖∇σ̃t‖L∞(0,T ;L2(Ω))) (using Lemma 3.4)

� K(B1, B2)T 1/2, (using (3.16a) and (3.52)). (3.60)

Estimate of (zη̃tt(σ̃ + ρ) �e2 − (μΔ + (μ + μ′)∇div)(zη̃t�e2))t in L2(0, T ;L2(Ω)):

‖(zη̃tt(σ̃ + ρ) �e2 − (μΔ + (μ + μ′)∇div)(zη̃t�e2))t‖L2(0,T ;L2(Ω))

� T 1/2K(‖η̃tt‖L∞(0,T ;H1(Γs))‖σ̃t‖L∞(0,T ;H1(Ω))) + K(‖η̃ttt‖L2(0,T ;L2(Γs))

‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω)) + ‖η̃tt‖L2(0,T ;H2(Γs))) (using Lemma 3.4)

� K(B2, B4)T 1/2 + K(B1, B4). (3.61)

Estimate of (F2(σ̃ + ρ, (w̃ + zη̃t �e2), η̃))t in L2(0, T ;L2(Ω)):

(a) ‖(η̃(σ̃ + ρ)(w̃t + zη̃tt �e2))t‖L2(0,T ;L2(Ω))

� K(‖(η̃t(σ̃ + ρ)(w̃t + zη̃tt �e2))‖L2(0,T ;L2(Ω))

+‖η̃σ̃t(w̃t + zη̃tt �e2)‖L2(0,T ;L2(Ω))

+‖(η̃(σ̃ + ρ)(w̃tt + zη̃ttt �e2))‖L2(0,T ;L2(Ω)))

� T 1/2K(‖η̃t‖L∞(0,T ;H2(Γs))‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))

‖(w̃t + zη̃tt �e2)‖L∞(0,T ;H1(Ω)) + ‖η̃‖L∞(0,T ;H2(Γs))

‖σ̃t‖L∞(0,T ;H1(Ω))‖(w̃t + zη̃tt �e2)‖L∞(0,T ;H1(Ω)))
+‖η̃‖L∞(0,T ;H2(Γs))‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))

‖(w̃tt + zη̃ttt �e2)‖L2(0,T ;L2(Ω))

� T 1/2K(B1, B2, B3, B4) + T 1/2‖η̃t‖L2(0,T ;H2(Γs))

‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))‖(w̃tt + zη̃ttt �e2)‖L2(0,T ;L2(Ω))

(using (3.40) with ψ = η̃ and the fact η̃(, 0) = 0)

� K(B1, B2, B3, B4)T 1/2.

(3.62)

(b) Using similar estimates we can have the following

‖(z(σ̃ + ρ)(w̃z + η̃t �e2)ηt)t‖L2(0,T ;L2(Ω)) � K(B1, B2, B3, B4)T 1/2. (3.63)

(c) Now we estimate
∥

∥

∥

∥

(

w̃zzz
2η̃2

x

(1 + η̃)

)

t

∥

∥

∥

∥

L2(0,T ;L2(Ω))

.
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To start with, we have the following identity of distributional derivatives
(

w̃zzz
2η̃2

x

(1 + η̃)

)

t

=
z2w̃tzz η̃

2
x

(1 + η̃)
+

2η̃xη̃xtw̃zz

(1 + η̃)
− w̃zzz

2η̃2
xη̃t

(1 + η̃)2
. (3.64)

We now estimate the first term of the summands. Using (3.44) one obtains
∥

∥

∥

∥

z2w̃tzz η̃
2
x

(1 + η̃)

∥

∥

∥

∥

L2(0,T ;L2(Ω))

� K(B4)(‖w̃tzz‖L2(0,T ;L2(Ω))‖η̃x‖2
L∞(Σs

T )).
(3.65)

Now we use inequality (3.40) and η̃x(·, 0) = 0 to get

‖η̃x‖L∞(Σs
T ) ≤ C‖η̃x‖L∞(0,T ;H2(Γs)) � K(B3)T 1/2. (3.66)

Hence we use (3.66) in (3.65) to obtain
∥

∥

∥

∥

z2w̃tzz η̃
2
x

(1 + η̃)

∥

∥

∥

∥

L2(0,T ;L2(Ω))

� K(B3, B4)T. (3.67)

For the second and third summands of (3.64), we similarly obtain:
∥

∥

∥

∥

2η̃xη̃xtw̃zz

(1 + η̃)

∥

∥

∥

∥

L2(0,T ;L2(Ω))

� K(B3, B4)T 1/2,

and
∥

∥

∥

∥

−w̃zzz
2η̃2

xη̃t

(1 + η̃)2

∥

∥

∥

∥

L2(0,T ;L2(Ω))

� K(B3, B4)T.
(3.68)

So altogether we get
∥

∥

∥

∥

(

w̃zzz
2η̃2

x

(1 + η̃)

)

t

∥

∥

∥

∥

L2(0,T ;L2(Ω))

� K(B3, B4)T 1/2. (3.69)

The remaining terms in the expression of F2 are relatively easier to deal with and hence we leave the
details to the reader to show

‖(F2(σ̃ + ρ, w̃ + zη̃t �e2, η̃))t‖L2(0,T ;L2(Ω)) � K(B1, B2, B3, B4)T 1/2. (3.70)

