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Abstract. Two-dimensional steady gravity driven water waves with vorticity are considered. Using a multidimensional
bifurcation argument, we prove the existence of small-amplitude periodic steady waves with an arbitrary number of crests
per period. The role of bifurcation parameters is played by the roots of the dispersion equation.

1. Introduction

The existence theory for rotational steady water waves of finite depth goes back to the paper [6] of Dubreil-
Jacotin published in 1934. However only after the paper [5] of Constantin and Strauss appeared in 2004
the theory of rotational steady waves has attracted a lot of attention from the mathematical community.
The latter paper was devoted to large amplitude Stokes waves with an arbitrary vorticity distribution.
Stokes waves are periodic travelling waves with exactly one crest and one trough in every minimal period.
A natural question can be raised here: are there periodic waves with more complicated geometry? To
simplify the discussion we will restrict this question to the case of small-amplitude periodic waves without
surface tension. In the class of periodic uniderectional waves with vorticity only Stokes waves exist (see
[11,17] and [16]). Thus, to answer the question affirmatively one shall consider a wider class of waves
allowing internal stagnation or critical layers. The first positive result in this direction was obtained (see
[9]) in 2011 by Ehrnström, Escher and Wahlén. They prove existence of bimodal travelling waves of small
amplitude (see also [1]). A bimodal wave has several crests per period and the first approximation of the
surface profile is given by a combination of two simple modes: cosine functions with different wavelengths.
Later, in 2015 Ehrnström and Wahlén proved (see [10]) the existence of trimodal waves for which the first
approximation is given by a combination of three basic modes. Both papers use a similar technique based
on a bifurcation argument. The crucial role there is the choice of the bifurcation parameters. The main
difficulty for the higher order bifurcation is the fact that the number of natural parameters of the problem
is limited. Normally, one may consider only the Bernoulli constant or the wavelength as a bifurcation
parameters. In the case of a linear vorticity, the derivative of the vorticity function (which is a constant in
this case) is another possible parameter. The main novelty of our approach is that an arbitrary number of
the bifurcation parameters are used. These parameters are the roots of the dispersion equation while the
corresponding vorticity is a perturbation of a linear function. Our argument is different to the one used
in [10] to construct trimodal waves. In [10] the authors use a Lyapunov–Schmidt reduction directly to the
initial infinite-dimensional problem. This complicates calculation of the determinant of the matrix of the
reduced system which is essential for the proof of the existence. In contrast, we first reduce the problem
to a finite dimensional system for which the linear part is given by an ordinary differential operators and
then use Lyapunov–Schmidt reduction. After that the corresponding matrix is diagonal and then we can
quite straightforward prove the existence of symmetric and periodic waves with an arbitrary number of
basic modes.
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The paper is organized as follows. In the beginning of Sect. 2 we formulate the problem in a suitable
way. In Sect. 2.1 and 2.2 we discuss stream solutions and the linear approximation for the initial problem.
The Sect. 3 is an essential part of the proof and concerns to the inverse spectral problem related to
the dispersion equation. Here we prove Theorem 3.1 allowing to use roots of the dispersion equation
as bifurcation parameters. Next, in Sect. 4, we first formulate our main result. The rest of the paper is
dedicated to the proof of the main theorem. We start by writing the problem in an operator form and then
in Sect. 4.4 we reduce it to a finite-dimensional system of equations. The rest of the proof is contained
in Sect. 4.5, where we perform Lyapunov–Schmidt reduction to the reduced system. In contrast to the
classical bifurcation theory, we find solutions only for the values of small parameters t = (t1, ..., tN ) such
that |t|2 < ε|tj | for some small ε.

