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Abstract. We study the two-dimensional Muskat problem in a horizontally periodic setting and for fluids with arbitrary
densities and viscosities. We show that in the presence of surface tension effects the Muskat problem is a quasilinear
parabolic problem which is well-posed in the Sobolev space Hr(S) for each r ∈ (2, 3). When neglecting surface tension
effects, the Muskat problem is a fully nonlinear evolution equation and of parabolic type in the regime where the Rayleigh–
Taylor condition is satisfied. We then establish the well-posedness of the Muskat problem in the open subset of H2(S)
defined by the Rayleigh–Taylor condition. Besides, we identify all equilibrium solutions and study the stability properties
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blow-up behavior, and criteria for global existence are outlined.
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1. Introduction and the Main Results

In this paper we study the coupled system of equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tf(t, x) =
1
4π

PV
∫ π

−π

f ′(t, x)(1 + t2[s])(T[x,s]f(t)) + t[s][1 − (T[x,s]f(t))2]

t2[s] + (T[x,s]f(t))2
ω(t, x − s)ds,

ω(t, x) =
2k

μ− + μ+
(σκ(f(t)) − Θf(t))′(x)

−aμ

2π
PV

∫ π

−π

f ′(t, x)t[s][1 − (T[x,s]f(t))2] − (1 + t2[s])T[x,s]f(t)

t2[s] + (T[x,s]f(t))2
ω(t, x − s)ds

(1.1a)
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for t > 01 and x ∈ R, which is supplemented by the initial condition

f(0) = f0. (1.1b)

The evolution problem (1.1) describes the motion of the boundary [y = f(t, x) + tV ] separating two
immiscible fluid layers with unbounded heights located in a homogeneous porous medium with perme-
ability k ∈ (0,∞) or in a vertical/horizontal Hele–Shaw cell. It is assumed that the fluid system moves
with constant velocity (0, V ), V ∈ R, that the motion is periodic with respect to the horizontal variable
x (with period 2π), and that the fluid velocities are asymptotically equal to (0, V ) far away from the
interface. The unknowns of the evolution problem (1.1) are the functions (f, ω) = (f, ω)(t, x). We denote
by S := R/2πZ the unit circle, functions that depend on x ∈ S being 2π-periodic with respect to the real
variable x. To be concise, we have set

δ[x,s]f := f(x) − f(x − s), T[x,s]f = tan h

(
δ[x,s]f

2

)

, t[s] = tan
(s

2

)
,

and ( · )′ denotes the spatial derivative ∂x. We further denote by g the Earth’s gravity, σ ∈ [0,∞) is the
surface tension coefficient, κ(f(t)) is the curvature of the free boundary [y = f(t, x) + tV ], while μ± and
ρ± are the viscosity and the density, respectively, of the fluid ± which occupies the unbounded periodic
strip

ΩV
±(t) := {(x, y) ∈ R

2 : ±(f(t, x) + tV − y) < 0}.

Moreover, the real constant Θ and the Atwood number aμ that appear in (1.1a)2 are defined by

Θ := g(ρ− − ρ+) +
μ− − μ+

k
V, aμ :=

μ− − μ+

μ− + μ+
.

The integrals in (1.1a) are singular at s = 0 and PV denotes the Cauchy principle value. In this paper
we consider a general setting where

μ− − μ+, ρ− − ρ+ ∈ R.

The observation that |aμ| < 1 is crucial for our analysis. This property enables us to prove, for suitable
f(t), that the Eq. (1.1a)2 has a unique solution ω(t) (which depends in an intricate way on f(t), see
Sects. 4 and 5). Therefore we shall only refer to f as being the solution to (1.1).

The Muskat problem, in the classical formulation (2.1), dates back to M. Muskat’s paper [52] from
1934. However, many of the mathematical studies on this topic are quite recent and they cover various
physical scenarios and mathematical aspects related to the original model proposed in [52], cf. [6,7,9,11–
18,21–25,27,30,32,36,38–43,48,49,49,53,54,58,60–62] (see also [55,56] for some recent research on the
compressible analogue of the Muskat problem, the so-called Verigin problem).

Below we discuss only the literature pertaining to (1.1) and its nonperiodic counterpart. In the presence
of surface tension effects, that is for σ > 0, (1.1) has been studied previously only in [7] where the author
proved well-posedness of the problem in Hr (with r ≥ 6) in the more general setting of interfaces which
are parameterized by curves, and the zero surface tension limit of the problem has been also considered
there. The nonperiodic counterpart to (1.1) has been investigated in [48] where it was shown that the
problem is well-posed in Hr(S) for each r ∈ (2, 3) by exploiting the fact that the problem is quasilinear
parabolic together with the abstract theory outlined in [4,5] for such problems. Additionally, it was shown
in [48] that the problem exhibits the effect of parabolic smoothing and criteria for global existence of
solutions were found. We showed herein that the results in the nonperiodic framework [48] hold also for
(1.1). Besides, this paper provides the first full picture of the set of equilibrium solutions to (1.1)—which
are described by either flat of finger-shaped interfaces—and the stability properties of the flat equilibria
and of small finger-shaped equilibria are studied in the natural phase space Hr(S). For the latter purpose
we use a quasilinear principle of linearized stability established recently in [50].

1When σ = 0 we require that the Eq. (1.1a) are satisfied also at t = 0.
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The first main result of this paper is the following theorem establishing the well-posedness of the
Muskat problem with surface tension in the setting of classical solutions and for general initial data
together with other qualitative properties of the solutions.

Theorem 1.1. Let σ > 0 and r ∈ (2, 3) be given. Then, the following hold:
(i) (Well-posedness in Hr(S)) The problem (1.1) possesses for each f0 ∈ Hr(S) a unique maximal

solution

f := f(·; f0) ∈ C([0, T+(f0)),Hr(S)) ∩ C((0, T+(f0)),H3(S)) ∩ C1((0, T+(f0)), L2(S)),

with T+(f0) ∈ (0,∞], and [(t, f0) �→ f(t; f0)] defines a semiflow on Hr(S).
(ii) (Global existence/blow-up criterion) If

sup
[0,T+(f0))∩[0,T ]

‖f(t; f0)‖Hr < ∞ for all T > 0,

then T+(f0) = ∞.
(iii) (Parabolic smoothing) The mapping [(t, x) �→ f(t, x)] : (0, T+(f0)) × R → R is real-analytic. In

particular, f(t) is a real-analytic function for all t ∈ (0, T+(f0)).

Remark 1.2. (i) Despite that we deal with a third order problem in the setting of classical solutions,
the curvature of the initial data in Theorem 1.1 may be unbounded and/or discontinuous. Moreover,
it becomes instantaneously real-analytic under the flow.

(ii) Solutions which are not global have, in view of Theorem 1.1, the property that

sup
[0,T+(f0))

‖f(t)‖Hs = ∞ for each s ∈ (2, 3).

Concerning the stability of equilibria, we also have to differentiate between the cases σ = 0 and σ > 0.
Before doing this we point out two features that are common for both cases. Firstly, the integral mean of
the solutions to (1.1) (found in Theorems 1.1 or 1.5 below) is constant with respect to time, see Sect. 6.
Secondly, (1.1) has the following invariance property: If f is a solution to (1.1), then the translation

fa,c(t, x) := f(t, x − a) + c, a, c ∈ R, (1.2)

is also a solution to (1.1). For these two reasons, we shall only address the stability issue for equilibria to
(1.1) which have zero integral mean and under perturbations with zero integral mean. However, because
of the invariance property (1.2), our stability results can be transferred also to other equilibria, see
Remark 1.4.

To set the stage, let

Ĥr(S) :=
{

h ∈ Hr(S) : 〈h〉 :=
1
2π

∫ π

−π

hdx = 0
}

, r ≥ 0.

In Theorem 1.3 below we describe the stability properties of some of the equilibria to (1.1) when σ > 0.
In this case the equilibrium solutions to (1.1) are either constant functions or finger-shaped as in Fig. 1.
The finger-shaped equilibria exist only in the regime where Θ < 0, that is when either the fluid located
below has a larger density or when the less viscous fluid advances into the region occupied by the other
one with sufficiently high speed |V |. Furthermore, these equilibria form global bifurcation branches (see
Sect. 6 for the complete picture of the set of equilibria).

Theorem 1.3. Let σ > 0 and r ∈ (2, 3) be given. The following hold:
(i) If Θ + σ > 0, then f = 0 is exponentially stable. More precisely, given

ω ∈ (0, k(σ + Θ)/(μ− + μ+)),

there exist constants δ > 0 and M > 0, with the property that if f0 ∈ Ĥr(S) satisfies ‖f0‖Hr ≤ δ,
the solution to (1.1) exists globally and

‖f(t; f0)‖Hr ≤ Me−ωt‖f0‖Hr for all t ≥ 0.
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(ii) If Θ+σ < 0, then f = 0 is unstable. More precisely, there exists R > 0 and a sequence (f0,n) ⊂ Ĥr(S)
of initial data such that:

• f0,n → 0 in Ĥr(S);
• There exists tn ∈ (0, T+(f0,n)) with ‖f(tn; f0,n)‖Hr = R.

(iii) (Instability of small finger shaped equilibria) Given 1 ≤ 	 ∈ N, there exists a real-analytic bifurcation
curve (λ�, f�) : (−ε�, ε�) → (0,∞) × Ĥ3(S), ε� > 0, with

⎧
⎨

⎩
λ�(s) = 	2 − 3	4

8
s2 + O(s4) in R,

f�(s) = s cos(	x) + O(s2) in Ĥ3(S)
for s → 0,

such that f�(s) is an even equilibrium to (1.1) if Θ = −σλ�(s). The finger-shaped equilibrium f�(s),
0 < |s| < ε�, is unstable if ε� is sufficiently small in the sense there exists R > 0 and a sequence
(f0,n) ⊂ Ĥr(S) such that:

• f0,n → f�(s) in Ĥr(S);
• There exists tn ∈ (0, T+(f0,n)) with ‖f(tn; f0,n) − f�(s)‖Hr = R.

With respect to Theorem 1.3 we add the following remarks (Remark 1.4 (i) remains valid for Theo-
rem 1.6 below as well).

Remark 1.4. (i) If f is an even equilibrium to (1.1), the translation f(· − a) + c, a, c ∈ R, is also an
equilibrium solution. In fact, all equilibria can be obtained in this way (see Sect. 6). The invariance
property (1.2) shows that f and f(· − a) + c have the same stability properties.

(ii) It is shown in Theorem 6.1 that the local curves (λ�, f�) can be continued to global bifurcation
branches consisting entirely of equilibrium solutions to (1.1). The stability issue for the large finger-
shaped equilibria remains an open problem.

When switching to the regime where σ = 0, many aspects in the analysis of the Muskat problem with
surface tension have to be reconsidered. A first major difference to the case σ > 0 is due to the fact that
the quasilinear character of the problem, which is mainly due to the curvature term, is lost (except for
the very special case when μ− = μ+, cf. [47]), and the problem (1.1) is now fully nonlinear. The second
important difference, is that the problem is of parabolic type only when the Rayleigh–Taylor condition
holds. The Rayleigh–Taylor condition originates from [59] and is expressed in terms of the pressures p±
associated of the fluid ± as follows

∂νp− < ∂νp+ on [y = f0(x)], (1.3)

with ν denoting the unit normal to the curve [y = f0(x)] pointing towards ΩV
+(0) . The first result in this

setting is a local existence result in Hk(S), with k ≥ 3, established in [21] in the more general setting
of interfaces parametrized by periodic curves (for initial data such that the Rayleigh–Taylor conditions
holds). The particular case of fluids with equal densities has been in fact investigated previously in [60]
and the authors have shown the existence of global solutions for small data. The methods from [21] have
been then generalized in [22] to the three-dimensional case, the analysis leading to a local existence result
in Hk with k ≥ 4. More recently in [15] the authors have established global existence and uniqueness of
solutions to (1.1) for small data in H2(S) together with some exponential decay estimates in Hr-norms
with r ∈ [0, 2). For the nonperiodic Muskat problem with σ = 0 it is moreover shown in [15] there
exist unique local solutions for initial data in H2(R) which are small in the weaker H3/2+ε-norm with
ε ∈ (0, 1) arbitrarily small. The latter smallness size condition on the data was dropped in [48] where it is
shown that the nonperiodic Muskat possesses for initial data in H2(R) that satisfy the Rayleigh–Taylor
condition a unique local solution and that the solution depends continuously on the data. Lastly, we
mention the paper [37] where the existence and uniqueness of a weaker notion of solutions is established
for the nonperiodic Muskat problem with initial data in critical spaces, together with some algebraic
decay of the global solutions. In this paper we first generalize the methods from the nonperiodic setting
[48] to prove the well-posedness of (1.1) for general initial data in H2(S) and instantaneous parabolic
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smoothing for solutions which satisfy an additional bound. Before presenting our result, we point out
that if Θ = 0, then (1.1) has only constant solutions for each f0 ∈ Hr(R), with r > 3/2, as Theorem 3.3
shows that in this case ω = 0 is the only solution to (1.1a)2 that lies in L̂2(S). When Θ = 0, the situation
is much more complex. Letting

O := {f0 ∈ H2(S) : ∂νp− < ∂νp+ on [y = f0(x)]}
denote the set of initial data in H2(S) for which the Rayleigh–Taylor condition holds, it is shown in Sect. 5
that O is nonempty precisely when Θ > 0. This condition on the constants has been identified also in the
nonperiodic case. In fact, we prove that if Θ > 0, then O is an open subset of H2(S) which contains all
constant functions. Using the abstract fully nonlinear parabolic theory established in [26,46], we prove
below that the Muskat problem without surface tension is well-posed in the set O, cf. Theorem 1.5.
Physically, in the particular situation when gravity is neglected Θ > 0 is equivalent to the fact that the
more viscous fluid enters the region occupied by less viscous one, while in the case V = 0 the condition
Θ > 0 means that the fluid located below has a larger density.

Theorem 1.5. Let σ = 0, μ− = μ+,2 and assume that Θ > 0. Given f0 ∈ O, the problem (1.1) possesses
a solution

f ∈ C([0, T ],O) ∩ C1([0, T ],H1(S)) ∩ Cα
α ((0, T ],H2(S))

for some T > 0 and an arbitrary α ∈ (0, 1). Additionally, the following statements are true:
(i) f is the unique solution to (1.1) belonging to

⋃

β∈(0,1)

C([0, T ],O) ∩ C1([0, T ],H1(S)) ∩ Cβ
β ((0, T ],H2(S)).

(ii) f may be extended to a maximally defined solution

f( · ; f0) ∈ C([0, T+(f0)),O) ∩ C1([0, T+(f0)),H1(S)) ∩
⋂

β∈(0,1)

Cβ
β ((0, T ],H2(S))

for all T < T+(f0), where T+(f0) ∈ (0,∞].
(iii) The solution map [(t, f0) �→ f(t; f0)] defines a semiflow on O which is real-analytic in the open set

{(t, f0) : f0 ∈ O, 0 < t < T+(f0)}.
(iv) If f( · ; f0) : [0, T+(f0)) ∩ [0, T ] → O is uniformly continuous for all T > 0, then either T+(f0) = ∞,

or

T+(f0) < ∞ and dist(f(t; f0), ∂O) → 0 for t → T+(f0).

(v) If f( · ; f0) ∈ B((0, T ),H2+ε(S)) for some T ∈ (0, T+(f0)) and ε ∈ (0, 1) arbitrary small, then

f ∈ Cω((0, T ) × R, R).

The assertions of Theorem 1.5 are weaker compared to that of Theorem 1.1. For example the unique-
ness claim at (i) is established in the setting of strict solutions (in the sense of [46, Chapter 8]) which
belong additionally to some singular Hölder space

Cβ
β ((0, T ],H2(S)) :=

{

u ∈ B((0, T ],H2(S)) : sup
s �=t

‖tβu(t) − sβu(s)‖H2

|t − s|β < ∞
}

with β ∈ (0, 1). This drawback results from the fact that in the absence of surface tension effects we deal
with a fully nonlinear (and nonlocal) problem. We also point out that the parabolic smoothing property
established at (v) holds only for solutions f( · ; f0) ∈ B((0, T ),H2+ε(S)) for some ε > 0. This additional
boundedness condition is needed because the space-time translation

[
u �→ [(t, x) �→ u(at, x + bt)]

]

2Theorem 1.5 is still valid if μ− = μ+, however its claims can be improved, cf. [47, Theorem 1.1], as the problem (1.1) is
under this restriction of quasilinear type.
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does not define for a, b > 0 a bounded operator between these singular Hölder spaces. This property
hiders us to use the parameter trick from the proof of Theorem 1.1 to establish parabolic smoothing
for all solutions in Theorem 1.5. However, the boundedness hypothesis imposed at (v) is satisfied if
f0 ∈ O ∩ H3(S) because the statements (i)–(iv) in Theorem 1.5 remain true when replacing Hk(S) by
Hk+1(S) for k ∈ {1, 2} (possibly with a smaller maximal existence time).

Finally, we point out that in the case when σ = 0 the equilibrium solutions to (1.1) are the con-
stant functions. Theorem 1.6 states that the zero solution to (1.1) (and therewith all other equilibria) is
exponentially stable under perturbations with zero integral mean.

Theorem 1.6 (Exponential stability). Let σ = 0 and Θ > 0. Then, given ω ∈ (0, kΘ/(μ− + μ+)), there
exist constants δ > 0 and M > 0, with the property that if f0 ∈ Ĥ2(S) satisfies ‖f0‖H2 ≤ δ, then
T+(f0) = ∞ and3

‖f(t)‖H2 + ‖ḟ(t)‖H1 ≤ Me−ωt‖f0‖H2 for all t ≥ 0.

Before proceeding with our analysis we emphasize that the periodic case considered herein is more
involved that the “canonical” nonperiodic Muskat problem because abstract results from harmonic analy-
sis, cf. [51, Theorem 1], which directly apply to the nonperiodic case (in order to establish useful mapping
properties and commutator estimates) have no correspondence in the set of periodic functions. However,
we derive in Appendix A, by using the results from the nonperiodic case [48,49], the boundedness of
certain multilinear singular integral operators which can be directly applied in the proofs. A further
drawback of the Eq. (1.1a) is that some of the integral terms are of lower order and some of the argu-
ments are therefore lengthy. Finally, we point out that the stability issue remains an open question for
the nonperiodic counterpart of (1.1).

2. The Equations of Motion and the Equivalence of the Formulations

In this section we present the classical formulation of the Muskat problem (see (2.1) below) introduced
in [52] and prove that this formulation is equivalent to the contour integral formulation (1.1) in a quite
general setting, cf. Proposition 2.3.

We first introduce the equations of motion. In the fluid layers the dynamic is governed by the equations

⎧
⎨

⎩

div v±(t) = 0,

v±(t) = − k

μ±

(∇p±(t) + (0, ρ±g)
) in ΩV

±(t), (2.1a)

where v±(t) := (v1
±(t), v2

±(t)) denotes the velocity field of the fluid ±. While (2.1a)1 is the incompressibility
condition, the Eq. (2.1a)2 is known as Darcy’s law. This linear relation is frequently used for flows which
are laminar, cf. [10]. These equations are supplemented by the following boundary conditions at the free
interface

{
p+(t) − p−(t) = σκ(f(t)),
〈v+(t)|ν(t)〉 = 〈v−(t)|ν(t)〉 on [y = f(t, x) + tV ], (2.1b)

where ν(t) is the unit normal at [y = f(t, x)+ tV ] pointing into ΩV
+(t) and 〈 · | · 〉 the inner product in R

2.
Additionally, we impose the far-field boundary condition

v±(t, x, y) → (0, V ) for |y| → ∞ (uniformly in x). (2.1c)

The motion of the free interface is described by the kinematic boundary condition

∂tf(t) = 〈v±(t)|(−f ′(t), 1)〉 − V on [y = f(t, x) + tV ], (2.1d)

3We write ḟ to denote the derivative df/dt.
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and, since we consider 2π-periodic flows, f(t), v±(t), and p±(t) are assumed to be 2π-periodic with respect
to x for all t ≥ 0. Finally, we supplement the system with the initial condition

f(0) = f0. (2.1e)

It is convenient to rewrite the Eq. (2.1) in a reference frame that moves with the constant velocity
(0, V ). To this end we let

Ω±(t) := {(x, y) ∈ R
2 : ±(f(t, x) − y) < 0} = ΩV

±(t) − (0, tV ),

and
{

P±(t, x, y) = p±(t, x, y + tV ),
V±(t, x, y) = v±(t, x, y + tV ) − (0, V ) for t ≥ 0 and (x, y) ∈ Ω±(t). (2.2)

Direct computations show that (2.1) is equivalent to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

div V±(t) = 0 in Ω±(t),
μ±

(
V±(t) + (0, V )

)
= −k

(∇P±(t) + (0, ρ±g)
)

in Ω±(t),
〈V+(t)|ν(t)〉 = 〈V−(t)|ν(t)〉 on [y = f(t, x)],
P+(t) − P−(t) = σκ(f(t)) on [y = f(t, x)],
V±(t, x, y) → 0 for |y| → ∞,
∂tf(t) = 〈V±(t)|(−f ′(t), 1)〉 on [y = f(t, x)],
f(0) = f0.