Hence combining the estimates (3.60), (3.61) and (3.70) one gets (3.51)(ii).
(iii) In (3.40) replace ψ by G2(w̃, σ̃, η̃) and use the estimate (3.51)(ii) to prove (3.51)(iii). �

Lemma 3.12. Let B∗
0 and T ∗

0 are as in Lemma 3.2 and Bi � B∗
0 (∀ 1 � i � 4). Then there exist K6 >

0 and K7 = K7(B1, B2, B3, B4) > 0 such that for all 0 < T � T ∗
0 (B1, B2, B3, B4) and (σ̃, w̃, η̃) ∈

CT (B1, B2, B3, B4), G3(σ̃, w̃, η̃) (defined in (1.22)) satisfies the following estimates

(i) ‖G3(σ̃, w̃, η̃)‖L∞(0,T ;H1/2(Γs)) � K6‖(ρ0,u0)‖H2(Ω)×H2(Ω)

+K7(B1, B2, B3, B4)T 1/2,
(ii) ‖(G3(σ̃, w̃, η̃))t‖L2(0,T ;L2(Γs)) � T 1/6K7(B1, B2, B3, B4).

(3.71)

Remark 3.13. We emphasize that K6 does not depend on any of the Bi (1 � i � 4).

Proof. In this proof we will consider the function w̃ and (σ̃ + ρ) on Γs, i.e we take the trace of these
functions and make use of well known trace theorem without mentioning it explicitly.

(i) Estimate of F3(σ̃ + ρ, w̃ + η̃t�e2, η̃) (defined in (1.10)) in L∞(0, T ;H1/2(Γs)):

(a) First let us estimate (w̃2,z + η̃t) in L∞(0, T ;H1/2(Γs)):

‖(w̃2,z + η̃t)‖L∞(0,T ;H1/2(Γs))

� K(‖u0‖H2(Ω) + T 1/2‖(w̃2,z + η̃t)t‖L2(0,T ;H1/2(Γs))) (using (3.40))

� K(‖u0‖H2(Ω) + T 1/2K(B3, B4)), (using (3.16b) and (3.16c)). (3.72)
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(b) Let us estimate P (σ̃ + ρ) in L∞(0, T ;H1/2(Γs)).

‖P (σ̃ + ρ)‖L∞(0,T ;H1/2(Γs))

� K(‖ρ0‖H2(Ω) + T 1/2‖(σ̃ + ρ)γ−1σ̃t‖L2(0,T ;H1/2(Γs))ds) (using (3.40))

� K(‖ρ0‖H2(Ω) + T 1/2K(B1, B2)), (using (3.16a)). (3.73)

(c) Now we estimate
η̃xw̃1,z

(1 + η̃)
in L∞(0, T ;H1/2(Γs)),

‖ η̃xw̃1,z

(1 + η̃)
‖L∞(0,T ;H1/2(Γs))

� K(B4)(‖η̃x‖L∞(0,T ;H2(Γs))‖w̃1,z‖L∞(0,T ;H1/2(Γs))) (using (3.44))

� T 1/2K(B3, B4), (using (3.40) with ψ = η̃x and η̃x(., 0) = 0). (3.74)

We use similar sort of arguments to show that

‖F3(σ̃ + ρ, w̃ + η̃t�e2, η̃)‖L∞(0,T ;H1/2(Γs))

� K‖ρ0‖H2(Γs) + K(B1, B2, B3, B4)T 1/2. (3.75)

Combine (3.72) with (3.75) to prove (3.71)(i).
(ii) Estimate of (F3(σ̃ + ρ, w̃ + η̃t�e2, η̃))t (defined in (1.10)) in L2(0, T ;L2(Γs)):

First let us estimate (w̃2,z + η̃t�e2)t in L2(0, T ;L2(Γs)):

‖(w̃2,z + η̃t)t‖L2(0,T ;L2(Γs))

� ‖w̃2,tz‖L2(0,T ;L2(Γs)) + ‖η̃tt‖L2(0,T ;L2(Γs))

� T 1/6K(‖w̃t(·, 0)‖H1
0(Ω) + ‖w̃t‖H2,1

ΣT
(QT )) + T 1/2K‖η̃tt‖L∞(0,T ;L2(Γs))

(using Lemma 3.5 with f replaced by w̃t)

� T 1/6K(
∥

∥

∥

∥

1
ρ0

(

G2 |t=0 −(−μΔ − (μ + μ′)∇div)(u0 − zη1 �e2)
)

∥

∥

∥

∥

H1
0(Ω)

+ K(B3)) + T 1/2K(B4).

