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Abstract. This paper is concerned with the stationary Navier–Stokes equation in two-dimensional exterior domains with
external forces and inhomogeneous boundary conditions, and shows the existence of weak solutions. This solution enjoys a
new energy inequality, provided the total flux is bounded by an absolute constant. It is also shown that, under the symmetry
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1. Introduction

Let Ω be an exterior domain in the plane R
2 with C2+γ-boundary Γ with some γ ∈ (0, 1). We are

concerned with the following stationary Navier–Stokes equation in Ω:

−Δw(x) +
(
w(x) · ∇)w(x) + ∇π(x) = f(x) in Ω, (1.1)

∇ · w(x) = 0 in Ω, (1.2)

w(x) = a(x) on Γ, (1.3)

where the vector-valued unknown function w(x), the scalar-valued unknown function π(x) and the vector-
valued given function f(x) stand for the velocity, the pressure and the external force respectively. As is
known in Russo and Simader [30], the solution does not satisfy the boundary condition

w(x) → 0 as |x| → ∞ (1.4)

in general. Throughout this paper we assume that the external force f(x) is given by the formula

f(x) = ∇ · F (x) =

⎛

⎝
2∑

j=1

∂Fjk

∂xj
(x)

⎞

⎠

2

k=1

with a 2 × 2 matrix
(
Fjk(x)

)2
j,k=1

∈ (L2(Ω)
)4.

In the pioneering work by Finn and Smith [9], the study on the stationary Navier–Stokes equation in
two-dimensional exterior domains started, first under the assumption that w(x) is close to a definite vector
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w∞ �= 0 at infinity with no external force. This problem was considered by Gilbarg and Weinberger [15,16]
and Amick [2,3]. In particular, [2,3] considered the case

Ω is invariant under the mapping π1 : (x1, x2) �→ (−x1, x2) (R2I)

and

w1(−x1, x2) = −w1(x1, x2), w2(−x1, x2) = w2(x1, x2), (R2E)

where w∞ = (0, c) with some c �= 0. This result is improved by Russo [27]. Then Galdi and Simader [12]
considered the problem for external force f(x) with little regularity, and Galdi and Sohr [13], Sazonov [31]
and Russo [26] obtained precise asymptotic behavior of w(x) and π(x). (For more complete references,
see Galdi [11].)

For the case w∞ = 0 with external force, Russo [25] obtained the existence of weak solutions under

the assumption that |α| is sufficiently small. Here the total flux α is defined by α =
∫

Γ

a(x) · n(x) ds(x),

where n(x) denotes the unit normal vector of Γ at x outward of Ω.
Furthermore, Galdi [10, Section 3] and Pileckas and Russo [24], as well as [25], posed the condition

The set Ω is invariant under the mappings

π1 : (x1, x2) �→ (−x1, x2), π2 : (x1, x2) �→ (x1,−x2)
(D4I)

with a specific coordinate variables (x1, x2) on Ω, and the condition
{

f1(−x1, x2) = −f1(x1, x2), f2(−x1, x2) = f2(x1, x2),

f1(x1,−x2) = f1(x1, x2), f2(x1,−x2) = −f2(x1, x2)
(D4E)

on the external force f(x) =
(
f1(x), f2(x)

)
, and (D4E) on the boundary value a(x), and showed the

existence of a weak solution w(x) =
(
w1(x), w2(x)

)
satisfying (D4E), which is exactly the same as [10,

(3.18)]. Furthermore, [25] showed that w(x) tends to 0 in the average, [Precise definition is given in (2.9).]
and that w(x) tends to 0 pointwise if the external force has compact support. We here regard this condition
above from the viewpoint of transformation groups, as is in Brandolese [6] which obtained sharp decay
order of solutions to the nonstationary Navier–Stokes equations in R

2 and R
3. The condition (D4I) can be

described as πj(Ω) = Ω for j = 1, 2, and the condition (D4E) can be described as f
(
πj(x)

)
= πj

(
f(x)

)
.

In other words, the domain Ω is invariant, and the vector field f(x) is equivariant, with respect to the
action of the group D4 = {id, π1, π2, π1π2}.

Later, Russo [28] relaxed the assumptions (D4I) and (D4E) to

The set Ω is invariant under the mapping

π1π2 : x = (x1, x2) �→ −x = (−x1,−x2),
(C2I)

and

fj(−x) = −fj(x) for j = 1, 2 and every x ∈ Ω, (C2E)

and showed the same property satisfying w(x) satisfying (C2E). Russo [29] studied the decay order of the
solutions at infinity in detail. In other words, Ω is invariant, and f(x) is equivariant, under the group C2

generated by x �→ −x. Most of these works treated the solution
(
w(x), π(x)

)
satisfying ∇w ∈ (L2(Ω)

)4.
Recently, Korobkov et al. [20] proved, among others, the existence of the solution with no assumptions

on the flux of each boundary components for multiply connected exterior domains under the assumptions
(C2I) and (C2E) and some assumptions on the obstacles.

However, in the author’s knowledge, there are few results on the solutions decaying sufficiently so that
its stability for the nonstationary problem under initial perturbation is assumed, and the uniqueness in
these classes is obtained in this class for exterior domains is obtained only by [28] without the exterior
force.
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For these problems, the author [33] showed the existence, together with the uniqueness in the small,
of the solution of the stationary Navier–Stokes equation on the whole plane under the assumption that
the small external force f(x) = ∇ · F (x) decays like |x|−2 as |x| → ∞ and satisfies the condition

f(x⊥) =
(
f(x)

)⊥; namely, f1(x⊥) = −f2(x), f2(x⊥) = f1(x), (C4E)

where x⊥ = (−x2, x1), as well as (D4E). The solutions decays like |x|−1 as x → ∞; in other words, decays
like the derivatives of the fundamental solution of the Laplacian. This class is invariant under the scaling
wρ(x) = ρw(ρx) keeping (1.1) invariant with suitable scaling for p(x) and f(x). We call these solutions
critically decaying. (Its definition in somewhat generalized form, which does not imply pointwise estimate,
is given in Remark 2.13.) In the terminology of function spaces, critically decaying solutions belong to
the weak-L2 space. It is also shown that, if F (x) decays more rapidly, then w(x) decays more rapidly (up
to |x|−2). This result is also obtained by Guillod [17, Section 3] without the assumption that f(x) is of
the form f(x) = ∇ · F (x). Very recently, Decaster and Iftimie [8] obtained sharp decay and asymptotic
profiles of the solutions.

Then [34] showed that the same result as [33] holds for the exterior problem provided the domain Ω
satisfies the symmetry condition

The set Ω is invariant under the mapping σ : x �→ x⊥ (C4I)

as well as (D4I), and the external force f(x) and the boundary value a(x) satisfies (D4E) and (C4E) with
α = 0. Recently, Guillod [17] obtained sharp asymptotic behavior at infinity of the solution above. Notice
that (D4I) and (C4I) imply the invariance of Ω for the square dihedral group D4 , and (D4E) and (C4E)
imply the equivariance for D4 .

Then Nakatsuka [22] proved the weak-strong uniqueness; namely, he showed that, if the exterior
domain satisfies (D4I) and if there exists a sufficiently small critically decaying solution of (1.1)–(1.4)
with a(x) ≡ 0 satisfying the condition (D4E), then every weak solution of (1.1)–(1.4) satisfying the
energy inequality and the same symmetry property coincides with the critically decaying solution. He
also showed that, if there exists a sufficiently small supercritically decaying solution of (1.1)–(1.4) with
a(x) ≡ 0, every weak solution satisfying the energy inequality coincides with the supercritically decaying
solution. For the proof he first showed that the critically decaying solutions satisfy the energy identity.

Further, Galdi and Yamazaki [14] showed that the solutions above are stable under initial
L2-perturbation with the symmetry property (D4E) with no restriction on the size, and the author [35]
gave convergence rate in various function spaces. The author [34] also showed that, if f(x) decays more
rapidly, then the solution decays faster than the derivatives of the fundamental solution. We call these
solutions supercritically decaying. In this case the stability above holds true for initial L2-perturbation
without symmetry or size restriction. Very recently, Guillod [18] showed that the critically decaying so-
lution is stable under general initial L2-perturbation. (The precise definition of supercritically decaying
solutions, which does not imply pointwise estimate, is given in Remark 2.10 in somewhat generalized
form.) Note that the divergence theorem implies that the outflow condition α = 0 is necessary for the
existence of supercritically decaying solutions.

On the other handy, the author [36] proved, assuming only (C4I) on the domain Ω, and assuming only
(C4E) on a(x) and f(x) = ∇F (x), where a(x) and F (x) are small in appropriate function spaces, the
unique existence of small critically decreasing solutions satisfying the symmetry condition (C4E). In this
work we imposed the invariance and equivariance under the cyclic group C4 .

For the existence of critically decreasing solutions, the condition α = 0 is not necessary. The author [36]
also showed that the solutions above become supercritically decreasing if F (x) satisfies a sharper decay
condition and if, as well as the outflow condition α = 0, the data a(x) and F (x) are sufficiently small. We
observe that the conditions (C4I) and (C4E) are independent of the choice of the coordinate axes, and
includes rotationally symmetric functions naturally. However, the results above implies only the unique-
ness of small solutions. The main difficulty in the two-dimensional case is that the function with finite
Dirichlet integral is not bounded in general, and we must modify Hardy’s inequality (see Propositions 3.5
and 7.1) in general. (see Adimurthi et al. [1].)
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The purpose of this paper is twofold. The first one is a slight generalization of constructing weak
solutions with external force f(x) = ∇ · F (x) with neither any sort of symmetry conditions nor the
smallness conditions. In order to treat large a(x), we construct a corrector potential G(x) so that there
exists a solution v(x) of the Stokes equation with given boundary condition and the external force ∇G(x)
is critically decreasing, and consider the equation for u(x) = w(x) − v(x) with homogeneous boundary
condition. The correction potential G(x) is a compactly supported function which cancels the angular
momentum of the boundary value, and the function v(x) is critically decreasing function whose profile
is determined by α, However, these functions do not cancel the momentum, and hence v(x) does not
describe the asymptotic profile of w(x). Indeed, for the steady flow w(x) ≡ w0 �= 0 outside a disk with
F (x) ≡ 0 and w(x) = w0 on the boundary, we construct G(x) so that v(x) is supercritically decreasing,
and the asymptotic profile w(x) = w0 at infinity reappears as the homogeneous boundary value problem
with external force −∇G(x). This fact also implies that, even if the boundary value vanishes and the
external force is compactly supported, the asymptotic behavior of the solution may not be trivial. Hence
our existence theorem covers the case where w(x) is not decreasing as |x| → ∞. We then apply the fixed
point theorem on disks, whose centers converge to the image of v(x) by the orthogonal projection to
H1

0,σ(Ω), which is denoted by v. In this case the solution does not necessarily satisfy (1.4).

If the domain Ω satisfies the symmetry condition (C2I) and the external force and the boundary
conditions satisfies (C2E), then we can construct a solution w(x) satisfying (C2E). Since C2 is a subgroup
of C4, these conditions are also independent of the choice of coordinate axes. In this case the solution
satisfies (1.4) in the sense that w(x) tends to 0 in the average.

Moreover, the solution satisfies an energy inequality provided |α| is bounded by an absolute constant.
This inequality is a generalization of the one employed in [22], where the case a(x) = 0. This inequality in
this paper seems to be new since it is applicable to solutions which fail to satisfy (1.4), and plays a crucial
role in the study of weak-strong uniqueness. In order to treat the case where the angular momentum of
the solution is not zero, we use the result of Coifman et al. [7].

The second purpose is to give a condition for the weak-strong uniqueness under non-homogeneous
boundary conditions and with external force under the assumption that a(x) is small and that w(x) decays
sufficiently fast. Namely, suppose that w(x) is a weak solution such that u(x) = w(x) − v(x) is small and
supercritically decaying. (This implies the smallness of a(x) and f(x).) Then every weak solution w′(x)
such that u′(x) = w′(x) − v(x) satisfies the energy inequality but not necessarily satisfies (1.4), however
large it may be, coincides with w(x). In particular, the weak solution constructed in the previous results
coincides with w(x). Under the symmetry condition the assumption on decay property can be relaxed.
Namely, suppose that Ω satisfies (C2I), and that ∇F and a(x) satisfies (C2E). Moreover, suppose that
w(x) is a weak solution such that u(x) = w(x) − v(x) is a small critically decaying function satisfying
(C2E). Then every weak solution w′(x) satisfying (C2E) such that u′(x) = w′(x) − v(x) satisfies (C2E)
and the energy inequality, must coincide with w(x). This result implies the uniqueness of the solutions
obtained in [36] as well as those in [33,34]. In particular, if w′(x) is the weak solution constructed in
the previous result such that u′(x) = w′(x) − v(x) satisfies (C2E), then w′(x) coincides with w(x). With
(C2I) and (C2E) we have Hardy’s inequality. Notice that u(x) need not satisfy an assumption of pointwise
estimate in either case.

In the case Ω satisfies (D4I), f(x) satisfies (D4E) and a(x) = 0, our assumption on the smallness
of the weighted Lp-norm is a slight generalization of the assumption on the smallness of the pointwise
estimate in [22]. Moreover, we prove the energy identity under weaker assumption in which no pointwise
estimate is necessary. To this end we prove a sharp version of Hardy’s inequality.

In addition to the property above on the uniqueness, the results in [14,35] on the stability under
initial L2-perturbation with no restriction on the size holds, and we can replace the symmetry condition
(D4E) by (C2E) by applying the improved Hardy’s inequality. In other words, solutions in [33,34,36] have
similar property on uniqueness and stability as physically reasonable solutions in the three-dimensional
setting.
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This paper is organized as follows. In Sect. 2 the notation is fixed and main results are stated. In Sect. 3
we list up some facts necessary in the proof. Proof of some lemmata are given in the Appendix. Then
corrector potentials and weak solutions are constructed in Sects. 4 and 5 respectively. The uniqueness is
proved in Sect. 6. Finally in Sect. 7 we state the improvement in symmetric cases.

2. Notations and Main Results

We first introduce some function spaces. For a domain U ⊂ R
2, let C∞

0 (U) denote the set of infinitely
differentiable functions on U supported by a compact subset of U , and let C∞

0,σ(U) denote the set of

vector-valued functions ϕ(x) =
(
ϕ1(x), ϕ2(x)

) ∈ (C∞
0 (U)

)2 such that ∇ · ϕ ≡ 0. Next, for a domain U in
R

2 and q ∈ [1,∞], let Lq(U) denote the standard Lebesgue spaces. The norm of
(
Lq(U)

)m with m ∈ N

is denoted by ‖·‖q. For p ∈ (1,∞) and r ∈ [1,∞], let Lq,r(U) denote the set of Lorentz space. The norm
of
(
Lq,r(U)

)m for m ∈ N is denoted by ‖·‖q,r.
Then we have the following properties. (see Bergh and Löfström [4] or Triebel [32] for example.)

