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Abstract. We investigate the existence and regularity of solutions to the stationary Stokes system and non-stationary Navier–
Stokes equations in three dimensional bounded domains with in- and out-lets. We assume that on the in- and out-flow parts
of the boundary the pressure is prescribed and the tangential component of the velocity field is zero, whereas on the lateral
part of the boundary the fluid is at rest.
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1. Introduction

Let us consider the Stokes system
−νΔu + ∇Π = f in Ω,
div u = g in Ω,

(1)

where Ω ⊂ R
3 is a bounded solid with piecewise C2-boundary Γ := ∂Ω. Functions u (the velocity) and Π

(the pressure) are unknown. Given are f (the external force), g and a positive viscosity coefficient ν. We
are interested in the existence and regularity of solutions (u,Π) to (1) when Ω has cylindrical in- and out-
lets. More specifically, we assume that Γ is the union of Γin,out and Γlat, where Γin,out =

⋃
1≤k≤N Γk

in,out.
We also assume that for all 1 ≤ k ≤ N the surfaces Γk

in,out are flat and

Γk
in,out is orthogonal to Γlat

(see Fig. 1). The latter assumption ensures that we do not need to work in the framework of weighted
Sobolev spaces and can rely on the reflection principle.

We need to supplement (1) with proper boundary conditions. On Γlat we assume that the fluid is at
rest. The choice of the boundary conditions on Γk

in,out depends on the problem we would like to model.
For some examples of such problems and further motivations originating from real-life situations we refer
the reader to the Introduction in e.g. [1,2] and [3, Sect. 3]. The most frequently used boundary conditions
are:

• prescribed pressure drops (see e.g. [3,4])

1
∣
∣Γk

in,out

∣
∣

∫

Γk
in,out

ΠdS = Πk(t),

where Πk(t) are given functions and
∣
∣Γk

in,out

∣
∣ denotes the surface area of Γk

in,out,
• prescribed net fluxes (see e.g. [3,5,6])

∫

Γk
in,out

u · ndS = Fk(t),
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Fig. 1. An example of Ω when N = 3

where Fk(t) are given functions,
• prescribed pressure and tangential components of the velocity (see e.g. [1,2])

Π|Γk
in,out

= Πk,

v × n = ak × n, (2)

where Πk and ak are given functions.
Other boundary conditions that appear in the literature include the so-called artificial boundary conditions
(ABCs, see e.g. [7,8]), prescribed normal components of the velocity field on Γk

in,out (see e.g. [9,10]),
modified do-nothing boundary conditions (see e.g. [11,12]) and other (see e.g. [13–15]). This list, however,
is far from being complete but forms a good starting point for further research.

In our work we consider (2) with ak = 0. It can be rewritten as

utan = 0 on Γ,
Π = Πk

in,out on Γk
in,out,

u · n|Γlat
= 0 on Γlat,

(3)

where utan denotes the tangential component of u. We will justify our choice after Theorem 2. Our main
result reads:

Theorem 1. Suppose that f ∈ L2(Ω), g ∈ H1(Ω), Πk
in,out ∈ H

1
2 (Γk

in,out) and g|Γk
in,out

= 0. Then, there
exists a unique solution (u,Π) ∈ H2(Ω) × H1(Ω) to (1) + (3) such that

‖u‖H2(Ω) + ‖Π‖H1(Ω)

≤ c

(
1
ν

,Ω
) (

‖f‖L2(Ω) + ‖g‖H1(Ω) +
∑

k

∥
∥Πk

in,out

∥
∥

H
1
2 (Γk

in,out)

)

.

Problem (1) + (3) with g = 0 was already considered in [1,2,16–18]. In these papers the authors
assume that Γ = Γ1 ∪ Γ2 ∪ Γ3. Comparing with our notation we see that Γ1 = Γlat and Γ2 =

⋃
k Γk

in,out.
On Γ1 and Γ2 slightly more general boundary conditions are assumed, namely u|Γ1 = u0 and utan|Γ2 = a,
where both u0 and a are given. On Γ3 in these papers we have

rotu × n = h × n, u · n = b · n,

where h and b are prescribed. Assuming that u0 ∈ H
1
2 (Γ1), a ∈ H

1
2 (Γ2), b ∈ H

1
2 (Γ3) and h ∈ H− 1

2 (Γ3)
the existence of u in H1(Ω) is shown. Under slightly stronger assumptions on the boundary data the
H2-regularity of the solutions was obtained in [19]. Theorem 1 is similar to [19, Theorem 1.2] but the
proofs are very different. Instead of constructing variational solutions, we use the estimates for Agmon-
Douglis-Nirenberg systems and the homotopy argument. Moreover, our result can be quickly generalized
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to arbitrary W k
p (Ω) Sobolev spaces. In order to do so, one would have to show W 1

p (Ω)-estimates for
solutions to (19) (see Sect. 4).