(2.3)

In Proposition 2.3 we establish the equivalence of the two formulations (1.1) and (2.3). It is important
to point out that the function ω in (1.1a)1 is uniquely identified by f in the space L̂2(S) (this feature
is established rigorously only later on in Theorem 3.3). This aspect is essential at several places in this
paper, see Proposition 2.3 and the preparatory lemma below.

Lemma 2.1. Given f ∈ H1(S) and ω ∈ L̂2(S) let

V 1(x, y) := − 1
4π

∫

S

ω(s)
tan h((y − f(s))/2)

[
1 + tan2((x − s)/2)

]

tan2((x − s)/2) + tanh2((y − f(s))/2)
ds,

V 2(x, y) :=
1
4π

∫

S

ω(s)
tan((x − s)/2)

[
1 − tan h2((y − f(s))/2)

]

tan2((x − s)/2) + tanh2((y − f(s))/2)
ds

(2.4)

for (x, y) ∈ R
2\[y = f(x)] and set V := (V 1, V 2) and V± := V |Ω± , where

Ω± := {(x, y) ∈ R
2 : ±(f(x) − y) < 0}.

Then, there exists a constant C = C(‖f‖∞) > 0 such that

|V±(x, y)| ≤ C‖ω‖1e
−|y|/2

for all (x, y) ∈ Ω± satisfying |y| ≥ 1 + 2‖f‖∞.

Proof. Let first f = 0. Taking advantage of

max
{

tan h

(‖f‖∞
2

)

, tan h

( |y|
4

)}

≤
∣
∣
∣
∣tan h

(
y − f(s)

2

)∣
∣
∣
∣ for |y| ≥ 2‖f‖∞,

for |y| ≥ 2‖f‖∞, it follows that

|V 2
±(x, y)| ≤ ‖ω‖1

tan h(‖f‖∞/2)

∣
∣1 − tan h2(y/4)

∣
∣ ≤ ‖ω‖1

tan h(‖f‖∞/2)
e−|y|/2.

In order to estimate V 1
± we use the fact that 〈ω〉 = 0 to derive, after performing some elementary estimates,

that

|V 1
±(x, y)| ≤

∫

S

|ω(s)|
∣
∣
∣
tan h((y − f(s))/2)

[
1 + tan2((x − s)/2)

]

tan2((x − s)/2) + tan h2((y − f(s))/2)
∓ 1

∣
∣
∣ds

≤ C‖ω‖1(1 − tan h(|y|/4)) ≤ C‖ω‖1e
−|y|/2
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for all |y| ≥ 2‖f‖∞. The claim for f = 0 follows in a similar way. �

In Proposition 2.3 we show that, given a solution to (1.1), the velocity field in the classical formulation
(2.1) at time t can be expressed in terms of f := f(t) and ω := ω(t) according to Lemma 2.1, provided that
f and ω have suitable regularity properties. We point out that a formal derivation of the formula (2.4) is
provided, in a more general context, in [21, Section 2]. In Lemma 2.2 we establish further properties of
the velocity field defined in Lemma 2.1.

Lemma 2.2. Let f ∈ H2(S) and ω ∈ Ĥ1(S). The vector field V± introduced in Lemma 2.1 belongs to
C(Ω±) ∩ C1(Ω±), it is divergence free and irrotational, and

V±(x, f(x)) =
1
4π

PV
∫ π

−π

ω(x − s)

( − (T[x,s]f)(1 + t2[s]), t[s][1 − (T[x,s]f)2]
)

t2[s] + (T[x,s]f)2
ds

∓ 1
2

ω(x)(1, f ′(x))
1 + f ′2(x)

, x ∈ R.

(2.5)

Letting further

P±(x, y) := c± − μ±
k

∫ x

0

V 1
±(s,±d)ds − μ±

k

∫ y

±d

V 2
±(x, s)ds −

(

ρ±g +
μ±V

k

)

y (2.6)

for (x, y) ∈ Ω±, where c± ∈ R and d > ‖f‖∞, it holds that P± ∈ C1(Ω±) ∩ C2(Ω±) and the relations
(2.3)1–(2.3)3, (2.3)5 are all satisfied.

Proof. The theorem on the differentiation of parameter integrals shows that V± is continuously differen-
tiable in Ω±, divergence free, and irrotational. In order to show that V± ∈ C(Ω±) it suffices to show that
the one-sided limits when approaching a point (x0, f(x0)) ∈ [y = f(x)] from Ω− and Ω+, respectively,
exist. To this end we note that the complex conjugate of (V 1

±, V 2
±) satisfies

(V 1±, V 2±)(z) =
1

4πi

∫

Γ

g(ξ)
tan

(
(ξ − z)/2

) dξ for z = (x, y) ∈ [y = f(x)],

with Γ being a 2π-period of the graph [y = f(x)] and with g : Γ → C defined by

g(ξ) = −ω(s)(1 − if ′(s))
1 + f ′2(s)

for ξ = (s, f(s)) ∈ Γ.

Given z = (x, y) ∈ [y = f(x)], it is convenient to write

(V 1±, V 2±)(z) =
1

4πi

∫

Γ

g(ξ)
[ 1
tan

(
(ξ − z)/2

) − 1
(ξ − z)/2

]
dξ +

1
2πi

∫

Γ

g(ξ)
ξ − z

dξ,

because Lebesgue’s theorem now shows that if zn approaches z0 = (x0, f(x0)) from Ω+ (or Ω−), then
1

4πi

∫

Γ

g(ξ)
[ 1
tan

(
(ξ − zn)/2

) − 1
(ξ − zn)/2

]
dξ −→

n→∞
1

4πi

∫

Γ

g(ξ)
[ 1
tan

(
(ξ − z0)/2

) − 1
(ξ − z0)/2

]
dξ.

Moreover, using Plemelj’s formula, cf. e.g. [45, Theorem 2.5.1], we find that

1
2πi

∫

Γ

g(ξ)
ξ − zn

dξ −→
n→∞ ±g(z0)

2
+

1
2πi

PV
∫

Γ

g(ξ)
ξ − z0

dξ,

where the PV is taken at ξ = z0, and we conclude that

(V 1±, V 2±)(zn) −→
n→∞ ±g(z0)

2
+

1
4πi

PV
∫

Γ

g(ξ)
tan

(
(ξ − z0)/2

) dξ.

The formula (2.5) and the property V± ∈ C(Ω±) follow at once. The remaining claims are simple conse-
quences of Lemma 2.1 and of the already established properties. �

Using Lemmas 2.1 and 2.2, we conclude this section with the following equivalence result.
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Proposition 2.3 (Equivalence of formulations). Let T ∈ (0,∞] be given.
(a) Let σ = 0. The following are equivalent:

(i) the problem (2.3) for f ∈ C1([0, T ), L2(S)) and

• f(t) ∈ H2(S), ω(t) :=
〈
(V−(t) − V+(t))|[y=f(t,x)]

∣
∣(1, f ′(t))

〉 ∈ Ĥ1(S),

• V±(t) ∈ C(Ω±(t)) ∩ C1(Ω±(t)), P±(t) ∈ C1(Ω±(t)) ∩ C2(Ω±(t))

for all t ∈ [0, T );
(ii) the evolution problem (1.1) for f ∈ C1([0, T ), L2(S)), f(t) ∈ H2(S), and ω(t) ∈ Ĥ1(S) for all

t ∈ [0, T ).
(b) Let σ > 0. The following are equivalent:

(i) the problem (2.3) for f ∈ C1((0, T ), L2(S)) ∩ C([0, T ), L2(S)) and

• f(t) ∈ H4(S), ω(t) :=
〈
(V−(t) − V+(t))|[y=f(t,x)]

∣
∣(1, f ′(t))

〉 ∈ Ĥ1(S),

• V±(t) ∈ C(Ω±(t)) ∩ C1(Ω±(t)), P±(t) ∈ C1(Ω±(t)) ∩ C2(Ω±(t))

for all t ∈ (0, T );
(ii) the Muskat problem (1.1) for f ∈ C1((0, T ), L2(S))∩C([0, T ), L2(S)), f(t) ∈ H4(S), and ω(t) ∈

Ĥ1(S) for all t ∈ (0, T ).

Proof. To prove the implication (i) ⇒ (ii) of (a), let (f, V±, P±) be a solution to (2.3) on [0, T ) and
choose t ≥ 0 fixed but arbitrary (the time dependence is not written explicitly in this proof). Letting

ω := ∂xV 2 − ∂yV 1 ∈ D′(R2)

denote the vorticity associated to the global velocity field

(V 1, V 2) := V−1Ω− + V+1Ω+ ,

where 1Ω± is the characteristic function of Ω±, it follows from (2.3)3 and Stokes’ theorem that

ω = ωδ[y=f(x)],

where

ω :=
〈
(V− − V+)|[y=f(x)]

∣
∣(1, f ′)

〉 ∈ Ĥ1(S).

Similarly as in the particular case μ− = μ+, cf. [47, Proposition 2.2], we find that the global velocity field
(V 1, V 2) is given by (2.4). Lemma 2.2 now shows, together with the kinematic boundary condition, that
f solves the Eq. (1.1a)1. Besides, differentiating the Laplace–Young Eq. (2.3)4, the relations (2.3)2 and
(2.5) finally lead us to (1.1a)2, and the proof of this implication is complete.

For the reverse implication, we define V± according to (2.4), and the pressures by (2.6). For suitable
c±, it follows from (1.1a)2 and Lemmas 2.1, 2.2 that indeed (f, V±, P±) solves (2.3).

The equivalence stated at (b) follows in a similar way. �

3. The Double Layer Potential and Its Adjoint

We point out that the Eq. (1.1a)2 is linear with respect to ω(t). The main goal of this section is to address
the solvability of this equation for ω(t) in suitable function spaces, cf. Theorems 3.3 and 3.5. To this end
we first associate to (1.1a) two singular operators and study their mapping properties (see Lemmas 3.1
and 3.2). Finally, in Theorem 3.6 and Lemma 3.7 we study the properties of the adjoints of these singular
operators.

To begin, we write (1.1a)2 in the more compact form

(1 + aμA(f))[ω] =
2k

μ− + μ+
(σκ(f) − Θf)′, (3.1)
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where A(f) is the linear operator

A(f)[ω](x) :=
1
2π

PV
∫ π

−π

f ′(x)t[s][1 − (T[x,s]f)2] − (1 + t2[s])T[x,s]f

t2[s] + (T[x,s]f)2
ω(x − s)ds. (3.2)

Given f ∈ Hr(S) with r > 3/2, we prove in Lemma 3.2 that A(f) ∈ L(L2(S)). Then, it is a matter of
direct computation to verify that A(f) is the L2-adjoint of the double layer potential

(A(f))∗[ξ](x) :=
1
2π

PV
∫ π

−π

(1 + t2[s])(T[x,s]f) − f ′(x − s)t[s][1 − (T[x,s]f)2]

t2[s] + (T[x,s]f)2
ξ(x − s)ds. (3.3)

A main part of the subsequent analysis is devoted to the study of the invertibility of the linear operator
1+aμA(f) in the algebras L(L̂2(S)) and L(Ĥ1(S)). These invertibility properties enable us to solve (3.1)
and to formulate (1.1) as an evolution equation for f only, that is

∂tf =
k

μ− + μ+
B(f)

[
(1 + aμA(f))−1[(σκ(f) − Θf)′]

]
, (3.4)

where we have associated to (1.1a)1 the operator B(f) defined by

B(f)[ω](x) :=
1
2π

PV
∫ π

−π

f ′(x)(1 + t2[s])(T[x,s]f) + t[s][1 − (T[x,s]f)2]

t2[s] + (T[x,s]f)2
ω(x − s)ds. (3.5)

As a first result we establish the following mapping properties.

Lemma 3.1. Given r > 3/2, it holds that

B ∈ Cω(Hr(S),L(L̂2(S))) ∩ Cω(H2(S),L(Ĥ1(S))). (3.6)

Proof. Let us first assume that

B ∈ Cω(Hr(S),L(L2(S))) ∩ Cω(H2(S),L(H1(S))). (3.7)

Given f, ω ∈ C∞(S) with 〈ω〉 = 0 let V− be as defined in Lemma 2.1. Observing that

B(f)[ω] = 2〈V−|[y=f(x)]|(−f ′, 1)〉 ∈ C(S),

Stokes’ formula together with Lemmas 2.1, 2.2 yields
1
2
〈B(f)[ω]〉 =

∫

Γ

〈V−|ν〉dσ =
∫

Ω−
div V− d(x, y) = 0,

and therefore B(f)[ω] ∈ L̂2(S). This immediately implies (3.6).
Hence, we are left to establish (3.7). To this end it is convenient to write

B(f) = f ′
B1(f) − B2(f) + B3(f),

where

B1(f)[ω](x) :=
1
2π

∫ π

−π

t2[s]T[x,s]f

t2[s] + (T[x,s]f)2
ω(x − s)ds

+
1
2π

∫ π

−π

[ T[x,s]f

t2[s] + (T[x,s]f)2
− (δ[x,s]f/2)

(s/2)2 + (δ[x,s]f/2)2
]
ω(x − s)ds,

B2(f)[ω](x) :=
1
2π

∫ π

−π

t[s](T[x,s]f)2

t2[s] + (T[x,s]f)2
ω(x − s)ds

− 1
2π

∫ π

−π

[ t[s]

t2[s] + (T[x,s]f)2
− s/2

(s/2)2 + (δ[x,s]f/2)2
]
ω(x − s)ds,

B3(f)[ω](x) :=
1
π

PV
∫ π

−π

s + f ′(x)(δ[x,s]f)
s2 + (δ[x,s]f)2

ω(x − s)ds.
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Taking advantage of the relations
tan h(x) ≤ x, x ≥ 0, x ≤ tan(x), x ∈ [0, π/2),

| tan h(x) − x| ≤ |x|3, x ∈ R, | tan(x) − x| ≤ |x| tan2(x), |x| < π/2,
(3.8)

it is easy to see that Bi(f) ∈ L(L2(S), L∞(S)) for i ∈ {1, 2} (and that PV is not needed). In fact these
mappings are real-analytic, that is

Bi ∈ Cω(Hr(S),L(L2(S), L∞(S))), i ∈ {1, 2}. (3.9)

Furthermore, given τ ∈ (1/2, 1), classical (but lengthy) arguments (see [47, Lemmas 3.2-3.3] where similar
integral operators are discussed) show that

Bi ∈ Cω(Hr(S),L(Hτ (S),C1(S))), i ∈ {1, 2}, (3.10)

and we are left to consider the operator B3.
Recalling Lemma A.1, we see that

πB3(f)[ω] = C0,1(f)[ω] + f ′C1,1(f)[f, ω],

and Lemma A.1 (i) immediately yields B3(f) ∈ L(L2(S)). Moreover, arguing as in [49, Section 5], it
follows that

B3 ∈ Cω(Hr(S),L(L2(S))). (3.11)

In order to prove that B3(f) ∈ L(H1(S)), when additionally f ∈ H2(S), we let {τε}ε∈R denote the C0-
group of right translations, that is τεh(x) = h(x−ε) for x ∈ R and h ∈ L2(S). Given ε > 0 and ω ∈ H1(S),
it holds that

π
τε(B3(f)[ω]) − B3(f)[ω]

ε
= C0,1(τεf)

[τεω − ω

ε

]
− C2,2(f, τεf)

[τεf − f

ε
, τεf + f, ω

]

+
τεf

′ − f ′

ε
C1,1(τεf)[τεf, τεω] + f ′C1,1(τεf)

[
τεf,

τεω − ω

ε

]

+ f ′C1,1(τεf)
[τεf − f

ε
, ω

]
− f ′C3,2(f, τεf)

[τεf − f

ε
, τεf + f, f, ω

]
.

Since

τεω −→
ε→0

ω in H1(S), τεf −→
ε→0

f in H2(S),

τεω − ω

ε
−→
ε→0

−ω′ in L2(S),
τεf − f

ε
−→
ε→0

−f ′ in H1(S),

we may pass, in view of Lemma A.1 (i)–(iii), to the limit ε → 0 in the identity above to conclude that

−π
τε(B3(f)[ω]) − B3(f)[ω]

ε
−→
ε→0

C0,1(f)[ω′] − 2C2,2(f, f)[f ′, f, ω] + f ′′C1,1(f)[f, ω] + f ′C1,1(f)[f, ω′]

+ f ′C1,1(f)[f ′, ω] − 2f ′C3,2(f, f)[f ′, f, f, ω]

in L2(S). This proves that B3(f)[ω] ∈ H1(S), with

π(B3(f)[ω])′ = πB3(f)[ω′] − 2C2,2(f, f)[f ′, f, ω] + f ′′C1,1(f)[f, ω]

+ f ′C1,1(f)[f ′, ω] − 2f ′C3,2(f, f)[f ′, f, f, ω].
(3.12)

Lemma A.1 and the arguments in [49, Section 5] finally lead us to

B3 ∈ Cω(H2(S),L(H1(S))), (3.13)

and (3.7) follows now from (3.9), (3.11) and (3.13). This completes the proof. �

We now study the mapping properties of the operator A introduced in (3.2).

Lemma 3.2. Let r > 3/2 be given. It then holds

A ∈ Cω(Hr(S),L(L̂2(S))) ∩ Cω(H2(S),L(Ĥ1(S))). (3.14)



31 Page 12 of 45 B.-V. Matioc JMFM

Proof. Pick first f, ω ∈ C∞(S) with 〈ω〉 = 0 and let V− ∈ C(Ω−) ∩ C1(Ω−) be as defined in Lemma 2.1.
It then holds

2〈V−|[y=f(x)]|(1, f ′)〉 = (1 + A(f))[ω] ∈ C(S),

and therefore A(f)[ω] ∈ L̂2(S) if and only if 〈V−|[y=f(x)]|(1, f ′)〉 ∈ L̂2(S). The latter property follows from
the periodicity of f and P−, where P− ∈ C1(Ω−) is given in (2.6), with respect to x and the relation

V− = − k

μ−
(∇P− + (0, ρ−g)) − (0, V ) in Ω−.

We are thus left to prove that

A ∈ Cω(Hr(S),L(L2(S))) ∩ Cω(H2(S),L(H1(S))). (3.15)

We proceed as in the previous lemma and write

A(f) = −f ′
B2(f) − B1(f) + A3(f), (3.16)

where, using the notation introduced in Lemma A.1, we have

πA3(f)[ω] = f ′C0,1(f)[ω] − C1,1(f)[f, ω].

Similarly as in Lemma 3.1, we get

A3 ∈ Cω(Hr(S),L(L2(S))) ∩ Cω(H2(S),L(H1(S))), (3.17)

with

π(A3(f)[ω])′ = πA3(f)[ω′] + f ′′C0,1(f)[ω] − 2f ′C2,2(f, f)[f ′, f, ω]

− C1,1(f)[f ′, ω] + 2f ′C3,2(f, f)[f ′, f, f, ω].
(3.18)

The properties (3.9), (3.10), and (3.17) combined imply (3.15), and the proof is complete. �

We now address the solvability of Eq. (3.1). To this end we first establish the invertibility of 1+aμA(f)
in L(L̂2(S)). A similar property has been established, under stronger assumptions on f which are not
compatible with our approach, in [21].