First, there exist a inclusion relation Lq,r(U) ⊂ Lq,s(U) provided r < s. Second, the space Lq,q(U)
coincides with the Lebesgue space Lq(U), and the space Lq,∞(U) coincides with the weak-Lq space on
U . Third, for 1 ≤ r < ∞, the space C∞

0 (U) is dense in Lq,r(U), while this property fails if r = ∞.
Let Lq,∞−(U) denote the closure of C∞

0 (U) in Lq,∞(U). Fourth, if 1 ≤ r < ∞, we have the duality
property

(
Lq,r(U)

)′ = Lq/(q−1),r/(r−1)(U), while
(
Lq,∞−(U)

)′ = Lq/(q−1),1(U). Fifth, if 1 ≤ q0 < q1 ≤ ∞,
1 ≤ r ≤ ∞ and 0 < θ < 1, the real interpolation space

(
Lq0(U), Lq1(U)

)
θ,r

coincides with Lq,r(U) up to
equivalence of the norms, where 1/q = (1 − θ)/q0 + θ/q1.

Suppose that U is either a whole plane R
2, a bounded domain or an exterior domain with C2+γ

boundary, and let Γ denote the boundary of U . Then, for every q ∈ (1,∞), there exists a direct sum
decomposition

(
Lq(U)

)2 = Lq
σ(U) ⊕ Gq(U), where

Lq
σ(U) =

{
u ∈ (Lq(U)

)2 ∣∣
∣ ∇ · u = 0 in U, n(x) · u(x) = 0 on Γ

}

and

Gq(U) =
{

∇f ∈ (Lq(U)
)2 ∣∣
∣ f ∈ Lq

loc(U)
}

.

Let Pq denote the projection on
(
Lq(U)

)2 onto Lq
σ(U) associated with the decomposition above. Then we

have Pq0 = Pq1 on
(
Lqo(U) ∩ Lq1(U)

)2. Hence we can define the projection Pq,r on
(
Lq,r(Ω)

)2 for every
q ∈ (1,∞) and r ∈ [1,∞] by real interpolation. Let Lq,r

σ (U) denote the range of Pq,r.
For s ∈ R, let Hs(R2) and Ḣs(R2) denote the Sobolev space and the homogeneous Sobolev space,

equipped with the norms

‖U‖Hs(R2) =
∥
∥
∥F−1

[(
1 + |ξ|2)s/2 F [u](ξ)

]∥∥
∥

2
< ∞,

and

‖u‖Ḣs(R2) =
∥
∥F−1 [|ξ|sF [u](ξ)]

∥
∥

2
< ∞

respectively, and for q, r ∈ [1,∞] and s ∈ R, let Ḃs
q,r denote the homogeneous Besov space. (see [4] or [32]

for the definition.) In this paper we only use the inclusion relation Ḃs
q,r ⊂ Ḃs

q,ρ if r < ρ, Ḃs
p,p ⊂ Ḣs

p ⊂ Ḃs
p,2

for 1 < p ≤ 2 and Ḃs
p,2 ⊂ Ḣs

p ⊂ Ḃs
p,p for 2 ≤ p < ∞, the embedding theorem Ḃs

p,r ⊂ Ḃ
s−n/p+n/q
q,r

for q ≥ p, the characterization of homogeneous Besov spaces by the norm of differences, and the real
interpolation property Ḃs

p,q =
(
Ḣs0

p , Ḣs1
p

)

θ,q
, where s0 �= s1, 0 < θ < 1 and s = (1 − θ)s0 + θs1 . In

general homogeneous spaces are defined only modulo polynomials, but if either s < n/p, or s = n/p and
q = 1 for the Besov space, the modulo classes in Ḣs

p and Ḃs
p,q have a canonical representative which

decays as |x| → ∞, and hence these spaces can be considered as function spaces on R
n. For a domain U
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in R
2 and k ∈ N, let Hk(U) and Ḣk(U) denote the set of the restrictions of the elements of Hk(R2) and

Ḣk(R2) on U equipped with the norms

‖u‖Hk(U) = inf
{

‖ũ‖Hk(R2)

∣
∣
∣ ũ|U = u

}

and

‖u‖Ḣk(U) = inf
{

‖ũ‖Ḣk(R2)

∣
∣
∣ ũ|U = u

}

respectively, and let Ḣk
0 (U) denote the closure of C∞

0 (U) in Ḣk(U). In particular, if U is bounded, the
space Ḣk

0 (U) is defined as a set of functions even if k ≥ 1. Let Hk
0 (U) denote this space. Furthermore, let

Ḣk
0,σ(U) denote the closure of C∞

0,σ(Ω) in
(
Ḣk(U)

)2

, and we write it Hk
0,σ(U) if U is bounded.

Remark 2.1. The functions u ∈
(
Ḣ1

0 (Ω)
)2

satisfying ∇ · u ≡ 0 on Ω belongs to Ḣ1
0,σ(Ω), as is shown in

Heywood [19, Section 2] for example.

For a domain U and s > 0 such that s /∈ N, Let Cs(U) denote the Hölder space on U . For a closed
curve Γ of C2+γ class and s > 0, let Hs(Γ) denote the Sobolev space on Γ.

Finally, for a scalar-valued function f(x) we write

∇f(x) =
(

∂f

∂x1
(x),

∂f

∂x2
(x)
)

, ∇⊥f(x) =
(

− ∂f

∂x2
(x),

∂f

∂x1
(x)
)

and a vector-valued function u(x) =
(
u1(x), u2(x)

)
we write

∇ · u(x) =
∂u1

∂x1
(x) +

∂u2

∂x2
(x), ∇ × u(x) =

∂u2

∂x1
(x) − ∂u1

∂x2
(x).

Then we have Δu(x) = ∇(∇ · u(x)
)

+ ∇⊥(∇ × u(x)
)

for a vector-valued function u(x).
In the sequel let Ω be a fixed exterior domain with C2+γ-boundary Γ. We introduce the notion of

weak solutions.

Definition 2.2. We say that w(x) ∈
(
Ḣ1(Ω)

)2

satisfying (1.2)–(1.3) is a weak solution of (1.1)–(1.3) if it
satisfies the identity

(∇w,∇ϕ) + (F − w ⊗ w,∇ϕ) = 0 (2.1)

for every ϕ(x) ∈ C∞
0,σ(Ω). Here a ⊗ b denotes the 2 × 2 matrix

(
ajbk

)2
j,k=1

, and (F,∇w) denotes the sum
∫

Ω

2∑

j=1

2∑

k=1

Fj,k(x)
∂wk

∂xj
(x) dx.

We construct weak solutions of (1.1)–(1.3) by writing w(x) = v(x) + u(x), where v(x) ∈ (Ḣ1(Ω)
)2 is

a function satisfying the linear system

−Δv(x) = ∇ · G(x) in Ω, (2.2)

∇ · v(x) = 0 in Ω, (2.3)

v(x) = a(x) on Γ (2.4)

with a certain function G(x) ∈ (L2(Ω)
)4 with a bounded support of satisfying the estimate ‖G‖2 ≤

C‖a‖H1/2(Γ) with some positive constant C. This function is the corrector potential.
Fix a positive integer J such that

B(0, 2J−1) ∪ Ω = R
2, (2.5)

where B(a, r) denotes the open ball with center a and radius r, and put Ω̃ = {x ∈ Ω | |x| < 2J+1} and
D = {x | 2J ≤ |x| ≤ 2J+1}. We also fix a smooth function g(r) on (0,∞) such that g(r) = 0 for r ≤ 2J−1
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and g(r) = log r for r ≥ 2J . Furthermore, for q such that 2 < q ≤ ∞, we define a function λq(t) on [0,∞)
by λq(t) = t1−2/q

(
log(t + e)

)1−1/q.
We now state the existence the corrector functions satisfying (2.2)–(2.4) with suitable G(x).

Proposition 2.3. Suppose that the exterior domain Ω satisfies (2.5). Then there exist a positive constant

C and a bounded linear mapping I1 from
(
H1/2(Γ)

)2
to
(
Ḣ1(Ω)

)2

and I2 from
(
H1/2(Γ)

)2
to
(
H1(Ω)

)2

such that, for a(x) ∈ (H1/2(Γ)
)2
, the function v(x) = I1[a](x)+I2[a](x) satisfies (2.2)–(2.4) with G(x) ∈

(
L2(D)

)4 such that ‖G‖2 ≤ C‖a‖H1/2(Γ) . Furthermore, for every q ∈ (2,∞), there exists a positive
constant Cq such that the estimate ‖I[a](x)λq(|x|)‖q ≤ Cq‖a‖H1/2(Γ) holds.

Moreover, we can write I1[a] =
α(x − c)

2π|x − c|2 + I3[a], where c ∈ R
2\Ω and there exists a positive number

C such that we have |I3(x)| ≤ C

|x − c|2 .

Furthermore, if Ω satisfies (C2I) and a(x) satisfies (C2E), then I[a](x) also satisfies (C2E), and
G(x) satisfies

G(−x) = G(x) for every x ∈ Ω. (C2AE)

In the sequel we write v(j) = Ij [a] for j = 1, 2, 3 and ṽ = v(2) + v(3).

Remark 2.4. Note that, as is stated in [30], the solution of the equation (2.2) does not decay as |x| → ∞,
but here we construct G(x) so that there exists a solution v(x) which enjoys (2.3)–(2.4) as well. This
behavior is independent of the asymptotic profile of w(x) in general.

Then w(x) ∈
(
Ḣ1(Ω)

)2

satisfying ∇ · w(x) = 0 is a weak solution of (1.1)–(1.3) if and only if

u(x) = w(x) − v(x) satisfies u(x) ∈
(
Ḣ1

0 (Ω)
)2

, ∇ · u(x) = 0 and the identity
(∇u,∇ϕ

)− ((u + v) ⊗ (u + v),∇ϕ
)

+
(
H,∇ϕ

)
= 0 (2.6)

for every ϕ(x) ∈ C∞
0,σ(Ω), where H(x) = F (x) − G(x). Indeed, subtracting the equality (∇v,∇ϕ) =

(−Δv, ϕ) = (∇ · G,ϕ) = (−G,∇ϕ) from (2.1) we obtain (2.6).
Then our result concerning the existence and the energy inequality is the following theorem.

Theorem 2.5. Suppose that Ω satisfies (2.5). Then, for every a(x) ∈ (H1/2(Γ)
)2 and every F (x) ∈

(
L2(Ω)

)4, there exists a weak solution w(x) of (1.1)–(1.3). Furthermore, if |α| ≤ C0, where C0 is an
absolute constant, then u(x) = w(x) − v(x) satisfies the energy inequality

‖∇u‖2
2 + (−u ⊗ ṽ − v ⊗ v + H,∇u) + αΦ(u, u) ≤ 0, (2.7)

where Φ(u, v) =
1
2π

log(|x − c|)
∑2

h=1

∑2

m=1

∂ϕm

∂xh

∂ψh

∂xm
for ϕ, ψ ∈ H1

0,σ(Ω), and the estimate

‖∇ (u − v)‖2 ≤ Rv,H , where v and Rv,H will be defined by (5.1) and (5.2) respectively.

Note that α = 0 is necessary in general, at least formally, so that the term (u ⊗ v,∇u) to be well-
defined. Thanks to the estimate (5.11) the term Φ(u, u) is well defined for u ∈ H1

0,σ(Ω). Although v(x) is
critically decreasing, the solution u(x) does not decay as |x| → ∞ in general. Hence v(x) does not describe
the asymptotic behavior of w(x) at infinity, but it plays a crucial role in the proof of the existence.

Although the choice of the pair
(
G(x), v(x)

)
is not unique, the validity of the energy inequality (2.7)

is independent of the choice of the pair. In fact, we have the following proposition.

Proposition 2.6. Suppose that Ω satisfies (2.5) and that w(x) is a weak solution of (1.1)–(1.3) such
that u(x) = w(x) − v(x) satisfies (2.7). If

(
v′(x), G′(x)

)
is another pair satisfying the conclusion of

Proposition 2.3, then u′(x) = w(x) − v′(x) also satisfies (2.7) with u(x) and v(x) replaced by u′(x) and
v′(x) respectively.
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We next give a condition sufficient for the equality in (2.7).

Theorem 2.7. Suppose that w(x) is a weak solution of the system (1.1)–(1.3) satisfying ∇w ∈ (L2(Ω)
)4

and w ∈ (L4(Ω)
)2. Then u(x) = w(x) − v(x) enjoys (2.7) with equality, and in this case the left-hand

side of (2.7) can be written as

‖∇u‖2
2 − ((u + v) ⊗ v,∇u

)
+ (H,∇u). (2.8)

Remark 2.8. If w satisfies ∇w ∈ (L2(Ω)
)4 and w ∈ (L2,∞(Ω)

)2, then we have u ∈ Ḣ1
0,σ(Ω) ∩ L2,∞

σ (Ω).

Hence the sharp Gagliardo–Nirenberg theorem (Lemma 3.2) implies u, w ∈ (L4(Ω)
)2. In this sense w(x)

enjoys (1.4).

Next we state our results on the uniqueness of the solutions for domains which do not necessarily
satisfy (C2I) or (C2E).

Theorem 2.9. Let Ω be an exterior domain satisfying (2.5). Then there exists a positive constant CΩ

such that, for q such that 2 < q ≤ ∞, there exists a positive constant δq,Ω such that the following
assertion holds. Suppose that a(x) ∈ (H1/2(Γ)

)2 satisfying the estimate ‖a‖H1/2(Γ) < CΩ, and that w(x)
is a weak solution of (1.1)–(1.3) with v(x) above satisfying (1.4) in the sense that u(x) = w(x) − v(x)
satisfies ‖u(x)λq(|x|)‖q < δq,Ω and that w′(x) is another weak solution of (1.1)–(1.3) such that u′(x) =
w′(x) − v(x) satisfies the energy inequality (2.7). Then we have w′(x) ≡ w(x). In particular, if w′(x) is
the weak solution given in Theorem 2.5, then we have w′(x) = w(x).

Here the smallness of a implies the smallness of |α|. Observe that there exists no restriction on the
size of w′(x).

Remark 2.10. The condition
‖u(x)λq(|x|)‖q < ∞ (SCq)

with some q ∈ (2,∞] is the precise definition of supercritically decaying functions. If q0 �= q1, the condition
(SCq0) is neither necessary nor sufficient for (SCq1). Indeed, suppose that 2 ≤ q0 < q1 < ∞. Then the
function u(x) such that |u(x)| ∼ (|x| log(e + |x|))−1 (log

(
e + log(e + |x|)))−q0 satisfies (SCq) for every

q ∈ (q0,∞] but not (SCq0). On the other hand, if ϕ(x) ∈ C∞
0 (Ω), c ∈ Ω\{0} and ϕ(c) �= 0, the function

u(x) such that |u(x)| ∼ |x − c|−βϕ(x) with some β ∈ (0, 1) satisfies (SCq) for every q ∈ (2, 2/α) but not
(SC2/β).

We next consider the results in the class of functions satisfying (C2E) under the assumption that
Ω satisfies (C2I). In this case we modify the choice of I1 as follows: If 0 ∈ R

2\Ω, then we take c = 0.

Otherwise, if c ∈ R
2\Ω. In this case we take I1[a] =

α(x − c)
4π|x − c|2 +

α(x + c)
4π|x + c|2 + I3[x]. Then v(j)(x) satisfies

(C2E). In this case we have the following existence theorem, which states that our solution decays in the
average as |x| → ∞.