(using (3.17d) and the inequalities (3.16b) and (3.16c)) (3.76)

Using similar line of arguments one can prove that the trace of (F3(σ̃ + ρ, w̃+ η̃t�e2, η̃))t on Γs belongs to
L2(0, T ;L2(Γs)) and the following inequality is true for T < 1,

‖(F3(σ̃ + ρ, w̃ + η̃t�e2, η̃))t‖L2(0,T ;L2(Γs)) � T 1/6K(B1, B2, B3, B4). (3.77)

Combining (3.76) and (3.77), we conclude (3.71)(ii). �

Lemma 3.14. Let B∗
0 and T ∗

0 are as in Lemma 3.2 and Bi � B∗
0 (∀ 1 � i � 4). Then there exist K8 =

K8(B1, B2, B3, B4) > 0, and K9 = K9(B3, B4) > 0 such that for all 0 < T � T ∗
0 (B1, B2, B3, B4) and

(σ̃, w̃, η̃) ∈ CT (B1, B2, B3, B4), we have the following estimates (recall the notation ˜W from (3.4))

(i)‖˜W (w̃, η̃)‖L1(0,T ;H3(Ω)) � K8(B1, B2, B3, B4)T 1/2,

(ii)‖˜W (w̃, η̃)‖L∞(0,T ;H2(Ω)) � K9(B3, B4) + K8(B1, B2, B3, B4)T 1/2,

(iii)‖σ̃t‖L2(0,T ;L3(Ω)) + ‖∇σ̃‖L2(0,T ;L3(Ω)) � K8(B1, B2, B3, B4)T 1/2. (3.78)

Remark 3.15. We emphasize that K9 does not depend on B1 and B2.

Proof. (i) One can use Lemma 3.4 to check that˜W (w̃, η̃) ∈ L2(0, T ;H3(Ω)). As a consequence, (3.78)(i)
follows.
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(ii) The following estimates follow from the regularity of w̃.

‖w̃1‖L∞(0,T ;H2(Ω)) � K(B3), (3.79)
∥

∥

∥

∥

1
(1 + η̃)

w̃2

∥

∥

∥

∥

L∞(0,T ;H2(Ω))

� K(B3, B4), (using (3.44)) (3.80)

and
∥

∥

∥

∥

1
(1 + η̃)

w̃1zη̃x

∥

∥

∥

∥

L∞(0,T ;H2(Ω))

� K(B4)(‖w̃‖L∞(0,T ;H2(Ω))‖η̃x‖L∞(0,T ;H2(Γs)))

(using (3.44) and Lemma 3.4)

� T 1/2K(B4)(‖w̃‖L∞(0,T ;H2(Ω))‖η̃xt‖L2(0,T ;H2(Γs)))

(using (3.40) with ψ = η̃x and η̃x(., 0) = 0)

� T 1/2K(B3, B4). (3.81)

Combine (3.79), (3.80) and (3.81) to prove (3.78)(ii).
(iii) From the definition of CT (B1, B2, B3, B4) we know that σ̃t is in L∞(0, T ;H1(Ω)) and ∇σ̃ belongs

to L∞(0, T ;H1(Ω)). Hence one uses the continuous embedding H1(Ω) ↪→ L3(Ω) to obtain that the
embedding from L∞(0, T ;H1(Ω)) ↪→ L2(0, T ;L3(Ω)) has a norm of size

√
T . We then easily derive

(3.78)(iii). �

3.2.3. Choices of B1, B2, B3 and B4. Now we will choose the constants Bi � B∗
0 (� i � 4) such that

for a small enough time 0 < T � T ∗
0 (B1, B2, B3, B4), L maps CT (B1, B2, B3, B4) into itself.

Lemma 3.16. Let B∗
0 and T ∗

0 are as in Lemma 3.2. There exist constants Bi � B∗
0 (1 � i � 4) and a

time T ∗(B1, B2, B3, B4) satisfying 0 < T ∗(B1, B2, B3, B4) � T ∗
0 (B1, B2, B3, B4) such that for all 0 < T �

T ∗(B1, B2, B3, B4), L maps CT (B1, B2, B3, B4) into itself.

Proof. In the following we will fix Bi (1 � i � 4) in a hierarchical order. We use the constants B∗
0 (Lemma

3.2), c4 (Theorem 2.7), K6 (Lemma 3.12), c1 (Theorem 2.1), K4 (Lemma 3.10), K5 (Lemma 3.10), c3

(Theorem 2.4), K9 (Lemma 3.14) and K2 (Lemma 3.8). First we set B1 and B4 as follows
⎧

⎪

⎨

⎪

⎩

B1 = max{2(‖σ0‖H2(Ω) + 1), B∗
0},

B4 = max{c4(‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs)

+ K6‖(ρ0,u0)‖H2(Ω)×H2(Ω) + 1), B∗
0}.

(3.82)

Now using B1 and B4 we choose B2 and B3 in the following order.

B3 = max{c1(2 + K5‖G2 |t=0 ‖L2(Ω) + 4(1 + K4(B1, B4)

+
∥

∥

∥

∥

G2 |t=0 −(−μΔ − (μ + μ′)∇div)(u0 − zη1 �e2)
ρ0

∥

∥

∥

∥

H1(Ω)

)), B∗
0}, (3.83)

and

B2 = max{2c3K9(B3, B4)‖σ0‖H2(Ω) + K2‖ρ0div(u0)‖H1(Ω) + 1, B∗
0}. (3.84)

In the rest of the proof we verify that with the choices (3.82), (3.83) and (3.84) of Bi (∀ 1 � i � 4), there
exists a time T ∗(B1, B2, B3, B4) such that for all 0 < T � T ∗(B1, B2, B3, B4), L maps CT (B1, B2, B3, B4)
into itself.
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Let (σ̃, w̃, η̃) ∈ CT (B1, B2, B3, B4) and L(σ̃, w̃, η̃) = (σ,w, η). From Theorem 2.1, Theorem 2.4 and
Theorem 2.7 we know that (σ,w, η) satisfies the following inequalities with