Theorem 3.3. Let r > 3/2 and M > 0. Then, there exists a constant C = C(M) > 0 such that

‖ω‖2 ≤ C‖(λ − A(f))[ω]‖2 (3.19)

for all λ ∈ R with |λ| ≥ 1, ω ∈ L̂2(S), and f ∈ Hr(S) with ‖f ′‖∞ ≤ M.

In particular, {λ ∈ R : |λ| ≥ 1} is contained in the resolvent set A(f) ∈ L(L̂2(S)) for each f ∈ Hr(S).

Proof. In view of Lemma 3.2, it suffices to establish the estimate (3.19) for ω, f ∈ C∞(S) with 〈ω〉 = 0
and ‖f ′‖∞ ≤ M. Let V± ∈ C(Ω±) ∩ C1(Ω±) be as defined in Lemma 2.1 and set

F± := (F 1
±, F 2

±) := V±|[y=f(x)]. (3.20)

We denote by τ and ν the tangent and the outward normal unit vectors at ∂Ω− and we decompose F±
in tangential and normal components F± = F τ

± + F ν
±, where

F τ
± = ∓ (1 ∓ A(f))[ω]

2(1 + f ′2)
(1, f ′), F ν

± =
B(f)[ω]

2(1 + f ′2)
(−f ′, 1), (3.21)

cf. (2.5). Recalling the Lemmas 3.1, 3.2, we may view F τ
± and F ν

± as being elements of L2(S, R2).
We next introduce the bilinear form B : L2(S, R2) × L2(S, R2) → R by the formula

B(F,G) :=
∫

S

G2〈F |(−f ′, 1)〉 + F 2〈G|(−f ′, 1)〉 − 〈F |G〉dx
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for F = (F 1, F 2), G = (G1, G2) ∈ L2(S, R2). Inserting the vector fields F± in (3.20), we find by using
Lebesgue’s dominated convergence theorem, Stokes’ formula, and the Lemmas 2.1, 2.2 that

B(F±, F±) =
∫

Γ

〈( 2F 1
±F 2

±
(F 2

±)2 − (F 1
±)2

)∣
∣
∣ν
〉

dσ = ∓
∫

Ω±
div

(
2V 1

±V 2
±

(V 2
±)2 − (V 1

±)2

)

d(x, y) = 0, (3.22)

where Γ denotes again a period of the graph [y = f(x)]. Moreover, in virtue of (3.21), we may write
(3.22) equivalently as

∫

S

1
1 + f ′2

[∣
∣B(f)[ω]

∣
∣2 ∓ 2f ′(

B(f)[ω]
)
(1 ∓ A(f))[ω] − ∣

∣(1 ∓ A(f))[ω]
∣
∣2
]
dx = 0, (3.23)

and, recalling that ‖f ′‖∞ ≤ M , we infer from (3.23) that

‖(1 ± A(f))[ω]‖2 ≤ C‖B(f)[ω]‖2,

with a positive constant C = C(M). In particular we get

‖ω‖2 =
1
2
‖(1 + A(f))[ω] + (1 − A(f))[ω]‖2 ≤ C‖B(f)[ω]‖2. (3.24)

Given λ ∈ R with |λ| ≥ 1, it holds that
∣
∣(1 ∓ A(f))[ω]

∣
∣2 = |(λ − A(f))[ω]|2 − 2(λ ∓ 1)ω(λ − A(f))[ω] + (λ ∓ 1)2|ω|2,

and eliminating the mixed term on the right hand side we obtain together with (3.23) that
∫

S

1
1 + f ′2

[
(λ2 − 1)|ω|2 +

∣
∣B(f)[ω]

∣
∣2 − |(λ − A(f))[ω]|2 − 2f ′(

B(f)[ω]
)
(λ − A(f))[ω]

]
dx = 0,

from where we conclude that

(λ2 − 1)‖ω‖2 + ‖B(f)[ω]‖2 ≤ C‖(λ − A(f))ω‖2,

with a constant C = C(M). The latter estimate and (3.24) yield (3.19). That {λ ∈ R : |λ| ≥ 1} belongs
to the resolvent set of A(f) ∈ L(L̂2(S)) for all f ∈ Hr(S) is a straightforward consequence of (3.19),
Lemma 3.2, and of the continuity method, cf. e.g. [5, Proposition I.1.1.1]. �

The following remark is relevant in Sect. 6 in the stability analysis of the Muskat problem.

Remark 3.4. The estimate

‖ω‖2 ≤ C‖B(f)[ω]‖2

derived in (3.24) enables us to identify the equilibrium solutions to the Muskat problem (1.1) (see (3.4))
as being the solutions to the capillarity equation

(σκ(f) − Θf)′ = 0. (3.25)

We now establish the invertibility of 1 + aμA(f) in the algebra L(Ĥ1(S)) under the assumption that
f ∈ H2(S).

Theorem 3.5. Let M > 0. Then, there exists a constant C = C(M) > 0 such that

‖ω‖H1 ≤ C‖(λ − A(f))[ω]‖H1 (3.26)

for all λ ∈ R with |λ| ≥ 1, ω ∈ Ĥ1(S), and f ∈ H2(S) with ‖f‖H2 ≤ M.

In particular, {λ ∈ R : |λ| ≥ 1} is contained in the resolvent set of A(f) ∈ L(Ĥ1(S)) for each
f ∈ H2(S).
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Proof. Recalling (3.19), we are left to estimate the term ‖((λ − A(f))[ω])′‖2 suitably. To this end, we
infer from (3.16) and (3.18) that

(A(f)[ω])′ = A(f)[ω′] + TA
lot(f)[ω], (3.27)

where the operator TA
lot(f) defined by

πTA
lot(f)[ω] := f ′′C0,1(f)[ω] − 2f ′C2,2(f, f)[f ′, f, ω] − C1,1(f)[f ′, ω]

+ 2f ′C3,2(f, f)[f ′, f, f, ω] − π
(
(f ′

B2(f)[ω])′ − f ′
B2(f)[ω′]

)

− π
(
(B1(f)[ω])′ − B1(f)[ω′]

)
,

(3.28)

encompasses all lower order terms of (A3(f)[ω])′ with respect to ω as, for each τ ∈ (1/2, 1) fixed, it holds

‖TA
lot(f)[ω]‖2 ≤ C‖ω‖Hτ for all ω ∈ Ĥ1(S), (3.29)

with C = C(M). Indeed, letting r := (9 − 2τ)/4, it follows that r ∈ (3/2, 2) and τ ∈ (5/2 − r, 1), and the
estimates (A.1) and (A.3) yield

‖f ′′C0,1(f)[ω] − 2f ′C2,2(f, f)[f ′, f, ω] − C1,1(f)[f ′, ω] + 2f ′C3,2(f, f)[f ′, f, f, ω]‖2 ≤ C‖ω‖Hτ .

Moreover, it follows from (3.9), (3.10) and the compactness of the embedding H2(S) ↪→ Hr(S) that also

‖(f ′
B2(f)[ω])′‖2 + ‖(B1(f)[ω])′‖2 ≤ C‖ω‖Hτ .

Finally, using integration by parts in the formulas defining B1(f) and B2(f) we get

‖f ′
B2(f)[ω′]‖2 + ‖B1(f)[ω′]‖2 ≤ C‖ω‖2,

and (3.29) follows.
Invoking (3.19) and (3.29) we find a constant c = c(M) ∈ (0, 1) with

2‖(λ − A(f))[ω]‖H1 ≥ ‖(λ − A(f))[ω]‖2 + ‖((λ − A(f))[ω])′‖2

≥ ‖(λ − A(f))[ω]‖2 + ‖(λ − A(f))[ω′]‖2 − ‖TA
lot(f)[ω]‖2

≥ c‖ω‖H1 − 1
c
‖ω‖Hτ ,

and since by (3.30)4 and Young’s inequality

‖ω‖Hτ ≤ ‖ω‖1−τ
2 ‖ω‖τ

H1 ≤ c2

2
‖ω‖H1 + C ′‖ω‖2,

for some C ′ = C ′(M), it follows that

4‖(λ − A(f))[ω]‖H1 ≥ c‖ω‖H1 − 2C ′

c
‖ω‖2.

This estimate together with (3.19) leads us to (3.26) and the proof is complete. �

We conclude this section by considering the adjoints of the operators defined in (3.2) and (3.5).
Firstly we establish a similar estimate as in Theorem 3.5 for the operator P (A(f))∗, where (A(f))∗ is the
double layer potential, cf. (3.3), and where P : L2(S) → L̂2(S), with Ph := h−〈h〉, denotes the orthogonal
projection on L̂2(S). This estimate is important later on in the uniqueness proof of Theorem 1.1. Recalling
that (A(f))∗ ∈ L(L2(S)) is the L2-adjoint of A(f) ∈ L(L2(S)), we obtain for ω, ξ ∈ L̂2(S) that

〈A(f)[ω], ξ〉2 = 〈ω, (A(f))∗[ξ]〉2 = 〈ω, P (A(f))∗[ξ]〉2,
meaning that the adjoint

(
Â(f)

)∗ :=
(
A(f)|L̂2(S)

)∗ ∈ L(L̂2(S)) is given by
(
Â(f)

)∗ = P (A(f))∗.

4Letting [ · , · ]θ denote complex interpolation functor, it is well-known that

[Hs0 (S), Hs1 (S)]θ = H(1−θ)s0+θs1 (S), θ ∈ (0, 1), −∞ < s0 ≤ s1 < ∞. (3.30)
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Theorem 3.6. Let M > 0. Then, there exists a constant C = C(M) > 0 such that

‖ξ‖H1 ≤ C‖(λ − (
Â(f)

)∗)[ξ]‖H1 (3.31)

for all λ ∈ R with |λ| ≥ 1, ξ ∈ Ĥ1(S), and f ∈ H2(S) with ‖f‖H2 ≤ M.

In particular, {λ ∈ R : |λ| ≥ 1} is contained in the resolvent set of
(
Â(f)

)∗ ∈ L(Ĥ1(S)) for each
f ∈ H2(S).

Proof. Let M > 0. Taking advantage of the fact that λ − (
Â(f)

)∗ is the L(L̂2(S))-adjoint of λ − A(f) for
each λ ∈ R and f ∈ Hr(R), r > 3/2, it follows from (3.19) there exists a constant C = C(M) such that

‖ξ‖2 ≤ C‖(λ − (
Â(f)

)∗)[ξ]‖2 (3.32)

for all λ ∈ R with |λ| ≥ 1, ξ ∈ Ĥ1(S), and f ∈ H2(S) with ‖f‖H2 ≤ M. In order to show that
(
Â(f)

)∗[ξ] ∈ Ĥ1(S), we note that
(
Â(f)

)∗[ξ] = (A(f))∗[ξ] − 〈(A(f))∗[ξ]〉 = B1(f)[ξ] + B2(f)[f ′ξ] + A3,∗(f)[ξ] − 〈(A(f))∗[ξ]〉,
where B1(f) and B2(f) are introduced in the proof of Lemma 3.1 and where

πA3,∗(f)[ξ] := C1,1(f)[f, ξ] − C0,1(f)[f ′ξ].

The arguments used to derive (3.12) show that A3,∗(f)[ξ] ∈ H1(S) with

π(A3,∗(f)[ξ])′ = πA3,∗(f)[ξ′] + C1,1(f)[f ′, ξ] − C0,1(f)[f ′′ξ] + 2C2,2(f, f)[f ′, f, f ′ξ]

− 2C3,2(f, f)[f ′, f, f, ξ],

and together with (3.9), (3.10) we conclude that indeed
(
Â(f)

)∗[ξ] ∈ Ĥ1(S). Proceeding as in Theorem 3.5,
we may write

((
Â(f)

)∗[ξ]
)′ = (A(f))∗[ξ′] + TA∗

lot (f)[ξ] =
(
Â(f)

)∗[ξ′] + 〈(A(f))∗[ξ′]〉 + TA∗
lot (f)[ξ],

with
πTA∗

lot (f)[ξ] := C1,1(f)[f ′, ξ] − C0,1(f)[f ′′ξ] + 2C2,2(f, f)[f ′, f, f ′ξ]

− 2C3,2(f, f)[f ′, f, f, ξ] + π
(
(B2(f)[f ′ξ])′ − B2(f)[(f ′ξ)′]

)

+ π
(
(B1(f)[ξ])′ − B1(f)[ξ′]

)

satisfying

‖TA∗
lot (f)[ξ]‖2 ≤ C‖ξ‖Hτ for all ξ ∈ Ĥ1(S), (3.33)

for any fixed τ ∈ (1/2, 1) and with a constant C = C(M). Moreover, since A(f)[1] ∈ H1(S), it follows
that

|〈(A(f))∗[ξ′]〉| ≤ |〈(A(f))∗[ξ′], 1〉2| = |〈ξ′, A(f)[1]〉2| =
∣
∣
∣

∫ π

−π

ξ′
A(f)[1]dx

∣
∣
∣

=
∣
∣
∣

∫ π

−π

ξ(A(f)[1])′dx
∣
∣
∣ ≤ ‖ξ‖2‖A(f)[1]‖H1 ≤ C‖ξ‖2,

(3.34)

again with C = C(M). The desired claim (3.31) follows now from (3.32), (3.33), and (3.34) by arguing
as in Theorem 3.5. �

Finally, given f ∈ Hr(S), r > 3/2, let (B(f))∗ ∈ L(L2(S)) denote the adjoint of B(f) ∈ L(L2(S)). The
next lemma is also used later on in the uniqueness proof of Theorem 1.1.

Lemma 3.7. Given M > 0, there exists a constant C = C(M) such that for all f ∈ H2(S) with ‖f‖H2 ≤
M it holds that (B(f))∗ ∈ L(H1(S)) and

‖(B(f))∗‖L(H1(S)) ≤ C.
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Proof. Given f ∈ H2(S), it is not difficult to show that

(B(f))∗[ξ] = −B1(f)[f ′ξ] + B2(f)[ξ] − 1
π

(
C0,1(f)[ξ] + C1,1(f)[f, f ′ξ]

)
, ξ ∈ L2(S).

The desired estimate follows now by arguing as in Lemma 3.1. �

4. The Muskat Problem with Surface Tension Effects

In this section we study the Muskat problem in the case when surface tension effects are included, that
is for σ > 0. The main goal of this section is to prove Theorem 1.1 which is postponed to the end of
the section. As a first step we shall take advantage of the results established in the previous sections to
reexpress the contour integral formulation (1.1) as an abstract evolution equation of the form

ḟ(t) = Φσ(f(t))[f(t)], t > 0, f(0) = f0, (4.1)

with an operator [f �→ Φσ(f)] : H2(S) → L(H3(S), L2(S)) defined in (4.7). The quasilinear character
of the contour integral equation for σ > 0—which is not obvious because of the coupling in (1.1a)2—is
expressed in (4.1) by the fact that Φσ is nonlinear with respect to the first variable f ∈ H2(S), but is
linear with respect to the second variable f ∈ H3(S) which corresponds to the third spatial derivatives of
the function f = f(t, x) in the curvature term in (1.1a)2. A central part of the analysis in this section is
devoted to showing that (4.1) is a parabolic problem in the sense that Φσ(f)—viewed as an unbounded
operator on L2(S) with definition domain H3(S)—is, for each f ∈ H2(S), the generator of a strongly
continuous and analytic semigroup in L(L2(S)), which we denote by writing

−Φσ(f) ∈ H(H3(S), L2(S)). (4.2)

This property needs to be verified before applying the abstract quasilinear parabolic theory outlined in
[1–5] (see also [50]) in the particular context of (4.1).

We begin by solving the Eq. (1.1a)2 for ω. We shall rely on the invertibility properties provided in
Theorems 3.3 and 3.5 and the fact that the Atwood number satisfies |aμ| < 1. In order to disclose the
quasilinear structure of the Muskat problem with surface tension we address at this point the solvability
of the equation

(1 + aμA(f))[ω] = bμ

[
σ

h′′′

(1 + f ′2)3/2
− 3σ

f ′f ′′h′′

(1 + f ′2)3/2
− Θh′

]
, (4.3)

which for h = f coincides, up to a factor of 2, with (1.1a)2. The quasilinearity of the curvature term is
essential here. For the sake of brevity we introduce

bμ :=
k

μ− + μ+
. (4.4)

Since the values of σ > 0 and bμ > 0 are not important in the proof of Theorem 1.1 we set in this section

bμ = σ = 1.

The solvability result in Proposition 4.1 (a) below is the main step towards writing (1.1) in the form
(4.1). The decomposition of the solution operator provided at Proposition 4.1 (b) is essential later on in
the proof of the generator property, as it enables us to use integration by parts when estimating some
terms of leading order.

Proposition 4.1. (a) Given f ∈ H2(S) and h ∈ H3(S), the function

ω(f)[h] := (1 + aμA(f))−1
[ h′′′

(1 + f ′2)3/2
− 3

f ′f ′′h′′

(1 + f ′2)3/2
− Θh′

]

is the unique solution to (4.3) in L̂2(S) and

ω ∈ Cω(H2(S),L(H3(S), L̂2(S))). (4.5)
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(b) Given f ∈ H2(S) and h ∈ H3(S), let

ω1(f)[h] := (1 + aμA(f))−1
[ h′′

(1 + f ′2)3/2
−
〈 h′′

(1 + f ′2)3/2

〉]
,

ω2(f)[h] := (1 + aμA(f))−1
[ − Θh′ + aμTA

lot(f)[ω1(f)[h]]
]
,

where TA
lot is defined in (3.28). Then:

(i) ω1 ∈ Cω(H2(S),L(H3(S), Ĥ1(S))) and ω2 ∈ Cω(H2(S),L(H3(S), L̂2(S)));
(ii)

ω(f) =
d
dx

◦ ω1(f) + ω2(f);

(iii) Given τ ∈ (1/2, 1), there exists a constant C such that

‖ω1(f)[h]‖2 ≤ C‖h‖H2

‖ω1(f)[h]‖Hτ + ‖ω2(f)[h]‖2 ≤ C‖h‖H2+τ

for all h ∈ H3(S). (4.6)

Proof. Observing that the right hand side of (4.3) belongs to L̂2(S), the claim (a) follows from Theo-
rems 3.3.

In order to prove (b) we first note that
[

f �→
[
h �→ h′′

(1 + f ′2)3/2
−
〈 h′′

(1 + f ′2)3/2

〉]]

∈ Cω(H2(S),L(H3(S), Ĥ1(S))),

and since by Theorem 3.5 [f �→ (1 + aμA(f))−1] ∈ Cω(H2(S),L(Ĥ1(S))), we conclude that ω1 is well-
defined together with ω1 ∈ Cω(H2(S),L(H3(S), Ĥ1(S))). Recalling (3.27) and (3.28), it holds

(1 + aμA(f))[ω(f)[h] − (ω1(f)[h])′] = −Θh′ + aμTA
lot(f)[ω1(f)[h]] = (1 + aμA(f))[ω2(f)[h]].

This proves ω2 ∈ Cω(H2(S),L(H3(S), L̂2(S))) together with the claim (ii).
As for (iii), we note that the Theorems 3.3 and 3.5 imply that

‖ω1(f)[h]‖2 ≤ C‖h‖H2 and ‖ω1(f)[h]‖H1 ≤ C‖h‖H3 for all h ∈ H3(S),

and the estimate ‖ω1(f)[h]‖Hτ ≤ C‖h‖H2+τ , h ∈ H3(S), follows from the latter via interpolation. Finally,
recalling Theorem 3.3 and (3.29), it holds

‖ω2(f)[h]‖2 ≤ C(‖h‖H1 + ‖TA
lot(f)[ω1(f)[h]]‖2) ≤ C(‖h‖H1 + ‖ω1(f)[h]‖Hτ )

≤ C‖h‖H2+τ ,

and the proof is complete. �

Proposition 4.1 enables us to recast the contour integral formulation (1.1) of the Muskat problem with
surface tension as the abstract quasilinear evolution problem (4.1), where

Φσ(f)[h] := B(f)[ω(f)[h]] for f ∈ H2(S) and h ∈ H3(S). (4.7)

Proposition 4.1 and Lemma 3.1 imply that

Φσ ∈ Cω(H2(S),L(H3(S), L̂2(S))) ∩ Cω(H2(S),L(H3(S), L2(S))). (4.8)

In the following f ∈ H2(S) is kept fixed. In order to establish the generator property (4.2) for Φσ(f)
it is suitable to decompose this operator as the sum

Φσ(f) = Φσ,1(f) + Φσ,2(f),

where

Φσ,1(f)[h] = B(f)[(ω1(f)[h])′] and Φσ,2(f)[h] = B(f)[ω2(f)[h]].