2. Statement of the Problem

Let an open channel of a uniform rectangular cross-section be bounded below by a horizontal rigid bottom
and let water occupying the channel be bounded above by a free surface not touching the bottom. In
an appropriate Cartesian coordinates (x, y), the bottom coincides with the x-axis and gravity acts in
the negative y-direction. The steady water motion is supposed to be two-dimensional and rotational;
the surface tension is neglected on the free surface of the water, where the pressure is constant. These
assumptions and the fact that the water is incompressible allow us to seek the velocity field in the form
(ψy,−ψx), where ψ(x, y) is referred to as the stream function. The vorticity distribution ω is supposed
to be a prescribed smooth function depending only on the values of ψ.

We choose the frame of reference so that the velocity field is time-independent as well as the unknown
free-surface profile. The latter is assumed to be the graph of a function y = η(x), x ∈ R, where η is a
positive continuous function, and so the longitudinal section of the water domain is D = {x ∈ R, 0 < y <
η(x)}. We use the non-dimensional variables proposed by Keady and Norbury [13]. Namely, lengths and
velocities are scaled to (Q2/g)1/3 and (Qg)1/3 respectively. Here Q and g are the dimensional quantities
for the rate of flow and the gravity acceleration respectively, whereas (Q2/g)1/3 is the depth of the critical
uniform stream in the irrotational case. This scaling leads to to an equivalent problem, provided the mass
flux is not zero.

The following free-boundary problem for ψ and η has long been known (cf. [13]):

ψxx + ψyy + ω(ψ) = 0, (x, y) ∈ D; (2.1)
ψ(x, 0) = 0, x ∈ R; (2.2)

ψ(x, η(x)) = 1, x ∈ R; (2.3)
|∇ψ(x, η(x))|2 + 2η(x) = 3r, x ∈ R. (2.4)

In the condition (2.4) (Bernoulli’s equation), r is a constant considered as a problem’s parameter and
referred to as Bernoulli’s constant/the total head. The problem (2.1)–(2.4) describes two-dimensional
steady water waves with a nonzero mass flux. In what follows, we will assume that ω ∈ C∞(IR).

For the further analysis of the problem it is convenient to rectify the domain D by scaling the vertical
variable to

z = y
d

η(x)
,

while the horizontal coordinate remains unchanged. The parameter d > 0, which by meaning is the depth
of a uniform stream to be determined later, can be chosen arbitrarily. In other words, for a given d > 0
we will find a vorticity function and a stream solution for which we prove the existence of multi-modal
waves of small amplitude bifurcating from the uniform stream.
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Thus, the domain D transforms into the strip S = IR × (0, d). Next, we introduce a new unknown
function Φ̂(x, z) on S̄ by

Φ̂(x, z) = ψ
(
x,

z

d
η(x)

)
.

A direct calculation shows that the problem (2.1)–(2.3) reads in new variables as
[
Φ̂x − zηx

η
Φ̂z

]

x

− zηx

η

[
Φ̂x − zηx

η
Φ̂z

]

z

+
(

d

η

)2

Φ̂zz + ω(Φ̂) = 0; (2.5)

Φ̂(x, 0) = 0, Φ̂(x, d) = 1, x ∈ IR; (2.6)

while the Bernoulli equation (2.4) becomes

Φ̂2
z =

η2

d2

(
3r − 2η

1 + η2
x

)
. (2.7)

In what follows by a solution of (2.5)–(2.7) we mean a pair (Φ̂, η) ∈ C2,α(S̄) × C1,α(IR) satisfying these
equations.

2.1. Stream Solutions

A pair (u(y), d), where u : [0, d] → IR and d > 0 is called a stream solution corresponding to the vorticity
function ω and the depth d, if

u′′ + ω(u) = 0, u(0) = 0, u(d) = 1. (2.8)

The corresponding Bernoulli constant r is calculated by

3r = [u′(d)]2 + 2d.