Theorem 2.11. In addition to the assumption of Theorem 2.5, we assume that Ω satisfies (C2I), a(x) sat-
isfies (C2E) and F (x) satisfies (C2AE). Then there exists a weak solution w(x) of (1.1)–(1.3) satisfying
the condition (C2E) and (1.4) in the sense that

∫ 2π

0

|w(r cos θ, r sin θ)|2 dθ → 0 as r → ∞. (2.9)

holds. Moreover, if ∇ · F (x) is of bounded support, then we have w(r cos θ, r sin θ) → 0 uniformly in
θ ∈ [0, 2π] as r → ∞. If |α| < C0, Then u(x) = w(x) − v(x) satisfies (2.7).

Note that the expression (2.8) makes sense in this case. For the uniqueness of solutions satisfying
(C2E), we have the following theorem. Note that, as in Theorem 2.9, there is no restriction on the size
of w′(x).
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Theorem 2.12. There exists a positive constant CΩ such that, for every 2 < q ≤ ∞, there exists a
positive constant δ′

q such that the following assertion holds. Suppose that ‖a‖H1/2(Ω) < CΩ and that Ω

satisfies (C2I) and (2.5), and that a(x) ∈ (H1/2(Γ)
)2. Suppose moreover that w(x) is a weak solution

of (1.1)–(1.3) with v(x) above satisfying (1.4) in the sense that u(x) = w(x) − v(x) satisfies (C2E)
and

∥
∥|x|1−2/qu(x)

∥
∥

q,∞ < δ′
q, and that w′(x) is another weak solution of (1.1)–(1.3) such that u′(x) =

w′(x)−v(x) satisfying (C2E) and the energy inequality (2.7). Then we have w′(x) ≡ w(x). In particular, if
a(x) satisfies (C2E) and if w′(x) is the weak solution given in Theorem 2.11, then we have w′(x) = w(x).

Remark 2.13. The condition ∥
∥
∥|x|1−2/qu(x)

∥
∥
∥

q,∞
< ∞ (Cq)

with some q ∈ (2,∞] is the precise definition of critically decaying functions in the symmetric setting. If
(Cq) holds with some q0 ∈ (2,∞], then (Cq1) holds for every q1 ∈ (2, q), as we see from the estimate

∥
∥|z|1−2/q1u(x)

∥
∥

q1,∞ ≤ C
∥
∥|x|−2(q0−q1)/q0q1

∥
∥

q0q1/(q0−q1),∞
∥
∥|x|1−2/q0u(x)

∥
∥

q0,∞

by way of Lemma 3.1. Hence we see that (Cq0) is strictly more restrictive than (Cq1). In particular, if
|x|u(x) is bounded, then u(x) satisfies (Cq) for every q ∈ (2,∞).

Remark 2.14. We cannot take q = 2 in Theorems 2.9 and 2.12, since the estimate (6.3) fails in this case.

3. Preparatory Lemmata

We first give the sharp Hölder estimate, which is stated by O’Neil [23] without rigorous proof. We give a
simple proof in Appendix A.

Lemma 3.1. Suppose that p, q, r ∈ (1,∞) satisfy 1/r = 1/p + 1/q, and that α, β, γ ∈ [1,∞] satisfy
1/γ = 1/α + 1/β. Then there exists a positive constant C such that, if f(x) ∈ Lp,α and g(x) ∈ Lq,β,
then f(x)g(x) ∈ Lr,γ , and we have the estimate ‖fg‖r,γ ≤ C‖f‖p,α‖g‖q,β .

We also have the generalized Gagliardo–Nirenberg inequality.

Lemma 3.2. Let U be a domain in R
2 with C2 boundary, and suppose that p, q ∈ (1,∞) and that

max{p, q} < r ≤ ∞. We also assume that 2/q − 1 < 2/r. Then there exists a positive constant C such
that, for every u ∈ Lp,∞(U) satisfying ∇u ∈ (Lq,∞(U)

)2, we have u ∈ Lr,1(U) in the case r < ∞, and

u ∈ L∞(U) in the case r = ∞. Furthermore, if we put θ =
2/p − 2/r

1 + 2/p − 2/q
, we have the estimate

‖u‖r,1 ≤ C‖u‖p,∞
1−θ‖∇u‖q,∞

θ for r < ∞,

‖u‖∞ ≤ C‖u‖p,∞
1−θ‖∇u‖q,∞

θ for r = ∞.

Proof. First, choose s such that max{p, q} < s < r. There exists a function ũ on R
2 such that ũ|U = u

and that the inequalities ‖ũ‖p,∞ ≤ C‖u‖p,∞ and ‖∇ũ‖q,∞ ≤ C‖∇u‖q,∞ hold with a positive constant C

independent of u. Hence, by the Sobolev embedding theorem, we have ũ ∈ Ḃ
2/s−2/p
s,∞ with the estimate

‖ũ‖
Ḃ

2/s−2/p
s,∞

≤ C‖ũ‖p,∞ ≤ C‖u‖p,∞ (3.1)

with a positive constant C independent of u, and ũ ∈ Ḃ
1+2/s−2/q
s,∞ with the estimate

‖ũ‖
Ḃ

1+2/s−2/q
s,∞

≤ C‖∇ũ‖q,∞ ≤ C‖∇u‖q,∞. (3.2)

In view of the equality

θ

{(
1 +

2
s

− 2
q

)
−
(

2
s

− 2
p

)}
+

2
s

− 2
p

=
2
p

− 2
r

+
2
s

− 2
p

=
2
s

− 2
r
,
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we can apply real interpolation to obtain

‖ũ‖
Ḃ

2/s−2/r
s,1

≤ C‖u‖p,∞
1−θ‖∇u‖q,∞

θ (3.3)

from (3.1) and (3.2).
If r = ∞, we obtain the conclusion from the estimate above and the inclusion relation Ḃ

2/s
s,1 ⊂ L∞(R2).

If r < ∞, put δ = min{1/r, 1/s − 1/r}. Then we have

Ḃ
2/s−2/r
s,1 =

(
Ḃ

2/s−2/r−δ
s,1 , Ḃ

2/s−2/r+δ
s,1

)

1/2,1
. (3.4)

From the choice of δ, we have 2/s− 2/r − δ > 0 and 2/s− 2/r + δ < 2/s. Hence, putting r0 = 2r/(2+ δr)
and r1 = 2r/(2 − δr), we have

s <
2rs

r + s
≤ r0 < r < r1 ≤ 2r < ∞,

and the Sobolev embedding theorem implies

Ḃ
2/s−2/r−δ
s,1 ⊂ Ḣ2/s−2/r−δ

s ⊂ Lr0(R2), Ḃ
2/s−2/r+δ
s,1 ⊂ Ḣ2/s−2/r+δ

s ⊂ Lr1(R2).

It follows from these facts and (3.4) that

Ḃ
2/s−2/r
s,1 ⊂ (Lr0(R2), Lr1(R2)

)
1/2,1

= Lr,1(R2).

The conclusion follows from this inclusion relation and (3.3). �

We next recall the Bogovskii lemma, which is shown by Bogovskii [5].

Lemma 3.3. Suppose that D is a bounded domain with C2+γ boundary for some γ > 0. Then there exists

a constant C such that, if f(x) ∈ L2(D) satisfies the condition
∫

D

f(x) dx = 0, then there exists a vector-

valued function u(x) ∈ (H1
0 (D)

)2 satisfying the estimate ‖∇u‖2 ≤ C‖f‖2 and the equality ∇·u(x) = f(x)
holds on D. Moreover, the positive constant C is invariant under conformal transformations of D.
Furthermore, if f(x) ∈ H1(D), then we have u(x) ∈ (H1

0 (D) ∩ H2(D)
)2, and the estimate

∥
∥∇2u

∥
∥

2
≤

C‖∇f‖2 holds.

From this lemma we have the following decomposition. Put U = {x ∈ R
2 | |x| > 2J+2/3}. Then we

have the following lemma.

Lemma 3.4. There exists a positive constant C such that the following assertion holds.

(i) For every u(x) ∈ Ḣ1
0,σ(Ω), we have u1(x) ∈ H1

0,σ(Ω̃) and u2(x) ∈ Ḣ1
0,σ(U) such that u(x) =

u1(x)+u2(x) on
{
x ∈ R

2
∣
∣ 2J−13 < |x| < 2J+1

}
, and we have the estimates ‖∇uj‖2 ≤ C‖∇u‖2 for

j = 1, 2 and ‖u1‖2 ≤ C‖∇u‖2.
(ii) For every q ∈ [2,∞) there exists a positive constant Cq such that, if u(x) ∈ Lq

σ(Ω) as well as
u(x) ∈ H1

0,σ(Ω), then the function u2(x) in Assertion (i) satisfies u2(x) ∈ Lq
σ(Ω) with the estimate

‖u2‖q ≤ ‖u‖q + Cq‖∇u‖2 .
(iii) For q ∈ (2,∞) and r ∈ [1,∞], there exists a positive constant Cq,r such that, if u(x) ∈ Lq,r

σ (Ω) as
well as u(x) ∈ H1

0,σ(Ω), then the function u2(x) in Assertion (i) satisfies u2(x) ∈ Lq,r
σ (Ω) with the

estimate ‖u2‖q,r ≤ ‖u‖q,r + Cq,r‖∇u‖2 .

Proof. We first prove Assertion (i). Let χ(t) be a monotone-decreasing C∞-function on R such that
χ(t) ≡ 1 for t ≤ 5/3 and that χ(t) ≡ 0 for t ≥ 11/6. Then we have

∇ · (χ (2−J |x|)u(x)
)

= 2−J∇χ
(
2−J |x|) · u(x) = χ′ (2−J |x|) 2−J x

|x| · u(x).
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In particular, ∇ · (χ (2−J |x|)u(x)
) �= 0 implies 2J−13 < |x| < 2J+1. Since χ

(
2−J |x|) ≡ 0 on |x| = 2J+1

and χ
(
2−J |x|) ≡ 1 on |x| = 2J−13, we have

∫

2J−13≤|x|≤2J+1
∇ · (χ (2−J |x|)u(x)

)
dx =

∮

|x|=2J−13

(−n(x)
) · u(x) ds(x)

= −
∫

x∈Ω,|x|≤2J−13

(−∇ · u(x)
)
dx +

∮

Γ

n(x) · u(x) ds(x) = 0

in view of the fact u(x)|Γ ≡ 0. It follows that there exists a function

v(x) ∈ (H1
0

({
x ∈ R

2
∣
∣ 2J−13 < |x| < 2J+1

}))2

such that ∇ · v(x) = ∇ · (χ (2−J |x|)u(x)
)
. Now put

u1(x) = χ
(
2−J |x|)u(x) − v(x) and u2(x) =

(
1 − χ

(
2−J |x|))u(x) + v(x).

Then we have u1(x) ∈ H1
0,σ(Ω̃), u2(x) ∈ H1

0,σ(U) and u1(x) + u2(x) ≡ u(x). We also have

‖∇v‖2 ≤ C

∥
∥
∥
∥χ

′ (2−J |x|) 2−J x

|x| · u

∥
∥
∥
∥

2

≤ C‖u‖L2(Ω̃)

and
∥
∥∇ (χ (2−J |x|)u(x)

)∥∥
2

≤ sup
t∈R

|χ′(t)|‖u‖L2(Ω̃) + ‖∇u‖2.

From these estimates we have
‖∇u1‖2 ≤ ‖∇u‖2 + C‖u‖L2(Ω̃). (3.5)

Since u|Γ = 0, we can apply the Poincaré inequality to u(x) on Ω̃ to conclude that there exists a positive
integer C such that the estimate ‖u‖L2(Ω̃) ≤ C‖∇u‖2 holds. Substituting this estimate into (3.5) we
obtain ‖∇u1‖2 ≤ C‖∇u‖2 . This inequality yields ‖∇u2‖2 ≤ C‖∇u‖2 since u2(x) = u(x) − u1(x).

We turn to the proof of Assertion (ii). Applying the Poincaré inequality and the Sobolev embedding
theorem to u1(x), we obtain ‖u1‖q ≤ C‖∇u‖2 with a positive constant C depending on q. If u(x) ∈ Lq

σ(Ω)
as well, it follows that ‖u2‖q ≤ ‖u‖q + ‖u1‖q ≤ ‖u‖q + C‖∇u‖2 .

Assertion (iii) follows from Assertion (ii) and real interpolation. �

At the end of this section we give a refined version of Hardy’s inequality, whose proof is given in
Appendix B.

Proposition 3.5. Suppose that 2 ≤ ρ < ∞. Then, for every ε0 > 0, there exists a positive constant Cρ,ε0

such that, if Ω is an exterior domain and if u(x) ∈ Ḣ1
0 (Ω), then we have u(x)/λ2ρ/(ρ−2)(|x|) ∈ Lρ(Ω)

with the estimate
∥
∥u(x)/λ2ρ/(ρ−2)(|x|)∥∥

ρ
≤ Cρ,ε0‖∇u‖2 .

4. Construction of Corrector Functions

Let U1, . . . , UL denote the connected components of R
2\Ω. Since Ω is connected, every U� is simply

connected and arcwise connected. Let Γ� be the boundary of U� for � = 1, . . . , L. Next, for � = 1, . . . , L,
we put

α� =
∮

Γ�

a(x) · n(x) dx.

Then we have α = α1 + · · · + αL . Then Proposition 2.3 follows from the following one.
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Proposition 4.1. Choose c� ∈ U� for every � = 1, . . . , L. Then we introduce a linear operator I1[a]

on
(
H1/2(Γ)

)2
as follows: Put v0,�(x) =

α�(x − c�)
2π|x − c�|2 for every � = 1, . . . , L, and put I1[a] = v(1)(x)

=
∑L

�=1
v0,�(x). Then we have the following assertions.

(i) The mapping I1 is bounded from
(
H1/2(Γ)

)2
to
(
Ḣ1(Ω)

)2, and the function v1(x) satisfies the

equality Δv1(x) = 0 on Ω and the estimate
∥
∥
∥∇v(1)(z)

∥
∥
∥

2
≤ C

∑L

�=1
|α�|. Furthermore, for every r ∈

(2,∞] there exists a positive constant Cr such that v(1) ∈ (
Lr(Ω)

)2 and that∥
∥
∥v(1)(z)

∥
∥
∥

r
≤ Cr

∑L

�=1
|α�|.

(ii) There exists another bounded mapping I2 from
(
H1/2(Γ)

)2
to
(
H1(Ω)

)2, and v(2)(x) = I2[a] satisfies
the equalities ∇· v(2)(x) = 0 in Ω̃, v(2)(x) = 0 on {x ∈ Ω | |x| ≥ 2J+1} and v(2)(x) = a(x)− v(1)(x)
on Γ. Moreover, the function v(x) = v(1)(x) + v(2)(x) satisfies (2.2)–(2.4) with G(x) ∈ (L2(D)

)4

such that ‖G‖2 ≤ C‖a‖H1/2(Γ) .

(iii) For every c ∈ R
2\Ω, the mapping I3[a] =

α

2π

x − c

|x − c|2 −I1[a] satisfies λq(x)I3[a](x) ∈ L2(Ω)∩L∞(Ω)

for every q ∈ (2,∞).

Proof. It follows from the constructions that ∇ · v0,�(x) = 0 and that ∇ × v0,�(x) = 0 outside U�.