(G1, G2, G3) = (G1(σ̃, w̃, η̃), G2(σ̃, w̃, η̃), G3(σ̃, w̃, η̃)).
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖w‖L∞(0,T ;H2(Ω)) + ‖w‖L2(0,T ;H3(Ω)) + ‖wt‖L∞(0,T ;H1(Ω))

+ ‖wt‖L2(0,T ;H2(Ω)) + ‖wtt‖L2(0,T ;L2(Ω))

� c1{‖G2‖L2(0,T ;H1(Ω)) + ‖G2‖L∞(0,T ;L2(Ω)) + (‖G2,t‖L2(0,T ;L2(Ω))

+
∥

∥

∥

∥

G2 |t=0 −(−μΔ − (μ + μ′)∇div)(u0 − zη1 �e2)
ρ0

∥

∥

∥

∥

H1(Ω)

)

· (1 + ‖σ̃t‖L2(0,T ;L3(Ω)) + ‖∇σ̃‖L2(0,T ;L3(Ω)))exp(c1‖σ̃t‖2
L2(0,T ;L3(Ω)))},

(3.85)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖σ‖L∞(0,T ;H2(Ω))

� (‖σ0‖H2(Ω) + c2‖G1‖L1(0,T ;H2(Ω)))exp(c2‖˜W‖L1(0,T ;H3(Ω))),

‖σt‖L∞(0,T ;H1(Ω))

� c3‖˜W‖L∞(0,T ;H2(Ω))[(‖σ0‖H2(Ω) + c2‖G1‖L1(0,T ;H2(Ω)))

· exp(c2‖˜W‖L1(0,T ;H3(Ω)))] + ‖G1‖L∞(0,T ;H1(Ω)),

(3.86)

and
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

‖η‖L∞(0,T ;H9/2(Γs)) + ‖ηt‖L2(0,T ;H4(Γs)) + ‖ηt‖L∞(0,T ;H3(Γs))

+ ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L∞([0,T ];H1(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

� c4

(‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + ‖G3‖L∞(0,T ;H1/2(Γs))

+ ‖G3,t‖L2(0,T ;L2(Γs))

)

.

(3.87)

(i) Using the estimate (3.71) on G3(σ̃, w̃, η̃) in (3.87) we obtain:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

‖η‖L∞(0,T ;H9/2(Γs)) + ‖ηt‖L2(0,T ;H4(Γs)) + ‖ηt‖L∞(0,T ;H3(Γs))

+ ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L∞([0,T ];H1(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

� c4(‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + K6‖(ρ0,u0)‖H2(Ω)×H2(Ω)

+ K7(B1, B2, B3, B4)T 1/2 + T 1/6K7(B1, B2, B3, B4).

(3.88)

Now choose T ∗
1 = T ∗

1 (B1, B2, B3, B4)(� T ∗
0 (B1, B2, B3, B4)) small enough positive such that

K7(B1, B2, B3, B4)(T ∗
1 )1/2 + K7(B1, B2, B3, B4)(T ∗

1 )1/6 < 1. (3.89)

In view of the choice of B4 (see (3.82)) and (3.89), for all 0 < T � T ∗
1 one verifies that

⎧

⎪

⎨

⎪

⎩

‖η‖L∞(0,T ;H9/2(Γs)) + ‖ηt‖L2(0,T ;H4(Γs)) + ‖ηt‖L∞(0,T ;H3(Γs))

+ ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L∞([0,T ];H1(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

� B4.

(3.90)

(ii) Using the estimates (3.41)(i) on G1(σ̃, w̃, η̃) and (3.78)(i) on ˜W (w̃, η̃) in (3.86)1 furnish

‖σ‖L∞(0,T ;H2(Ω)) � (‖σ0‖H2(Ω) + c2K1(B1, B2, B3, B4)T 1/2)
exp(c2K8(B1, B2, B3, B4)T 1/2).

(3.91)

Choose T ∗
2 = T ∗

2 (B1, B2, B3, B4)(� T ∗
1 ) small enough positive such that

c2K1(B1, B2, B3, B4)(T ∗
2 )1/2 < 1

and exp(c2K8(B1, B2, B3, B4)(T ∗
2 )1/2) < 2.

(3.92)

In view of the choice of B1 (see (3.82)) and (3.92), for all 0 < T � T ∗
2 the following holds

‖σ‖L∞(0,T ;H2(Ω)) � B1. (3.93)
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(iii) Using the estimates (3.51) on G2(σ̃, w̃, η̃) and (3.78)(iii) on σ̃ in (3.85) to obtain
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖w‖L∞(0,T ;H2(Ω)) + ‖w‖L2(0,T ;H3(Ω)) + ‖wt‖L∞(0,T ;H1(Ω))

+ ‖wt‖L2(0,T ;H2(Ω)) + ‖wtt‖L2(0,T ;L2(Ω))

� c1{K5‖G2 |t=0 ‖L2(Ω) + 2K3(B1, B2, B3, B4)T 1/2

+ (K3(B1, B2, B3, B4)T 1/2 + K4(B1, B4)

+
∥

∥

∥

∥

G2 |t=0 −(−μΔ − (μ + μ′)∇div)(u0 − zη1 �e2)
ρ0

∥

∥

∥

∥

H1(Ω)

)

· (1 + K8(B1, B2, B3, B4)T 1/2)exp(c1K
2
8 (B1, B2, B3, B4)T )}.