Note that in our definition of a stream solution the Bernoulli constant is not fixed.
In this paper we will be interested in the case when the vorticity ω is a small perturbation of a linear

vorticity ω0(p) = bp, where b is a positive constant:

ω(p) = ωδ(p) = bp + δ1ω1(p) + · · · + δNωN (p). (2.9)

Here the coefficients δj are small and compactly supported functions ωj ∈ C∞
0 (0, 1) will be chosen

later. The choice of the sign of the constant b is crucial because negative values of b give rise only to
unidirectional uniform streams, for which the dispersion equation has at most one root and all periodic
small-amplitude waves are Stokes waves.

We will require the constants b and d to satisfy
√

b �= πj

2d
, j = 1, 2, .... (2.10)

The assumption (2.10) guarantees that the problem (2.8) with the vorticity ω of the form (2.9) possesses
a unique solution u with u′(d) �= 0, provided all δj are small enough. To prove that (2.8) has a unique
solution with ω given by (2.9), we write u = u0 + v and consider the problem

v′′ + bv +
N∑

j=1

δjωj(u0 + v) = 0, v(0) = v(d) = 0.

We can rewrite this problem in an operator form as follows:

Lv + Q(v, δ) = 0,

where the operators

L,Q : {u ∈ C2,α([0, d]) : u(0) = u(d) = 0} → Cα([0, d])



856 V. Kozlov and E. Lokharu JMFM

are defined by Lv = v′′ + bv and Q(v, δ) =
∑N

j=1 δjωj(u0 + v). The assumption (2.10) guarantees that
operator L has a trivial kernel, which ensures it’s invertibility. This allows us to apply implicit function
theorem in order to find a family of stream solutions u(z; δ) in a neighbourhood of δ = 0 which depends
analytically on δ (see [14] for a good overview). Note that (2.10) also implies that uy(d; δ) �= 0 for all
small δ, which ensures that there is no stagnation on the surface.

2.2. Linear Approximation of the Water-Wave Problem

Let us consider a linear approximation of the problem. For this purpose we formally linearize equations
(2.5)–(2.7) near some stream solution (u, d). Thus, we put

Φ̂ = u + εΦ + O(ε2), η = d + εζ + O(ε2).

Using this ansatz in (2.5)–(2.7), we find
[
Φx − zζxuz

d

]

x

+ Φzz − 2ζuzz

d
+ ω′(u)Φ = O(ε),

Φ(x, 0) = Φ(x, d) = 0,

Φz|z=d −
(

u′(d)
d

− 1
u′(d)

)
ζ = O(ε).

We can simplify equations by letting

Ψ = Φ − zζuz

d
.

The latter transformation was used in [9] and [10]. The formula above implies ζ = −Ψ|z=d/u′(d) and
then the linear part of the above problem transforms into

Ψxx + Ψzz + ω′(u)Ψ = 0

Ψ|z=0 = 0 (2.11)

Ψz|z=d − κΨ|x=d = 0,

where κ = 1/[u′(d)]2 − ω(1)/u′(d). Separation of variables in the system (2.11) leads to the following
Sturm–Liouville problem:

− φzz − ω′(u)φ = μφ on (0, d), φ(0) = 0, φz(d) = κφ(d). (2.12)

The spectrum of (2.12) depends only on the triple (ω, d, u) and consists of a countable set of simple real
eigenvalues {μj}∞

j=1 ordered so that μj < μl for all j < l. Furthermore, only a finite number of eigenvalues
may be negative. The normalized eigenfunction corresponding to an eigenvalue μj will be denoted by φj .
Thus, the set of all eigenfunctions {φj}∞

j=1 forms an orthonormal basis in L2(0, d).
Solving the linear problem (2.11), we find that the space of bounded and even in the x-variable

solutions is finite-dimensional and is spanned by the functions

Ψ(x, z) = cos(
√

|μj |x)φj(z), (2.13)

where μj ≤ 0.
Let us turn to the problem (2.12) for the linear vorticity ω0(p) = bp.

Proposition 2.1. For any N ≥ 1 and d > 0 there exists b > 0 satisfying (2.10) such that the Sturm–
Liouville problem (2.12) for the triple (ω0, d, u0) has exactly N negative eigenvalues while all other eigen-
values are positive.