To prove Theorem 1 we will first consider the family of equations with homogeneous boundary condi-
tions

−νΔu + τ∇Π = f in Ω,
τdiv u + (1 − τ)Π = g in Ω,
utan = 0 on Γ,
Π = Πk

in,out on Γk
in,out,

u · n = 0 on Γlat,

(4)

where τ ∈ [0, 1] and Πk
in,out = 0. In Sect. 3 we will prove the following result:

Proposition 1.1. Let 1 < p < ∞ be fixed. Suppose that f ∈ Lp(Ω), g ∈ W 1
p (Ω) and Πk

in,out|Γk
in,out

= 0.
Then, there exists a unique solution (u,Π) ∈ W 2

p (Ω) × W 1
p (Ω) to (4) such that

‖u‖W 2
p (Ω) + ‖Π‖W 1

p (Ω) ≤ c

(
1
ν

,Ω
) (

‖f‖Lp(Ω) + ‖g‖W 1
p (Ω)

)
.

The case when Πk
in,out 	= 0 will be discussed in Sect. 4. There we also demonstrate the proof of

Theorem 1. Finally, in Sect. 5 we show an application of the obtained results for the Navier–Stokes
equations

v,t + rotv × v + ∇
(
p + 1

2 |v|2
)

− νΔv = f in ΩT = Ω × (0, T ),
div v = 0 in ΩT ,

p + 1
2 |v|2 = Πk

in,out on Γk
in,out,

vtan = 0 on Γ,
v · n = 0 on Γlat,
v|t=0 = v0 on Ω × {t = 0}.

(5)

For the above system we have:

Theorem 2. Let Lip stand for lipschitz continuous. Suppose that Πk
in,out ∈ Lip(0, T ;H

1
2 (Γk

in,out)), f ∈
Lip(0, T ;H1(Ω)), v0 ∈ H1(Ω) and div v0 = 0. Then:

• there exists an almost everywhere regular weak solution (see below) v(t) to (5) on [0, T ]. This solution
is strong and unique for any t ∈ [0, t0], where t0 is determined by ‖v0‖H1(Ω).

• If ‖v0‖H1(Ω) is small enough, then v(t) is strong and unique on [0, T ].

The definitions of weak, strong and almost everywhere regular solutions to (5) are in Sect. 5 (see
Definitions 5.3, 5.2 and Lemma 5.4). As we observed after Theorem 1 one could generalize Theorem 2 to
arbitrary Sobolev spaces by showing W 1

p (Ω)-estimates for solutions to (25).
A claim very similar to Theorem 2 (global existence of weak solutions and local-in-time existence of

regular solutions) was suggested in [3, Sect. 6] with a remark that its proof would not differ substantially
from the case of Dirichlet conditions. Indeed, the main source of computational difficulties is the non-
linear term (v · ∇)v. When we test it with e.g. v, it yields a boundary integral which so far can be
only eliminated under additional assumptions on the magnitude of the initial data and certain norms of
Πk

in,out on Γk
in,out (cf. [3, Theorem 6]). Problem (5) appears in [20, cf. (1.6) – (1.10)]. Under sligthly less

restrictive assumptions on the regularity of the data and using the Schauder’s fixed point theorem the
short-time existence of regular solutions to (5) is shown (see Theorem 1.3). Subsequently, if in addition
certain norms of v0, Γk

in,out and f are small, then the regular solution is global in time (see Theorem 5.3).
This shows the main difference from our result: for obtaining global and regular solutions we only require
‖v0‖H1(Ω) to be small. The case of (5) with non-vanishing tangential components of v on all parts of the
boundary was formulated and also proved in [20] (see Theorem 5.4) and [21, Theorem 5.1]. For k = 2
problem (5) was studied in e.g. [22,23].
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Clearly, when we use the non-linear term in its conservative form, then the boundary integral does
not appear. While, as pointed out in [3, Sect. 4], conditions (5)3,4 are not fulfilled by Poiseuille flow with
a constant total pressure, our pressure on in- and out-flow boundaries does not need to be constant and
can therefore be chosen as those of Poiseuille flow, which means our solutions do indeed include Poiseuille
flow. There is in any case much to be said in favor of prescribing the total pressure Π = p + 1

2 |v|2 , as in
case of the flow of an ideal fluid the total pressure is conserved along flow lines in the absence of gravity,
otherwise it is Π + x3, if −e3 is the force of gravity. We are, of course, not discussing an ideal fluid here,
but if the inflow on the boundary comes from a tank nearby with fairly slow flow, then the viscosity will
not have a very large influence on the total pressure, and we may set it equal to the hydrostatic pressure
on the inflow boundary as a reasonable approximation.

For further references (e.g. non-stationary Stokes system or stationary Navier–Stokes equations) we
refer the reader to the Introduction in [24], where also problem (5) in Ω ⊂ R

2 was studied.
In the subsequent sections, to improve readability we will omit the index k in case of Πin,out and

Γin,out.

2. Estimates

In this section we discuss some estimates for solutions to (4) with Π = 0 on Γin,out. We start with an
observation about the boundary conditions for u. From (4)3,5 we infer that u = 0 on Γlat. To find the
condition on Γin,out we recall that (4)3 implies that (see e.g. p. 136 in [25])

div u|Γ =
∂un

∂n
|Γ, (6)

thus (4)2,3 give

utan = 0
∂un

∂n
= 0 on Γin,out. (7)

For τ /∈ {0, 1} we solve (4)2 for Π

Π =
1

1 − τ
(g − τdiv u) , (8)

and use it in (4)1, thus

−νΔu − τ2

1 − τ
∇div u = f − τ

1 − τ
∇g.