(3.94)

Choose T ∗
3 = T ∗

3 (B1, B2, B3, B4)(� T ∗
2 (B1, B2, B3, B4)) small enough positive such that

K3(B1, B2, B3, B4)(T ∗
3 )1/2 < 1,

and (1 + K8(B1, B2, B3, B4)(T ∗
3 )1/2)exp(c1K

2
8 (B1, B2, B3, B4)T ∗

3 ) < 4. (3.95)

In view of the choice of B3 (see (3.83)) and (3.95), for all 0 < T � T ∗
3 we have

‖w‖L∞(0,T ;H2(Ω)) + ‖w‖L2(0,T ;H3(Ω)) + ‖wt‖L∞(0,T ;H1(Ω))

+ ‖wt‖L2(0,T ;H2(Ω)) + ‖wtt‖L2(0,T ;L2(Ω)) < B3. (3.96)

(iv) Using the estimates (3.41) on G1(σ̃, w̃, η̃) and (3.78)(i)–(3.78)(ii) on ˜W (w̃, η̃) in (3.86)2 furnish

‖σt‖L∞(0,T ;H1(Ω)) � c3(K9(B3, B4) + K8(B1, B2, B3, B4)T 1/2)

[(‖σ0‖H2(Ω) + c2K1(B1, B2, B3, B4)T 1/2) · exp(c2K8(B1, B2, B3, B4)T 1/2)]

+ K2‖ρ0div(u0)‖H1(Ω) + K1(B1, B2, B3, B4)T 1/2. (3.97)

Choose T ∗
4 = T ∗

4 (B1, B2, B3, B4)(� T ∗
3 ) small enough positive such that

K1(B1, B2, B3, B4)(T ∗
4 )1/2 + c2c3K9(B3, B4)K1(B1, B2, B3, B4)(T ∗

4 )1/2

· exp(c2K8(B1, B2, B3, B4)(T ∗
4 )1/2) + K8(B1, B2, B3, B4)(T ∗

4 )1/2[(‖σ0‖H2(Ω)

+ c2K1(B1, B2, B3, B4)(T ∗
4 )1/2) · exp(c2K8(B1, B2, B3, B4)(T ∗

4 )1/2)] < 1. (3.98)

In view of the choice of B2 (see (3.84)) and (3.98), we check that for all 0 < T � T ∗
4 the following holds

‖σt‖L∞(0,T ;H1(Ω)) < B2. (3.99)

Hence with the choices (3.82), (3.83) and (3.84) of the constants Bi (1 � i � 4), (σ,w, η) satisfies the
estimates (3.93), (3.99), (3.96) and (3.90) respectively for all 0 < T � T ∗

4 . We can also use similar kind
of interpolation arguments as used in (3.25) to show that there exists a T ∗

5 = T ∗
5 (B1, B2, B3, B4) (� T ∗

4 ),
positive, such that for all 0 < T � T ∗

5 ,

1 + η(x, t) � δ0 > 0, on Σs
T

m

2
� σ(x, z, t) + ρ � 2M, in QT .

(3.100)

Again it follows from the equation (3.3)2 that wt(0) satisfies the condition (3.17d). Similarly one uses
(3.3)6 to show that ηtt(·, 0) satisfies (3.17c). Now we set

T ∗ = T ∗(B1, B2, B3, B4) = T ∗
5 .

Hence if Bi (∀ 1 � i � 4) is chosen as in (3.82), (3.83) and (3.84) and 0 < T � T ∗, (σ,w, η) satisfies all
the conditions (3.16)-(3.17) and also the inequality involved in the definition of CT (we recall (3.18)) and
hence guaranteeing that (σ,w, η) ∈ CT (B1, B2, B3, B4).

This concludes the proof of Lemma 3.16. �
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We fix the choice of Bi (∀ 1 � i � 4) and T = T ∗(B1, B2, B3, B4) as in Lemma 3.16. Hence in the
following we will simply use the notations

T = T ∗ and CT = CT (B1, B2, B3, B4). (3.101)

3.3. Compactness and Continuity

Let us observe that CT is a convex, bounded subset of the space

X = {(σ,w, η) ∈ C0([0, T ],H1(Ω)) × C0([0, T ];H1(Ω)) × C1([0, T ];H1(Γs))

∩ C0([0, T ];H2(Γs))},

endowed with the topology induced by the norm

‖(σ,w, η)‖X = sup
t∈[0,T ]

(‖σ(t)‖H1(Ω) + ‖w(t)‖H1(Ω) + ‖η(t)‖H2(Γs) + ‖ηt(t)‖H1(Γs)).

Lemma 3.17. Let CT be the set as introduced in (3.101). The set CT , when endowed with the topology of
X , is compact in X .

Proof. We claim that the set CT is closed in X .
Assume that a sequence (σ̃n, w̃n, η̃n) ∈ CT and that (σ̃n, w̃n, η̃n) → (σ,w, η) in X . Now η̃n → η

in C1([0, T ];H1(Γs)) implies that η̃n,t → ηt in C0([0, T ];H1(Γs)), η̃n,tt → ηtt and η̃n,ttt → ηttt in
D′(0, T ;L2(Γs)) in particular, where D′(0, T ;L2(Γs)) denotes the space of distributions on (0, T ) with
values in L2(Γs).