In the formulation above u0 stands for the unique solution of (2.8) for the pair (ω0, d). An analog of
Proposition 2.1 was proved in [1].
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Proof of Proposition 2.1. For a given d > 0, we put

b =
(

πN

d

)2

− ε

for some ε �= 0, which can be positive or negative. Note that (2.10) is satisfied automatically for small ε.
Now we can calculate

κ =
1
b

sin2
√

bd

cos2
√

bd
−

√
b
sin

√
bd

cos
√

bd
=

εd

2πN
+ O(ε2), ε → 0.

For any j > 1 the eigenfunction corresponding to μj is given by C sin
√

b + μjz and then the boundary
relation at z = d in (2.12) gives

√
b + μj cos

√
b + μjd = κ sin

√
b + μjd,

which implies that eigenvalues μj are uniformly separated from zero for all j > 1, provided ε is small.
More precisely, there is a positive constant β > 0 such that |μj | > β for all j > 1 and all |ε| < β. It is
known that eigenvalues μj alternates with eigenvalues λD

j of the Dirichlet problem:

−φzz − bφ = λDφ on (0, d), φ(0) = φ(d) = 0.

More precisely, we have μ1 < λD
1 and for any two neighbour eigenvalues λD

i < λD
i+1 there is exactly one

eigenvalue μj ∈ (λD
i , λD

i+1). Finally, the choice of the constant b implies λD
N = ε. Thus, there are exactly

N − 1 to the left of λD
N−1 and μN < ε. Furthermore, we necessary have |μN | < β, which implies that

μN < −β and μN+1 > β, provided |ε| < β. Thus all eigenvalues μ1, ..., μN are negative, while all others
are positive. This finishes the proof. �

Note that it follows from the proof of the proposition that the constant κ in (2.12) has the same sign
as ε and then can be both positive or negative. The sign of κ plays no role in our proof and one can show
that multi-modal waves appear for both positive and negative values of κ.

3. Inverse Spectral Problem

For a given N > 1 and d > 0, we consider the constant b provided by Proposition 2.1 and let (u0, d)
be the stream solution (2.8), which corresponds to the vorticity function ω0(p) = bp and the depth d.
According to the Proposition 2.1, the Sturm–Liouville problem (2.12) for the triple (ω0, d, u0) has exactly
N negative eigenvalues λ1 < · · · < λN < 0 and all other eigenvalues are positive.

Now, let the functions ωk, k = 1, . . . , N , in (2.9) be fixed. Then for small δ = (δ1, . . . , δN ) there exists a
unique solution uδ to the problem (2.8) with ω = ωδ given by (2.9) and we can consider eigenvalue problem
(2.12) for the triple (ωδ, d, uδ). Let μ1 < · · · < μN be all negative eigenvalues of that Sturm–Liouville
problem, while φj , j > N are eigenfunctions corresponding to negative eigenvalues respectively. Note
that both eigenvalues μj ∈ IR and the corresponding eigenfunctions φj ∈ L2(0, d) depend analytically on
δ (for details see Chapter VII in [12] and examples 1.15 and 2.12 therein). Let us define the map

T : δ = (δ1, . . . , δN ) → μ = (μ1, . . . , μN ). (3.1)

which is analytic in a neighborhood of δ = 0. The next theorem provides the invertibility of T and by
this we solve the spectral inverse problem locally: for a given set of eigenvalues located near λ1, ..., λN ,
we find a corresponding potential through the vorticity distribution ωδ and the stream solution (uδ, d).