Summarizing
−νΔu − τ2

1−τ ∇div u = f − τ
1−τ ∇g in Ω,

u = 0 on Γlat,
utan = 0 on Γin,out,
∂un

∂n = 0 on Γin,out.

(9)

Lemma 2.1. Suppose that 1 < p < ∞, f ∈ Lp(Ω) and ∇g ∈ Lp(Ω). Then, any solution to (9) satisfies

‖u‖W 2
p (Ω) ≤ c

(
1

1 − τ
,
1
ν

,Ω
) (

‖f‖Lp(Ω) + ‖∇g‖Lp(Ω)

)
.

Proof. To derive the estimates for the solution to (9) we introduce a partition of unity
∑N

k=0 ζk(x) = 1
on Ω. Let u(k) = uζk and Ω(k) = Ω ∩ supp ζk. Then u(k) satisfies

−νΔu(k) − τ2

1 − τ
∇div u(k)

= f (k) − τ

1 − τ
∇gζk − 3∇u · ∇ζk − uΔζk − div u∇ζk − u∇2ζk ≡ F(k) in Ω(k)
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with proper boundary conditions. It is clear that we can choose this partition of unity in such a way that
exactly one of the following cases occurs:

1. supp ζk ∩ Γ = ∅. This is the whole-space problem since u(k) = 0 on ∂(supp ζk ∩ Ω). Without loss
of generality we may further assume that x3 ≥ 0, thereby reducing this case to half-space problem
with zero Dirichlet boundary condition. Then, Theorem 14.1 [26] implies

∥
∥
∥u(k)

∥
∥
∥

W 2
p (Ω(k))

≤ c

(
1
ν

,Ω
) ∥

∥
∥F(k)

∥
∥
∥

Lp(Ω(k))
, for 1 < p < ∞. (10)

2. supp ζk ∩Γlat 	= ∅ but supp ζk ∩Γin,out = ∅. In this case we transform supp ζk ∩Ω into the half space
and use Theorem 14.1 from [26] which eventually yields (10).

3. supp ζk ∩Γlat = ∅ but supp ζk ∩Γin,out 	= ∅. Through rotations and translation we reduce this case to

the half-space x3 ≥ 0. Then (9)4 implies that ∂u
(k)
3

∂x3
= u3ζk,x3 . In order to make the right-hand side

equal to zero, we may assume that e.g. ζk(x) = ψ(x1, x2)φ(x3), where φ(x3) is constant and equals 1
in the neighborhood of x3 = 0. Then u

(k)
3,x3

= 0. From (9)3 we instantly deduce that u
(k)
1 = u

(k)
2 = 0.

This observation suggests the following reflection

ū(k)(x) =

{
u(k)(x) x3 ≥ 0,(
−u

(k)
1 (x̄),−u

(k)
2 (x̄), u(k)

3 (x̄)
)

x3 < 0,

where x̄ = (x1, x2,−x3). For u(k) we use again [26, Theorem 14.1] and therefore get (10).
4. supp ζk ∩ Γlat 	= ∅ and supp ζk ∩ Γin,out 	= ∅. Let x0 ∈ Γlat ∩ Γin,out. Then we introduce a local

Cartesian coordinate system y = Ψ(x) = C(x−x0), x ∈ supp ζk∩Γlat, C is an orthogonal matrix, in
such a way that the normal n to Γlat at x0 is parallel to e3 (cf. Fig. 2). Let Uk = Ψ(supp ζk ∩Γlat) be
parametrized by the graph of y3 = ψ(y1, y2), y1 ≥ 0, where we assume that ψ(0, 0) = 0. Then Γin,out

is contained in the plane y1 = 0, e3 = (ψy1 (0,0),ψy2 (0,0),−1)√
1+ψ2

y1
(0,0)+ψ2

y2
(0,0)

and e1 · (ψy1(0, y2), ψy2(0, y2),−1) = 0,

which implies that ψy1(0, y2) = 0. Therefore we may reflect Uk symmetrically across the plane
y1 = 0, i.e.

Ūk =

{
(y1, y2, ψ(y1, y2)) y1 ≥ 0
(−y1, y2, ψ(y1, y2)) y1 < 0

Since Uk is of class C2, so is Ūk and now we proceed as in Case (2).
Summing over k gives for any p ∈ (1,∞)

‖u‖W 2
p (Ω) ≤ c

(
1

1 − τ
,
1
ν

,Ω
) (

‖u‖W 1
p (Ω) + ‖f‖Lp(Ω) + ‖∇g‖Lp(Ω)

)
.

To eliminate ‖u‖W 1
p (Ω) from the right-hand side we note that any weak solution u to (9) satisfies

ν ‖∇u‖2
L2(Ω) +

τ2

1 − τ
‖div u‖2

L2(Ω) =
∫

Ω

(

f − τ

1 − τ
∇g

)

· udx,

where the boundary integrals vanish due to (9)2,3,4 and (6). Applying the Hölder and Cauchy inequalities
to the right-hand side along with the Poincaré inequality (for u vanishing on a piece of ∂Ω see e.g. [27,
Ch. 4, Sect. 4.5]) yields

‖u‖2
H1(Ω) ≤ c

(
1

1 − τ
,
1
ν

,Ω
) (

‖f‖2
L2(Ω) + ‖∇g‖2

L2(Ω)

)
.