We recall the norm bounds over η in the set CT . Hence we have up to a subsequence (still denoted
by η̃n) that η̃n → η weak* in L∞(0, T ;H9/2(Γs)), η̃n,t → ηt weakly in L2(0, T ;H4(Γs)) and weak* in
L∞(0, T ;H3(Γs)), η̃n,tt → ηtt weakly in L2(0, T ;H2(Γs)) and weak* in L∞(0, T ;H1(Γs)), η̃n,ttt → ηttt

weakly in L2(0, T ;L2(Γs)). Also by the lower semi-continuity of the norms with respect to the above weak
type convergences we get

‖η‖L∞(0,T ;H9/2(Γs)) + ‖ηt‖L∞(0,T ;H3(Γs)) + ‖ηt‖L2(0,T ;H4(Γs))

+ ‖ηtt‖L∞(0,T ;H1(Γs)) + ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs)) � B4. (3.102)

As η̃n → η in C1([0, T ];H1(Γs)) and η̃n,t → ηt in C0([0, T ];H1(Γs)), hence

η(·, 0) = 0 and ηt(0) = η1. (3.103)

The uniform bounds of ‖η̃n,tt‖L∞(0,T ;H1(Γs)) and ‖η̃n,ttt‖L2(0,T ;L2(Γs)) and Aubin Lions lemma ([1]) furnish
that up to a subsequence (still denoted by η̃n), η̃n,tt strongly converges to ηtt in C0([0, T ];L2(Γs)). Hence

ηtt(·, 0) = δη1,xx − (μ + 2μ′)(u0)2,z + P (ρ0). (3.104)

Similar arguments (used to show (3.102)) can be used to show that

‖w‖L∞(0,T ;H2(Ω)) + ‖w‖L2(0,T ;H3(Ω)) + ‖wt‖L∞(0,T ;H1(Ω))

+‖wt‖L2(0,T ;H2(Ω)) + ‖wtt‖L2(0,T ;L2(Ω)) � B3,
(3.105)

‖σ‖L∞(0,T ;H2(Ω)) � B1, ‖σt‖L∞(0,T ;H1(Ω)) � B2. (3.106)

Since η̃n converges to η in L∞(Σs
T ) (follows from the continuous embedding H2(Γs) ↪→ L∞(Γs)), one has

the following by using the inequality involved in 3.18,

1 + η(x, t) � δ0 > 0 on Σs
T . (3.107)

Observe that the weak* convergence of σ̃n to σ in L∞(0, T ;L2(Ω)) is enough to conclude that (since σ̃n

satisfies (3.16d))
m

2
� σ(x, z, t) + ρ � 2M in QT . (3.108)
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Using the strong convergence of (σ̃n, w̃n, η̃n) to (σ,w, η) in X furnishes

w(·, 0) = (u0 − zη1 �e2) in Ω,
σ(·, 0) = σ0 in Ω.

(3.109)

Now we can use the uniform bounds of ‖w̃n,t‖L∞(0,T ;H1(Ω)) and ‖w̃n,tt‖L2(0,T ;L2(Ω)) and the Aubin Lions
lemma to have the convergence w̃n,t → wt in C0([0, T ];L2(Ω)). Consequently

wt(., 0) =
1
ρ0

(G0
2 − (−μΔ − (μ + μ′)∇div)(u0 − zη1�e2)). (3.110)

So combining (3.102)–(3.103)–(3.104)–(3.105)–(3.106)–(3.107)–(3.108)–(3.109)–(3.110) we conclude that
the limit point (σ,w, η) ∈ CT and hence CT is closed in X .

Once again using Aubin Lions lemma we get that CT is a compact subset of X . �

Now to apply Schauder’s fixed point theorem one only needs to prove that L is continuous on CT .

Lemma 3.18. Let CT be the set in (3.101). The map L is continuous from CT into itself for the topology
of X .

Proof. Suppose that (σ̃n, w̃n, η̃n) ∈ CT , converges to (σ̃, w̃, η̃) strongly in X . Then, according to Lemma
3.17, (σ̃, w̃, η̃) ∈ CT . We thus set (σ̂n, ŵn, η̂n) = L(σ̃n, w̃n, η̃n), (σ̂, ŵ, η̂) = L(σ̃, w̃, η̃). Our goal is to show
that (σ̂n, ŵn, η̂n) strongly converges to (σ̂, ŵ, η̂) in X . Using that (σ̂n, ŵn, η̂n) belongs to CT (see Lemma
3.16) we get that there exists a triplet (σ,w, η) such that up to a subsequence

σ̂n
∗
⇀ σ in L∞(0, T ;H2(Ω)) ∩ W 1,∞(0, T ;H1(Ω)),

ŵn ⇀ w in L2(0, T ;H3(Ω)) ∩ H1(0, T ;H2(Ω)) ∩ H2(0, T ;L2(Ω)),
ŵn

∗
⇀ w in L∞(0, T ;H2(Ω)) ∩ W 1,∞(0, T ;H1(Ω)),

η̂n ⇀ η in H1(0, T ;H4(Γs)) ∩ H2(0, T ;H2(Γs)) ∩ H3(0, T ;L2(Γs)),
η̂n

∗
⇀ η in L∞(0, T ;H9/2(Γs)) ∩ W 1,∞(0, T ;H3(Γs))

∩W 2,∞(0, T ;H1(Γs)).