The operator Φσ,1(f) can be viewed as the leading order part of Φσ(f), while Φσ,2(f) is a lower order
perturbation, see the proof of Theorem 4.3. We study first the leading order part Φσ,1(f). In order
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to establish (4.2) we follow a direct and self-contained approach pursued previously in [29,33,35] and
generalized more recently in [32,47–49] in the context of the Muskat problem. The proof of (4.2) uses a
localization procedure which necessitates the introduction of certain partitions of unity for the unit circle.

To proceed, we choose for each integer p ≥ 3 a set {πp
j : 1 ≤ j ≤ 2p+1} ⊂ C∞(S, [0, 1]), called

p-partition of unity, such that

• suppπp
j =

⋃

n∈Z

(
2πn + Ip

j

)
and Ip

j := [j − 5/3, j − 1/3]
π

2p
;

•
2p+1
∑

j=1

πp
j = 1 in C(S).

To each such p-partition of unity we associate a set {χp
j : 1 ≤ j ≤ 2p+1} ⊂ C∞(S, [0, 1]) satisfying

• suppχp
j =

⋃

n∈Z

(
2πn + Jp

j

)
with Ip

j ⊂ Jp
j := [j − 8/3, j + 2/3]

π

2p
;

• χp
j = 1 on Ip

j .

As a further step we introduce the continuous path

[τ �→ Φσ,1(τf)] : [0, 1] → L(H3(S), L2(S)),

which connects the operator Φσ,1(f) with the Fourier multiplier

Φσ,1(0)[h](x) = B(0)[h′′′](x) =
1
2π

PV
∫ π

−π

h′′′(x − s)
t[s]

ds = H[h′′′](x),

where H denotes as usually the periodic Hilbert transform. Since H is the Fourier multiplier with symbol
(−isign(k))k∈Z, it follows that Φσ,1(0) = −(∂4

x)3/4, that is the symbol of Φσ,1(0) is (−|k|3)k∈Z. In Theo-
rem 4.2, which is the key argument in the proof of (4.2), we establish some commutator type estimates
relating Φσ,1(τf) locally to some explicit Fourier multipliers. The proof of this result is quite technical
and lengthy and uses to a large extent the outcome of Lemma A.1.

Theorem 4.2. Let f ∈ H2(S) and μ > 0 be given. Then, there exist p ≥ 3, a p-partition of unity {πp
j :

1 ≤ j ≤ 2p+1}, a constant K = K(p), and for each j ∈ {1, . . . , 2p+1} and τ ∈ [0, 1] there exist operators

Aj,τ ∈ L(H3(S), L2(S))

such that

‖πp
j Φσ,1(τf)[h] − Aj,τ [πp

j h]‖2 ≤ μ‖πp
j h‖H3 + K‖h‖H11/4 (4.9)

for all j ∈ {1, . . . , 2p+1}, τ ∈ [0, 1], and h ∈ H3(S). The operator Aj,τ is defined by

Aj,τ := − 1
(1 + f ′2

τ (xp
j ))3/2

(∂4
x)3/4, (4.10)

where xp
j ∈ Ip

j is arbitrary, but fixed.

Proof. Let p ≥ 3 be an integer which we fix later on in this proof and let {πp
j : 1 ≤ j ≤ 2p+1} be a

p-partition of unity, respectively, let {χp
j : 1 ≤ j ≤ 2p+1} be a family associated to this p-partition of

unity as described above. In the following, we denote by C constants which are independent of p ∈ N,
h ∈ H3(S), τ ∈ [0, 1], and j ∈ {1, . . . , 2p+1}, while the constants denoted by K may depend only on p.
Step 1: The lower order terms. Using the decomposition provided in the proof of Lemma 3.1 for the
operator B, we write

Φσ,1(τf)[h] = f ′
τB1(fτ )[ω′

1] − B2(fτ )[ω′
1] +

1
π

C0,1(fτ )[ω′
1] +

1
π

f ′
τC1,1(fτ )[fτ , ω′

1], (4.11)

where, for the sake of brevity, we have set

ω1 := ω1(τf)[h] and fτ := τf.
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Using integration by parts, we infer from (4.6) that

‖πp
j

[
f ′

τB1(fτ )[ω′
1] − B2(fτ )[ω′

1]
]‖2 ≤ C‖ω1‖2 ≤ C‖h‖H2 , (4.12)

and we are left to consider the last two terms in (4.11).
Step 2: The first leading order term. Given 1 ≤ j ≤ 2p+1 and τ ∈ [0, 1], let

A
1
j,τ := − f ′2

τ (xp
j )

(1 + f ′2
τ (xp

j ))5/2
(∂4

x)3/4,

where xp
j ∈ Ip

j . In this step we show that if p is sufficiently large, then

‖πp
j f ′

τC1,1(fτ )[fτ , ω′
1] − πA

1
j,τ [πp

j h]|2 ≤ μ

2
‖πp

j h‖H3 + K‖h‖H11/4 (4.13)

for all j ∈ {1, . . . , 2p+1}, τ ∈ [0, 1], and h ∈ H3(S). To this end we write

πp
j f ′

τC1,1(fτ )[fτ , ω′
1] − πA

1
j,τ [πp

j h] = T1[h] + T2[h] + T3[h],

where

T1[h] := πp
j f ′

τC1,1(fτ )[fτ , ω′
1] − f ′

τ (xp
j )C1,1(fτ )[fτ , πp

j ω′
1],

T2[h] := f ′
τ (xp

j )C1,1(fτ )[fτ , πp
j ω′

1] − f ′2
τ (xp

j )
1 + f ′2

τ (xp
j )

C0,0[π
p
j ω′

1],

T3[h] :=
f ′2

τ (xp
j )

1 + f ′2
τ (xp

j )

[

C0,0[π
p
j ω′

1] +
π

(1 + f ′2
τ (xp

j ))3/2
(∂4

x)3/4[πp
j h]

]

.

We first consider T1[h]. Recalling that χp
jπ

p
j = πp

j , algebraic manipulations lead us to

T1[h] := χp
j (f

′
τ − f ′

τ (xp
j ))C1,1(fτ )[fτ , πp

j ω′
1] + T11[h],

and the term T11[h] may be expressed, after integrating by parts, as

T11[h] = f ′
τC1,1(fτ )[fτ , (πp

j )′ω1] − 2f ′
τC2,1(fτ )[πp

j , fτ , ω1] + f ′
τC1,1(fτ )[πp

j , f ′
τω1]

− 2f ′
τC3,2(fτ , fτ )[πp

j , fτ , fτ , f ′
τω1] + 2f ′

τC4,2(fτ , fτ )[πp
j , fτ , fτ , fτ , ω1]

+ (f ′
τ (xp

j ) − f ′
τ )(1 − χp

j )C1,1(fτ )[fτ , (πp
j )′ω1]

+ (f ′
τ (xp

j ) − f ′
τ )C1,1(fτ )[χp

j , π
p
j f ′

τω1] − 2(f ′
τ (xp

j ) − f ′
τ )C2,1(fτ )[χp

j , fτ , πp
j ω1]

− 2(f ′
τ (xp

j ) − f ′
τ )C3,2(fτ , fτ )[χp

j , fτ , fτ , πp
j f ′

τω1]

+ 2(f ′
τ (xp

j ) − f ′
τ )C4,2(fτ , fτ )[χp

j , fτ , fτ , fτ , πp
j ω1].

Lemma A.1 (i) together with (4.6) yields

‖T11[h]‖2 ≤ K‖ω1‖2 ≤ K‖h‖H2 , (4.14)

and

‖C1,1(fτ )[fτ , πp
j ω′

1]‖2 ≤ C‖πp
j ω′

1‖2. (4.15)

Hence, we need to estimate the term ‖πp
j ω′

1‖2 appropriately. The relation (3.27) and the definition of ω1

(see Proposition 4.1 (b)), yield

(1 + aμA(fτ ))[(πp
j ω1)′] =

πp
j h′′′

(1 + f ′2
τ )3/2

− 3πp
j f ′

τf ′′
τ h′′

(1 + f ′2
τ )5/2

− aμπp
j TA

lot(fτ )[ω1]

+ (1 + aμA(fτ ))[(πp
j )′ω1] + aμ

(
A(fτ )[πp

j ω′
1] − πp

j A(fτ )[ω′
1]
)
,

(4.16)

and the last term on the right hand side of (4.16) can be recast as

π(A(fτ )[πp
j ω′

1] − πp
j A(fτ )[ω′

1]) = πf ′
τ (πp

j B2(fτ )[ω′
1] − B2(fτ )[πp

j ω′
1])

+ π(πp
j B1(fτ )[ω′

1] − B1(fτ )[πp
j ω′

1])
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+ f ′
τ (C0,1(fτ )[πp

j ω′
1] − πp

j C0,1(fτ )[ω′
1])

− (C1,1(fτ )[fτ , πp
j ω′

1] − πp
j C1,1(fτ )[fτ , ω′

1]).

Integration by parts and Lemma A.1 (i) lead us to

‖f ′
τB2(fτ )[πp

j ω′
1]‖2 + ‖f ′

τπp
j B2(fτ )[ω′

1]‖2 + ‖πp
j B1(fτ )[ω′

1]‖2 + ‖B1(fτ )[πp
j ω′

1]‖2

+ ‖f ′
τ (C0,1(fτ )[πp

j ω′
1] − πp

j C0,1(fτ )[ω′
1])‖2 + ‖C1,1(fτ )[fτ , πp

j ω′
1] − πp

j C1,1(fτ )[fτ , ω′
1]‖2

≤ K‖ω1‖2 ≤ K‖h‖H2 .

(4.17)

Theorem 3.3, Lemma 3.2 (which can be applied as (πp
j ω1)′ ∈ L̂2(S)), (3.29) and (4.6) (both for τ = 3/4),

and (4.16), (4.17) combined yield

‖(πp
j ω1)′‖2 ≤ C‖πp

j h‖H3 + K‖h‖H11/12 + K‖ω1‖H3/4 ≤ C‖πp
j h‖H3 + K‖h‖H11/12 ,

and (4.6) now entails

‖πp
j ω′

1‖2 ≤ ‖(πp
j ω1)′‖2 + ‖(πp

j )′ω1‖2 ≤ C‖πp
j h‖H3 + K‖h‖H11/12 . (4.18)

Recalling that xp
j ∈ Ip

j ⊂ Jp
j and suppχp

j = ∪n∈Z(2πn + Jp
j ), the embedding H1(S) ↪→ C1/2(S) together

with (4.14) (4.15), and (4.18) finally yield

‖T1[h]‖2 ≤ C‖χp
j (f

′ − f ′(xp
j ))‖∞‖πp

j h‖H3 + K‖h‖H11/12 ≤ C

2p/2
‖πp

j h‖H3 + K‖h‖H11/12

≤ μ

6
‖πp

j h‖H3 + K‖h‖H11/12 ,
(4.19)

provided that p is sufficiently large.

Noticing that

f ′
τ (xp

j )
1 + f ′2

τ (xp
j )

C0,0[π
p
j ω′

1] = C1,1(f ′
τ (xp

j )idR)[f ′
τ (xp

j )idR, πp
j ω′

1]

we write the term T2[h] as

T2[h] = f ′
τ (xp

j )T21[h] − f ′2
τ (xp

j )
1 + f ′2

τ (xp
j )

T22[h],

where

T21[h] := C1,1(fτ )[fτ − f ′
τ (xp

j )idR, πp
j ω′

1],

T22[h] := C2,1(fτ )[fτ − f ′
τ (xp

j )idR, fτ + f ′
τ (xp

j )idR, πp
j ω′

1].

Though f ′
τ (xp

j )idR is not 2π-periodic, it is easy to see that the functions T2i[h] still belong to L2(S) for
i ∈ {1, 2}. Since χp

jπ
p
j = πp

j , we have

T21[h] := T21a[h] + T21b[h],

where

T21a[h] := χp
jPV

∫

|s|< π
2p

δ[·,s](fτ − f ′
τ (xp

j )idR)/s

1 +
(
δ[·,s]fτ/s

)2

(πp
j ω′

1)(· − s)
s

ds,

T21b[h] := χp
jPV

∫

π
2p <|s|<π

δ[·,s](fτ − f ′
τ (xp

j )idR)/s

1 +
(
δ[·,s]fτ/s

)2

(πp
j ω′

1)(· − s)
s

ds

−
∫ π

−π

(
δ[·,s](fτ − f ′

τ (xp
j )idR)/s

)(
δ[·,s]χ

p
j/s

)

1 +
(
δ[·,s]fτ/s

)2 (πp
j ω′

1)(· − s)ds.

Integrating by parts we obtain in view of (4.6) that

‖T21b[h]‖2 ≤ K‖ω1‖2 ≤ K‖h‖H2 .
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Since T21a[h] ∈ L2(S), it holds ‖T21a[h]‖2 = ‖T21a[h]‖L2((−π,π)). Clearly, if x ∈ supp(1(−π,π)T21a[h]), then

x ∈ (−π, π) ∩ ( ∪n∈Z (2nπ + Jp
j )
)
.

Letting Jp
j := [ap

j , b
p
j ], p ≥ 3, 1 ≤ j ≤ 2p+1, we distinguish three cases.

(i) If 1 ≤ j ≤ 2p − 1, then (−π, π) ∩ (
2πn + Jp

j

) = ∅ if and only if n = 0 and

(−π, π) ∩ Jp
j = [ap

j , b
p
j ].

(ii) If 2p + 3 ≤ j ≤ 2p+1, then (−π, π) ∩ (
2πn + Jp

j

) = ∅ if and only if n = −1 and

(−π, π) ∩ (−2π + Jp
j ) = [ap

j − 2π, bp
j − 2π].

(iii) If j ∈ {2p, 2p + 1, 2p + 2}, then (−π, π) ∩ (
2πn + Jp

j

) = ∅ if and only if n ∈ {−1, 0}, and

(−π, π) ∩ Jp
j = [ap

j , π) and (−π, π) ∩ (−2π + Jp
j ) = (−π,−2π + bp

j ].

Assume that we are in the first case, that is 1 ≤ j ≤ 2p − 1. Let Fτ,j be the Lipschitz continuous function
given by

Fτ,j = fτ on [ap
j , b

p
j ], F ′

τ,j = f ′
τ (xp

j ) on R\[ap
j , b

p
j ].

Then ‖F ′
τ,j‖∞ ≤ ‖f ′‖∞. Taking into account that (suppπp

j ) ∩ [ap
j − π/2p, bp

j + π/2p] ⊂ [ap
j , b

p
j ], it follows

that

1(−π,π)T21a[h] = 1(−π,π)χ
p
jPV

∫

|s|< π
2p

δ[·,s](Fτ,j − f ′
τ (xp

j )idR)/s

1 +
(
δ[·,s]fτ/s

)2

(πp
j ω′

1)(· − s)
s

ds,

= 1(−π,π)χ
p
jC1,1(fτ )[Fτ,j − f ′

τ (xp
j )idR, πp

j ω′
1]

− 1(−π,π)χ
p
jPV

∫

π
2p <|s|<π

δ[·,s](Fτ,j − f ′
τ (xp

j )idR)/s

1 +
(
δ[·,s]fτ/s

)2

(πp
j ω′

1)(· − s)
s

ds,

and, using integration by parts and (4.6), we arrive at
∥
∥
∥χp

jPV
∫

π
2p <|s|<π

δ[·,s](Fτ,j − f ′
τ (xp

j )idR)/s

1 +
(
δ[·,s]fτ/s

)2

(πp
j ω′

1)(· − s)
s

ds
∥
∥
∥

L2((−π,π))
≤ K‖ω1‖2 ≤ K‖h‖H2 .

Moreover, combining Lemma A.1 (i) and (4.18), we find that

‖χp
jC1,1(fτ )[Fτ,j − f ′

τ (xp
j )idR, πp

j ω′
1]‖L2((−π,π)) ≤ C‖F ′

τ,j − f ′
τ (xp

j )‖∞‖πp
j ω′

1‖2

≤ C‖f ′ − f ′(xp
j )‖L∞((ap

j ,bp
j ))

(‖πp
j h‖H3 + K‖h‖H11/12

)

≤ μ

12
‖πp

j h‖H3 + K‖h‖H11/12 ,

provided that p is sufficiently large. Altogether, we conclude that for 1 ≤ j ≤ 2p − 1 it holds

‖T21[h]‖2 ≤ μ

12
‖πp

j h‖H3 + K‖h‖H11/12 . (4.20)

Similar arguments apply also in the cases (ii) and (iii), and therefore the latter estimate actually holds
for all 1 ≤ j ≤ 2p+1. Since T22[h] can be estimated in the same way, we obtain that

‖T2[h]‖2 ≤ μ

6
‖πp

j h‖H3 + K‖h‖H11/12 , (4.21)

provided that p is sufficiently large.
With regard to T3[h], it holds

‖T3[h]‖2 ≤
∥
∥
∥C0,0[π

p
j ω′

1] +
π

(1 + f ′2
τ (xp

j ))3/2
(∂4

x)3/4[πp
j h]

∥
∥
∥

2
,



31 Page 22 of 45 B.-V. Matioc JMFM

with

C0,0[π
p
j ω′

1] +
π

(1 + f ′2
τ (xp

j ))3/2
(∂4

x)3/4[πp
j h] =C0,0

[

πp
j ω′

1 − πp
j h′′′

(1 + f ′2
τ (xp

j ))3/2

]

− 1
(1 + f ′2

τ (xp
j ))3/2

C0,0[3(πp
j )′h′′ + 3(πp

j )′′h′ + (πp
j )′′′h]

− 1
2(1 + f ′2

τ (xp
j ))3/2

∫ π

−π

[
1

t[s]
− 1

s/2

]

(πp
j h)′′′(· − s)ds.

Integration by parts and Lemma A.1 (i) lead us to
∥
∥
∥C0,0[π

p
j ω′

1] +
π

(1 + f ′2
τ (xp

j ))3/2
(∂4

x)3/4[πp
j h]

∥
∥
∥

2
≤ C

∥
∥
∥πp

j ω′
1 − πp

j h′′′

(1 + f ′2
τ (xp

j ))3/2

∥
∥
∥

2
+ K‖h‖H2 .

A straight forward consequence of (4.16) is the following identity

πp
j ω′

1 − πp
j h′′′

(1 + f ′2
τ (xp

j ))3/2
=

[
1

(1 + f ′2
τ )3/2

− 1
(1 + f ′2

τ (xp
j ))3/2

]

πp
j h′′′ − aμA(fτ )[πp

j ω′
1]

− 3πp
j f ′

τf ′′
τ h′′

(1 + f ′2
τ )5/2

− aμπp
j TA

lot(fτ )[ω1] + aμ

(
A(fτ )[πp

j ω′
1] − πp

j A(fτ )[ω′
1]
)
.

Using once more the Hölder continuity of f ′, (3.29) and (4.6) (both with τ = 3/4) together with (4.17)
yields that for p sufficiently large

‖T3[h]‖2 ≤ C‖f ′
τC0,1(fτ )[πp

j ω′
1] − C1,1(fτ )[fτ , πp

j ω′
1]‖2 +

μ

24
‖πp

j h‖H3 + K‖h‖H11/12 . (4.22)

We are left with the term

f ′
τC0,1(fτ )[πp

j ω′
1] − C1,1(fτ )[fτ , πp

j ω′
1] = T31[h] − T21[h],

with T21[h] defined above and with

T31[h] := (f ′
τ − f ′

τ (xp
j ))C0,1(fτ )[πp

j ω′
1].