Theorem 3.1. There exist functions ωk ∈ C∞
0 (0, 1), k = 1, . . . , N , such that the Jacobian matrix of the

map (3.1) is invertible at δ = 0.
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Proof. Let us calculate the Jacobian matrix of the map T . Since uδ depends analytically on δ (as an
operator function with values in C2,α([0, d])) as it was noted in Subsection 2.1, we have

uδ(z) = u0(z) + δ1u1(z) + · · · + δNuN (z) + O(|δ|2), |δ| → 0,

where u1(0) = u1(d) = · · · = uN (0) = uN (d) = 0. Using this ansatz, we find that every uj is subject to

u′′
j + buj = −ωj(u0), uj(0) = uj(d) = 0

for all 1 ≤ j ≤ N . Solving these equations, we find

uj(z) = cj
sin

√
bz√

b
− 1√

b

∫ z

0

ωj(u0(p)) sin
√

b(z − p)dp, (3.2)

where

cj =
1

sin(
√

bd)

∫ d

0

ωj(u0(p)) sin
√

b(d − p)dp.

Let us turn to the dispersion equation for the triple (ωδ, d, uδ) which is given by the following eigenvalue
problem

−φ′′ − ω′(uδ)φ = μφ on (0, d);

φ′(d) =
(

1
k2

δ

− ωδ(1)
kδ

)
φ(d), φ(0) = 0.

Here k = u′
δ(d). The corresponding eigenfunctions φl and eigenvalues μl, l = 1, ..., N depend smoothly

on δ, so that

μl = λl + δ1μl1 + · · · δNμlN + O(|δ|2), |δ| → 0, l = 1, ..., N.

In order to find the coefficients μlj , we write the eigenvalue problem above in operator form:

Aφ = μφ,

where the self-adjoint operator A is defined by

〈Aφ,ψ〉 = −
(

1
k2

δ

− ωδ(1)
kδ

)
ψ(d)φ(d) +

∫ d

0

φ′ψ′dz −
∫ d

0

ω′
δ(u)φψdz,

where φ, ψ ∈ W 1,2
0 (0, d) and the last space consists of functions from W 1,2(0, d) vanishing at 0. Here 〈·, ·〉

stands for the standard inner product in L2(0, d). Thus, if

A = A0 + δ1A1 + · · · + δNAN + O(|δ̄|2), |δ̄| → 0,

where operators Aj are defined by

〈Ajφ, ψ〉 =
u′

j(d)
k2
0

(
2
k0

− b

)
φ(d)ψ(d) −

∫ d

0

ω′
j(u0)φψdz

for φ, ψ ∈ W 1,2
0 (0, d). Using (3.2), we find

u′
j(d) = − 1

sin(
√

bd)

∫ d

0

ωj(u0) sin
√

bzdz = −
∫ d

0

ω′
j(u0)

cos2
√

bz

sin2
√

bd
dz (3.3)

after integration by parts and observation that u0 = sin
√

bz/ sin
√

bd. Then, after some algebra one
obtains

μlj = 〈Ajφl, φl〉,
where φl stands for the normalized eigenfunction corresponding to the eigenvalue λl of the Sturm–Liouville
problem for δ = 0. Therefore, using (3.3), we conclude

μlj =
∫ d

0

ω′
j(u0)(Al cos2

√
bz − φ2

l )dz, Al =
φ2

l (d)
k2
0 sin2

√
bd

(
b − 2

k0

)
. (3.4)
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Let us transform the right-hand side in (3.4). Since u0 = sin
√

bz/ sin
√

bd, we can reduce integration
over [0, d] to a smaller interval of where the function u0 is monotone. We put

Λ =
2π√

b

which is the period of the function u0.
Consider first the case sin

√
bd > 0. Let d∗ be the smallest positive root of the equation u0(d∗) = 1.

Then the function u0 is monotone on the interval [0, d∗]. Let z ∈ (0, d∗). To describe all roots of u0(ẑ) =
u0(z) on the interval (0, d), which are different from z, we introduce the integer M as the largest integer
satisfying

Λ
(
M +

3
4

)
< d. (3.5)

Then the roots of u0(ẑ) = u0(z) are given by

z±
k =

(
k +

3
4

)
Λ ±

(
z +

Λ
4

)
, k = 1, . . . , M. (3.6)

Now we can write (3.4) as

μlj =
∫ d∗

0

ω′
j(u0)

[
(2M + 1)Al cos2

√
bz − φ2

l (z) −
M∑

k=1

(φ2
l (z

+
k ) + φ2

l (z
−
k ))

]
dz. (3.7)

Note that the function φl solves the problem

−φ′′
l − bφl = λlφl, φl(0) = 0, φ′

l(d) = κ0φl(d).