Moreover, we have
∮

Γ�

n(x) · v0,m(x) ds(x) = δ�mα� . This implies that v(1)(x) =
∑L

�=1
v0,�(x) satisfies

∇ · v(1)(x) = ∇ × v(1)(x) = 0, and hence Δv(1)(x) = 0, in Ω. Furthermore, ∇v(1)(x) ∈ (L2(Ω)
)4 holds,

and for every r ∈ (2,∞] there exists a positive constant C such that v(1)(x) satisfies the inequality∥
∥∇v(1)

∥
∥

L2(Ω)
+
∥
∥v(1)

∥
∥

Lr(Ω)
≤ C

∑L
�=1 |α�| . This completes the proof of Assertion (i).

We next prove Assertion (ii). Put b(x) = a(x) − v(1)(x)|Γ. Then we have b ∈ H1/2(Γ) satisfying with
the estimate ‖b‖H1/2(Γ) ≤ C‖a‖H1/2(Γ) with some positive constant C. Moreover, by construction, we see

that b(x) satisfies
∮

Γ�

n(x) · b(x) ds(x) = 0 for every � = 1, . . . , L. It follows that the system

−Δw(x) + ∇π(x) = 0 in Ω̃,

∇ · w(x) = 0 in Ω̃,

w(x) = 0 on |x| = 2J+1,

w(x) = b(x) in x ∈ Γ

admits a solution
(
w(x), π(x)

) ∈ H1
σ(Ω̃)×L2(Ω̃), which is unique up to constant in π(x), and there exists

a positive constant C such that we have the estimate ‖∇w‖2 ≤ C‖b‖H1/2(Γ) ≤ C‖a‖H1/2(Γ). We now put
w̃(x) = χ

(
2−J |x|)w(x). Then we have

∇ · w̃(x) = g(x) in Ω̃,

w̃(x) = 0 on |x| = 2J+1,

w̃(x) = b(x) on Γ,

where g(x) =
2−Jχ′ (2−J |x|)x · w(x)

|x| ∈ H1
0 (D) satisfies the estimate

‖∇w̃‖2 + ‖∇g‖2 ≤ C‖∇w‖2 ≤ C‖a‖H1/2(Γ).
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Since w̃(x) = 0 on {x | |x| = 2J+1} and ∇w(x) = 0 on {x ∈ Ω | |x| ≤ 2J}, we have
∫

D

g(x) dx =
∫

|x|=2J+1
n(x) · w̃(x) ds(x) −

∫

|x|=2J

n(x) · w̃(x) ds(x)

= −
∫

|x|=2J

n(x) · w(x) ds(x) +
∫

Γ

n(x) · b(x) ds(x)

= −
∫

{x∈Ω||x|≤2J}
∇ · w(x) dx = 0.

Hence Lemma 3.3 implies that there exists ϕ ∈ (H1
0 (D) ∩ H2(D)

)2 satisfying the equality ∇·ϕ(x) = g(x)
and the estimate

∥
∥∇2ϕ

∥
∥

2
≤ C‖∇g‖2 ≤ C‖a‖H1/2(Γ) . Moreover, since ϕ(x) = 0 holds on |x| = 2J and

|x| = 2J+1, we have ∇ × ϕ(x) = 0 on |x| = 2J and |x| = 2J+1. This implies that ∇ × ϕ(x) ∈ H1
0 (D) with

the estimate ‖∇(∇ × ϕ)‖2 ≤ C‖a‖H1/2(Γ) . Putting v(2)(x) = w̃(x) − ϕ(x), we see that v(2)(x) satisfies
the estimate ∥

∥
∥∇v(2)

∥
∥
∥

2
+
∥
∥
∥v(2)

∥
∥
∥

r
≤ ‖∇w̃‖2 + ‖w̃‖r + ‖∇ϕ‖2 + ‖ϕ‖r ≤ C‖a‖H1/2(Γ)

and the system

−Δv(2)(x) = −∇⊥(∇ × w̃(x) − ∇ × ϕ(x)
)− ∇(∇ · v(2)(x)

)

= ∇⊥(∇ × ϕ(x) − h(x)
)

in Ω,

∇ · v(2)(x) = 0 in Ω,

v(2)(x) = 0 on |x| = 2J+1,

v(2)(x) = b(x) on Γ,

where h(x) ∈ L2(D) with the estimate ‖h‖2 ≤ C‖∇w‖2 ≤ C‖a‖H1/2(Γ) . Hence we have the equality
−Δv(2)(x) = ∇ · G(x) with a matrix

G(x) =
(

0 ∇ × ϕ(x) − h(x)
h(x) − ∇ × ϕ(x) 0

)
∈ (L2(D)

)4

with the estimate ‖G‖2 ≤ C‖a‖H1/2(Γ) , and we see that v(x) = v(1)(x)+v(2)(x) satisfies the system (2.2)–
(2.4) with the estimate ‖∇v‖2 + ‖G‖2 ≤ C‖a‖H1/2(Γ) . This completes the proof of Assertion (ii).

Further, we have the expression I3[a] =
∑L

�=1

α�

2π

(
x − c

|x − c|2 − x − c�

|x − c�|2
)

. It follows that there exists

a positive constant C such that |I3[a]| ≤ C

|x − c|2 on Ω, which implies Assertion (iii). �

5. Construction of Weak Solutions

We now prove Theorems 2.5 and 2.11. Put Ωj =
{
x ∈ Ω

∣
∣ |x| < 2j

}
for every j ≥ J+1, and let v(�) = I�[a]

for � = 1, 2, where the operators I� are defined in Proposition 4.1. Next we define vj ∈ H1
0,σ(Ωj) and

Rv,H as follows:

Let v and vj denote the image of v(2) by the orthogonal projection

with respect to the norm‖∇u‖2 onto the closed subspace H1
0,σ(Ω)

and onto H1
0,σ(Ωj) respectively.

(5.1)

Rv,H = 2‖v‖4

√
‖∇v‖2 + 2

√
‖H‖2 + 3

∥
∥
∥∇v(2)

∥
∥
∥

2
+ 2
∥
∥
∥∇v(1)

∥
∥
∥

2
. (5.2)

Then we have the following proposition.
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Proposition 5.1. Suppose that H(x) ∈ (L2(Ω)
)4 and that a(x) ∈ (H1/2(Γ)

)2
. Then, for every j ≥ J + 1,

there exists a function u(j) ∈ H0,σ(Ωj) satisfying the estimate
∥
∥
∥∇
(
u(j) + vj

)∥∥
∥

2
≤ Rv,H (5.3)

such that, for every ϕ ∈ C∞
0,σ(Ωj), we have the identity
(
∇u(j),∇ϕ

)
=
((

u(j) + v
)

⊗
(
u(j) + v

)
− H,∇ϕ

)
. (5.4)

Furthermore, if Ω satisfies (C2I), H(x) satisfies (C2AE) and a(x), v(1)(x) and v(2)(z) satisfies (C2E),
then we can take u(j) satisfying (C2E).

We now prove the above proposition. Since u ∈ H1
0,σ(Ω) with compact support, we obtain

(
(u + v) ⊗ u,∇u

)
= 0,

(
(u + v) ⊗ u,∇v

)
+
(
(u + v) ⊗ v,∇u

)
= 0,

(
u ⊗ v,∇v

)
= 0

by integrating by parts. Hence
∣
∣((u + v) ⊗ (u + v),∇(u + v)

)∣∣ =
∣
∣(v ⊗ v,∇v)

∣
∣ ≤ ‖v‖4

2‖∇v‖2.

It follows that
∣
∣((u + v) ⊗ (u + v) − H,∇(u + v)

)∣∣ ≤ ‖v‖4
2‖∇v‖2 + ‖H‖2‖∇(u + v)‖2

≤ ‖v‖4
2‖∇v‖2 + ‖H‖2

2 +
‖∇(u + v)‖2

2

4
. (5.5)

We next observe that, for every j ≥ J +1 and every G ∈ (L2(Ωj)
)4, the functional on Ḣ1

σ(Ωj) defined by
ϕ �→ (G,∇ϕ) is bounded. Hence we can define a bounded linear operator Sj from

(
L2(Ωj)

)4 to H1
0,σ(Ωj)

defined by the equality (∇Sj [G],∇ϕ) = (G,∇ϕ) for every ϕ ∈ H1
0,σ(Ωj). We now introduce the mapping

Tj from the space Xj = L4
σ(Ωj) to H1

0,σ(Ωj) by the equality Tj [u] = Sj

[
(u + v) ⊗ (u + v) − H]. Then Tj

is a continuous mapping into the space Yj = Xj ∩ H1
0,σ(Ωj). Since the inclusion Yj → Xj is a compact

operator, the operator Tj restricted on Yj is a compact mapping into itself.
Then we have the following lemma.

Lemma 5.2. There exists at least one fixed point of the mapping Tj in the set Dj,Rv,H
={

u ∈ Yj

∣
∣ ‖∇ (u + vj)‖2 ≤ Rv,H

}
.

Proof. Consider the mapping U defined by

U [u] =

⎧
⎪⎨

⎪⎩

Tj [u] if
∥
∥∇(Tj [u] + vj

)∥∥
2

≤ Rv,H ,

Rv,H

(
Tj [u] + vj

)
∥
∥∇(Tj [u] + vj

)∥∥
2

− vj if
∥
∥∇(Tj [u] + vj

)∥∥
2

> Rv,H .

Since Dj,Rv,H
is a convex closed set and U is a compact mapping from Yj into Dj,Rv,H

, Schauder’s theorem
implies that there exists at least one fixed point of U in Dj,RvH

. If a fixed point u ∈ Dj,Rv,H
of U satisfies

the inequality
∥
∥∇(Tj [u] + vj

)∥∥
2

> Rv,H , then we have
∥
∥∇(u + vj

)∥∥
2

=
∥
∥∇(U [u] + vj

)∥∥
2

= Rv,H . (5.6)

On the other hand, we have vj ∈ H1
0,σ(Ω). Hence, for every ϕ ∈ H1

0,σ(Ωj), we obtain
(∇(ϕ + vj

)
,∇v(1)

)
=(

ϕ + vj ,−Δv(1)
)

= 0 by integrating by parts, and
(∇(ϕ + vj

)
,∇ (v(2) − vj

))
= 0. It follows that

(∇(ϕ + vj

)
,∇(u + v)

)
=
(∇(ϕ + vj

)
,∇(u + vj

))
(5.7)
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and

‖∇(ϕ + v)‖2
2 =

∥
∥∇(ϕ + vj

)∥∥
2

2 +
∥
∥
∥∇
(
v(2) − vj + v(1)

)∥∥
∥

2

2

for every ϕ ∈ H1
0,σ(Ωj). Substituting (5.5) and applying (5.7) once again, we obtain

‖∇(u + v)‖2
2 =

(∇(U [u] + vj

)
,∇(u + vj

))
+
∥
∥
∥∇
(
v(2) − vj + v(1)

)∥∥
∥

2

2

≤ Rv,H∥
∥∇(Tj [u] + vj

)∥∥
2

(∇(Tj [u] + vj

)
,∇(u + v)

)

+ 2
∥
∥
∥∇
(
v(2) − vj

)∥∥
∥

2

2

+ 2
∥
∥
∥∇v(1)

∥
∥
∥

2

2

=
Rv,H∥

∥∇(Tj [u] + v
)∥∥

2

(∇Sj [(u + v) ⊗ (u + v) − H],∇(u + v)
)

+
(∇vj ,∇(u + v)

)
+ 2
∥
∥
∥∇v(2)

∥
∥
∥

2

2

+ 2
∥
∥
∥∇v(1)

∥
∥
∥

2

2

=
Rv,H∥

∥∇(Tj [u] + v
)∥∥

2

(

‖v‖4
2‖∇v‖2 + ‖H‖2

2 +
‖∇(u + v)‖2

2

4

)

+

∥
∥∇v(2)

∥
∥

2

2

2
+

‖∇(u + v)‖2
2

2
+ 2
∥
∥
∥∇v(2)

∥
∥
∥

2

2

+ 2
∥
∥
∥∇v(1)

∥
∥
∥

2

2

.

If ‖∇(u + v)‖2 = 0, then
∥
∥∇(u + vj

)∥∥
2

= 0 < Rv,H . Otherwise, the inequality Rv,H <
∥
∥∇(Tj [u] + vj

)∥∥
2

implies

‖∇(u + v)‖2
2

< ‖v‖4
2‖∇v‖2 + ‖H‖2

2 +
‖∇(u + v)‖2

2

4
+

∥
∥∇v(2)

∥
∥

2

2

2

+
‖∇(u + v)‖2

2

2
+ 2
∥
∥
∥∇v(2)

∥
∥
∥

2

2

+ 2
∥
∥
∥∇v(1)

∥
∥
∥

2

2

=
3‖∇(u + v)‖2

2

4
+ ‖v‖4

2‖∇v‖2 + ‖H‖2 +
5
∥
∥∇v2

∥
∥

2

2

2
+ 2
∥
∥
∥∇v(1)

∥
∥
∥

2

2

.

This implies
∥
∥∇(u + vj

)∥∥
2

2 ≤ ‖∇(u + v)‖2
2

< 4‖v‖4
2‖∇v‖2 + 4‖H‖2 + 5

∥
∥
∥∇v(2)

∥
∥
∥

2

2

+ 4
∥
∥
∥∇v(1)

∥
∥
∥

2

2

≤ R2
v,H .

Hence we have
∥
∥∇(u + vj

)∥∥
2

< Rv,H in either case. This contradicts (5.6). It follows that every fixed
point u of U satisfies ‖∇ (Tj [u] + vj)‖2 ≤ Rv,H , in which case Tj [u] = U [u] = u and hence ‖∇ (u + vj)‖2 ≤
Rv,H . �

We return to the proof of Proposition 5.1. Let u(j) denote a fixed point of T given by Lemma 5.2.
Then Lemma 5.2 implies (5.3). Next, for every ϕ ∈ H1

0,σ(Ωj), we have
(
∇u(j),∇ϕ

)
=
(
∇Tj

[
u(j)
]
,∇ϕ

)

=
(
∇Sj

[(
u(j) + v

)
⊗
(
u(j) + v

)
− H

]
,∇ϕ

)

=
((

u(j) + v
)

⊗
(
u(j) + v

)
− H,∇ϕ

)
.