Since

T31[h] = χp
j (f

′
τ − f ′

τ (xp
j ))C0,1(fτ )[πp

j ω′
1] − (f ′

τ − f ′
τ (xp

j ))
∫ π

−π

δ[·,s]χ
p
j/s

1 +
(
δ[·,s]fτ/s

)2 (πp
j ω′

1)(· − s)ds,

the estimate (4.18) and Lemma A.1 (i) for the first term, respectively integration by parts for the second
term lead us, for p sufficiently large, to

C‖T31[h]‖2 ≤ μ

24
‖πp

j h‖H3 + K‖h‖H11/12 . (4.23)

Gathering (4.20) (which is valid also for C‖T21[h]‖2 provided that we choose a larger p if required), (4.22),
and (4.23), we conclude that

‖T3[h]‖2 ≤ μ

6
‖πp

j h‖H3 + K‖h‖H11/12 , (4.24)

provided that p is sufficiently large. The estimate (4.13) follows now from (4.19), (4.21), and (4.24).

Step 2: The second leading order term. Given 1 ≤ j ≤ 2p+1 and τ ∈ [0, 1], let

A
2
j,τ := − 1

(1 + f ′2
τ (xp

j ))5/2
(∂4

x)3/4,

where xp
j ∈ Ip

j . Similarly as in the previous step, it follows that
∥
∥
∥πp

j C0,1(fτ )[ω′
1] − πA

2
j,τ [πp

j h]
∣
∣
∣
2

≤ μ

2
‖πp

j h‖H3 + K‖h‖H11/4 (4.25)

for all j ∈ {1, . . . , 2p+1}, τ ∈ [0, 1], and h ∈ H3(S), provided that p is sufficiently large.
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The desired claim (4.9) follows from (4.11), (4.12), (4.13), and (4.25). �

We are now in a position to prove (4.2).

Theorem 4.3. Given f ∈ H2(S), it holds that

−Φσ(f) ∈ H(H3(S), L2(S)).

Proof. Let Φc
σ(f) = Φc

σ,1(f) + Φc
σ,2(f) denote the complexification of Φσ(f) (the Sobolev spaces where

Φc
σ(f) acts are now complex valued). In view of [46, Corollary 2.1.3] is suffices to show that −Φc

σ(f) ∈
H(H3(S), L2(S)). Moreover, for the choice τ = 3/4 in Proposition 4.1 (b), we obtain together with
Lemma 3.1, that Φc

σ,2(f) ∈ L(H11/4(S), L2(S)). Since [L2(S),H3(S)]11/12 = H11/4(S), cf. (3.30), by [5,
Theorem I.1.3.1 (ii)] we only need to show that

−Φc
σ,1(f) ∈ H(H3(S), L2(S)). (4.26)

Recalling [5, Remark I.1.21 (a) ], we are left to find constants ω > 0 and κ ≥ 1 such that

ω − Φc
σ,1(f) ∈ Isom(H3(S), L2(S)), (4.27)

κ‖(λ − Φc
σ,1(f))[h]‖2 ≥ |λ| · ‖h‖2 + ‖h‖H3 ∀h ∈ H3(S) and Reλ ≥ ω. (4.28)

Let a > 1 be chosen such that
1
a

≤ 1
(1 + ‖f ′‖2∞)3/2

≤ a.

For each α ∈ [a−1, a], let Aα : H3(S) → L2(S) denote operator Aα := −α(∂4
x)3/4. Then it is easy to see

that for κ′ := 1 + a the following hold

λ − Aα ∈ Isom(H3(S), L2(S)) ∀Reλ ≥ 1, (4.29)

κ′‖(λ − Aα)[h]‖2 ≥ |λ| · ‖h‖2 + ‖h‖H3 ∀h ∈ H3(S) and Reλ ≥ 1. (4.30)

Taking μ := 1/(2κ′) in Theorem 4.2, we find p ≥ 3, a p-partition of unity {πp
j : 1 ≤ j ≤ 2p+1}, a constant

K = K(p), and for each j ∈ {1, . . . , 2p+1} and τ ∈ [0, 1] operators A
c
j,τ ∈ L(H3(S), L2(S)) (Ac

j,τ is the
complexification of Aj,τ defined in (4.10)) such that

‖πp
j Φc

σ,1(τf)[h] − A
c
j,τ [πp

j h]‖2 ≤ μ‖πp
j h‖H3 + K‖h‖H11/4 (4.31)

for all j ∈ {1, . . . , 2p+1}, τ ∈ [0, 1], and h ∈ H3(S). We note that the relations (4.29) and (4.30) are both
valid for A

c
j,τ as A

c
j,τ ∈ {Aα : α ∈ [a−1, a]}. It now follows from (4.30) and (4.31) that

κ′‖πp
j (λ − Φc

σ,1(τf))[h]‖2 ≥ κ′‖(λ − A
c
j,τ (f))[πp

j h]‖2 − κ′‖πp
j Φc

σ,1(τf)[h] − A
c
j,τ [πp

j h]‖2

≥ |λ| · ‖πp
j h‖2 +

1
2
‖πp

j h‖H3 − κ′K‖h‖H11/4

for all j ∈ {1, . . . , 2p+1}, τ ∈ [0, 1], and h ∈ H3(S). Since for each k ∈ N

[
h �→ max

1≤j≤2p+1
‖πp

j h‖Hk

]
: Hk(S) → R,

defines a norm equivalent to the standard Hk(S)-norm, cf. [47, Remark 4.1], Young’s inequality together
with (3.30) enables us to conclude from the previous inequality the existence of constants ω > 1 and
κ ≥ 1 with

κ‖(λ − Φc
σ,1(τf))[h]‖2 ≥ |λ| · ‖h‖2 + ‖h‖H3 ∀h ∈ H3(S), τ ∈ [0, 1], and Reλ ≥ ω. (4.32)

Choosing τ = 1 in (4.32) we obtain (4.28). Moreover, the estimate (4.32) for λ = ω, (4.29) (Φc
σ,1(τf) = A1

for τ = 0), and the method of continuity [5, Proposition I.1.1.1] ensure that the property (4.27) also holds
and the proof is complete. �
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We now come to the proof our first main result which uses on the one hand the abstract theory for
quasilinear parabolic problems outlined in [1–5] (see also [50, Theorem 1.1]), and on the other hand a
parameter trick which has been employed in various versions in [8,34,47–49,57] in the context of improving
the regularity of solutions to certain parabolic evolution equations. We point out that the parameter trick
can only be used because the uniqueness claim of Theorem 1.1 holds in the setting of classical solution
(the solutions in Theorem 1.1 possess though additional Hölder regularity properties, see the proof of
Theorem 1.1).

Proof of Theorem 1.1. Let E1 := H3(S), E0 := L2(S), β := 2/3 and α := r/3. Then E1 ↪→ E0 is a
compact embedding, 0 < β < α < 1, and it follows from Theorem 4.3 and (4.8) that the abstract result
[50, Theorem 1.1] may be applied in the context of the Muskat problem (4.1). Hence, given f0 ∈ Hr(S) =
[L2(S),H3(S)]α, (4.1) possesses a unique classical solution f = f( · ; f0), that is

f ∈ C([0, T+(f0)),Hr(S)) ∩ C((0, T+(f0)),H3(S)) ∩ C1((0, T+(f0)), L2(S)),

where T+(f0) ≤ ∞, which has the property that

f ∈ Cα−β([0, T ],H2(S)) for all T < T+(f0).

Concerning the uniqueness statement of Theorem 1.1 (i), it suffices to prove that if T > 0 and

f ∈ C([0, T ],Hr(S)) ∩ C((0, T ],H3(S)) ∩ C1((0, T ], L2(S)) (4.33)

solves (4.1) pointwise, then

f ∈ Cη([0, T ],H2(S)) for η :=
r − 2
r + 1

, (4.34)

cf. [50, Theorem 1.1]. Let thus f be a solution to (4.1) which satisfies (4.33). Since f ∈ C([0, T ],Hr(S))
and r > 2, we deduce from the Theorems 3.3 and 3.5 via interpolation that

sup
t∈[0,T ]

‖(1 + aμA(f))−1‖L(Ĥr−2(S))
≤ C.

Since 〈κ(f)〉 = 0 and supt∈[0,T ] ‖κ(f)‖Hr−2 ≤ C, it follows for ω1 := ω1(f)[f ] = (1 + aμA(f))−1[κ(f)]
(see Proposition 4.1) that

sup
t∈[0,T ]

‖ω1‖Hr−2 ≤ C. (4.35)

We next show that

sup
t∈(0,T ]

‖Φσ,1(f)[f ]‖H−1 + sup
t∈(0,T ]

‖Φσ,2(f)[f ]‖H−1 ≤ C. (4.36)

It follows from the definitions of Φσ,1 and ω1 that

Φσ,1(f)[f ] = f ′
B1(f)[ω′

1] − B2(f)[ω′
1] +

1
π

(
C0,1(f)[ω′

1] + f ′C1,1(f)[f, ω′
1]
)
, t ∈ (0, T ].

Using integration by parts, it is not difficult to derive, with the help of (4.35), the estimate

sup
t∈(0,T ]

‖f ′
B1(f)[ω′

1]‖2 + sup
t∈(0,T ]

‖B2(f)[ω′
1]‖2 ≤ C, (4.37)

and we are left to consider the terms C0,1(f)[ω′
1] and f ′C1,1(f)[f, ω′

1]. Since ω1 ∈ H1(S) for t ∈ (0, T ], it
is shown in Lemma 3.1 that C1,1(f)[f, ω1] ∈ H1(S) with

f ′C1,1(f)[f, ω′
1] = f ′(C1,1(f)[f, ω1])′ − f ′C1,1(f)[f ′, ω1] + 2f ′C3,2(f, f)[f ′, f, f, ω1].

We estimate the terms on the right hand side of the latter identity in the H−1-norm one by one. Given
ϕ ∈ H1(S), integration by parts, (4.35), and Lemma A.1 (i) yield

∣
∣
∣

∫ π

−π

f ′(C1,1(f)[f, ω1])′ϕdx
∣
∣
∣ ≤

∣
∣
∣

∫ π

−π

f ′′C1,1(f)[f, ω1]ϕdx
∣
∣
∣ +

∣
∣
∣

∫ π

−π

f ′C1,1(f)[f, ω1]ϕ′dx
∣
∣
∣ ≤ C‖ϕ‖H1 ,
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and therewith

sup
t∈(0,T ]

‖f ′(C1,1(f)[f, ω1])′‖H−1 ≤ C. (4.38)

In order to estimate f ′C1,1(f)[f ′, ω1] we write

C1,1(f)[f ′, ω1] = T1 − T2 − T3,

where

T1 :=
∫ π

0

δ[x,s]f
′/s

1 +
(
δ[x,s]f/s

)2
ω1(x − s) − ω1(x + s)

s
ds,

T2 :=
∫ π

0

1

1 +
(
δ[x,s]f/s

)2
f ′(x + s) − 2f ′(x) + f ′(x − s)

s

ω1(x + s)
s

ds,

T3 :=
∫ π

0

[
(δ[x,s]f/s) − (δ[x,−s]f/s)

](
δ[x,−s]f

′/s
)

[
1 +

(
δ[x,s]f/s

)2][1 +
(
δ[x,−s]f/s

)2]
f(x + s) − 2f(x) + f(x − s)

s

ω1(x + s)
s

ds.

Given ϕ ∈ H1(S), Fubini’s theorem yields for t ∈ (0, T ]
∣
∣
∣

∫ π

−π

f ′T1ϕdx
∣
∣
∣ ≤ C‖ϕ‖H1

∫ π

0

∫ π

−π

∣
∣
∣
δ[x,s]f

′

s

∣
∣
∣ ·

∣
∣
∣
ω1(x − s) − ω1(x + s)

s

∣
∣
∣dxds

≤ C‖ϕ‖H1

∫ π

0

1
s2

(∫ π

−π

|f ′ − τsf
′|2dx

)1/2 (∫ π

−π

|τsω1 − τ−sω1|2dx

)1/2

ds

≤ C‖ϕ‖H1

∫ π

0

1
s2

(
∑

k∈Z

|k|2|f̂(k)|2|eiks − 1|2
)1/2 (

∑

k∈Z

|ω̂1(k)|2|ei2ks − 1|2
)1/2

ds,

and since |eiξ − 1| ≤ C|ξ|, respectively |eiξ − 1| ≤ C|ξ|r−2, for all ξ ∈ R, the latter inequality together
with (4.35) leads to

‖f ′T1‖H−1 ≤ C‖f‖H2‖ω1‖Hr−2

∫ π

0

sr−3ds ≤ C.

Arguing along the same lines we find for t ∈ (0, T ], in view of |eiξ −2+ e−iξ| ≤ C|ξ|r−1 for all ξ ∈ R, that
∣
∣
∣

∫ π

−π

f ′T2ϕdx
∣
∣
∣ ≤ C‖ϕ‖H1‖ω1‖2

∫ π

0

1
s2

(∫ π

−π

|τ−sf
′ − 2f ′ + τsf

′|2dx

)1/2

ds

≤ C‖ϕ‖H1

∫ π

0

1
s2

(
∑

k∈Z

|k|2|f̂(k)|2|eiks − 2 + e−iks|2
)1/2

ds

≤ C‖ϕ‖H1‖f‖Hr

∫ π

0

sr−3ds,

and therewith

‖f ′T2‖H−1 ≤ C.

Finally, the inequality |eiξ − 2 + e−iξ| ≤ C|ξ|2 for all ξ ∈ R together with the Sobolev embedding
Hr−1(S) ↪→ Cr−3/2(S) for r = 5/2, yield for t ∈ (0, T ] that

∣
∣
∣

∫ π

−π

f ′T3ϕdx
∣
∣
∣ ≤ C‖ϕ‖H1‖ω1‖2‖f‖Hr

∫ π

0

smin{−2,r−9/2}
(∫ π

−π

|τ−sf − 2f + τsf |2dx

)1/2

ds

≤ C‖ϕ‖H1

∫ π

0

smin{−2,r−9/2}
(
∑

k∈Z

|f̂(k)|2|eiks − 2 + e−iks|2
)1/2

ds
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≤ C‖ϕ‖H1‖f‖H2

∫ π

0

smin{0,r−5/2}ds,

hence

‖f ′T3‖H−1 ≤ C.

The latter estimate clearly holds also for r = 5/2. We have thus shown that

sup
t∈(0,T ]

‖f ′C1,1(f)[f ′, ω1]‖H−1 ≤ C (4.39)

holds true. Similarly

sup
t∈(0,T ]

‖f ′C3,2(f, f)[f ′, f, f, ω1]‖H−1 ≤ C. (4.40)

Gathering (4.38)–(4.40), it follows that

sup
t∈(0,T ]

‖f ′C1,1(f)[f, ω′
1]‖H−1 ≤ C. (4.41)

Similarly, we get

sup
t∈(0,T ]

‖C0,1(f)[ω′
1]‖H−1 ≤ C, (4.42)

and (4.37), (4.41), and (4.42) lead to

sup
t∈(0,T ]

‖Φσ,1(f)[f ]‖H−1 ≤ C. (4.43)

We now consider the second term Φσ,2. Given t ∈ (0, T ], it holds

Φσ,2(f)[f ] = B(f)[ω2(f)[f ]] = −ΘB(f)[(1 + aμA(f))−1[f ′]] + aμB(f)[(1 + aμA(f))−1[TA
lot(f)[ω1]]],

and Lemma 3.1 together with Theorem 3.3 yields

‖B(f)[(1 + aμA(f))−1[f ′]]‖2 ≤ C‖(1 + aμA(f))−1[f ′]‖2 ≤ C‖f ′‖2 ≤ C ∀t ∈ [0, T ]. (4.44)

We now estimate ‖B(f)[ω3]‖H−1 , where ω3 := ω3(f) := (1+aμA(f))−1[TA
lot(f)[ω1]] ∈ L̂2(S) for t ∈ (0, T ].

We begin by showing that the function TA
lot(f)[ω1] ∈ L̂2(S), see (3.28), satisfies

sup
t∈(0,T ]

‖TA
lot(f)[ω1]‖1 ≤ C. (4.45)

Firstly we consider the difference (f ′
B2(f)[ω1])′ − f ′

B2(f)[ω′
1], which we estimate, in view of (4.35) and

Lemma 3.2, as follows

‖(f ′
B2(f)[ω1])′ − f ′

B2(f)[ω′
1]‖1 ≤ ‖f ′′

B2(f)[ω1]‖1 + ‖f ′‖∞‖(B2(f)[ω1])′ − B2(f)[ω′
1]‖1

≤ ‖f ′′‖2‖B2(f)[ω1]‖2 + C‖(B2(f)[ω1])′ − B2(f)[ω′
1]‖1

≤ C(1 + ‖(B2(f)[ω1])′ − B2(f)[ω′
1]‖1).

Secondly, it is not difficult to see that

‖(B1(f)[ω1])′ − B1(f)[ω′
1]‖1 + ‖(B2(f)[ω1])′ − B2(f)[ω′

1]‖1 ≤ C‖ω1‖2 ≤ C.

We still need to estimate the terms of TA
lot(f)[ω1] defined by means of the operators Cn,m introduced

in Lemma A.1. This is done as follows

‖f ′′C0,1(f)[ω1]‖1 ≤ ‖f ′′‖2‖C0,1(f)[ω1]‖2 ≤ C‖ω1‖2 ≤ C,

‖f ′C2,2(f, f)[f ′, f, ω1]‖1 + ‖C1,1(f)[f ′, ω1]‖1 + ‖f ′C3,2(f, f)[f ′, f, f, ω1]‖1 ≤ C,

the last estimate following in a similar way as (4.39). Altogether, (4.45) holds true.
Given t ∈ (0, T ], we compute for ϕ ∈ H1(S) that

∣
∣
∣

∫ π

−π

ω3ϕdx
∣
∣
∣ =

∣
∣
∣

∫ π

−π

(1 + aμA(f))−1[TA
lot(f)[ω1]]Pϕdx

∣
∣
∣
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=
∣
∣
∣

∫ π

−π

TA
lot(f)[ω1](1 + aμ

(
Â(f)

)∗)−1[Pϕ]dx
∣
∣
∣

≤ ‖TA
lot(f)[ω1]‖1‖(1 + aμ

(
Â(f)

)∗)−1‖L(Ĥ1(S))
‖Pϕ‖H1 ,

where P is the orthogonal projection on L̂2(S). This inequality together with Theorem 3.6 and (4.45)
implies

sup
t∈(0,T ]

‖ω3‖H−1 ≤ C. (4.46)

Since for t ∈ (0, T ] and ϕ ∈ H1(S)
∣
∣
∣

∫ π

−π

B(f)[ω3]ϕdx
∣
∣
∣ =

∣
∣
∣

∫ π

−π

ω3(B(f))∗[ϕ]dx
∣
∣
∣ ≤ ‖ω3‖H−1‖(B(f))∗‖L(Ĥ1(S))

‖ϕ‖H1 ,

Lemma 3.7 together with (4.46) lead us to

sup
t∈(0,T ]

‖B(f)[ω3]‖H−1 ≤ C. (4.47)

In view of (4.44) and (4.47) we conclude that

sup
t∈(0,T ]

‖Φσ,2(f)[f ]‖H−1 ≤ C, (4.48)

and the claim (4.36) follows from (4.43) and (4.48).
Recalling that f ∈ C1((0, T ], L2(S)) ∩ C([0, T ],Hr(S)), (4.36) yields f ∈ BC1((0, T ],H−1(S)) and the

property (4.34) is now a straight forward consequence of (3.30). This proves the uniqueness claim in
Theorem 1.1 and herewith the assertion (i). The claim (ii) follows directly from [50, Theorem 1.1], while
the parabolic smoothing property stated at (iii) is obtain by using a parameter trick in the same way as
in the proof of [49, Theorem 1.3]. The proof of Theorem 1.1 is now complete. �

5. The Muskat Problem Without Surface Tension Effects

We now investigate the evolution problem (1.1) in the absence of the surface tension effects, that is for
σ = 0. One of the main features of the Muskat problem with surface tension, namely the quasilinear
character, seems to be lost as the curvature term disappears from the equations. Nevertheless, we show
below that (1.1) can be recast as a fully nonlinear and nonlocal evolution problem

ḟ(t) = Φ(f(t)), t ≥ 0, f(0) = f0, (5.1)

with [f �→ Φ(f)] ∈ Cω(H2(S),H1(S)) defined in (5.5). While the Muskat problem with surface tension
is parabolic regardless of the initial data that are considered, in the case when σ = 0 we can prove that
the Fréchet derivative ∂Φ(f0) generates a strongly continuous and analytic semigroup in L(H1(S)), more
precisely that

−∂Φ(f0) ∈ H(H2(S),H1(S)), (5.2)

only when requiring that the initial data f0 ∈ H2(S) are chosen such that the Rayleigh–Taylor condition
is satisfied. Establishing (5.2) is the first goal of this section and this necessitates some preparations.