Thus

‖u‖L2(Ω) ≤ c

(
1

1 − τ
,
1
ν

,Ω
) (

‖f‖L2(Ω) + ‖∇g‖L2(Ω)

)
. (11)

To complete the proof we use the Gagliardo-Nirenberg inequality

‖Du‖Lp(Ω) ≤ c1

∥
∥D2u

∥
∥α

Lp(Ω)
‖u‖1−α

L2(Ω) + c2 ‖u‖L2(Ω) ,
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y1 = 0

(0, 0, 0) e1

e2e3

Fig. 2. Γlat ∩ ζk as a graph of y3 = ψ(y1, y2), y1 ≥ 0

which holds on Lipschitz domains provided that

1
p

=
1
3

+
(

1
p

− 2
3

)

α +
1 − α

2
and

1
2

≤ α ≤ 1.

The latter condition is satisfied for p ≥ 2. Finally, from the Poincaré and the Young inequalities

‖u‖W 1
p (Ω) ≤ ε ‖u‖W 2

p (Ω) +
c

ε
‖u‖L2(Ω) .

Taking ε > 0 small enough and using (11) completes the proof. �

Remark 2.2. To derive (9) we assumed that τ 	= 0. Since τ > 0 is arbitrary, by continuity Lemma 2.1
remains true when τ = 0. In this case we would have

‖u‖W 2
p (Ω) ≤ c

(
1
ν

,Ω
)

‖f‖Lp(Ω) .

Remark 2.3. From Lemma 2.1 and (8) it follows that

‖∇Π‖Lp(Ω) ≤ c

(
1

1 − τ
,
1
ν

,Ω
) (

‖g‖W 1
p (Ω) + τ ‖u‖W 2

p (Ω)

)
, 1 < p < ∞.

We easily observe that Lemma 2.1 does not work when τ = 1 in (4). Before we discuss this case, we
establish the uniqueness of solutions to (4) for any τ ∈ [0, 1].

Remark 2.4. If (u,Π) is a solution to (4) with Π = 0 on Γin,out, then it is unique.
Indeed: assume that (u1,Π1) and (u2,Π2) solve (4). Then U = u1 − u2 and Ψ = Π1 − Π2 solve

−νΔU + τ∇Ψ = 0 in Ω,
τdiv U + (1 − τ)Ψ = 0 in Ω,
Utan = 0 on Γ,
Ψ = 0 on Γin,out,
U · n = 0 on Γlat.

(12)
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Next, we multiply (12)1,2 by U and Ψ, respectively, and integrate over Ω. We use that −Δ = rot 2 −∇div
and get

‖rotU‖2
L2(Ω) + ‖div U‖2

L2(Ω)

−
∫

Γ

U · ndiv UdS + τ

∫

Γ

U · nΨ dS − τ

∫

Ω

Ψdiv Udx = 0

and

τ

∫

Ω

div UΨ dx + (1 − τ) ‖Ψ‖2
L2(Ω) = 0.

Using (12)5 and following the reasoning that led to (7) we conclude that the first boundary integral
vanishes. The second one vanishes due to (12)5,6. Adding the above equalities we obtain

‖rotU‖2
L2(Ω) + ‖div U‖2

L2(Ω) + (1 − τ) ‖Ψ‖2
L2(Ω) = 0.

If τ ∈ [0, 1) we see that U = 0 and Ψ = 0. For τ = 1 function Ψ = 0 as it equals zero on Γin,out.

Now we can analyze (4) when τ = 1.

Lemma 2.5. Suppose that f ∈ Lp(Ω) and g ∈ W 1
p (Ω). Then any solution to (4) with τ = 1 satisfies

‖u‖W 2
p (Ω) + ‖Π‖W 1

p (Ω) ≤ c

(
1
ν

,Ω
) (

‖f‖Lp(Ω) + ‖g‖W 1
p (Ω)

)
.

Proof. As in the proof of Lemma 2.1 we introduce a partition of unity
∑N

k=0 ζk(x) = 1 on Ω and we
write

u(k) = uζk,

Π(k) = Πζk,

Ω(k) = Ω ∩ supp ζk.

Multiplying (4)1,2 by ζk yields

− νΔu(k) + ∇Π(k) = f (k) − 2∇u · ∇ζk − u∇2ζk + Π∇ζk ≡ F(k),

div u(k) = g(k) + u · ∇ζk ≡ G(k). (13)

When k is fixed, four cases are possible. There are identical to the cases considered in the proof of
Lemma 2.1. However, in cases (3) and (4) we need to define the reflection of the pressure through Γin,out.
Since Π|Γin,out

= 0, we set

Π̄(x̄) =

{
Π(x), x3 ≥ 0,

−Π(x̄), x3 < 0,

where x̄ = (x1, x2,−x3). For (13) in the whole space we have the following estimate (cf. [28, Theorem
IV.2.1])

∥
∥
∥u(k)

∥
∥
∥

W 2
p (Ω(k))

+
∥
∥
∥Π(k)

∥
∥
∥

W 1
p (Ω(k))

≤ c(Ω)
(∥

∥
∥F(k)

∥
∥
∥

Lp(Ω(k))
+

∥
∥
∥G(k)

∥
∥
∥

W 1
p (Ω(k))

)

.