This implies (5.4). �
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Proof of Theorem 2.5. We first observe that vj converges strongly to v in Ḣ1
0,σ(Ω). Next, since

∥
∥∇u(j)

∥
∥

2
≤

Rv.H + ‖∇vj‖2 ≤ Rv.H + ‖∇v‖2 . there exists a subsequence
{

u

(
j(k)
)}∞

k=1

converging weakly in Ḣ1
0,σ(Ω)

such that
∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

converges. Let u denote the weak limit of
{

u

(
j(k)
)}∞

k=1

. Then we have

∥
∥∇(u + v

)∥∥
2

≤ limk→∞

∥
∥
∥
∥∇
(

u

(
j(k)
)

− vj(k)

)∥∥
∥
∥

2

≤ Rv,H . Hence u(x) satisfies (5.3). We also see that the

sequence
{

u

(
j(k)
)}∞

k=1

converges strongly to u(x) in
(
L4(Ωj)

)2. Indeed, putting

ũ

(
j(k)
)
(x) = χ(2−j |x|)u

(
j(k)
)
(x), we have ũ

(
j(k)
)
(x) ∈ (H1

0 (Ωj+1)
)2 and ũ

(
j(k)
)
(x) ≡ u

(
j(k)
)
(x) on

Ωj . Then we have
∥
∥
∥
∥∇ũ

(
j(k)
)∥∥
∥
∥

2

≤
∥
∥
∥
∥χ
(
2−j | · |)∇u

(
j(k)
)∥∥
∥
∥

2

+ 2−j

∥
∥
∥
∥χ

′ (2−j |x|) x

|x|u
(
j(k)
)
(x)
∥
∥
∥
∥

2

≤
∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

+ C2−j

∥
∥
∥
∥u
(
j(k)
)∥∥
∥
∥

L2({x | |x|≤2j+1 })

(5.8)

with a constant C independent of k, where ũ

(
j(k)
)
(x) is identified with its zero extension to R

2\Ω. Since

ũ

(
j(k)
)
(0) = 0 outside Ωj+1 , Poincaré inequality yields

∥
∥
∥
∥ũ
(
j(k)
)∥∥
∥
∥

L2({x | |x|≤2j+1 })

≤ C2j

∥
∥
∥
∥∇ũ

(
j(k)
)∥∥
∥
∥

L2({x | |x|≤2j+1 })

(5.9)

with a constant C independent of k. Substituting this estimate into (5.8), we see that
{

∇ũ

(
j(k)
)}∞

k=1

is bounded in
(
L2(Ωj+1)

)4. Then the sequence
{

ũ

(
j(k)
)}∞

k=1

converges weakly in
(
H1

0 (Ωj+1)
)2, and

hence strongly in
(
L4(Ωj+1)

)2, to χ
(
2−j |x|)u(x). It follows that

{
u

(
j(k)
)}∞

k=1

converges to u strongly

in
(
L4(Ωj)

)2.
We now show that this u(x) is a weak solution. Suppose that ϕ(x) ∈ C∞

0,σ(Ω). Then there exists an

integer j ≥ J +1 such that suppϕ ⊂ Ωj . Since v(x) ∈ L4(Ω) and
{

u

(
j(k)
)}∞

k=1

converges to u(x) strongly

in
(
L4(Ωj)

)2, it follows that the sequence
{(

u

(
j(k)
)

+ v

)
⊗
(

u

(
j(k)
)

+ v

)}∞

k=1

converges strongly in

(
L2(Ωj)

)4 to (u + v) ⊗ (u + v), and hence limk→∞

(
∇u

(
j(k)
)
,∇ϕ

)
= (∇u,∇ϕ) and

lim
k→∞

((
u

(
j(k)
)

+ v

)
⊗
(

u

(
j(k)
)

+ v

)
,∇ϕ

)
=
(
(u + v) ⊗ (u + v),∇ϕ

)
.

From these facts and the equality
(

∇u

(
j(k)
)
,∇ϕ

)
−
((

u

(
j(k)
)

+ v

)
⊗
(

u

(
j(k)
)

+ v

)
,∇ϕ

)
+ (H,∇ϕ) = 0 (5.10)

for every k such that j(k) ≥ j, we conclude (2.6). Since ϕ ∈ C∞
0,σ(Ω) is arbitrary, the function u(x) is a

weak solution.
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It remains only to show (2.7). Integrating by parts and substituting ϕ = u

(
j(k)
)

in (5.10), we obtain
∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

2

=
(

v ⊗ v − H,u

(
j(k)
))

+
(

u

(
j(k)
)

⊗ ṽ, u

(
j(k)
))

− αΦ
(

u

(
j(k)
)
, u

(
j(k)
))

= I
(k)
1 + I

(k)
2 − αΦ

(
u

(
j(k)
)
, u

(
j(k)
))

,

where I
(k)
1 =

(
v ⊗ v − H,∇u

(
j(k)
))

, I
(k)
2 =

(
u

(
j(k)
)

⊗ ṽ,∇u

(
j(k)
))

.

We easily see that I
(k)
1 → (v ⊗ v − H,∇u) as k → ∞.

We next verify that u

(
j(k)
)
⊗ ṽ converges strongly to u⊗ ṽ in

(
L2(Ω)

)4. We first observe that Proposi-

tion 3.5 implies that the set

⎧
⎨

⎩
u

(
j(k)
)
(x)

λ4(x)

∣
∣
∣
∣
∣
∣

j ∈ N

⎫
⎬

⎭
∪
{

u(x)
λ4(x)

}
is bounded in

(
L4(Ω)

)2, and the estimate

λ4(x)|ṽ(x)| ≤ C|x|−5/3 holds for |x| ≤ 2J . Hence, for every R ≥ 2J , we have
∥
∥
∥
∥

(
u

(
j(k)
)
(x) − u(x)

)
|ṽ(x)|

∥
∥
∥
∥

L2({x||x|≥R})

≤ C

∥
∥
∥
∥
∥
∥

u

(
j(k)
)
(x) − u(x)

λ4(x)

∥
∥
∥
∥
∥
∥

4

∥
∥
∥|x|−5/3

∥
∥
∥

L4({x||x|≥R})
≤ CR−2/3.

This implies that, for every ε > 0, we can take R > 0 so large that∥
∥
∥
∥

(
u

(
j(k)
)
(x) − u(x)

)
|ṽ(x)|

∥
∥
∥
∥

L2({x||x|≥R}
< ε holds for every k. On the other hand, u

(
j(k)
)

converges

strongly in
(
L4(Ω ∩ {x | |x| ≤ R})2. Hence we have

∥
∥
∥
∥

(
u

(
j(k)
)
(x) − u(x)

)
|ṽ(x)|

∥
∥
∥
∥

L2({x||x|≤R})

≤
∥
∥
∥
∥

(
u

(
j(k)
)
(x) − u(x)

)∥∥
∥
∥

L4({x||x|≤R})

‖ṽ(x)‖4 → 0

as k → ∞. This implies lim supk→∞

∥
∥
∥
∥

(
u

(
j(k)
)
(x) − u(x)

)
I
(k)
2 (x)|

∥
∥
∥
∥

2

≤ ε. Since ε > 0 is arbitrary, it

follows that u

(
j(k)
)

⊗ ṽ converges strongly to u ⊗ ṽ in
(
L2(Ω)

)4. This implies that we see that I
(k)
2 →

(u ⊗ ṽ,∇u) as k → ∞.

We finally consider −αΦ
(

u

(
j(k)
)
, u

(
j(k)
))

. Applying Fefferman-Stein duality and the result of [7],

we obtain the estimate

|Φ(ϕ,ψ)| ≤ C1‖log |x − c|‖BMO

∥
∥
∥
∥

∂ϕm

∂xh

∂ψh

∂xm

∥
∥
∥
∥

H1

≤ C2‖∇ϕ‖2‖∇ψ‖2 (5.11)

with absolute constants C1 and C2, where ϕ and ψ are identified with their zero extensions to R
2. In the

sequel we assume that |α| < 1/C2 .

If limk→∞

∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

= ‖∇u‖2 holds, then
{

u

(
j(k)
)}∞

k=1

converges strongly to u in H1
0,σ(Ω), which

implies that
{

−Φ
(

u

(
j(k)
)
, u

(
j(k)
))}∞

k=1

converges to −Φ(u, u). Hence

‖∇u‖2
2 ≤ (u ⊗ ṽ + v ⊗ v − H,∇u) − αΦ(u, u) (5.12)

holds with equality.
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Suppose that limk→∞

∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

> ‖∇u‖2 . Then there exist K ∈ N and ε > 0 such that k ≥ K

implies
∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

2

> ‖∇u‖2
2 + ε. We next have

∣
∣
∣
∣Φ
(

u

(
j(k)
)
, u

(
j(k)
))

− 2Φ
(

u

(
j(k)
)
u, u

)
+ Φ(u, u)

∣
∣
∣
∣

=
∣
∣
∣
∣Φ
(

u

(
j(k)
)

− u, u

(
j(k)
)

− u

)∣∣
∣
∣ ≤ C2

∥
∥
∥
∥∇
(

u

(
j(k)
)

− u

)∥∥
∥
∥

2

2

= C2

{∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

2

− 2
(

∇u

(
j(k)
)
,∇u

)
+ ‖∇u‖2

2

}

.

Since the mapping ϕ �→ Φ(ϕ, u) is a bounded linear functional on H0,σ1(Ω), we have Φ
(

u

(
j(k)
)
, u

)
→

Φ(u, u) as k → ∞. In the same way we have
(

∇u

(
j(k)
)
,∇u

)
→ ‖∇u‖2

2 as k → ∞. By taking K larger

if necessary,, we may assume that k ≥ K implies

∣
∣
∣
∣αΦ

(
u

(
j(k)
)
, u

(
j(k)
))

− αΦ(u, u)
∣
∣
∣
∣

< |α|C2

(∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

2

− ‖∇u‖2
2

)

+
(1 − |α|C2)ε

3

for k ≥ K.
By taking K larger if necessary, we may assume that k ≥ K implies

∣
∣
∣I(k)

1 − (v ⊗ v − H,∇u)
∣
∣
∣ <

(1 − |α|C2)ε
3

,

∣
∣
∣I(k)

2 − (u ⊗ ṽ,∇u)
∣
∣
∣ <

(1 − |α|C2)ε
3

.

It follows that

0 =
∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

2

− I
(k)
1 − I

(k)
2 + αΦ

(
u

(
j(k)
)
, u

(
j(k)
))

>

∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

2

− (v ⊗ v − H + u ⊗ ṽ,∇u) − 2(1 − |α|C2)ε
3

+ αΦ(u, u) − |α|C2

(∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

2

− ‖∇u‖2
2

)

− (1 − |α|C2)ε
3

= (1 − |α|C2)
∥
∥
∥
∥∇u

(
j(k)
)∥∥
∥
∥

2

2

+ |α|C2‖∇u‖2
2 − (v ⊗ v − H + u ⊗ ṽ,∇u)

+ αΦ(u, u) − (1 − |α|C2)ε

> ‖∇u‖2
2 − (v ⊗ v + u ⊗ ṽ − H,∇u) + αΦ(u, u).

This implies (5.12). �
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The existence in Theorem 2.11 can be proved in the same way, by observing the fact that |x|1/2v(x) ·
∇u(x) ∈ (L4/3,1(Ω)

)2 and replacing the weak convergence of ∇u

(
j(k)
)
(x)/λ4(|x|) in

(
L4(Ω)

)2 to the weak-

∗ convergence of ∇u

(
j(k)
)
(x)/|x|1/2 in

(
L4,∞(Ω)

)2. The estimate (5.9) follows from the fact∫

|x|≤2j+1
u

(
j(k)
)
(x) dx = 0.

6. Uniqueness of Weak Solutions

In this section we prove Theorems 2.7 and 2.9. We start with the following proposition, which provides a
series of test functions approximating weak solutions. This proposition corresponds to the result in [22,
Proposition 3.1], in which the existence of a sequence converging with respect to the weak-∗ topology of
L∞ is proved.

Proposition 6.1. Suppose that 2 < q ≤ ∞ and that u ∈ H1
0,σ(Ω). Then we have the following assertions.

(i) Suppose in addition that q �= ∞ and that u(x) ∈ Lq
σ(Ω). Then there exists a sequence {ϕj(x)}∞

j=1

such that ∇ϕj → ∇u in
(
L2(Ω)

)4 and ϕj → u in Lq
σ(Ω) as j → ∞.

(ii) Suppose in addition that λq(|x|))u(x) ∈ (
Lq(Ω)

)2. Then there exists a sequence {ϕj(x)}∞
j=1 in

C∞
0,σ(Ω) such that ∇ϕj → ∇u in

(
L2(Ω)

)4 and that λq(|x|)ϕj(x) → λq(|x|))u(x) as j → ∞, weakly
if 2 < q < ∞ and ∗-weakly if q = ∞.

(iii) Suppose in addition that q �= ∞, Ω satisfies (C2I), and that u(x) satisfies (C2E) and |x|1−2/qu(x) ∈(
Lq,∞(Ω)

)2. Then there exists a sequence {ϕj(x)}∞
j=1 in C∞

0,σ(Ω) such that ϕj(x) satisfies (C2E)

for every j, ∇ϕj → ∇u in
(
L2(Ω)

)4 and that |x|1−2/qϕj(x) → |x|1−2/qu(x) ∗-weakly in
(
Lq,∞(Ω)

)2

as j → ∞.

Proof. Assertion (i) is proved in Kozono and Sohr [21, Theorem 2].
We next prove Assertion (ii). We first decompose u(x) = u1(x) + u2(x) as in Lemma 3.4. Then

there exists a sequence {ϕ
(1)
j (x)}∞

j=0 in C∞
0,σ(Ω̃) such that ∇ϕ

(1)
j → ∇u1 in

(
L2(Ω̃)

)4 as j → ∞. Then

the Poincaré inequality yields ϕ
(1)
j → u1 in Lq

σ(Ω̃) as j → ∞. Since λq(|x|) is bounded on Ω̃, we have

λq(|x|)ϕ(1)
j (x) → λq(|x|)u1(x) in

(
Lq(Ω)

)2 as j → ∞ as well.
We next consider u2(x). For every k ∈ N, put ũ2,k(x) = χ

(
2−J |x|)u2

(
2kx
)
, where χ is the same

function in the proof of Lemma 3.4. Then we have

∇ · ũ2,k(x) =
(∇χ

(
2−J |x|)) · u2(2kx) = χ′ (2−J |x|) 2−J x

|x| · u2(2kx),

which is supported in D =
{
x
∣
∣ 2J−13 < |x| < 2J+1

}
. Moreover we have

∫

2J−13<|x|<2J+1
∇ · ũ2,k(x) dx = 0

in the same way as in the proof of Lemma 3.4. It follows that there exists a function ṽk(x) ∈ (H1
0 (D)

)2

such that the identity ∇· ṽk(x) ≡ −∇· ũ2,k(x) holds, and that the estimate ‖∇ṽk‖2 ≤ C‖∇ · ũ2,k‖2 holds

with a positive constant C independent of k. We also have ‖∇ · ũ2,k‖2 ≤ C

∥
∥
∥
∥

x

|x| · u2

(
2kx
)
∥
∥
∥
∥

2

. Now put

u2,k(x) = ũ2,k

(
2−kx

)
= χ

(
2−k|x|)u2(x), vk(x) = ṽk

(
2−kx

)

Dk =
{
x
∣
∣ 2J+k−13 < |x| < 2J+k+1

}
.