To begin, we solve the Eq. (1.1a)2, which is, up to a factor of 2, equivalent to

(1 + aμA(f))[ω] = −cΘf ′, (5.3)

where

cΘ :=
kΘ

μ− + μ+
.
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It is worth mentioning that in order to solve (5.3) for ω in Ĥ1(S) it is required in Theorem 3.5 that the
left hand side belongs to Ĥ1(S), that is f ∈ H2(S), and this is precisely the regularity required also for
the function in the argument of A. Hence, (5.3) is no longer quasilinear, unless aμ = 0, see [47].

Proposition 5.1. Given f ∈ H2(S), there exists a unique solution ω := ω(f) ∈ Ĥ1(S) to (5.3) and

ω ∈ Cω(H2(S), Ĥ1(S)). (5.4)

Proof. Theorem 3.5 implies that

ω(f) := −cΘ(1 + aμA(f))−1[f ′]

is the unique solution to (5.3) in Ĥ1(S), and the regularity property (5.4) follows from Lemma 3.2. �

In view of Proposition 5.1, (1.1) is equivalent to the Eq. (5.1), where Φ : H2(S) → Ĥ1(S) is given by

Φ(f) := B(f)[ω(f)] = −cΘB(f)[(1 + aμA(f))−1[f ′]], (5.5)

and it satisfies

Φ ∈ Cω(H2(S), Ĥ1(S)) ∩ Cω(H2(S),H1(S)), (5.6)

cf. (3.6) and (5.4). With respect to our goal of proving Theorem 1.5, the fact that Φ maps in Ĥ1(S) is
not relevant, and therefore we shall not rely in this part on this property, but consider instead Φ as a
mapping in H1(S). In view of Lemma 2.2 and Proposition 5.1 the Rayleigh–Taylor condition (1.3) can
be reformulated as

aRT := cΘ + aμΦ(f0) > 0. (5.7)

Indeed, recalling (2.1a)2 and (2.2)2, we obtain that

∇p±(t, x, f(t, x) + tV ) = −μ±
k

(V±(t, x, f(t, x)) + (0, V )) − (0, ρ±g), x ∈ R,

with V± as defined in (2.5). The relation (5.7) follows now from (1.3), (5.3), and (5.5).
Since Φ(f0) ∈ Ĥ1(S), it follows that (5.7) can hold only if Θ > 0. We also note that (5.6) ensures that

the set O of all initial data that satisfy the Rayleigh–Taylor condition (5.7), that is

O = {f0 ∈ H2(S) : cΘ + aμΦ(f0) > 0}
is an open subset of H2(S) which is nonempty as it contains for example all constant functions.

In the following we fix an arbitrary f0 ∈ O and prove the generator property (5.2) for the operator

∂Φ(f0)[f ] = ∂B(f0)[f ][ω0] + B(f0)[∂ω(f0)[f ]], (5.8)

where

ω0 := ω(f0) (5.9)

is defined in Proposition 5.1. In view of (5.3) and of Proposition 5.1, we determine ∂ω(f0)[f ] as the
solution to the equation

(1 + aμA(f0))[∂ω(f0)[f ]] = −cΘf ′ − aμ∂A(f0)[f ][ω0],

where, combining the Lemmas 3.2 and A.1 (i), we get

∂A(f0)[f ][ω0] = − f ′
B2(f0)[ω0] − f ′

0∂B2(f0)[f ][ω0] − ∂B1(f0)[f ][ω0]

+ π−1
[
f ′C0,1(f0)[ω0] − 2f ′

0C2,2(f0, f0)[f, f0, ω0] − C1,1(f0)[f, ω0]

+ 2C3,2(f0, f0)[f, f0, f0, ω0]
]
, f ∈ H2(S).

(5.10)

Establishing (5.2) is now more difficult than for the Muskat problem with surface tension, because there
are several leading order terms to be considered when dealing with ∂Φ(f0), see the proof of Theorem 5.2.
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Besides, the Rayleigh–Taylor condition (5.7) does not appear in a natural way in the analysis and it has
to be artificially built in instead. Indeed, let us first conclude from the Lemmas 3.1 and A.1 that

∂B(f0)[f ][ω0] = f ′
B1(f0)[ω0] + f ′

0∂B1(f0)[f ][ω0] − ∂B2(f0)[f ][ω0]

− 2π−1C2,2(f0, f0)[f, f0, ω0] + π−1f ′C1,1(f0)[f0, ω0]

+ π−1f ′
0C1,1(f0)[f, ω0] − 2π−1f ′

0C3,2(f0, f0)[f, f0, f0, ω0],

(5.11)

and let

[τ �→ Ψ(τ)] : [0, 1] → L(H2(S), Ĥ1(S)),

denote the continuous path defined by

Ψ(τ)[f ] := τ∂B(f0)[f ][ω0] + B(τf0)[w(τ)[f ]],

where
w(τ)[f ] := − (1 + aμA(τf0))−1

[
cΘf ′ + τaμ∂A(f0)[f ][ω0]

+ (1 − τ)aμ

(
f ′Φ(f0) − 〈f ′Φ(f0)〉

)]
.

(5.12)

The function defined in (5.12) is related to ∂ω(f0)[f ]. We emphasize that the last term on the right
hand side of (5.12) has been introduced artificially with the purpose of identifying the function aRT when
setting τ = 0, but also when relating Ψ(τ) locally to certain Fourier multipliers, see Theorem 5.2 below.
If τ = 1, it follows that Ψ(1) = ∂Φ(f0), while for τ = 0 we get

Ψ(0)[f ] = B(0)[w(0)[f ]] = −H[f ′aRT − 〈f ′aRT〉] = −H[f ′aRT], (5.13)

where we used once more the relation B(0) = H. We note that, since aRT is in general not constant, the
operator Ψ(0) is in general not a Fourier multiplier. However, we may benefit from the simpler structure
of Ψ(0), compared to that of ∂Φ(f0), and the fact that the Rayleigh–Taylor condition holds to show that
large real numbers belong to the spectrum of Ψ(0), see Proposition 5.3.

We now derive some estimates for the operator w ∈ C([0, 1],L(H2(S), Ĥ1(S))), which are needed later
on in the analysis. Let therefore τ ′ ∈ (1/2, 1). Since Φ(f0) ∈ H1(S), it follows from Theorem 3.3 and
(3.15) (with r = 1 + τ ′) there exists a constant C > 0 such that

‖w(τ)[f ]‖2 ≤ C‖f‖H1+τ′ (5.14)

for all f ∈ H2(S) and τ ∈ [0, 1]. Furthermore, Theorem 3.5 and (3.15) show that additionally

‖w(τ)[f ]‖H1 ≤ C‖f‖H2 . (5.15)

Using the interpolation property (3.30), we conclude from (5.14), (5.15) that

‖w(τ)[f ]‖Hτ′ ≤ C‖f‖
H1+2τ′−τ′2 (5.16)

for all f ∈ H2(S) and τ ∈ [0, 1].
The following result is the main step towards proving the generator property (5.2). Below (−∂2

x)1/2

stands for the Fourier multiplier with symbol (|k|)k∈Z, and the following identity is used

(−∂2
x)1/2[f ] = H[f ′] = B(0)[f ′] for all f ∈ H1(S).

Theorem 5.2. Let f0 ∈ H2(S) and μ > 0 be given. Then, there exist p ≥ 3, a p-partition of unity
{πp

j : 1 ≤ j ≤ 2p+1}, a constant K = K(p), and for each j ∈ {1, . . . , 2p+1} and τ ∈ [0, 1] there exist
operators

Aj,τ ∈ L(H2(S),H1(S))

such that

‖πp
j Ψ(τ)[f ] − Aj,τ [πp

j f ]‖H1 ≤ μ‖πp
j f‖H2 + K‖f‖H31/16 (5.17)
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for all j ∈ {1, . . . , 2p+1}, τ ∈ [0, 1], and f ∈ H2(S). The operator Aj,τ is defined by

Aj,τ := − ατ (xp
j )(−∂2

x)1/2 + βτ (xp
j )∂x, (5.18)

where xp
j ∈ Ip

j is arbitrary, but fixed, and where

ατ :=
1 + (1 − τ)f ′2

0

1 + f ′2
0

aRT and βτ := τ
(
B1(f0)[ω0] + π−1C1,1(f0)[f0, ω0] + aμ

ω0

1 + τ2f ′2
0

)
.

Proof. Let p ≥ 3 be an integer which we fix later on in this proof and let {πp
j : 1 ≤ j ≤ 2p+1} be a

p-partition of unity, respectively let {χp
j : 1 ≤ j ≤ 2p+1} be a family associated to this partition. We

denote by C constants which are independent of p ∈ N, f ∈ H2(S), τ ∈ [0, 1], and j ∈ {1, . . . , 2p+1},
while the constants denoted by K may depend only upon p.
The lower order terms. We first note that

‖πp
j Ψ(τ)[f ] − Aj,τ [πp

j f ]‖H1 ≤ ‖πp
j Ψ(τ)[f ] − Aj,τ [πp

j f ]‖2 + ‖(πp
j Ψ(τ)[f ] − Aj,τ [πp

j f ])′‖2

≤ ‖πp
j Ψ(τ)[f ] − Aj,τ [πp

j f ]‖2 + ‖(πp
j )′Ψ(τ)[f ]‖2

+ ‖πp
j (Ψ(τ)[f ])′ − Aj,τ [(πp

j f)′]‖2.

The relations (3.6) (with r = 7/4) and (5.14) (with τ ′ = 3/4) yield

‖πp
j Ψ(τ)[f ]‖2 + ‖(πp

j )′Ψ(τ)[f ]‖2 ≤ K‖Ψ(τ)[f ]‖2 ≤ K‖f‖H7/4 ,

and since maxτ∈[0,1](‖ατ‖H1 + ‖βτ‖H1) ≤ C, it also holds that

‖Aj,τ [πp
j f ]‖2 ≤ K‖f‖H1 .

Therewith we get

‖πp
j Ψ(τ)[f ] − Aj,τ [πp

j f ]‖H1 ≤ ‖πp
j (Ψ(τ)[f ])′ − Aj,τ [(πp

j f)′]‖2 + K‖f‖H7/4 .

Moreover, combining (5.11), (3.10) (with r = 7/4 and τ = 3/4), Lemma A.1 (ii) (with τ = 3/4 and
r = 15/8), and (5.16) (with τ ′ = 3/4), we may write

(Ψ(τ)[f ])′ = B3(τf0)[(w(τ)[f ])′] + τf ′′(
B1(f0)[ω0] + π−1C1,1(f0)[f0, ω0]

)
+ τπ−1f ′

0C0,1(f0)[(f ′ω0)′]

− 2τπ−1C1,2(f0, f0)[f0, (f ′ω0)′] − 2τπ−1f ′
0C2,2(f0, f0)[f0, f0, (f ′ω0)′] + TΨ,τ

lot [f ],

where

‖TΨ,τ
lot [f ]‖2 ≤ C‖f‖H31/16 .

Consequently, we are left to estimate the L2-norm of the difference

πp
j B3(τf0)[(w(τ)[f ])′] + τπp

j f ′′(
B1(f0)[ω0] + π−1C1,1(f0)[f0, ω0]

)
+ τπ−1πp

j f ′
0C0,1(f0)[(f ′ω0)′]

− 2τπ−1πp
j C1,2(f0, f0)[f0, (f ′ω0)′] − 2τπ−1πp

j f ′
0C2,2(f0, f0)[f0, f0, (f ′ω0)′] − Aj,τ [(πp

j f)′].

Higher order terms I. Given 1 ≤ j ≤ 2p+1, we set

A
1
j,τ :=

(
B1(f0)[ω0] + π−1C1,1(f0)[f0, ω0]

)
(xp

j )∂x.

Since B1(f0)[ω0], C1,1(f0)[f0, ω0] ∈ H1(S) ↪→ C1/2(S) and χp
jπ

p
j = πp

j , it follows that

‖πp
j f ′′(

B1(f0)[ω0] + π−1C1,1(f0)[f0, ω0]
) − A

1
j,τ [(πp

j f)′]‖2

≤ K‖f‖H1 + ‖χp
j (B1(f0)[ω0] − B1(f0)[ω0](x

p
j ))‖∞‖πp

j f‖H2

+ ‖χp
j (C1,1(f0)[f0, ω0] − C1,1(f0)[f0, ω0](x

p
j ))‖∞‖πp

j f‖H2

≤ μ

4
‖πp

j f‖H2 + K‖f‖H1 ,

(5.19)

provided that p is sufficiently large.
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Higher order terms II. Letting

A
2
j,τ :=

ω0(x
p
j )f

′
0(x

p
j )

(1 + f ′2
0 (xp

j ))2
(−∂2

x)−1/2,

it holds that

πp
j C1,2(f0, f0)[f0, (f ′ω0)′] − πA

2
j,τ [(πp

j f)′] = T1[f ] + T2[f ] + T3[f ],

where

T1[f ] = πp
j C1,2(f0, f0)[f0, (f ′ω0)′] − C1,2(f0, f0)[f0, π

p
j (f ′ω0)′],

T2[f ] = C1,2(f0, f0)[f0, π
p
j (f ′ω0)′] − f ′

0(x
p
j )

(1 + f ′2
0 (xp

j ))2
C0,0[π

p
j (f ′ω0)′],

T3[f ] =
f ′
0(x

p
j )

(1 + f ′2
0 (xp

j ))2
C0,0[π

p
j (f ′ω0)′] − πA

2
j,τ [(πp

j f)′].

The first term may be estimated, by using integration by parts, in a similar way as the term T11[h] in
the proof of Theorem 4.2, that is

‖T1[f ]‖2 ≤ K‖f ′ω0‖2 ≤ K‖f‖H1 .

Besides, the same arguments used to derive (4.21) show that for p sufficiently large

‖T2[f ]‖2 ≤ μ

16
‖πp

j f‖H2 + K‖f‖H1 .

Finally, it holds that

‖T3[f ]‖2 ≤‖C0,0[(πjf)′′(ω0 − ω0(x
p
j ))]‖2 + ‖C0,0[π

p
j f ′ω′

0]‖2 + ‖C0,0[((π
p
j )′′f + 2(πp

j )′f ′)ω0]‖2

+ ‖ω0‖∞
∥
∥
∥

∫ π

−π

[ 1
t[s]

− 1
s/2

]
(πjf)′′(· − s)ds

∥
∥
∥

2
,

and, recalling that χp
j = 1 on suppπp

j , we obtain, by using integration by parts, Lemma A.1 (i), and the
fact that ω0 ∈ H1(S) ↪→ C1/2(S) the estimate

‖T3[f ]‖2 ≤ ‖C0,0[(πjf)′′χp
j (ω0 − ω0(x

p
j ))]‖2 + K‖f‖H1 ≤ C‖πjf‖H2‖χp

j (ω0 − ω0(x
p
j ))‖∞ + K‖f‖H1

≤ μ

16
‖πp

j f‖H2 + K‖f‖H1 ,

provided p is sufficiently large. Summarizing, we have shown that

2‖πp
j C1,2(f0, f0)[f0, (f ′ω0)′] − πA

2
j,τ [(πp

j f)′]‖2 ≤ μ

4
‖πp

j f‖H2 + K‖f‖H1 (5.20)

and similarly we get

‖πp
j f ′

0C0,1(f0)[(f ′ω0)′] − π(1 + f ′2
0 (xp

j ))A
2
j,τ [(πp

j f)′]‖2

+ 2‖πp
j f ′

0C2,2(f0, f0)[f0, f0(f ′ω0)′] − πf ′2
0 (xp

j )A
2
j,τ [(πp

j f)′]‖2

≤ μ

4
‖πp

j f‖H2 + K‖f‖H1 .

(5.21)

Higher order terms III. We are left to consider the function

πp
j B3(τf0)[(w(τ)[f ])′] = π−1πp

j

(
C0,1(fτ0)[w

′] + f ′
τ0C1,1(fτ0)[fτ0 , w

′]
)
, (5.22)

where, for the sake of brevity, we have set

fτ0 := τf0 and w := w(τ)[f ].

Let further

φτ := aRT − τaμf ′
0

(
B1(f0)[ω0] + π−1C1,1(f0)[f0, ω0]

) ∈ H1(S).
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We first derive an estimate for the L2-norm of πp
j w′. To this end we differentiate (5.12) once to obtain,

in view of (3.27), (5.10), and Lemma A.1 (i)–(ii), that

(1 + aμA(fτ0))[(π
p
j w)′] = − φτπp

j f ′′ + Tw,j,τ
lot [f ] + τaμπ−1

(
2f ′

0C1,2(f0, f0)[f0, π
p
j (f ′ω0)′]

+ C0,1(f0)[π
p
j (f ′ω0)′] − 2C2,2(f0, f0)[f0, f0, π

p
j (f ′ω0)′]

)
.

(5.23)

Combining (3.10) (with τ = 3/4 and r = 7/4), (3.29) (with τ = 3/4), (4.17), (5.14) and (5.16) (both with
τ ′ = 3/4), and Lemma A.1 (i)–(ii) (with τ = 3/4 and r = 15/8) we get that

‖Tw,j,τ
lot [f ]‖2 ≤ K‖f‖H31/16 . (5.24)

The relation (5.23) together with Theorem 3.3, Lemma A.1 (i), and (5.14) (with τ ′ = 3/4) now yields

‖πp
j w′‖2 ≤ ‖(πp

j w)′‖2 + ‖(πp
j )′w‖2 ≤ C‖πp

j f‖H2 + K‖f‖H31/16 . (5.25)

We now consider the second term on the right hand side of (5.22). Letting

A
3
j,τ :=

f ′2
τ0(x

p
j )

1 + f ′2
τ0(x

p
j )

[

−φτ (xp
j )(−∂2

x)1/2 − τaμ

ω0(x
p
j )

1 + f ′2
τ0(x

p
j )

∂x

]

,

we write

πp
j f ′

τ0C1,1(fτ0)[fτ0 , w
′] − πA

3
j,τ [(πp

j f)′] = T4[f ] + T5[f ] + T6[f ],

where

T4[f ] = πp
j f ′

τ0C1,1(fτ0)[fτ0 , w
′] − f ′

τ0(x
p
j )C1,1(fτ0)[fτ0 , π

p
j w′],

T5[f ] = f ′
τ0(x

p
j )C1,1(fτ0)[fτ0 , π

p
j w′] − f ′2

τ0(x
p
j )

1 + f ′2
τ0(x

p
j )

C0,0[π
p
j w′],

T6[f ] =
f ′2

τ0(x
p
j )

1 + f ′2
τ0(x

p
j )

C0,0[π
p
j w′] − πA

3
j,τ [(πp

j f)′].

The arguments that led to (4.19) together with (5.25) show that

‖T4[f ]‖2 ≤ μ

24
‖πp

j f‖H2 + K‖f‖H31/16 ,

provided that p is sufficiently large, while arguing as in the derivation of (4.21) we obtain that

‖T5[f ]‖2 ≤ μ

24
‖πp

j f‖H2 + K‖f‖H31/16 .