By [28, Theorem IV.3.2] we obtain the identical estimate for the half-space case. Summing over k yields

‖u‖W 2
p (Ω) + ‖Π‖W 1

p (Ω)

≤ c

(
1
ν

,Ω
) (

‖f‖Lp(Ω) + ‖g‖W 1
p (Ω) + ‖u‖W 1

p (Ω) + ‖Π‖Lp(Ω)

)
.

To get rid of u and p from the right-hand side we prove that

‖f‖Lp(Ω) + ‖g‖W 1
p (Ω) ≥ c

(
1
ν

,Ω
) (

‖u‖W 1
p (Ω) + ‖Π‖Lp(Ω)

)
.
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Suppose that the above inequality is not true. Then, there exists a sequence (um,Πm, fm, gm) ∈ W 2
p (Ω)×

W 1
p (Ω) × Lp(Ω) × W 1

p (Ω) such that they solve (4) with τ = 1, Πm = 0 on Γin,out and

m
(
‖fm‖Lp(Ω) + ‖gm‖W 1

p (Ω)

)
≤ ‖um‖W 1

p (Ω) + ‖Πm‖Lp(Ω) .

As system (4) is linear, and the above inequality is homogeneous, the function vector
(
vm,Ψm, f̂m, ĝm

)
=

1
‖um‖W 1

p (Ω) + ‖Πm‖Lp(Ω)

(um,Πm, fm, gm)

solves the same system and fulfills the same inequality. Clearly

‖vm‖W 1
p (Ω) + ‖Ψm‖Lp(Ω) = 1, (14)

therefore

m

(∥
∥
∥f̂m

∥
∥
∥

Lp(Ω)
+ ‖ĝm‖W 1

p (Ω)

)

≤ ‖vm‖W 1
p (Ω) + ‖Ψm‖Lp(Ω) = 1,

thus
∥
∥
∥f̂m

∥
∥
∥

Lp(Ω)
+ ‖ĝm‖W 1

p (Ω) ≤ 1
m

and

‖vm‖W 2
p (Ω) + ‖Ψm‖W 1

p (Ω) ≤ c

(

1 +
1
m

)

.

After selecting a subsequence, which we denote by the same symbols as the original one, we have that
this subsequence converges weakly to a (v,Ψ,0, 0) ∈ W 2

p (Ω) × W 1
p (Ω) × Lp(Ω) × W 1

p (Ω). As vm → v in
W 1

p (Ω) we have

0 ← ĝm = div vm → div v in Lp(Ω)

and with f̂m = −νΔvm + ∇Ψm we have

f̂m → 0 and − νΔvm + ∇Ψm ⇀ −νΔv + ∇Ψ in Lp(Ω),

therefore −νΔv + ∇Ψ = 0. Thus, (v,Ψ,0, 0) solves (4) with τ = 1 as well. By the uniqueness of the
solutions to (4) (see Remark 2.4) we have (v,Ψ,0, 0) = 0, while by the Relich-Kondrachov theorem this
contradicts (14). �

3. Existence

The existence of solutions to (1) is obtained in two steps. First, we look into (4) and use homotopy
argument. Next, we consider the non-homogeneous problem (see Sect. 4).

Let us define the family of operators Lτ : B1 → B2, where

Lτ

[
u
Π

]

=
[ −νΔu + τ∇Π
τdiv (u) + (1 − τ)Π

]

, τ ∈ [0, 1]

and

B1 =
{[

u
Π

]

: (u,Π) ∈ W 2
p (Ω) × W 1

p (Ω),utan|Γ = 0,u · n|Γlat
= 0,Π|Γin,out

= 0
}

,

B2 =
{[

f
g

]

: f ∈ Lp(Ω), g ∈ W 1
p (Ω),

∫

Ω

g dx = 0
}

.

By ‖·‖B1
and ‖·‖B2

we denote the norms on B1 and B2 which are induced by the standard scalar products,
respectively.

It is easy to check that Lτ is injective.
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Lemma 3.1. Let B1 and B2 be two Banach spaces and assume Lτ : B1 → B2, τ ∈ [0, 1] is a family of
continuous injective linear mappings from B1 to B2 such that

‖Lτ1 − Lτ2‖L(B1,B2)
≤ c1 |τ1 − τ2| ∀τ1,τ2∈[0,1]. (15)

In addition assume there is a function γ : [0, 1] → R+ such that

‖v‖B1
≤ γ(τ) ‖Lτv‖B2

. (16)

Then, there exists a constant c2 such that

‖v‖B1
≤ c2 ‖Lτv‖B2

(17)

and if L0 is surjective then L1 is also surjective.

Proof. Let τ0 ∈ [0, 1] be fixed. By the injectivity of Lτ and (16) the expression

sup
v �=0

‖v‖B1

‖Lτv‖B2

is finite for all τ ∈ [0, 1] and we could replace the original γ by it without invalidating (16). Let us assume
that γ now equals that supremum. Then for τ1, τ2 ∈ [0, 1] we have

‖v‖B1
≤ γ(τ1) ‖Lτ1v‖B2

≤ γ(τ1)
(‖Lτ2v‖B2

+ ‖Lτ2v − Lτ1v‖B2

)

≤ γ(τ1)
(‖Lτ2v‖B2

+ c1 |τ1 − τ2| ‖B‖B1

)
,

thus

(1 − c1γ(τ1) |τ1 − τ2|) ‖v‖B1
≤ γ(τ1) ‖Lτ2v‖B2

.