Then we have ∇(u2,k(x) + vk(x)
) ≡ 0. Moreover, we have

‖∇(u2 − u2,k)‖2 ≤ ‖∇u2‖L2(‖x||x|≥2k+J−13}) +
∥
∥u2(x) ⊗ ∇ (χ(2−k|x|))∥∥

2

≤ ‖∇u2‖L2(‖x | |x|≥2k+J−13}) + C2−k‖u2(x)‖L2(Dk)

(6.1)
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and

‖∇vk‖2 = ‖∇ṽk‖2 ≤ C

∥
∥
∥
∥χ

′(|x|) x

|x| · u2(2kx)
∥
∥
∥
∥

2

≤ C
∥
∥u2(2kx)

∥
∥

L2(D)
= C2−k‖u2‖L2(Dk) (6.2)

with a positive constant C independent of k.
For every k ∈ N, put ϕk(|x|) = χ

(
2−k−1|x|)− χ

(
21−k|x|). Then we have ϕk(|x|) ≡ 1 on Dk. On the

other hand, Hölder’s inequality implies

‖u2‖L2(Dk) ≤ C

∥
∥
∥
∥

ϕk(x)
λq(|x|)

∥
∥
∥
∥

2q/(q−2)

‖λq(|x|)u2(x)‖q. (6.3)

Here Proposition 3.5 implies

‖ϕk(x)/λq(|x|)‖2q/(q−2) ≤ C‖∇ϕk(x)‖2 = C (6.4)

with a positive constant C independent of k. Substituting this estimate into (6.3), we see that ‖u2‖L2(Dk)

is bounded uniformly in k. Substituting this into (6.1) and (6.2), we see that ∇(u2,k + vk) converges to
∇u2 in

(
L2(Ω)

)4 as k → ∞. We also have
∥
∥λq(|x|)(u2(x) − u2,k(x) − vk(x)

)∥∥
q

≤ ‖λq(|x|)u2(x)‖Lq({x | |x|≥2k+J3})

+‖λq(|x|)u2,k(x)‖Lq(Dk) + ‖λq(|x|)vk(x)‖Lq(Dk). (6.5)

Here we have
(
2k+J−13

)1−2/q (
log
(
2k+J−13 + e

))1−1/q ≤ λq(|x|)

≤ (2k+J+1
)1−2/q

(
log
(

2k+J+1 +
4e

3

))1−1/q

=
(
2k+J+1

)1−2/q (
2 log 2 − log 3 + log

(
2k+J−13 + e

))1−1/q

≤ C
(
2k+J3

)1−2/q (
log
(
2k+J−13 + e

))1−1/q
(6.6)

for x ∈ Dk. On the other hand, since vk ∈ (H1
0 (D)

)2, (6.2) implies

‖vk‖Lq(Dk) ≤ C22k/q‖∇vk‖L2(Dk) ≤ C2−k‖u2‖L2(Dk)

≤ C2−2k/q‖u2‖Lq,r(Dk) ≤ C
2−2k/q‖λq(|x|)u2‖Lq({x||x|≥2k+J+1})

λq(2J+k−13)
.

From this estimate and (6.6) we conclude

‖λq(|x|)vk‖Lq(Dk) ≤ λq

(
2k+J+1

) ‖vk‖Lq(Dk) ≤ Cλq

(
2k+J−13

) ‖vk‖Lq(Dk)

≤ C‖λq(|x|)u2‖Lq({x||x|≥2k+J+1}).

Substituting this estimate into (6.5), we obtain
∥
∥λq(|x|)(u2(x) − u2,k(x) − vk(x)

)∥∥
q

≤ C‖λq(|x|)u2(x)‖Lq({x||x|≥2k+J+1}).

Putting fk(x) = λq(|x|)(u2,k(x)+vk(x)
)
, we see that the sequence {fk}∞

k=1 is bounded in Lq(Ω) and that

fk(x) ≡ λq(|x|)u2(x) on the set
{
x ∈ Ω

∣
∣ |x| ≤ 2k+J+1

}
. Put M = max

{

sup
k=1,2,...

‖fk‖q, ‖λq(|x|)u2(x)‖q

}

.

Suppose that g(x) ∈ (Lq/(q−1)(Ω)
)2 and ε > 0. (We put q/(q − 1) = 1 if q = ∞.) Then there exists a

positive integer k0 such that the inequality
∥
∥g(x)

(
1 − χ

(
2−k|x|))∥∥

Lq/(q−1) < ε/2M holds for every k ≥ k0.
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Suppose that k ≥ k0 + 1. Then χ
(
2−k0 |x|) �= 0 implies |x| < 2k0+J−13 < 2k+J , which yields the

equality fk(x) ≡ λq(|x|)u2(x). It follows that
∣
∣(g, fk) − (g(x), λq(|x|)u2(x)

)∣∣

≤ ∣∣(g(x) − χ
(
2−k0 |x|) g(x), fk

)∣∣

+
∣
∣(g(x) − χ

(
2−k0 |x|) g(x), λq(|x|)u2(x)

)∣∣

≤ ∥∥g(x) − χ
(
2−k0 |x|) g(x)

∥
∥

q/(q−1)

(‖fk‖q + ‖λq(|x|)u2(x)‖q

)

≤ 2M
∥
∥(1 − χ(2−k0 |x|))g(x)

∥
∥

q/(q−1)
< ε.

Since g(x) ∈ (Lq/(q−1)(Ω)
)2 and ε > 0 are arbitrary, we see that {fk(x)}∞

k=1 converges weakly (∗-weakly
if q = ∞) in

(
Lq(Ω)

)2 to λq(|x|)u2(x) as k → ∞.
Finally, let ψ(x) be a function in C∞

0 (R2) such that ψ(x) ≥ 0, suppψ ⊂ {x ∈ R
2
∣
∣ |x| < 2J−1

}
and

that
∫

R2
ψ(x) dx = 1. For δ ∈ (0, 1), we put

u2,δ(x) =
∫

R2
ψ(y)u2(x − δy) dy

and

ϕk,δ(x) =
∫

R2
ψ(y)

(
u2,k(x − δy) + vk(x − δy)

)
dy.

Then we have

∇ · ϕk,δ(x) =
∫

R2
ψ(y)∇ · (u2,k(x − δy) + vk(x − δy)

)
dy = 0

and ‖∇(u2 − ϕj,δ)‖2 ≤ I1 + I2, where

I1 = ‖∇(u2 − u2,δ)‖2 =
∥
∥
∥
∥

∫

R2
ψ(y)

{∇u2(·) − ∇u2(· − δy)
}

dy

∥
∥
∥
∥

2

and

I2 = ‖∇(u2,δ − ϕj,δ)‖2

=
∥
∥
∥
∥

∫

R2
ψ(y)

{∇u2(· − δy) − ∇u2,k(· − δy) − ∇vk(· − δy)
}

dy

∥
∥
∥
∥

2

.

Here we have

I1 ≤
∫

R2
ψ(y)‖∇u2(·) − ∇u2(· − δy)‖2 dy ≤ sup

|y|≤δ

‖∇u2(·) − ∇u2(· − y)‖2.

Hence we can take a monotone-decreasing sequence of positive numbers {δ�}∞
�=1 such that the estimate

‖∇u2(·) − ∇u2(· − y)‖2 < 1/2� holds provided |y| ≤ δ�. This implies I1 < 1/2� provided δ ≤ δ�. We also
have

I2 ≤
∫

R2
ψ(y)‖∇u2 − ∇u2,k − ∇vk‖2 dx = ‖∇u2 − ∇u2,k − ∇vk‖2.

It follows that we can choose a monotone-increasing sequence of positive integers {k�}∞
�=1 such that

I2 < 1/2� provided k ≥ k�. Hence, putting φ� = ϕk�,δ�
, we have ‖∇(φ� − u2)‖2 < 1/� and φ� ∈

C∞
0,σ

({
x
∣
∣ 2J−13 < |x| < 2k+J+1

})
. It follows that {φ�}∞

�=1 is a sequence of C∞
0,σ(Ω) converging to u2

in Ḣ1
0,σ(Ω) as � → ∞.

Suppose that the assumption of Assertion (ii) is satisfied. Let g(x) be an element of
(
Lq/(q−1)(Ω)

)2.
Then we have
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(
g(x), λq(|x|)u2(x) − λq(|x|)ϕk,δ(x)

)

=
∫

|x|≥2J

g(x)λq(|x|)u2(x) dx

−
∫

|x|≥2J−23

g(x)λq(|x|)
∫

|z|≥2J

1
δ2

ψ

(
x − z

δ

)
{u2,k(z) + vk(z)} dz dx

=
∫

|z|≥2J

g(z)
{
λq(|z|)(u2(z) − u2,k(z) − vk(z)

)}
dz

+
∫

|z|≥2J

λq(|z|) {u2,k(z) + vk(z)}
(

g(z) − 1
δ2

∫

|x|≥2J−23

λq(|x|)
λq(|z|) g(x)ψ

(
x − z

δ

)
dx

)

dz.

Hence we have
∣
∣(g(x), λq(|x|)u2(x) − λq(|x|)ϕk,δ(x)

)∣∣

≤
∣
∣
∣
∣
∣

∫

|z|≥2J

g(z)
{
λq(|z|)(u2(z) − u2,k(z) − vk(z)

)}
dz

∣
∣
∣
∣
∣
+ C‖fk‖q×

∥
∥
∥
∥
∥

∫

|y|≤2J−2

(

g(·) −
( | · |

| · −δy|
)1−2/q

g(· − δy)

)

ψ(y) dy

∥
∥
∥
∥
∥

q/(q−1)

.

(6.7)

Hence, for every ε > 0, we can choose L so large that � ≥ L implies
∥
∥
∥
∥
∥

∫

|y|≤2J−2

(

g(·) −
( | · |

| · −δ�y|
)1−2/q

g(· − δ�y)

)

ψ(y) dy

∥
∥
∥
∥
∥

q/(q−1)

<
ε

2MC
. (6.8)

Furthermore, we can choose L′ ≥ L so large that � ≥ L′ implies
∣
∣
∣
∣
∣

∫

|z|≥2J

g(z)
{
λq(|z|)(u2(z) − u2,k�

(z) − vk�
(z)
)}

dz

∣
∣
∣
∣
∣
<

ε

2
. (6.9)

For every � ≤ L′, we substitute the estimates (6.8) and (6.9) into (6.7) to obtain∣
∣(g(x), λq(|x|)u2(x) − λq(|x|)ϕk�,δ�

(x)
)∣∣ < ε. This implies that the sequence {λq(|x|)φ�(x)}∞

�=1 converges
to λq(|x|)u2(x) weakly (∗-weakly if q = ∞) in

(
Lq(Ω)

)2 as � → ∞. This completes the proof of Assertion
(ii).

We finally prove Assertion (iii). By the symmetry we can easily see that the sequence {−ϕj(−x)}∞
j=1

satisfies all the requirements for −u(−x). Then, for every j ∈ N, the function Φj(x) =
(
ϕj(x)−ϕ(−x)

)
/2

satisfies (C2E). Since u(x) = −u(−x), the sequence {Φj(x)}∞
j=1 converges to u2 in Ḣ1

0,σ(Ω) as j → ∞.
It suffices to prove the ∗-weak convergence of a subsequence of {|x|1−2/qΦj(x)}∞

j=1 to |x|1−2/qu(x) in
(
Lq,∞(Ω)

)2 We can do this in the same way as Assertion (ii), by replacing λq(|x|) by |x|1−2/q and
g(x) ∈ (Lq/(q−1)(Ω)

)2 by g(x) ∈ (Lq/(q−1),1(Ω)
)2. This completes proof of Assertion (iii). �

We now prove Theorem 2.7. From the assumption, we can apply Proposition 6.1, (i) with q = 4 to
obtain a sequence of functions {ϕj(x)}∞

j=1 in C∞
0,σ(Ω) such that ϕj → u in L4

σ(Ω) and ∇ϕj → ∇u in
(
L2(Ω)

)4 as j → ∞. By assumption we have
(∇u(x),∇ϕj(x)

)− ((u(x) + v(x)
)⊗ (u(x) + v(x)

)
, ϕj(x)

)
+
(
F (x),∇ϕj(x)

)
= 0 (6.10)
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for every j ∈ N. Since the functions ∇u, (u+v)⊗ (u+v) and F belong to
(
L2(Ω)

)4 and since ∇ϕj → ∇u

in
(
L2(Ω)

)4 as j → ∞, we have

(∇u,∇ϕj) − ((u + v) ⊗ v,∇ϕj

)
+ (F,∇ϕj)

→ ‖∇u‖2 − ((u + v) ⊗ v,∇u
)

+ (F,∇u) as j → ∞. (6.11)

On the other hand, since ∇·u(x) = ∇·v(x) = 0, we can integrate by parts to obtain
(
(u+v)⊗ϕj ,∇ϕj

)
= 0.

Hence we see that
∣
∣((u + v) ⊗ u,∇ϕj

)∣∣ =
∣
∣((u + v) ⊗ (u − ϕj),∇ϕj

)∣∣

≤ (‖u‖4 + ‖v‖4) ‖u − ϕj‖4‖∇ϕj‖2.

Since ∇ϕj → ∇u in
(
L2(Ω)

)4 as j → ∞, the sequence
{‖∇ϕj‖2

}∞
j=1

is bounded. Since ϕj → u in L4
σ(Ω)

as j → ∞, we have
∣
∣((u + v) ⊗ u,∇ϕj

)∣∣→ 0 as j → ∞. Substituting this formula and (6.11) into (6.10),

we obtain (2.8). Integration by parts yields −
(

u,
α(x − c)

2π|x − c|2 ,∇u

)
= Φ(u, u), from which we obtain the

conclusion. �
We next verify Proposition 2.6. To this end we assume that the pairs

(
v(x), G(x)

)
and

(
v′(x), G′(x)

)

satisfy the conclusion of Proposition 4.1, and that u(x) = w(x) − v(x) satisfies (2.7). Put t(x) = u′(x) −
u(x) = v(x)−v′(x) = ṽ(x)− ṽ′(x). Then Proposition 4.1 implies that t(x) ∈ H1

σ(Ω)∩(L4(Ω)
)2. It follows

from Proposition 6.1, (i) that there exists a sequence {ϕj}∞
j=1 in C∞

0,σ(Ω) such that ϕj → t in
(
L4(Ω)

)2

and ∇ϕj → ∇t in
(
L2(Ω)

)4 as j → ∞. Then, for every j, we put

Ij =
(−(u + ϕj) ⊗ (ṽ − ϕj) − (v − ϕj) ⊗ (v − ϕj) + F − G′,∇(u + ϕj)

)

+ ‖∇(u + ϕj)‖2
2 + αΦ(u + ϕj , u + ϕj)

=
(−u ⊗ ṽ − v ⊗ v + F − G′,∇(u + ϕj)

)

+
(
ϕj ⊗ (v − ṽ) + (u + v) ⊗ ϕj ,∇(u + ϕj)

)
+ ‖∇u‖2

2 + 2(∇u,∇ϕj)

+ ‖∇ϕj‖2
2 + αΦ(u, u)@ + 2αΦ(u, ϕj) + αΦ(ϕj , ϕj)

=
(−u ⊗ ṽ − v ⊗ v + F − G′,∇(u + ϕj)

)

+
(−(u + v) ⊗ u,∇ϕj

)
+ ‖∇u‖2

2 + 2(∇u,∇ϕj)

+ ‖∇ϕj‖2
2 + αΦ(u, u) + αΦ(u, ϕj)

= ‖∇u‖2
2 + (−u ⊗ ṽ − v ⊗ v + F − G,∇u) + αΦ(u, u) + Ij,1 + Ij,2 + Ij,3,

where

Ij,1 =
(∇u − (u + v) ⊗ (u + v) + F − G,∇ϕj

)
,

Ij,2 =
(
G − G′ + ∇ϕj ,∇(u + ϕj)

)
,

Ij,3 =
(
u ⊗ (v − ṽ),∇ϕj

)
+ αΦ(u, ϕj).

Since u + v is a weak solution, the equality (2.6) implies Ij,1 = 0. Next we obtain Ij,3 = 0 by integrating
in parts.