(3.111)

The compactness result proved in Lemma 3.17 provides the strong convergence in X i.e, up to a subse-
quence, (σ̂n, ŵn, η̂n) converges strongly in X to (σ,w, η). It is clear that in order to prove that the map
L is continuous it is enough to show that (σ,w, η) = (σ̂, ŵ, η̂). This will be verified in the following steps.

(i) We first claim that G2(σ̃n, w̃n, η̃n) converges weakly to G2(σ̃, w̃, η̃) in L2(0, T ;L2(Ω)).
Since (σ̃n, w̃n, η̃n) belongs to CT and we have fixed Bi (for all 1 � i � 4) and T, one can use Lemma 3.10

to show that ‖G2(σ̃n, w̃n, η̃n)‖L2(0,T ;L2(Ω)) is uniformly bounded. Hence, to prove our claim it is enough
to show that G2(σ̃n, w̃n, η̃n) converges to G2(σ̃, w̃, η̃) in D′(QT ) (D′(QT ) is the space of distributions on
QT ).

Let us consider the term
w̃n,zzz

2η̃2
n,x

(1 + η̃n)
. From the uniform norm bound over ‖w̃n,zz‖L2(0,T ;H1(Ω))

we get that w̃n,zz converges weakly in L2(0, T ;H1(Ω)) to w̃zz. Since η̃n strongly converges to η̃ in
C0([0, T ];H2(Γs)) and both (1 + η̃n) and (1 + η̃) have positive lower bounds (we refer to (3.18)),

1
(1 + η̃n)

and η̃n,x converge strongly to
1

(1 + η̃)
and η̃x respectively in the spaces C0([0, T ];H2(Γs))

and C0([0, T ];H1(Γs)).
Hence one gets in particular the strong convergence of η̃2

n,x to η̃2
x in the space C0([0, T ];L2(Γs)). This

implies that
w̃n,zzz

2η̃2
n,x

(1 + η̃n)
converges to

w̃zzz
2η̃2

x

(1 + η̃)
weakly in L2(0, T ;L1(Ω)) and hence particularly in the

space D′(QT ).
Now we consider the term P ′σ̃n,zzη̃n,x�e1 = (σ̃n + ρ)γ−1σ̃n,zzη̃n,x�e1. Since ‖(σ̃n + ρ)‖C0(0,T ;H2(Ω)) is

uniformly bounded so is ‖(σ̃n + ρ)γ−1‖C0(0,T ;H2(Ω)) and hence (σ̃n + ρ)γ−1 converges weakly to (σ̃ +
ρ)γ−1 in L2(0, T ;H2(Ω)). We also have that σ̃n,z converges strongly to σ̃z in C0([0, T ];L2(Ω)). Hence
(σ̃n + ρ)γ−1σ̃n,z converges weakly to (σ̃ + ρ)γ−1σ̃z in L2(0, T ;L2(Ω)). Now the strong convergence of η̃n,x
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to η̃x in C0([0, T ];H1(Γs)) furnish that (σ̃n + ρ)γ−1σ̃n,zzη̃n,x weakly converges to (σ̃ + ρ)γ−1σ̃zzη̃x in
L2(0, T ;L1(Ω)). Hence (σ̃n + ρ)γ−1σ̃n,zzη̃n,x�e1 converges to (σ̃ + ρ)γ−1σ̃zzη̃x�e1 in the space D′(QT ).

We can apply similar line of arguments to prove that G2(σ̃n, w̃n, η̃n) converges to G2(σ̃, w̃, η̃) in
D′(QT ). Hence we have proved that G2(σ̃n, w̃n, η̃n) converges to G2(σ̃, w̃, η̃) weakly in L2(0, T ;L2(Ω)).

Also observe that (σ̃n + ρ) converges strongly to (σ̃ + ρ) in C0([0, T ];H1(Ω)) and ŵn,t, (−μΔ − (μ′ +
μ)∇(div))ŵn converge up to a subsequence weakly to wt and (−μΔ − (μ′ + μ)∇(div))w respectively in
the spaces L2(0, T ;H2(Ω)) and L2(0, T ;H1(Ω)). Hence up to a subsequence one obtains in particular the
following convergence

(σ̃n + ρ)ŵn,t − μΔŵn − (μ′ + μ)∇(divŵn)

⇀ (σ̃ + ρ)wt − μΔw − (μ′ + μ)∇(divw) in L2(0, T ;L2(Ω)).

Now consider (3.3)2 with (σ̃, w̃, η̃) and w replaced respectively by (σ̃n, w̃n, η̃n) and ŵn. The weak conver-
gences discussed so far allow to pass to the limits in both sides of this equation. So using the uniqueness
of weak solution for the linear problem (2.1) we conclude that w = ŵ.

(ii) Now we claim that G1(σ̃n, w̃n, η̃n) converges weakly to G1(σ̃, w̃, η̃) in L2(0, T ;L2(Ω)).