If c1γ(τ1) |τ1 − τ2| < 1 we obtain

γ(τ2) ≤ γ(τ1)
1 − c1γ(τ1) |τ1 − τ2| .

As τ1 and τ2 are interchangeable, this implies γ is continuous and therefore has a finite maximum on
[0, 1].

Let now Lτ0 be surjective. Then Lτ0v = g is equivalent with

Lτv = g + Lτv − Lτ0v.

We define F : B1 → B1 by
F (v) = L−1

τ (g + Lτv − Lτ0v) .

Then, Lτ is surjective if and only if F has a fixed point. By the properties of Lτ

‖F (u) − F (v)‖B1
≤ c2 ‖Lτ (u − v) − Lτ0(u − v)‖ ≤ c2c1 |τ − τ0| ‖u − v‖ .

If we take τ close enough to τ0, then c1c2 |τ − τ0| < 1 and by the Banach Fixed Point Theorem we
conclude the surjectivity of Lτ . To complete the proof we start with τ0 = 0 and go to 1 in a finite number
of steps as c1 and c2 do not depend on τ . �

Remark 3.2. In the above proof we start with τ0 = 0 which corresponds to the following problem

−νΔu = f in Ω,
u = 0 on Γlat,
utan = 0 on Γin,out,
∂un

∂n = 0 on Γin,out.

(18)

The existence and regularity of solutions (cf. Remark 2.2) follow now from reflection and classical theory.

Proof of Proposition 1.1. The proof follows immediately from Lemmas 2.5 and 3.1. �
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4. General Case

Suppose now that Π|Γin,out
= Πin,out. We introduce an auxiliary function p : Ω → R such that

−Δp = 0 in Ω,
∂p
∂n = 0 on Γlat,
p = Πin,out on Γin,out.

(19)

One can easily show the existence of weak solutions to the above problem. These solutions satisfy

‖p‖H1(Ω) ≤ c ‖Πin,out‖
H

1
2 (Γin,out)

. (20)

Then, the pair (u, ψ), where ψ = Π − p, solves

−νΔu + ∇ψ = f in Ω,
div u = g in Ω,
utan = 0 on Γ,
ψ = 0 on Γin,out,
u · n = 0 on Γlat.

From Proposition 1.1 we get the existence of solution (u, ψ) and the estimate

‖u‖H2(Ω) + ‖ψ‖H1(Ω) ≤ c

(
1
ν

,Ω
) (

‖f‖L2(Ω) + ‖g‖H1(Ω)

)
. (21)

From (20), (21) and the existence of u, ψ and p we get Theorem 1.

5. Navier–Stokes Equations

As an application of the theory we have presented so far, we will consider the Navier–Stokes equations.
Let us denote Π = p + 1

2 |v|2 and ω = rotv. We first consider the case when Π = 0 on Γin,out. For a
similar problem see e.g. [29,30]. Let us define

H =
{

u ∈ L2(Ω):
∫

Ω

u · ∇ψ dx = 0 ∀ψ∈H1(Ω), ψ|∂Γin,out
= 0

}

.

By ‖·‖H we denote the norm on H induced by the standard scalar product (·, ·) on H.
Let P : L2(Ω) → H be the orthogonal projector. Applying it to (5) we get

v,t + νAv = −P(ω × v) + Pf =: F (v, t), (22)

where A stands for the Stokes operator whose domain of the definition in this case is

D(A) =
{
u ∈ H2 ∩ H : utan|Γ = 0

}
.

From Proposition 1.1 it follows that A is positive self-adjoint with compact inverse. For such operators we
have extensive theory (see e.g. Ch. 6 in [31] and the references in Comments on Chapter 6). In particular,
in light of [32, Ch. 5] we have:

Definition 5.1. Assume that H is a Hilbert space with the scalar product (·, ·) and D(A) ⊂ H is a linear
subspace. Suppose that A : D(A) → H is self-adjoint operator with a compact inverse. Let u1, u2, . . . ∈
D(A) be a complete orthonormal system of eigenelements of A with real eigenvalues 0 < λ1 ≤ λ2 ≤ · · ·
and

D(A) =

{

u ∈ H :
∞∑

k=1

λ2
k |(u, uk)|2 < ∞

}

.
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Assume that f : [λ1,∞) → R. Then we set

D (f(A)) =

{

u ∈ H :
∞∑

k=1

(f(λk))2 |(u, uk)|2 < ∞
}

and define

f(A)u =
∞∑

k=1

f(λk)(u, uk)uk

for u ∈ D(f(A)).

From the above definition it follows that for λ1 > 0 we can define for any s ≥ 0 and u ∈ H

Asu =
∞∑

j=1

λs
j(u, uj)uj (23)

provided that the series
∑∞

j=1 λ2s
j |(u, uj)|2 converges. For fractional powers of A we have (see e.g. [33,

Sect. 1.3.3.])

‖u‖H2s(Ω) ≤ c ‖Asu‖L2(Ω) , s ∈ [0, 1].

Utilizing the Sobolev embeddings (see e.g. [33, Prop. 1.2.1]) we get

‖u‖Lp(Ω) ≤ c ‖u‖H2s(Ω) , s ≥ 3p−6
4p ,

‖u‖W 1
p (Ω) ≤ c ‖u‖H2s(Ω) , s ≥ 5p−6

4p .