We finally consider Ij,2 . From the equality

Ij,2 − (∇ϕj ,∇(u + ϕj)
)

= −(∇ · (G − G′), u + ϕj

)
=
(
Δ(v − v′), u + ϕj

)

=
(∇(v′ − v),∇(u + ϕj)

)
,

Since ϕj → t in H1
0,σ(Ω) as j → ∞, we conclude that

lim
j→∞

Ij,2 = lim
j→∞

(∇(−t + ϕj),∇(u + ϕj)
)

= 0.
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From these facts we conclude that

lim
j→∞

Ij = ‖∇u‖2
2 + (−u ⊗ ṽ − v ⊗ v + F − G,∇u) + αΦ(u, u).

On the other hand, since ϕj → t in H1
0,σ(Ω) ∩ (L4(Ω)

)2, we obtain

lim
j→∞

Ij = ‖∇u′‖2
2 + (−u′ ⊗ ṽ′ − v′ ⊗ v′ + F − G′,∇u′) + αΦ(u′, u′).

This completes the proof. �
We next prove Theorem 2.9. We first observe that the assumption and Proposition 3.5 imply u(x) ∈

L4(Ω), in view of the estimate
∥
∥u2
∥
∥

2
≤
∥
∥
∥
∥

u(x)
λq(x)

∥
∥
∥
∥

2q/(q−2)

‖λq(x)u(x)‖q ≤ Cρ,εn
‖∇u‖2δq,Ω < ∞.

By Remark 2.1 we have a sequence {ϕj}∞
j=1 of the functions in C∞

0,σ(Ω) such that ∇ϕj → ∇u′ in
(
L2(Ω)

)4.
Since u is a weak solution, we have

−(∇u,∇ϕj) +
(
(v ⊗ v + v ⊗ u + u ⊗ v + u ⊗ u − F ),∇ϕj

)
= 0.

Integrating by parts, we obtain
(
(−∇u + v ⊗ v + u ⊗ ṽ + v ⊗ u + u ⊗ u − F ),∇ϕj

)− αΦ(u, ϕj) = 0.

Since

−∇u + v ⊗ v + u ⊗ ṽ + v ⊗ u + u ⊗ u − F ∈ (L2(Ω)
)4

,

we can let j → ∞ to obtain
(
(−∇u + v ⊗ v + u ⊗ v + v ⊗ u + u ⊗ u − F ),∇u′)− αΦ(u, u′) = 0. (6.12)

Next, from the assumption we can apply Proposition 6.1, (ii) to obtain a sequence {ψk(x)}∞
k=1 of functions

in C∞
0,σ(Ω) such that ∇ψk → ∇u in

(
L2(Ω)

)4 and that λq(|x|)ψk(x) → λq(|x|)u(x) converges weakly (∗-

weakly if q = ∞) in
(
Lq(Ω)

)2 as k → ∞.
Since u′(x) is a weak solution, we have

(
(−∇u′ + v ⊗ v + u′ ⊗ v + v ⊗ u′ + u′ ⊗ u′ − F ),∇ψk

)
= 0.

Integrating by parts, we have
(
(−∇u′ + v ⊗ v + u′ ⊗ ṽ + v ⊗ u′ + u′ ⊗ u′ − F ),∇ψk

)− αΦ(u′, ψk) = 0. (6.13)

Adding the formulae (6.12), (6.13), (2.7) and the equality

‖∇u‖2
2 − (v ⊗ v,∇u) − (u ⊗ ṽ,∇u) + (F,∇u) + αΦ(u, u) = 0,

which follows from Theorem 2.7, we obtain

I1 + I2 + I3 + I4 + I5 + I6 ≤ 0, (6.14)

where

I1 = ‖∇u‖2
2 − (∇u,∇u′) − (∇u′,∇ψk) + ‖∇u′‖2,

I2 = (F − v ⊗ v,∇u) − (F − v ⊗ v,∇ψk),

I3 = (v ⊗ u,∇u′) + (v ⊗ u′,∇ψk),

I4 = −(u ⊗ ṽ,∇u) + (u ⊗ ṽ,∇u′) + (u′ ⊗ ṽ,∇ψk) − (u′ ⊗ ṽ,∇u′),

I5 = (u ⊗ u,∇u′) + (u′ ⊗ u′,∇ψk),

I6 = α
(
Φ(u′, u′) − Φ(u, u′) − Φ(u′, ψk) + Φ(u, u)

)
.

We calculate each terms. First we see that

I1 = ‖∇u − ∇u′‖2
2 + (∇u′,∇u − ∇ψk).
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It follows that |I1 − ‖∇u − ∇u′‖2| ≤ ‖∇u′‖2‖∇(u − ψk)‖2 . Since ∇ψk → ∇u in
(
L2(Ω)

)4 as k → ∞, we
have

lim
k→∞

I1 = ‖∇(u − u′)‖2
2
. (6.15)

Next we see that

|I2| ≤ ∣∣(F − v ⊗ v,∇u − ∇ψk)
∣
∣ ≤
(
‖F‖2 + ‖v‖4

2
)

‖∇(u − ψk)‖2.

Hence, in the same way as (6.15), we have

lim
k→∞

I2 = 0. (6.16)

Third, we have I3 =
(
v ⊗ (u − ψk),∇u′) by integrating by parts. Since v(x)/λq(|x|) ∈ (L2q/(q−2)(Ω)

)2,
∇u′ ∈ (L2(Ω)

)4 and λq(x)ψk(x) converges weakly (∗-weakly if q = ∞) in (Lq)2 as k → ∞, we obtain

lim
k→∞

I3 = 0. (6.17)

Fourth, we have

I4 =
(
u ⊗ ṽ,∇(u′ − u)

)
+
(
u′ ⊗ ṽ,∇(ψk − u′)

)

=
(
u′ ⊗ ṽ,∇(ψk − u)

)
+
(
(u − u′) ⊗ ṽ,∇(u′ − u)

)
.

Since λq(x)ṽ ∈ (Lq(Ω)
)2, the estimate (6.4) implies u′ ⊗ ṽ ∈ (L2(Ω)

)4. Hence, letting k → ∞, we obtain

lim
k→∞

I4 =
(
(u − u′) ⊗ v,∇(u′ − u)

)
. (6.18)

Fifth, we calculate

I5 =
(
u ⊗ (u − ψk),∇u′)+ (u ⊗ ψk,∇u′) + (u′ ⊗ u′,∇ψk

)

=
(
u ⊗ (u − ψk),∇u′)+ (u ⊗ ψk,∇u′) − (u′ ⊗ ψk,∇u′)

=
(
u ⊗ (u − ψk),∇u′)+

(
(u − u′) ⊗ ψk,∇(u′ − u)

)

+
(
(u − u′) ⊗ ψk,∇(u − ψk)

)

=
(
u ⊗ (u − ψk),∇u′)+

(
(u − u′) ⊗ u,∇(u′ − u)

)

+
(
(u − u′) ⊗ (ψk − u),∇(u′ − u)

)
+
(
(u − u′) ⊗ ψk,∇(u − ψk)

)
.

It follows that
I5 − ((u − u′) ⊗ u,∇(u′ − u)

)
= J1 + J2 + J3, (6.19)

where

J1 =
(

λq(|x|)(u(x) − ψk(x)
)
,

(
u(x)

λq(|x|) · ∇
)

u′(x)
)

,

J2 =
(

λq(|x|)(ψk(x) − u(x)
)
,

(
u(x) − u′(x)

λq(|x|) · ∇
)
(
u′(x) − u(x)

)
)

and

J3 =
(

λq(|x|)ψk(x),
(

u(x) − u′(x)
λq(|x|) · ∇

)
(
u(x) − ψk(x)

)
)

.

Then we have J� → 0 as k → 0 for � = 1, 2, 3. Indeed, Lemma 3.1 and Proposition 3.5, (ii) imply
∥
∥
∥
∥

(
u(x)

λq(|x|) · ∇
)

u′(x)
∥
∥
∥
∥

q/(q−1)

≤ C

∥
∥
∥
∥

u(x)
λq(|x|)

∥
∥
∥
∥

2q/(q−2)

‖∇u′‖2

≤ C‖∇u‖2‖∇u′‖2
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with a positive constant C. Since λq(|x|)ψk(x) → λq(|x|)u holds weakly (∗-weakly if q = ∞) in
(
Lq(Ω)

)2,
we have J1 → 0 as k → ∞. In the same way we can prove J2 → 0 as k → ∞. Finally, in view of
Proposition 3.5, (ii), we can estimate

|J3| ≤ C‖λq(|x|)ψk(x)‖q

∥
∥
∥
∥

u(x) − u′(x)
λq(|x|)

∥
∥
∥
∥

2q/(q−2)

‖∇(u − ψk)‖2

≤ C‖λq(|x|)ψk(x)‖q‖∇(u − u′)‖2‖∇(u − ψk)‖2.

with a positive constant C. Since λq(|x|)ψk(x) → λq(|x|)u holds weakly in
(
Lq(Ω)

)2, the sequence{
‖λq(|x|)ψk(x)‖q,r

}∞

k=1
is bounded. Since ∇ψk → ∇u strongly in

(
L2(Ω)

)4, we have J3 → 0 as k → ∞.
These facts imply

lim
k→∞

I5 =
(
(u − u′) ⊗ u,∇(u′ − u)

)
. (6.20)

Finally, we have I6 = αΦ(u′ − u, u′ − u) + αΦ(u′, u − ψk). It follows that

lim
k→∞

I6 = αΦ(u′ − u, u′ − u). (6.21)

Substituting (6.15)–(6.18), (6.20) and (6.21) into (6.14), we obtain

0 ≥ ‖∇(u − u′)‖2
2 +
(
(u − u′) ⊗ ṽ,∇(u′ − u)

)

+
(
(u − u′) ⊗ u,∇(u′ − u)

)
+ Φ(u′ − u, u′ − u).

We can take CΩ > 0 sufficiently small so that, if a(x) ∈ (H1/2(Ω)
)2 satisfies the estimate ‖a‖H1/2(Ω) < CΩ,

then we have

‖(u − u′) ⊗ v‖2
2 + αΦ(u′ − u, u′ − u) ≤ ‖∇(u − u′)‖2

2

4
.

It follows that
3
4
‖∇(u − u′)‖2

2 ≤ ((u′ − u) ⊗ u,∇(u′ − u)
)
. (6.22)

We then apply Lemma 3.1 and Proposition 3.5, (ii) to obtain
∣
∣((u′ − u) ⊗ u,∇(u′ − u)

)∣∣

≤ C‖λq(|x|)u(x)‖q

∥
∥
∥
∥

u′(x) − u(x)
λq(|x|)

∥
∥
∥
∥

2q/(q−2)

‖∇(u′ − u)‖2

≤ C‖λq(|x|)u(x)‖q‖∇(u′ − u)‖2
2
,

where C depends on q and Ω. Substituting this estimate into (6.22) we obtain

‖∇(u − u′)‖2
2
(

3
4

− C‖λq(|x|)u(x)‖q

)
≤ 0.

Hence, if ‖λq(x)u(x)‖q < Cq,Ω = 3/4C, we have ‖∇(u − u′)‖2 = 0. Since u, u′ ∈ Ḣ1
0,σ(Ω), it follows that

u(x) ≡ u′(x) on Ω. Hence we obtain Theorem 2.9 by putting δq,Ω = 3/4C, which depends only on q and
Ω.

7. Results on Symmetric Solutions

In this section we prove the results on the situation when Ω satisfies (C2I) and a(x) satisfies (C2E). Since
the argument is almost the same, we shall give main differences.

We first introduce Hardy’s inequality with symmetry, whose proof is given in Appendix C.
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Proposition 7.1. Suppose that 2 ≤ ρ < ∞. Then there exists a positive constant Cρ depending only on ρ

such that, if u(x) ∈ Ḣ1
0 (Ω) satisfies

∫ 2π

0

u(r cos θ, r sin θ) dθ = 0 for almost every r > 0, (7.1)

then we have u(x)/|x|2/ρ ∈ Lρ,2(Ω) with the estimate
∥
∥u(x)/|x|2/ρ

∥
∥

ρ,2
≤ Cρ‖∇u‖2 .

We next make a comment on the corrector function.

Proposition 7.2. Suppose that Ω satisfies (C2I) and a(x) satisfies (C2E). Then we can construct Ij [a]
so that they satisfy (C2E).

Proof. For each �, either U� is different from −U� or U� = −U�. Moreover, if U� = −U�, then 0 ∈ U�.
Indeed, if C is a curve contained in U� which connects P ∈ U� to −P ∈ −U� = U�, then C ∪−C is a closed
curve in U� surrounding 0. Since U� is simply connected, it follows that 0 ∈ U�. In this case choose c� as
follows: If Um = −U� holds for some � and m such that � �= m, choose cm = −c�, and if 0 ∈ U�, choose
c� = 0. Moreover, if a(x) satisfies (C2E) as well, then the equality α� = αm holds for �, m such that
Um = −U�. In this case we have α� = αm Hence v(1)(x) satisfies (C2E) in this case. Furthermore, in this
case b(x) satisfies (C2E), and so does w(x). It follows that g(x) satisfies (C2AE). Hence we can assume
that ϕ(x) satisfies (C2E), by replacing ϕ(x) by

(
ϕ(x) − ϕ(−x)

)
/2 if necessary. In this case ∇ × ϕ(x) and

h(x) satisfy (C2AE). We thus conclude that G(x) satisfies (C2AE). The modification of I3 is given in the
introduction. �

We can prove Theorem 2.11 in the same way as Theorem 2.5. However, in order to obtain a solution
satisfying (C2E), we modify the proof. We replace the space Xj by

{
f ∈ L4

σ(Ωj)
∣
∣ f satisfies (C2E)

}
and

making use of the fact that since u(x) satisfies (C2E) implies that so does U [u] in Lemma 5.2.
We derive (2.9) from the assumptions of Theorem 2.11. For every integer j ≥ J + 1 we put

aj =
∫

2j≤|x|≤2j+1
|∇u(x)|2 dx. Then we have

1
2j+1

∫ 2j+1

2j

∫ 2π

0

∣
∣
∣
∣

∂

∂θ
u(r cos θ, r sin θ)

∣
∣
∣
∣

2

dθ dr

≤ 2
∫ 2j+1

2j

∫ 2π

0

∣
∣
∣
∣

∂

∂θ
u(r cos θ, r sin θ)

∣
∣
∣
∣

2 1
r

dθ dr ≤ 2aj .

Hence, for every j ≥ J + 1, there exists a number rj ∈ [2j , 2j+1
]

such that
∫ 2π

0

∣
∣
∣
∣

∂

∂θ
u(rj cos θ, rj sin θ)

∣
∣
∣
∣

2

dθ ≤ 4aj .