Let us consider the term
1

(1 + η̃n)
(w̃n)1,zzη̃n,x(σ̃n + ρ). We already know that

1
(1 + η̃n)

and η̃n,x con-

verge strongly to
1

(1 + η̃)
and η̃x respectively in the spaces C0([0, T ];H2(Γs) and C0([0, T ];H1(Γs)). One

also observes that (w̃n)1,z weakly converges to w̃1,z in L2(0, T ;H2(Ω)) (since w̃n ⇀ w̃ in L2(0, T ;H3(Ω))).
Finally the strong convergence of (σ̃n + ρ) to (σ̃ + ρ) in C0([0, T ];H1(Ω)) furnish the weak convergence

of
1

(1 + η̃n)
(w̃n)1,zzη̃n,x(σ̃n + ρ) to

1
(1 + η̃)

(w̃)1,zzη̃x(σ̃ + ρ) in L2(0, T ;L2(Ω)). We can apply similar

arguments for other terms in the expression of G1(σ̃, w̃, η̃) in order to prove the weak convergence of
G1(σ̃n, w̃n, η̃n) to G1(σ̃, w̃, η̃) in L2(0, T ;L2(Ω)).

We further observe that ∇σ̂n strongly converges to ∇σ in C0([0, T ];L2(Ω)). Since (w̃n)1 weakly con-
verges to w̃1 in L2(0, T ;H3(Ω)), (η̃n)x strongly converges to η̃x in L∞(Σs

T ) (because (η̃n)x strongly
converges to η̃x in C0([0, T ];H1(Γs)) and the embedding H1(Γs) ↪→ L∞(Γs) is continuous) and 1

(1+η̃n)

strongly converges to 1
(1+η̃) in C0([0, T ];H2(Γs)), the term 1

(1+η̃n) (w̃n)1z(η̃n)x(σ̂n)z weakly converges
to 1

(1+η̃) w̃1zη̃xσ̂z in L2(0, T ;L2(Ω)). Besides, up to a subsequence (σ̂n)t weakly converges to σt in
L2(0, T ;L2(Ω)). Hence up to a subsequence we have

(σ̂n)t +
[

(w̃n)1
1

(1+η̃n) ((w̃n)2 − (w̃n)1z(η̃n)x)

]

· ∇σ̂n

⇀ σt +
[

w̃1
1

(1+η̃) (w̃2 − w̃1zη̃x)

]

· ∇σ in L2(0, T ;L2(Ω)).

Now consider (3.3)1 with (σ̃, w̃, η̃) and σ replaced respectively by (σ̃n, w̃n, η̃n) and σ̂n. The weak type
convergences discussed so far allow to pass to the limits in both sides of this equation. Hence from
uniqueness of weak solution of the linear problem (2.6) we conclude that σ = σ̂.

(iii) One can use similar line of arguments as used so far to show that G3(σ̃n, w̃n, η̃n) converges weakly
to G3(σ̃, w̃, η̃) in L2(0, T ;L2(Γs)). Using the norm bounds of η̂n (since (σ̂n, ŵn, η̂n) ∈ CT ) we can prove
that up to a subsequence the left hand side of (3.3)6 with η replaced by η̂n converges weakly to

ηtt − βηxx − δηtxx + αηxxxx

in L2(0, T ;L2(Γs)). Now the uniqueness of weak solution to the problem (2.17) furnishes η = η̂. Hence
the proof of Lemma 3.18 is complete. �
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3.4. Conclusion

The following properties hold
(i) The convex set CT is non-empty (Lemma 3.2) and is a compact subset of X (Lemma 3.17).
(ii) The map L, defined in (3.19), is continuous on CT in the topology of X (Lemma 3.18).
(iii) The map L maps CT to itself (Lemma 3.16).
Thus, all the assumptions of Schauder fixed point theorem are satisfied by the map L on CT , endowed
with the topology of X . Therefore, Schauder fixed point theorem yields a fixed point (σf ,wf , ηf ) of the
map L in CT . From the definition of the map L, one has (σf ,wf , ηf ) ∈ ZT

1 ×Y T
2 ×ZT

3 . Hence we have the
following time continuities (since still now one only has the regularities (3.41) of G1(σf ,wf , ηf ), (3.51)
of G2(σf ,wf , ηf ) and (3.71) of G3(σf ,wf , ηf ))

σf ∈ C0([0, T ];H2(Ω)),

wf ∈ C0([0, T ];H5/2(Ω)) ∩ C1([0, T ];H1(Ω)),

ηf ∈ C0([0, T ];H4(Γs)) ∩ C1([0, T ];H3(Γs)) ∩ C2([0, T ];H1(Γs)). (3.112)

The regularities (3.112) can be used to further check that G1(σf ,wf , ηf ) ∈ C0([0, T ];H1(Ω)) and
G3(σf ,wf , ηf ) ∈ C0([0, T ];H1/2(Γs)). Hence we use Corollary 2.5 and the Corollary 2.8 to obtain the
following

(σf )t ∈ C0([0, T ];H1(Ω)) and ηf ∈ C0([0, T ];H9/2(Γs)).
Hence, (σf ,wf , ηf ) ∈ Y T

1 × Y T
2 × Y T

3 . The trajectory (σf ,wf , ηf ) solves the nonlinear problem (1.21)
in Y T

1 × Y T
2 × Y T

3 . Consequently the system (1.19) admits a solution. This further implies that the
original system (1.2)–(1.4)–(1.5) admits a strong solution in sense of the Definition 1.6. Finally the proof
of Theorem 1.7 is complete. �
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