Below we show the existence of weak and strong solutions to (5) by analyzing (22). These solutions are
defined in Lemma 5.4 and Definition 5.2, respectively. We will use an abstract method from [34], which is
an enhanced version of the theorem from [35, Sect. 1.1]. This method is based on the direct application
of the next Lemma to (22). First, we need to define almost everywhere regular solutions.

Definition 5.2. We call a function v : (t, t′) → H a strong solution to (22) on the interval (t, t′) if v fulfills
(22) and v ∈ C1((t, t′),H) ∩ C((t, t′),D(A)).

Definition 5.3. A solution u is called almost everywhere regular in a time interval [0, T ] if there is a
countable collection of disjoint open subintervals Ik (k ∈ S) such that [0, T ] \ (

⋃
k∈S Ik) is a set of

one-dimensional Lebesgue measure zero (see [34,35]) and u is strong on Ik for all k ∈ S.

Lemma 5.4. (cf. Theorem in [34]) Let T < +∞. Suppose that A : D(A) → H is positive self-adjoint with
compact inverse. Assume that there exists a fixed number μ ∈ (0, 1) and a continuous increasing function
g : R+ → R+ such that the non-linearity F : D(Aμ) × (0, T ) → H has the following properties:
(C1) There exists a constant c1 such that

‖F (u, t)‖H ≤ g
(∥
∥
∥A

µ
2 u

∥
∥
∥

H

)
(‖Aμu‖H + 1) .

(C2) For u,u′ ∈ D(Aμ), t, t′ ∈ (0, T ) we have

‖F (u, t) − F (u′, t′)‖H
≤ g (‖Aμu‖H + ‖Aμu′‖H) (‖Aμ(u − u′)‖H + |t − t′|)

and
‖F (u, t)‖H ≤ g

(∥
∥
∥A

µ
2 u

∥
∥
∥

H

)
(‖Aμu‖H + 1) .

(C3) We have
∥
∥A−1F (u, t)

∥
∥

H ≤ g (‖u‖H)
(∥

∥
∥A

1
2 u

∥
∥
∥

2μ

H
+ 1

)

∀(u,t)∈(D(Aµ)×(0,T )).
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Then, for every v0 ∈ H there exists a function v : [0, T ] → H to (22) fulfilling the energy inequality

‖v(t)‖2
H + ν

∫ t

0

∥
∥
∥A

1
2 v(s)

∥
∥
∥

2

H
ds ≤ c

(
‖v0‖2

H + ‖f‖2
L2(0,T ;L2(Ω))

)

for all t ≤ T . In addition, this function satisfies:
1. A−1v(t) ∈ C([0, t];H) and v(0) = v0.
2. There exists a relatively open set D ⊂ [0, t] such that the Lebesgue measure of [0, t] \ D is zero and

v ∈ C1(D;H) ∩ C(D,D(A)), and

vt + νAv = F (v, t) for t ∈ D.

We also have:
• if v0 ∈ D(A), then 0 ∈ D,
• ∥

∥A
µ
2 v(t)

∥
∥

H → ∞ as t approaches the endpoints of D \ {0, t}.
3. Function v is a weak solution to (22), i.e. for any u ∈ C1([0, T ],H) ∩ C([0, T ],D(A)) we have

∫

D∩(t,t′)
−(v, Au) + (F (v, t),u) + (v,ut) dτ = (v(t′),u(t′)) − (v(t),u(t))

for any 0 ≤ t ≤ t′ ≤ T .
4. If ‖v(τ)‖H ≤ ε ≤ ε0 for some ε0 > 0 on [t1, t2] ⊂ [0, t], then [t1 + ε2, t2] ⊂ D. Also for all τ ∈ [0, t]

we have

‖v(τ)‖2
H ≤ exp(2ατ) ‖v0‖2

H + C1
exp(2ατ)−1

α α 	= 0,

‖v(τ)‖2
H ≤ ‖v0‖2 + 2C1τ α = 0,

(24)

where α = C1 − λ1, with λ1 being the lowest eigenvalue of A.
Therefore:
(A1) If C1 is sufficiently small, then the solution v(t) will become strong after a time determined by C1

and v0.
(A2) If both C1 and ‖Av0‖H are small enough, then the solution v(t) is strong on the whole interval.
(A3) Also, if for a t0 ∈ D there is a strong solution u(t) to (22) on [t0, t] and u(t0) = v(t0), then

u(τ) = v(τ) for τ ≥ t0.

We easily see that assertions (1)+(2)+(3) ensure that a weak solution v to (22) is an almost everywhere
weak regular solution. From the first part of assertion (4) it follows that if a weak solution is small enough,
than it becomes the strong solution. The smallness of a weak solutions is guaranteed when the constant
C1 is small enough (see assertion (A1): indeed, if C1 ≤ λ1

2 , then α ≤ −λ1
2 and (24)1 implies that for

sufficiently large t

‖v(t)‖H ≤ 2
√

λ−1
1 C1.

If C1 is small enough, we have that ‖v(t)‖H ≤ ε0.
To use the above Lemma, let [cf. (22)]

F (v, t) = F1(v, t) + F2(t).