Concerning T6[f ], we find, by using fact that the Hilbert transform satisfies H2 = −idL2(S), the following
relation

‖T6[f ]‖2 ≤
∥
∥
∥C0,0[π

p
j w′] + πφτ (xp

j )H[(πp
j f)′′] − τaμπ

ω0(x
p
j )

1 + f ′2
τ0(x

p
j )

H2[(πp
j f)′′]

∥
∥
∥

2
,

and, since integration by parts and (5.14) (with τ ′ = 3/4) yield

‖C0,0[π
p
j w′] − πH[πp

j w′]‖2 + ‖C0,0[π
p
j f ′′] − πH[(πp

j f)′′]‖2 ≤ K‖w‖2 ≤ K‖f‖H7/4 ,

we conclude that

‖T6[f ]‖2 ≤
∥
∥
∥πp

j w′ + φτ (xp
j )(π

p
j f)′′ − τaμ

ω0(x
p
j )

1 + f ′2
τ0(x

p
j )

H[(πp
j f)′′]

∥
∥
∥

2
+ K‖f‖H7/4

≤
∥
∥
∥πp

j w′ + φτ (xp
j )π

p
j f ′′ − τaμ

π

ω0(x
p
j )

1 + f ′2
τ0(x

p
j )

C0,0[π
p
j f ′′]

∥
∥
∥

2
+ K‖f‖H7/4 .

Combining (3.16) and (5.23), we further get
∥
∥
∥πp

j w′ + φτ (xp
j )π

p
j f ′′ − τaμ

π

ω0(x
p
j )

1 + f ′2
τ0(x

p
j )

C0,0[π
p
j f ′′]

∥
∥
∥

2
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≤ ‖χp
j (φτ − φτ (xp

j ))‖∞‖πp
j f ′′‖2 + ‖(1 + aμA(fτ0)[(π

p
j )′w]‖2

+
∥
∥
∥f ′

0C1,2(f0, f0)[f0, π
p
j (f ′ω0)′] − ω0(x

p
j )f

′2
0 (xp

j )
(1 + f ′2

0 (xp
j ))2

C0,0[π
p
j f ′′]

∥
∥
∥

2

+
∥
∥
∥C0,1(f0)[π

p
j (f ′ω0)′] − ω0(x

p
j )

1 + f ′2
0 (xp

j )
C0,0[π

p
j f ′′]

∥
∥
∥

2

+
∥
∥
∥C2,2(f0, f0)[f0, f0, π

p
j (f ′ω0)′] − ω0(x

p
j )f

′2
0 (xp

j )
(1 + f ′2

0 (xp
j ))2

C0,0[π
p
j f ′′]

∥
∥
∥

2

+ ‖Tw,j,τ
lot [f ]‖2 + ‖f ′

τ0B2(fτ0)[π
p
j w′]‖2 + ‖B1(fτ0)[π

p
j w′]‖2

+
∥
∥
∥f ′

τ0C0,1(fτ0)[π
p
j w′] − f ′

τ0(x
p
j )

1 + f ′2
τ0(x

p
j )

C0,0[π
p
j w′]

∥
∥
∥

2

+
∥
∥
∥C1,1(fτ0)[fτ0 , π

p
j w′] − f ′

τ0(x
p
j )

1 + f ′2
τ0(x

p
j )

C0,0[π
p
j w′]

∥
∥
∥

2
,

and the estimates (4.17), (5.14) (with τ ′ = 3/4), (5.24), together with the arguments used to estimate
‖T2[f ]‖2 show, for p sufficiently large, that

‖T6[f ]‖2 ≤ μ

24
‖πp

j f‖H2 + K‖f‖H31/16 .

Altogether, we have shown that

‖πp
j f ′

τ0C1,1(fτ0)[fτ0 , w
′] − πA

3
j,τ [(πp

j f)′]‖2 ≤ μ

8
‖πp

j f‖H2 + K‖f‖H31/16 .

Letting

A
4
j,τ :=

1
1 + f ′2

τ0(x
p
j )

[

−φτ (xp
j )(−∂2

x)1/2 − τaμ

ω0(x
p
j )

1 + f ′2
τ0(x

p
j )

∂x

]

,

we obtain in a similar way, that

‖πp
j C0,1(fτ0)[w

′] − πA
4
j,τ [(πp

j f)′]‖2 ≤ μ

8
‖πp

j f‖H2 + K‖f‖H31/16 ,

provided that p is sufficiently large, and therewith we conclude that

‖πp
j B3(τf0)[(w(τ)[f ])′] − (A3

j,τ + A
4
j,τ )[(πp

j f)′]‖2 ≤ μ

4
‖πp

j f‖H2 + K‖f‖H31/16 . (5.26)

Final step. Using the identity ω0 = −cΘf ′
0 − aμA(f0)[ω0], it is not difficult to see that

Aj,τ = τ
[
A

1
j,p − 2A

2
j,p + (1 + f ′2

0 (xp
j ))A

2
j,p − 2f ′2

0 (xp
j )A

2
j,p

]
+ A

3
j,p + A

4
j,p,

and (5.19), (5.20), (5.21), and (5.26) immediately yield (5.17). �

Making use of the fact that for f0 ∈ O the Rayleigh–Taylor condition aRT > 0 is satisfied, it follows
from the general result in Proposition 5.3 below that Ψ(0) contains in its resolvent set all sufficiently
large real numbers.

Proposition 5.3. Let a ∈ H1(S) be a positive function. Then, there exists ω0 ≥ 1 with the property that
λ + H[a∂x] ∈ Isom(H2(S),H1(S)) for all λ ∈ [ω0,∞).

Proof. Let m := minS a > 0. We introduce the continuous path [τ �→ B(τ)] : [0, 1] → L(H2(S),H1(S))
via

B(τ) := H[aτ∂x] with aτ := (1 − τ)m + τa ≥ m.

Since λ+B(0) is the Fourier multiplier with symbol (λ+m|k|)k∈Z, it is obvious that λ+B(0) is invertible
for all λ > 0. If λ is sufficiently large, we show below that λ + B(1) = λ + H[a∂x] has this property too.
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To this end we prove that for each μ > 0 there exists p ≥ 3, a p-partition of unity {πp
j : 1 ≤ j ≤ 2p+1},

a constant K = K(p), and for each j ∈ {1, . . . , 2p+1} and τ ∈ [0, 1] there exist operators

Bj,τ ∈ L(H2(S),H1(S))

such that

‖πp
j B(τ)[f ] − Bj,τ [πp

j f ]‖H1 ≤ μ‖πp
j f‖H2 + K‖f‖H7/4 (5.27)

for all j ∈ {1, . . . , 2p+1}, τ ∈ [0, 1], and f ∈ H2(S). The operators Bj,τ are the Fourier multipliers

Bj,τ := aτ (xp
j )(−∂2

x)1/2

with xp
j ∈ Ip

j . Indeed, given p ≥ 3, let {πp
j : 1 ≤ j ≤ 2p+1} be a p-partition of unity and let {χp

j : 1 ≤
j ≤ 2p+1} be a family associated to this partition. Integrating by parts we get

‖πp
j B(τ)[f ] − Bj,τ [πp

j f ]‖H1 ≤‖πp
j B(τ)[f ] − Bj,τ [πp

j f ]‖2 + ‖(πp
j )′B(τ)[f ]‖2 + ‖Bj,τ [(πp

j )′f ]‖2

+ ‖πp
j (B(τ)[f ])′ − Bj,τ [πp

j f ′]‖2

≤K‖f‖H1 + ‖πp
j H[(aτf ′)′] − aτ (xp

j )H[(πp
j f ′)′]‖2

≤K‖f‖H7/4 + ‖πp
j H[aτf ′′] − aτ (xp

j )H[πp
j f ′′]‖2

≤K‖f‖H7/4 + ‖πp
j H[aτf ′′] − H[aτπp

j f ′′]‖2 + ‖H[(aτ − aτ (xp
j ))π

p
j f ′′]‖2

≤K‖f‖H7/4 + ‖(aτ − aτ (xp
j ))χ

p
j‖∞‖πp

j f ′′]‖2

≤μ‖πp
j f‖H2 + K‖f‖H7/4

provided that p is sufficiently large, and (5.27) follows.
A simple computation shows that there exists κ ≥ 1 such that

κ‖(λ + α(−∂2
x)1/2)[f ]‖H1 ≥ λ · ‖f‖H1 + ‖f‖H2 (5.28)

for all f ∈ H2(S), α ≥ m, and λ ∈ [1,∞). Set μ := 1/2κ in (5.27). Since aτ ≥ m, it follows from (5.27)
and (5.28) that

κ‖πp
j (λ + B(τ))[f ]‖H1 ≥ κ‖(λ + Bj,τ )[πp

j f ]‖H1 − κ‖πp
j B(τ)[f ] − Bj,τ [πp

j f ]‖H1

≥ λ · ‖πp
j f‖H1 +

1
2
‖πp

j f‖H2 − κK‖f‖H7/4

for all f ∈ H2(S), λ ≥ 1, τ ∈ [0, 1], and j ∈ {1, . . . , 2p+1}. The arguments at the very and of the proof of
Theorem 4.3 enable us to conclude the existence of constants β ∈ (0, 1) and ω0 ≥ 1 with

‖(λ + B(τ))[f ]‖H1 ≥ β‖f‖H2

for all f ∈ H2(S), λ ≥ ω0, and τ ∈ [0, 1]. The continuity method [5, Proposition I.1.1.1] and the previous
observation that λ + B(0) ∈ Isom(H2(S),H1(S)) for λ > 0 yield the desired conclusion. �

We are now in a position to derive the desired generator property (5.2).

Theorem 5.4. Given f0 ∈ O, it holds that

−∂Φ(f0) ∈ H(H2(S),H1(S)).

Proof. Given f0 ∈ O and τ ∈ [0, 1], let ατ and βτ denote the functions introduced in Theorem 5.2. The
Rayleigh–Taylor condition aRT > 0 ensures there exists a constant η ∈ (0, 1) such that

η ≤ ατ ≤ 1
η

and |βτ | ≤ 1
η

for all τ ∈ [0, 1]. Given α ∈ [η, 1/η] and |β| < 1/η, let Aα,β denote the Fourier multiplier

Aα,β := −α(−∂2
x)1/2 + β∂x.
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It is not difficult to prove there exists κ0 ≥ 1 such that the complexification of Aα,β (denoted again by
Aα,β) satisfies

κ0‖(λ − Aα,β)[f ]‖H1 ≥ |λ| · ‖f‖H1 + ‖f‖H2 (5.29)

for all α ∈ [η, 1/η], |β| < 1/η, Reλ ≥ 1, and f ∈ H2(S). Observing that the operators Aj,τ found in
Theorem 5.2 belong to the family {Aα,β : α ∈ [η, 1/η], |β| < 1/η} and that

λ − Ψ(0) = λ + H[aRT∂x] ∈ Isom(H2(S),H1(S))

for all λ ∈ R which are sufficiently large, cf. Proposition 5.3, the arguments in the proof of Theorem 4.3
together with (5.29) and Theorem 5.2 lead us to the desired claim. �

We conclude this section with the proof of Theorem 1.5.

Proof of Theorem 1.5. The proof follows by using the fully nonlinear parabolic theory in [46, Chapter
8], (5.6), and Theorem 5.4. The details of proof are identical to those in the nonperiodic case, cf. [48,
Theorem 1.2], and therefore we omit them. �

6. Stability Analysis

In this section we identify the equilibria of the Muskat problem (1.1) and study their stability properties.
The Muskat problem without surface tension We first infer from Remark 3.4 that f ∈ H2(S) is a
stationary solution to (1.1) (with σ = 0) if and only if f is constant also with respect to x. Besides, as
pointed out in Sect. 5, if f is a solution to (1.1) as found in Theorem 1.5, then Φ(f(t)) ∈ Ĥ1(S) for all
t in the existence interval of f , hence the mean integral of the initial datum is preserved by the flow.
Recalling also the invariance property (1.2), we shall only address the stability issue for the 0 equilibrium
under perturbed initial data with zero integral mean. Hence, we are led to consider the evolution problem

ḟ(t) = Φ(f(t)), t ≥ 0, f(0) = f0, (6.1)

where

Φ ∈ Cω(Ĥ2(S), Ĥ1(S)) (6.2)

is the restriction of the operator defined in (5.5). Recalling (5.8), it follows from the relations ω(0) = 0,
A(0) = 0, and B(0) = H, that

∂Φ(0) = −cΘH ◦ ∂x = −cΘ(−∂2
x)1/2 ∈ L(Ĥ2(S), Ĥ1(S)),

which identifies the spectrum σ(∂Φ(0)) as being the set

σ(∂Φ(0)) = {−cΘ|k| : k ∈ Z\{0}}.
Moreover, it is easy to verify that this Fourier multiplier is the generator of a strongly continuous and
analytic semigroup in L(Ĥ1(S)). This enable us to use the fully nonlinear principle of linearized stability,
cf. [46, Theorem 9.1.1], and prove in this way the exponential stability of the zero solution.

Proof of Theorem 1.6. The claim follows from (6.2), the property −∂Φ(0) ∈ H(Ĥ2(S), Ĥ1(S)), and the
fact that Reλ ≤ −cΘ for all λ ∈ σ(∂Φ(0)) via [46, Theorem 9.1.1]. �

The Muskat Problem with Surface Tension For σ > 0 the stability analysis is more intricate. Before
presenting the complete picture of the equilibria we notice that also in this case the mean value of the
initial data is preserved by the flow. This aspect and the invariance property (1.2) enable us to restrict
our stability analysis to the setting of solutions with zero integral mean.

In view of Remark 3.4, a function f ∈ Ĥ3(S) is a stationary solution to (1.1) if and only if it solves
the capillarity equation

f ′′

(1 + f ′2)3/2
+ λf = 0 where λ := −Θ

σ
. (6.3)
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R

Ĥ3
e (S)

· ·· · · ·
1 4 9

9λ∗

16 25 −π 0 π
2

π

fλ1

fλ2

Fig. 1. The subcritical global bifurcation branches of (6.3) found in Theorem 6.1 (left) and the behavior of the
finger-shaped solutions along the first bifurcation branch (right) (λ∗ < λ2 < λ1 < 1). The dashed curve is the graph of the

function limλ↘λ∗ fλ and it has unbounded slope at x = π/2 and height
√

2/λ∗

This equation has been discussed in detail in [28]. If λ ≤ 0, the Eq. (6.3) has by the elliptic maximum
principle a unique solution in Ĥ3(S), the trivial equilibrium f = 0. However, if λ > 0, there may exist also
finger-shaped solutions to (6.3), see Fig. 1, which are all symmetric with respect to the horizontal lines
through the extrema but also with respect to the points where they intersect the x-axis. In particular,
each equilibrium in Ĥ3(S) is the horizontal translation of an even equilibrium. We now view λ > 0 as
a bifurcation parameter in the Eq. (6.3) and we shall refer to (λ, f) as being the solution to (6.3). The
following theorem provides a complete description of the set of even equilibria to the Muskat problem
with surface tension (and in virtue of (1.2) also of the set of all equilibria).

Theorem 6.1. Let

λ∗ :=
1

2π2
B2

(3
4
,
1
2

)
,

where B is the beta function. The even solutions to (6.3) are organized as follows.

(a) If λ ≤ λ∗,5 then (6.3) has only the trivial solution.
(b) Let λ > λ∗.

(i) The Eq. (6.3) has even solutions of minimal period 2π if and only if λ∗ < λ < 1. More precisely,
for each λ ∈ (λ∗, 1), (6.3) has exactly two even solutions (λ,±fλ) of minimal period 2π. These
solutions are real-analytic, |fλ1 | ≤ |fλ2 | for λ2 < λ1, ‖fλ‖∞ → 0 for λ ↗ 1, and

‖fλ‖∞ = |fλ(0)| ↗
√

2/λ∗, ‖f ′
λ‖∞ = |f ′

λ(π/2)| ↗ ∞ for λ ↘ λ∗.

(ii) The Eq. (6.3) has even solutions of minimal period 2π/	, 2 ≤ 	 ∈ N, if and only if 	2λ∗ <
λ < 	2. More precisely, for each λ ∈ (	2λ∗, 	2), (6.3) has exactly two even solutions (λ,±fλ) of
minimal period 2π/	 and

fλ = 	−1fλ�−2(	 · )
where fλ�−2(	 · ) is the function identified at (ii).

(c) If we consider (6.3) as an abstract bifurcation problem in R × Ĥ3
e (S), where

Ĥ3
e (S) := {f ∈ H3

e (S) : f is even},

5A rough estimate for λ∗ is λ∗ ≈ 0.3.
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then the global bifurcation curve arising from (	2, 0), 1 ≤ 	 ∈ N, and described at (b), admits in a
neighborhood of (	2, 0) a real-analytic parametrization

(λ�, f�) : (−ε�, ε�) → (0,∞) × Ĥ3
e (S)

such that
⎧
⎨

⎩
λ�(s) = 	2 − 3	4

8
s2 + O(s4) in R,

f�(s) = s cos(	x) + O(s2) in Ĥ3
e (S)

for s → 0.

Proof. The claims (a) and (b) are established in [28]. The last claim follows by applying the theorem on
bifurcations from simple eigenvalues due to Crandall and Rabinowitz, cf. [19]. The details are similar to
those in the proof of [31, Theorem 6.1]. �

With respect to Theorem 6.1 we add the following remark.

Remark 6.2. (i) Because λ∗ ≈ 0.3, for certain λ ∈ (	2λ∗, 	2) with 	 ≥ 2 there exist nontrivial solutions
to (6.3) with minimal period different than 2π/	, see Fig. 1.

(ii) As pointed out in [28], these finger-shaped equilibria are in correspondence to certain solutions to
the mathematical pendulum equation

θ′′ + λ sin θ = 0.

(iii) The global bifurcation curves may be continued beyond λ∗	2, but outside the setting of interfaces
parametrized as graphs.

(iv) Because λ′
�(0) = 0 > λ′′

� (0), we may assume that sλ′
�(s) < 0 for all s ∈ (−ε�, ε�)\{0}. This aspect is

of relevance when studying the stability properties of the finger-shaped equilibria identified above.

In order to address the stability properties of the equilibria to (1.1), we first reformulate the problem
by incorporating λ as a parameter. To this end we define Φ : R × Ĥ2(S) → L(Ĥ3(S), L̂2(S)) according to

Φ(λ, f)[h] := σbμB(f)
[
(1 + aμA(f))−1

[ h′′′

(1 + f ′2)3/2
− 3

f ′f ′′h′′

(1 + f ′2)3/2
+ λh′

]
, (6.4)

where bμ is the constant introduced in (4.4). Then, it follows from the analysis in Sect. 4 that Φ ∈
Cω(R × Ĥ2(S),L(Ĥ3(S), L̂2(S))), and the problem (1.1) is equivalent, for solutions with zero integral
mean, to the quasilinear evolution problem

ḟ(t) = Φ(λ, f(t))[f(t)], t > 0, f(0) = f0. (6.5)

It is not difficult to see that the linearization Φ(λ, 0) ∈ L(Ĥ3(S), L̂2(S)) is a Fourier multiplier with
spectrum σ(Φ(λ, 0)) that consists only of the eigenvalues {−σbμ(|k|3 − λ|k|) : k ∈ Z\{0}}. Moreover,
Φ(λ, 0) generates a strongly continuous and analytic semigroup in L(L̂2(S)) for all λ ∈ R. We are now in
a position to prove Theorem 1.3 where we exploit the quasilinear principle of linearized stability in [50,
Theorem 1.3].

Proof of Theorem 1.3. We first address the stability of the zero solution f = 0 to (1.1). Assume first that
λ < 1. In this case all eigenvalues of Φ(λ, 0) are negative, more precisely Rez ≤ −σbμ(1 − λ) < 0 for all
z ∈ σ(Φ(λ, 0)). The quasilinear principle of linearized stability [50, Theorem 1.3] applied to (6.5) yields
the first claim of Theorem 1.3.

In the second case when λ > 1, the intersection σ(∂fΦ(λ, 0))∩ [Reλ > 0] consists of a finite number of
positive eigenvalues and we may apply the instability result in [50, Theorem 1.4] to derive the assertion
(ii) in Theorem 1.3.

In the remaining part we discuss the stability properties of small finger-shaped solutions. To this end
we denote by A�(s) the linearized operator

A�(s) := Φ(λ�(s), f�(s)) + (∂fΦ(λ�(s), f�(s))[·])[f�(s)] ∈ L(Ĥ3(S), L̂2(S)),
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where ∂fΦ ∈ L(Ĥ2(S),L(Ĥ3(S), L̂2(S))) is the Fréchet derivative of the mapping Φ with respect to the
variable f . We point out that A�(0) = Φ(	2, 0).