In view of the assumption (C2E), we can apply the Sobolev embedding theorem to obtain

sup
θ∈[0,2π]

|u(rj cos θ, rj sin θ)|2 ≤ Caj (7.2)

with a positive constant C independent of u and j. Next, for every ρ, s such that 2j ≤ ρ ≤ s ≤ rj , we
have

∣
∣
∣
∣

∫ 2π

0

|u(s cos θ, s sin θ)|2 dθ −
∫ 2π

0

|u(ρ cos θ, ρ sin θ)|2 dθ

∣
∣
∣
∣

≤
∫ 2π

0

∫ s

ρ

∣
∣
∣
∣

∂

∂r
|u(r cos θ, r sin θ)|2

∣
∣
∣
∣ dr dθ

≤ 2
∫ 2π

0

∫ s

ρ

∣
∣
∣
∣

∂

∂r
u(r cos θ, r sin θ)

∣
∣
∣
∣ |u(r cos θ, r sin θ)| dr dθ
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≤ 2

(∫ 2π

0

∫ s

ρ

∣
∣
∣
∣

∂

∂r
u(r cos θ, r sin θ)

∣
∣
∣
∣

2

dr dθ

)1/2

×
(∫ 2π

0

∫ s

ρ

|u(r cos θ, r sin θ)|2 dr dθ

)1/2

≤ 21−j

(∫

2j≤|x|≤2j+1
|∇u(x)|2 dx

)1/2(∫

2j≤|x|≤2j+1
|u(x)|2 dx

)1/2

≤ C ′aj

with a positive constant C ′ independent of u and j. Hence, for every ρ ∈ [2j , 2j+1
]
, the estimate (7.2)

implies
∫ 2π

0

|u(ρ cos θ, ρ sin θ)|2 dr

≤ 2πCaj +
∣
∣
∣
∣

∫ 2π

0

|u(rj cos θ, rj sin θ)|2 dθ −
∫ 2π

0

|u(ρ cos θ, ρ sin θ)|2 dθ

∣
∣
∣
∣

≤ (2πC + C ′)aj .

Since aj → 0 as j → ∞, we obtain
∫ 2π

0

|u(r cos θ, r sin θ)|2 dθ → 0 as r → ∞. The conclusion (2.9) follows

from this fact and the fact
∫ 2π

0

|v(r cos θ, r sin θ)|2 dθ → 0 as r → ∞.

If the inclusion relation supp∇ · F ⊂ {x | |x| < 2K} holds for some K ∈ N, we can regard w(x) as the
solution of the system

−Δw(x) +
(
w(x) · ∇)w(x) + ∇π(x) = 0 in {x | |x| > 2K},

∇ · w(x) = 0 in {x | |x| > 2K}.

Hence [11, Theorem XII.3.4] and (2.9) imply that w(x) → 0 uniformly as |x| → ∞.
The inequality (2.7) can be proved in the same way as in Theorem 2.5. �
We finally prove Theorem 2.12. In view of Remark 2.13, we may assume 2 < q < ∞. Then the

assumption and Proposition 7.1, together with Lemma 3.1, imply u(x) ∈ L4(Ω), in view of the estimate

∥
∥u2
∥
∥

2
≤
∥
∥
∥
∥

u(x)
|x|1−2/q

∥
∥
∥
∥

2q/(q−2)

∥
∥
∥|x|1−2/q)(x)

∥
∥
∥

q
≤ Cρ,εn

‖∇u‖2δq,Ω < ∞.

Next, in the same way as in the proof of Theorem 2.9, we employ (6.14), where {ψk}∞
k=1 is a sequence of

functions in C∞
0,σ(Ω) such that ∇ψk → ∇u in

(
L2(Ω)

)4 and that |x|1−2/qψk(x) → |x|1−2/qu(x) ∗-weakly

in
(
Lq,∞(Ω)

)2 given by Proposition 6.1, (iii). The proofs of (6.15), (6.16) and (6.21) hold without change.
We can prove (6.17) and (6.18) in the same way, by replacing λq(|x|) by |x|1−2/q and Lq/(q−1)(Ω) by
Lq/(q−1),1(Ω).

For I5, we have (6.19). From the equality

J1 =
(
|x|1−2/q

(
u(x) − ψk(x)

)
,
(|x|2/q−1u(x) · ∇)u′(x)

)

and the fact
∥
∥
∥
(|x|2/q−1u(x) · ∇)u′(x)

∥
∥
∥

q/(q−1),1
≤ C

∥
∥
∥|x|2/q−1u(x)

∥
∥
∥

2q/(q−2),2
‖∇u′‖2
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together with the weak-∗ convergence of |x|1−2/qψk(x) in
(
Lq,∞(Ω)

)2, we see that J1 → 0 as k → ∞. In
the same way we see that J2 → 0 as k → ∞. Finally, in view of Proposition 3.5, (i) we can estimate

|J3| ≤ C
∥
∥
∥|x|1−2/qψk(x)

∥
∥
∥

q,∞

∥
∥
∥|x|2/q−1

(
u(x) − u′(x)

)∥∥
∥

2q/(q−2),2
‖∇(u − ψk)‖2

≤ C
∥
∥
∥|x|1−2/qψk(x)

∥
∥
∥

q,∞

∥
∥∇(u(x) − u′(x)

)∥∥
2
‖∇(u − ψk)‖2.

The weak-∗ convergence implies the boundedness of
∥
∥|x|1−2/qψk(x)

∥
∥

q,∞ . Hence the fact ∇ψk → ∇u in
(
L2(Ω)

)4 implies J3 → 0. From these facts we have (6.20). It follows from Proposition 3.5, (i) that

‖∇(u − u′)‖2
2
(

3
4

− C
∥
∥
∥|x|1−2/qu(x)

∥
∥
∥

q,∞

)
≤ 0,

in the same way as in the proof of Theorem 2.9, where C depends only on q. This estimate implies
u(x) = u′(x) if

∥
∥|x|1−2/qu(x)

∥
∥

q,∞ < Cq = 3/4C. �
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Appendix A. Proof of Lemma 3.1.

We first choose p0, p1, q0, q1 so that p0 < p < p1 < ∞, q0 < q < q1 < ∞ and 1/po + 1/q0 < 1, and put
rj,k = p1qk/(p1 + qk) for j, k = 0, 1.

We first consider the case β = ∞ and γ = α. It follows from the Hölder inequality ‖fg‖rj,k
≤

‖f‖pj
‖g‖qk

for j, k = 0, 1 that the estimate

‖fg‖pjq/(pj+q),∞ ≤ C‖f‖pj
‖g‖q,∞

holds for j = 0, 1 by real interpolation with respect to q. Applying real interpolation with respect to p,
we obtain

‖fg‖r,α ≤ C‖f‖p,α‖g‖q,∞.

The case α = ∞ can be proved in the same way. We next consider the case γ = 1. It suffices to consider
the case α, β ∈ (1,∞). For every h ∈ Lr/(r−1),∞−, we have

‖fgh‖1 ≤ C‖f‖p,α‖gh‖p/(p−1),α/(α−1). (A.1)

Since
p − 1

p
= 1 − 1

p
= 1 − 1

r
+

1
q

and
α − 1

α
= 1 − 1

α
=

1
β

,

we have ‖gh‖p/(p−1),α/(α−1) ≤ C‖g‖q,β‖h‖r/(r−1),∞ . Substituting this estimate into (A.1), we obtain

‖fgh‖1 ≤ C‖f‖p,α‖g‖q,β‖h‖r/(r−1),∞.

http://creativecommons.org/licenses/by/4.0/
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Since the norm of Lr/(r−1),∞− is ‖·‖r/(r−1),∞, we have fg ∈ (Lr/(r−1),∞−)′ = Lr,1 with the estimate

‖fg‖r,1 ≤ C‖f‖p,α‖g‖q,β .

We finally consider the general case. It suffices to consider the case β < ∞. Put θ = β/α(1 − β). Since
β/(β − 1) ≤ α ≤ ∞, we have 0 ≤ θ ≤ 1. Then we can write

1
α

= θ

(
1 − 1

β

)
and

θ

γ
=

1
β

+ θ

(
1 − 1

β

)
.

Then the estimate
‖fg‖r,β/{1+θ(β−1)} ≤ C‖f‖p,β/θ(β−1)‖g‖q,β (A.2)

holds for the case θ = 0 and θ = 1. By complex interpolation we see that (A.2) holds for every θ ∈ [0, 1].
This completes the proof. �

Appendix B. Proof of Proposition 3.5.

Since C∞
0 (Ω) is dense in Ḣ1

0 (Ω), we may assume that u(x) ∈ C∞
0 (Ω). Put

v(x) =
1
2π

∫ 2π

0

u(|x| cos θ, |x| sin θ) dθ

and w(x) = u(x) − v(x). Then we have
∣
∣
∣
∣

∂v

∂xj
(r cos θ, r sin θ)

∣
∣
∣
∣ =
∣
∣
∣
∣

∂r

∂xj
(r cos θ, r sin θ)

∣
∣
∣
∣ ·
∣
∣
∣
∣
dv(r cos θ, r sin θ)

dr

∣
∣
∣
∣

≤ 1
2π

∫ 2π

0

∣
∣
∣
∣
∂u

∂r
(r cos θ, r sin θ)

∣
∣
∣
∣ dθ.

It follows that
∫ 2π

0

∣
∣
∣
∣

∂v

∂xj
(r cos θ, r sin θ)

∣
∣
∣
∣

2

dθ ≤ 1
2π

(∫ 2π

0

∣
∣
∣
∣
∂u

∂r
(r cos θ, r sin θ)

∣
∣
∣
∣ dθ

)2

≤
∫ 2π

0

∣
∣
∣
∣
∂u

∂r
(r cos θ, r sin θ)

∣
∣
∣
∣

2

dθ ≤
∫ 2π

0

|∇u(r cos θ, r sin θ)|2 dθ.

Integrating with respect to r, we see that ‖∇v‖2 ≤ ‖∇u‖2 . Since w(x) = u(x) − v(x), It follows
that ‖∇w‖2 ≤ 2‖∇w‖2 . Since w(x) satisfies the condition (7.1) and since λ2ρ/(ρ−2)(t) = t2/ρ

(
log(ε0 +

e)
)1/2+1/ρ ≥ t2/ρ , it follows that

∥
∥w(x)/λ2ρ/(ρ−2)(|x|)∥∥

ρ
≤
∥
∥
∥|x|−2/ρw(x)

∥
∥
∥

ρ,2
≤ 2Cρ‖∇u‖2. (B.1)

We now consider v(x). By the assumption we see that v(x) is radially symmetric, v(x) = 0 if |x| ≤ ε0.
Hence we can define f(t) defined on R such that v(x) = f(log |x|). Then we have f(t) ≡ 0 on (−∞, log ε0].
We also have

∫

R2

(∇v(x)
)2

dx ≥ 2π

∫ ∞

ε0

r

∣
∣
∣
∣

∂

∂r
v(rω)

∣
∣
∣
∣ dr

= 2π

∫ ∞

ε0

r

∣
∣
∣
∣
∂f

∂t
(log r)

∣
∣
∣
∣

2(
∂

∂r
(log r)

)2

dr = 2π

∫ ∞

log ε0

|f ′(t)|2 dt.

It follows that f(t) ∈ Ḣ1
0 (R) = Ḃ1

2,2(R) with the norm estimate ‖∇f‖2 ≤ ‖∇v‖2 ≤ ‖∇u‖2 . Hence the

Sobolev embedding theorem implies that f ∈ Ḃ
1/2
∞,2(R) ⊂ Ḃ

1/2
∞,ρ(R) and

‖f‖
Ḃ

1/2
∞,ρ

≤ Cρ‖∇u‖2. (B.2)

On the other hand, we have
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‖f‖
Ḃ

1/2
∞,ρ

ρ =
∫ ∞

0

(‖f(· + t) − f(·)‖∞
t1/2

)ρ
dt

t

≥
∫ ∞

0

( |f(t + log ε0)|
t1/2

)ρ
dt

t
=
∫ ∞

0

( |v(rε0ω)|
(log |x|)1/ρ+1/2

)ρ
d(log r)

dr
dr

=
∫ ∞

0

( |v(rε0ω)|
(log |x|)1/ρ+1/2

)ρ 1
r

dr = Cε0

∫

R2

( |v(x)|
|x|2/ρ(log |x|)1/ρ+1/2

)ρ

dx

≥ Cε0

∫

R2

( |v(x)|
λ2ρ/(ρ−2)(|x|)

)ρ

dx.

Substituting this estimate into (B.2) we obtain
∥
∥v(x)/λ2ρ(ρ−2)(|x|)∥∥

ρ
≤ C ′

ρ,ε0
‖∇u‖2.

The conclusion follows from this estimate and (B.1). �

Appendix C. Proof of Proposition 7.1.

Since C∞
0 (Ω) is dense in Ḣ1

0 (Ω), we may assume that u(x) ∈ C∞
0 (Ω). Put Dk = {x ∈ R

2 | 2k−1 ≤ |x| ≤ 2k}
for every k ∈ Z. Then the assumption implies that

∫

Dk

u(x) dx = 0. Hence, for every ρ ∈ [2,∞) and every

p ∈ (2ρ/(2 + ρ), ρ], the Poincaré inequality and the Sobolev embedding theorem imply

2k(2/p−2/ρ−1)

(∫

Dk

|u(x)|ρ dx

)1/ρ

≤ C

(∫

Dk

|∇u(x)|p dx

)1/p

with a positive constant C depending only on p and ρ. It follows that
(∫

Dk

(|x|2/p−2/ρ−1|u(x)|)ρ dx

)1/ρ

≤ C

(∫

Dk

|∇u(x)|p dx

)1/p

,

once again the positive constant C depends only on p and ρ. Then we have
(∫

R2

(|x|2/p−2/ρ−1|u(x)|)ρ dx

)1/ρ

=

( ∞∑

k=−∞

∫

Dk

(|x|2/p−2/ρ−1|u(x)|)ρ dx

)1/ρ

≤
{ ∞∑

k=−∞

(∫

Dk

(|x|2/p−2/ρ−1|u(x)|)ρ dx

)p/ρ
}1/p

≤ C

{ ∞∑

k=−∞

∫

Dk

|∇u(x)|p dx

}1/p

= C

(∫

R2
|∇u(x)|p dx

)1/p

. (C.1)

If ρ = 2, we put p = 2. Then (C.1) implies
∥
∥|x|−1u(x)

∥
∥

2
≤ C‖∇u(x)‖2 .

If ρ > 2, we put

p0 =
ρ

ρ − 1
, ρ0 = 2, p1 =

2ρ

ρ − 1
and ρ1 = 2ρ.

Then we have p0 < 2 < p1 and
2
p0

− 2
ρ0

= 2 − 2
ρ

− 1 = 1 − 2
ρ

= 1 − 1
ρ

− 1
ρ

=
2
p1

− 2
ρ1

.
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Hence (C.1) implies ∥
∥
∥|x|2/p−2/ρ−1|u(x)|

∥
∥
∥

ρj

≤ C‖∇u(x)‖pj
for j = 0, 1. (C.2)

Moreover, if we choose θ ∈ (0, 1) such that θ(1/ρ0 − 1/ρ1) = 1/ρ0 − 1/ρ, then we have

θ

(
1
p0

− 1
p1

)
= θ

(
1 − 1

ρ
− 1

2
+

1
2ρ

)
= θ

(
1
2

− 1
2ρ

)
=

1
2

− 1
ρ

=
1
p0

− 1
2
.

It follows that the real interpolation spaces
(
Lp0(R2), Lp1(R2)

)
θ,2

and
(
Lρ0(R2), Lρ1(R2)

)
θ,2

coincide with
L2,2(R2) = L2(R2) and Lρ,2(R2) respectively. Hence, applying real interpolation to (C.2), we obtain

∥
∥
∥|x|−2/ρu(x)

∥
∥
∥

ρ,2
≤ Cρ‖∇u(x)‖2

with a positive constant Cρ . This completes the proof. �
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