Lemma 5.5. Suppose that f ∈ Lip(0, T ;L2(Ω)), v0 ∈ D(A). Then, there exists an almost everywhere
regular weak solution v(t) to (22) on [0, T ]. In addition, if Av0 ∈ H is small, then the solution v(t) is
strong on [0, T ]. If Av0 ∈ H is arbitrary, then v(t) remains strong for t ∈ [0, t0], where t0 is determined
by ‖Av0‖H.

Proof. To prove this Lemma we use Lemma 5.4. We need to check the conditions (C1), (C2) and (C3).
For (C1) we have

(−P(ω × v) + Pf ,v) =
∫

Ω

ω × v · Pv dx +
∫

Ω

f · Pv dx ≤ ‖f‖L2(Ω) ‖v‖H .
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For the condition (C2) we first note

‖F (v, t) − F (v′, t′)‖H ≤ ‖F1(v, t) − F1(v′, t′)‖H + ‖F2(t) − F2(t′)‖H .

Now we have

‖F1(v, t) − F1(v′, t′)‖H = ‖−P (ω × v − ω′ × v′)‖H
≤ ‖ω × v − ω′ × v′‖L2(Ω)

≤ ‖ω × (v − v′)‖L2(Ω) + ‖(ω − ω′) × v′‖L2(Ω)

≤ ‖v − v′‖L4(Ω) ‖∇v′‖L4(Ω) + ‖v‖L4(Ω) ‖∇ (v − v′)‖L4(Ω)

≤ c
∥
∥
∥A

4
9 v

∥
∥
∥

L2(Ω)

∥
∥
∥A

8
9 (v − v′)

∥
∥
∥

L2(Ω)
+ c

∥
∥
∥A

4
9 (v − v′)

∥
∥
∥

L2(Ω)

∥
∥
∥A

8
9 v′

∥
∥
∥

L2(Ω)
.

The estimate for F2(t) is even simpler

‖F2(t) − F2(t′)‖H ≤ c ‖f(t) − f(t′)‖L2(Ω) ≤ c |t − t′| .
To verify (C3) we check that for u ∈ D(A)

(F1 (v, t) ,u) =
∫

Ω

P (ω × v) · udx ≤ ‖u‖L∞(Ω) ‖v‖L2(Ω) ‖∇v‖L2(Ω)

≤ c ‖Au‖L2(Ω) ‖v‖L2(Ω)

∥
∥
∥A

1
2 v

∥
∥
∥

L2(Ω)
.

Let u = A−1w. Due to the symmetry of A−1 we have
(
A−1F1(v, t),w

) ≤ c ‖w‖L2(Ω) ‖v‖L2(Ω)

∥
∥
∥A

1
2 v

∥
∥
∥

L2(Ω)
,

thus
∥
∥A−1F1(v, t)

∥
∥

H ≤ c ‖v‖L2(Ω)

∥
∥
∥A

1
2 v

∥
∥
∥

L2(Ω)
.

Likewise

(F2(t),u) =
∫

Ω

Pf · udx ≤ c ‖u‖L∞(Ω) ‖f‖L1(Ω) ≤ c ‖Au‖L2(Ω) ‖f‖L1(Ω)

and
(
A−1F2(t),w

) ≤ c ‖w‖L2(Ω) ‖f‖L1(Ω) ,

therefore
∥
∥A−1F2(t)

∥
∥

H ≤ c ‖f‖L1(Ω) .

We have completed the verification of all conditions. Using Lemma 5.4 we get the existence of weak
solution, which are regular for almost all times and the existence of short-time strong solutions for any
data or long-time strong solutions for small data. �

For the general case, i.e. Π 	= 0, we follow the idea from Sect. 4. First, we introduce an auxiliary
function Π̃ such that

−ΔΠ̃ = 0 in Ω,
∂Π̃
∂n = 0 on Γlat,

Π̃ = Πin,out on Γin,out.

(25)

One can easily prove the existence of weak solutions to the above problem. They satisfy
∥
∥
∥Π̃

∥
∥
∥

Lip(0,T ;H1(Ω))
≤ c ‖Πin,out‖

Lip(0,T ;H
1
2 (Γin,out))

. (26)
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Next, we consider the pair (v, ψ), where ψ = Π − Π̃. This pair solves

v,t + ω × v + ∇ψ − νΔv = f − ∇Π̃ =: G in ΩT = Ω × (0, T )
div v = 0 in ΩT ,
ψ = 0 on Γin,out,
vtan = 0 on Γ,
v · n = 0 on Γlat,
v|t=0 = v0 on Ω × {t = 0}.

(27)

If f ∈ Lip(0, T ;L2(Ω)), then (26) ensures that G ∈ Lip(0, T ;L2(Ω)). Utilizing Lemma 5.5 to (27) we
conclude Theorem 2.
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[30] Beneš, M., Kučera, P.: Solutions of the Navier–Stokes equations with various types of boundary conditions. Arch. Math.
(Basel) 98(5), 487–497 (2012). https://doi.org/10.1007/s00013-012-0387-x

[31] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York
(2011)

[32] Zeidler, E.: Applied Functional Analysis, Vol. 108 of Applied Mathematical Sciences. Springer, New York (1995),
Applications to Mathematical Physics

[33] Cholewa, J.W., D�lotko, T.: Global Attractors in Abstract Parabolic Problems. Vol. 278 of London Mathematical Society
Lecture Note Series. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511526404
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