Let us first note that for 	 ≥ 2 the spectrum σ(A�(0)) contains a finite number of positive eigenvalues
(this number increases with 	). Since a set consisting of finitely many eigenvalues of A�(s) changes
continuously with s ∈ (−ε�, ε�), cf. [44, Chapter IV], we infer from [5, Theorem I.1.3.1 (i)] that −A(s) ∈
H(Ĥ3(S), L̂2(S)) and that σ(A(s)) contains only finitely many eigenvalues with positive real part if ε� is
sufficiently small. Thus, we may appeal to [50, Theorem 1.4] to conclude that if λ = λ�(s), 0 < |s| < ε�,
	 ≥ 2, then f�(s) is an unstable equilibrium to (1.1).

The situation when 	 = 1 is special, because σ(A1(s)) has for s = 0, except for the eigenvalue 0, only
negative eigenvalues. We show below that when letting s vary in (−ε1, ε1) the operator A1(s), 0 < |s| < 1,
has a positive eigenvalue z(s) which corresponds to the zero eigenvalue of A1(0). To this end we associate
to a periodic function h the function ȟ defined by

ȟ(x) := h(−x), x ∈ R.

Observing that (B(f)[ω])̌ = −B(f̌)[ω̌] and (A(f)[ω])̌ = A(f̌)[ω̌], f ∈ Ĥ2(S), ω ∈ L̂2(S), and that

ω(f̌)[ȟ] = −(ω(f)[h])̌ , f ∈ Ĥ2(S), h ∈ Ĥ3(S),

cf. Proposition 4.1, it follows that the operator Φ introduced in (6.4) satisfies

(Φ(λ, f)[h])̌ = Φ(λ, f̌)[ȟ] for λ ∈ R, f ∈ Ĥ2(S), h ∈ Ĥ3(S).

Hence, letting L̂2,e(S) := {f ∈ L̂2(S) : fis even} and Ĥr
e (S) := Ĥr(S) ∩ L2,e(S), r ≥ 0, it follows that

Φ ∈ Cω(R × Ĥ2
e (S),L(Ĥ3

e (S), L̂2,e(S))), the linearization A1(0) ∈ L(Ĥ3
e (S), L̂2,e(S)) being the Fourier

multiplier

A1(0)
∞∑

k=1

ak cos(kx) = −σbμ

∞∑

k=1

(k3 − λk)ak cos(kx).

Let Ψ : R × Ĥ3
e (S) → L̂2,e(S) be the real-analytic mapping defined by Ψ(λ, f) := Φ(λ, f)[f ]. Noticing

that ∂fΨ(λ1(s), f1(s)) = A1(s), it follows that 0 is a simple eigenvalue of ∂fΨ(1, 0) and Ker ∂fΨ(1, 0) =
span{cos(x)}. Since additionally ∂λfΨ(1, 0)[cos(x)] = σbμ cos(x) ∈ Im∂fΨ(1, 0), the principle of exchange
of stability, cf. [20, Theorem 1.16], together with Remark 6.2 (iv) implies that the zero eigenvalue of
∂fΨ(1, 0) perturbs along the bifurcation curve through (λ1, f1) into a positive eigenvalue z(s) of A1(s),
0 < |s| < ε1, and moreover

lim
s→0

−sλ′
1(s)

z(s)
=

1
σbμ

.

Hence, if ε1 is sufficiently small, the operator A1(s), 0 < |s| < ε1, has a positive eigenvalue z(s). Moreover,
A1(s) has at most two eigenvalues with positive real part. [50, Theorem 1.4] yields now that if λ = λ1(s),
0 < |s| < ε1, then f1(s) is an unstable equilibrium. �
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Appendix A. Some Technical Results

In Lemma A.1 we establish the boundedness of a family of multilinear singular integral operators in
certain settings that are motivated by the analysis in the previous sections. The nonperiodic counterparts
of the estimates derived below have been obtained previously in [48,49].6

Lemma A.1. (i) Given m, n ∈ N and Lipschitz functions a1, . . . , am, b1, . . . , bn : R → R, the singular
integral operator Cn,m(a1, . . . , am)[b1, . . . , bn, · ] defined by

Cn,m(a1, . . . , am)[b1, . . . , bn, ω](x) := PV
∫ π

−π

ω(x − s)
s

∏n
i=1

(
δ[x,s]bi/s

)

∏m
i=1

[
1 +

(
δ[x,s]ai/s

)2]ds

satisfies ‖Cn,m(a1, . . . , am)[b1, . . . , bn, · ]‖L(L2(S),L2((−π,π))) ≤ C
∏n

i=1 ‖b′
i‖∞, with a constant C that

depends only on n, m and maxi=1,...,m ‖a′
i‖∞.

In particular, Cn,m ∈ C1−((W 1
∞(S))m,Ln+1((W 1

∞(S))n × L2(S), L2(S))).
(ii) Let m ∈ N, 1 ≤ n ∈ N, r ∈ (3/2, 2), and τ ∈ (5/2 − r, 1). Then:

(ii1) Given a1, . . . , am ∈ Hr(S) and b1, . . . , bn, ω ∈ C∞(S), there exists a constant C that depends
only on n, m, r, τ , and maxi=1,...,m ‖ai‖Hr(S) such that

‖Cn,m(a1, . . . , am)[b1, . . . , bn, ω]‖L2(S) ≤ C‖ω‖Hτ (S)‖b1‖H1(S)

n∏

i=2

‖bi‖Hr(S) (A.1)

and
‖Cn,m(a1, . . . , am)[b1, . . . , bn, ω] − Cn−1,m(a1, . . . , am)[b2, . . . , bn, b′

1ω]‖L2(S)

≤ C‖b1‖Hτ (S)‖ω‖H1(S)

n∏

i=2

‖bi‖Hr(S).
(A.2)

In particular, Cn,m(a1, . . . , am) has an extension in

Ln+1(H1(S) × (Hr(S))n−1 × Hτ (S), L2(S)).

(ii2) Cn,m ∈ C1−((Hr(S))m,Ln+1(H1(S) × (Hr(S))n−1 × Hτ (S), L2(S))).
(iii) Let m, n ∈ N, r ∈ (3/2, 2), and τ ∈ (1/2, 1). Then:

(iii1) Given a1, . . . , am ∈ Hr(S) and b1, . . . , bn, ω ∈ C∞(S), there exists a constant C that depends
only on n, m, r, τ , and maxi=1,...,m ‖ai‖Hr(S) such that

‖Cn,m(a1, . . . , am)[b1, . . . , bn, ω]‖∞ ≤ C‖ω‖Hτ (S)

n∏

i=1

‖bi‖Hr(S). (A.3)

In particular, Cn,m(a1, . . . , am) has an extension in Ln+1((Hr(S))n × Hτ (S), L∞(S)).
(iii2) Cn,m ∈ C1−((Hr(S))m,Ln+1((Hr(S))n × Hτ (S), L∞(S))).

6In [48,49] the operators

Bn,m(a1, . . . , am)[b1, . . . , bn, ω](x) := PV

∫

R

ω(x − s)

s

∏n
i=1

(
δ[x,s]bi/s

)

∏m
i=1

[
1 +

(
δ[x,s]ai/s

)2]ds

are considered. The functions a1, . . . , am, b1, . . . , bn : R → R are Lipschitz functions and ω ∈ L2(R). It is shown in [48,49]
that these operators extend to bounded multilinear operators on certain products of Sobolev spaces on R.

http://creativecommons.org/licenses/by/4.0/
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Proof. We first address (i). To this end we fix ϕ ∈ C∞
0 (R, [0, 1]) with ϕ = 1 for |x| ≤ 2π and ϕ = 0 for

|x| ≥ 4π. Then, it is easy to see that

‖ω‖L2(S) ≤ ‖ωϕ‖L2(R) ≤ 4‖ω‖L2(S) for all ω ∈ L2(S). (A.4)

For |x| < π we have

Cn,m(a1, . . . , am)[b1, . . . , bn, ω](x) = Bn,m(a1, . . . , am)[b1, . . . , bn, ϕω](x)

−
∫

π<|s|<5π

(ϕω)(x − s)
s

∏n
i=1

(
δ[x,s]bi/s

)

∏m
i=1

[
1 +

(
δ[x,s]ai/s

)2]ds,

and it follows from [48, Lemma 3.1] and (A.4) that

‖Bn,m(a1, . . . , am)[b1, . . . , bn, ϕω]‖L2((−π,π)) ≤ C‖ϕω‖L2(R)

n∏

i=1

‖b′
i‖∞ ≤ C‖ω‖L2(S)

n∏

i=1

‖b′
i‖∞.

Moreover, it holds that
∥
∥
∥

∫

π<|s|<5π

(ϕω)( · − s)
s

∏n
i=1

(
δ[ · ,s]bi/s

)

∏m
i=1

[
1 +

(
δ[ · ,s]ai/s

)2]ds
∥
∥
∥

∞
≤ C‖ω‖L2(S)

n∏

i=1

‖b′
i‖∞.

Herewith we established the estimate stated at (i). If a1, . . . , am, b1, . . . , bn are 2π-periodic, then so is also
the function Cn,m(a1, . . . , am)[b1, . . . , bn, ω], and the local Lipschitz continuity property of Cn,m follows
directly from the estimate.

In order to prove (ii) we start by noticing that for h ∈ C∞(S) it holds that

∂

∂s

(δ[x,s]h

s

)
=

h′(x − s)
s

− δ[x,s]h

s2
= −δ[x,s]h − sh′(x − s)

s2
for x ∈ R, s = 0.

Using this relation we get

Cn,m(a1, . . . , am)[b1, . . . , bn, ω](x) = PV
∫ π

−π

δ[x,s]b1

s2

∏n
i=2

(
δ[x,s]bi/s

)

∏m
i=1

[
1 +

(
δ[x,s]ai/s

)2]ω(x − s)ds

= Cn−1,m(a1, . . . , am)[b2, . . . , bn, b′
1ω](x)

− PV
∫ π

−π

∂

∂s

(δ[x,s]b1

s

) ∏n
i=2

(
δ[x,s]bi/s

)

∏m
i=1

[
1 +

(
δ[x,s]ai/s

)2]ω(x − s)ds,

and the estimate established at (i) yields

‖Cn−1,m(a1, . . . , am)[b2, . . . , bn, b′
1ω]‖L2(S) ≤ C‖ω‖Hτ (S)‖b1‖H1(S)

n∏

i=2

‖bi‖Hr(S). (A.5)

We are left with the singular integral term

PV
∫ π

−π

∂

∂s

(
δ[x,s]b1

s

) ∏n
i=2

(
δ[x,s]bi/s

)

∏m
i=1

[
1 +

(
δ[x,s]ai/s

)2]ω(x − s)ds

= (1 − (−1)n)
∏n

i=1

(
δ[x,π]bi/π

)

∏m
i=1

[
1 +

(
δ[x,π]ai/π

)2]ω(x − π)

+ (b1Cn−1,m(a1, . . . , am)[b2, . . . , bn, ω′](x) − Cn−1,m(a1, . . . , am)[b2, . . . , bn, b1ω
′])(x)

+
n∑

j=2

∫ π

−π

K1,j(x, s)ω(x − s)ds − 2
m∑

j=1

∫ π

−π

K2,j(x, s) ω(x − s)ds, (A.6)
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where

K1,j(x, s) :=

∏n
i=1,i �=j

(
δ[x,s]bi/s

)

∏m
i=1

[
1 +

(
δ[x,s]ai/s

)2]
δ[x,s]bj − sb′

j(x − s)
s2

,

K2,j(x, s) :=
∏n

i=1

(
δ[x,s]bi/s

)

∏m
i=1

[
1 +

(
δ[x,s]ai/s

)2]
δ[x,s]aj/s

1 +
(
δ[x,s]aj/s

)2
δ[x,s]aj − sa′

j(x − s)
s2

for x ∈ R and s = 0. The relation (A.6) is obtained by using integration by parts. We next estimate the
terms on the right hand side of (A.6) separately. Firstly, it is easy to see that

∥
∥
∥

∏n
i=1

(
δ[ · ,π]bi/π

)

∏m
i=1

[
1 +

(
δ[ · ,π]ai/π

)2]ω( · − π)
∥
∥
∥

L2(S)
≤ C‖ω‖L2(S)‖b1‖∞

n∏

i=2

‖bi‖Hr(S). (A.7)

Secondly, concerning the last two terms in (A.6), we may adapt the arguments from the nonperiodic case
[48, Lemma 3.2], to arrive at

(∫ π

−π

∣
∣
∣

∫ π

−π

K1,j(x, s)ω(x − s)ds
∣
∣
∣
2

dx

)1/2

≤ C‖ω‖∞‖b1‖Hτ (S)

n∏

i=2

‖bi‖Hr(S), 2 ≤ j ≤ n,

(∫ π

−π

∣
∣
∣

∫ π

−π

K2,j(x, s)ω(x − s)ds
∣
∣
∣
2

dx

)1/2

≤ C‖ω‖∞‖b1‖Hτ (S)

n∏

i=2

‖bi‖Hr(S), 1 ≤ j ≤ m.

(A.8)

Indeed, since Hτ (S) ↪→ Cτ−1/2(S), we obtain after appealing to Minkowski’s inequality that7

(∫ π

−π

∣
∣
∣

∫ π

−π

K1,j(x, s)ω(x − s)ds
∣
∣
∣
2

dx

)1/2

≤
∫ π

−π

(∫ π

−π

|K1,j(x, s)ω(x − s)|2dx

)1/2

ds

≤ C‖ω‖∞‖b1‖Hτ (S)

⎛

⎝
n∏

i=2,i �=j

‖b′
i‖∞

⎞

⎠

∫ π

−π

sτ−7/2

(∫ π

−π

|bj − τsbj − sτsb
′
j |2(x)dx

)1/2

ds,

where, taking into account that |eix − 1 − ix| ≤ 2|x|r for all x ∈ R, we have
∫ π

−π

|bj − τsbj − sτsb
′
j |2(x)dx =

∑

k∈Z

|̂bj(k)|2|eiks − 1 − iks|2 ≤ C|s|2r
∑

k∈Z

|̂bj(k)|2(1 + k2)r

= C|s|2r‖bj‖2
Hr(S).

Since r + τ − 7/2 > −1, the estimate (A.8)1 follows immediately (similarly for (A.8)2.)
Thirdly, for the remaining term

T := b1Cn−1,m(a1, . . . , am)[b2, . . . , bn, ω′] − Cn−1,m(a1, . . . , am)[b2, . . . , bn, b1ω
′]

in (A.6) we obtain, in virtue of (i), that

‖T‖L2(S) ≤ C‖ω‖H1(S)‖b1‖∞
n∏

i=2

‖bi‖Hr(S), (A.9)

and (A.2) follows from (A.7), (A.8), and (A.9).
In order to derive (A.1), we use the identity ∂(δ[x,s]ω)/∂s = ω′(x − s) and integration by parts to

recast T as

T (x) = (1 − (−1)n)
(δ[x,π]ω)

∏n
i=1

(
δ[x,π]bi/π

)

∏m
i=1

[
1 +

(
δ[x,π]ai/π

)2] +
n∑

j=1

∫ π

−π

K1,j(x, s)δ[x,s]ωds

7Recall that τs stands for the right translation. Moreover, ĥ(k), k ∈ Z, is the k-th Fourier coefficient of h ∈ L1(S).
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− 2
m∑

j=1

∫ π

−π

K2,j(x, s)δ[x,s]ωds, (A.10)

with
∥
∥
∥

(δ[ · ,π]ω)
∏n

i=1

(
δ[ · ,π]bi/π

)

∏m
i=1

[
1 +

(
δ[ · ,π]ai/π

)2]

∥
∥
∥

L2(S)
≤ C‖ω‖L2(S)‖b1‖∞

n∏

i=2

‖bi‖Hr(S). (A.11)

Concerning the integral terms in the last sum in (A.10), the embedding H1(S) ↪→ Cr−3/2(S) together
with Minkowski’s inequality yields

(∫ π

−π

∣
∣
∣

∫ π

−π

K2,j(x, s)δ[x,s]ωds
∣
∣
∣
2

dx

)1/2

≤
∫ π

−π

(∫ π

−π

|K2,j(x, s)δ[x,s]ω|2dx

)1/2

ds

≤ C‖b1‖H1(S)

⎛

⎝
n∏

i=2,i �=j

‖b′
i‖∞

⎞

⎠

∫ π

−π

sr−7/2

(∫ π

−π

|ω − τsω|2(x)dx

)1/2

ds

= C‖b1‖H1(S)

⎛

⎝
n∏

i=2,i �=j

‖b′
i‖∞

⎞

⎠

∫ π

−π

sr−7/2

(
∑

k∈Z

|ω̂(k)|2|eiks − 1|2
)1/2

ds

≤ C‖b1‖H1(S)

⎛

⎝
n∏

i=2,i �=j

‖b′
i‖∞

⎞

⎠

∫ π

−π

sr+τ−7/2

(
∑

k∈Z

|ω̂(k)|2(1 + k2)τ

)1/2

ds

= C‖ω‖Hτ (S)‖b1‖H1(S)

n∏

i=2

‖bi‖Hr(S), 1 ≤ j ≤ m, (A.12)

where we have used the relation |eix − 1| ≤ C|x|τ , x ∈ R, when deriving the fourth line.
Similarly, we find for 2 ≤ j ≤ n that

(∫ π

−π

∣
∣
∣

∫ π

−π

K1,j(x, s)δ[x,s]ωds
∣
∣
∣
2

dx

)1/2

≤ C‖ω‖Hτ (S)‖b1‖H1(S)

n∏

i=2

‖bi‖Hr(S). (A.13)

In the special case when j = 1, we use the procedure which led to (A.12) together with (i) to conclude
that

(∫ π

−π

∣
∣
∣

∫ π

−π

K1,1(x, s)δ[x,s]ωds
∣
∣
∣
2

dx

)1/2

≤ C‖ω‖Hτ (S)‖b1‖H1(S)

n∏

i=2

‖bi‖Hr(S)

+ ‖ωCn−1,m(a1, . . . , am)[b2, . . . , bn, b′
1]‖2

+ ‖Cn−1,m(a1, . . . , am)[b2, . . . , bn, ωb′
1]‖2

≤ C‖ω‖Hτ (S)‖b1‖H1(S)

n∏

i=2

‖bi‖Hr(S). (A.14)

The property (A.1) follows now from (A.5), (A.7), (A.8), and (A.11)–(A.14). The extension property left
at (ii1) follows from (A.1). The claim (ii2) is a straight forward consequence of (A.1).

With respect to (iii) we decompose

Cn,m(a1, . . . , am)[b1, . . . , bn, ω] = ωA − B,

with

A(x) := PV
∫ π

−π

1
s

∏n
i=1

(
δ[x,s]bi/s

)

∏m
i=1

[
1 +

(
δ[x,s]ai/s

)2]ds and B(x) :=
∫ π

−π

(δ[x,s]ω/s)
∏n

i=1

(
δ[x,s]bi/s

)

∏m
i=1

[
1 +

(
δ[x,s]ai/s

)2] ds.
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Since τ > 1/2 and Hτ (S) ↪→ Cτ−1/2(S), it holds

‖B‖∞ ≤ C‖ω‖Hτ (S)

n∏

i=1

‖bi‖Hr(S)

∫ π

−π

|s|τ−3/2ds ≤ C‖ω‖Hτ (S)

n∏

i=1

‖bi‖Hr(S), (A.15)

and we are left with the function A. Taking advantage of the embedding Hr(S) ↪→ Cr−1/2(S), the
arguments in the proof of [49, Lemma 3.1] show that indeed

‖A‖∞ ≤ C

n∏

i=1

‖bi‖Hr(S). (A.16)

The estimates (A.15), (A.16) lead us to the estimate (A.3). The last two claims follow directly from (A.3)
and the proof is complete. �
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[23] Córdoba, D., Gancedo, F.: Contour dynamics of incompressible 3-D fluids in a porous medium with different densities.

Commun. Math. Phys. 273, 445–471 (2007)
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