Hence, depending on the sign of b + λl, it is either Cl sin
√

b + λlz or C2 sinh
√

b + λlz. Let us consider
the case when b + λ1 > 0 and hence

φl(z) = Cl sin
√

b + λlz for all l = 1, . . . , N.

Then

φ2
l (z) +

M∑
k=1

(φ2
l (z

+
k ) + φ2

l (z
−
k ))

= C2
l

(
(M + 1/2) − cos(2

√
b + λlz) − Bl cos(2

√
b + λl(z + Λ/4))

)
,

where

Bl =
M∑

k=1

cos
(
2
√

b + λl(k + 3/4)Λ
)
.

Therefore

μlj =
∫ d∗

0

ω′
j(u0)fl(z)dz, (3.8)

where

fl(z) = (M + 1/2)
(
Al − C2

l + Al cos(2
√

bz)
)

(3.9)

+C2
l

(
cos(2

√
b + λlz) + Bl cos(2

√
b + λl(z + Λ/4)

)
.

Since the functions

1, cos(2
√

bz), cos(2
√

b + λlz), cos(2
√

b + λl(z + Λ/4)), l = 1, . . . , N,

are linear independent, the set of functions

cos(
√

bz), fl(z), l = 1, . . . , N, (3.10)
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is also linear independent. Indeed, the only case when they can be dependent is
√

b = 2
√

b + λl for certain
l, but then either Al or Al − C2

l is non-zero in the representation (3.9) for fl which is sufficient for linear
independence of the system (3.10).

In the case b + λ1 ≤ 0 we have b + λ2 > 0. Otherwise we will have two eigenfunctions corresponding
to different eigenvalues and which are no orthogonal to each other. Now we must replace the function
sin

√
b + λ1 by sinh

√
b + λ1 and, repeating then the above argument, we obtain the linear independence

of the system (3.10).
Using linear independence of the functions (3.10), we can find functions αj = αj(p) in C∞

0 (0, 1) such
that ∫ d∗

0

αj(u0(z))fl(z)dz = δj
l and

∫ d∗

0

αj(u0(z)) cos(
√

bz)dz = 0, (3.11)

where δj
l is the Kronecker delta. If we put

ωj(p) =
∫ p

0

αj(s)ds =
∫ Z

0

αj(u0(z))u′
0(z)dz, p = u0(Z),

then we see that ωj ∈ C∞
0 (0, 1) due to the second equality in (3.11) and ω′

j(p) = αj(p). Therefore the
matrix (3.8) is invertible by the first equality in (3.11). This completes the proof in the case sin

√
bd > 0.

Assume now that sin
√

bd < 0. Then the function u0 is negative on (0,Λ/2) and it is monotonically
increasing from 0 to 1 on the interval [Λ/2, d∗ + Λ/2]. Reasoning as above we obtain the representation
(3.8) but on the interval (Λ/2, d∗ + Λ/2) with 3/4 replaced by 1/4 in formulas like (3.5) and (3.6). The
remaining part of the proof in this case is the same as above. �

A similar inverse problem was considered in [8], where the authors used inverse spectrum Sturm–
Liouville theory (see [7] for details). Unfortunately we could not implement a similar argument based on
the inverse Sturm–Liouville theory and so we used another approach based on a perturbation argument.

4. Existence of N -Modal Waves

For a given N > 1 and d > 0 let b be the constant from Proposition 2.1 so that the Sturm–Liouville
problem (2.12) has N negative eigenvalues λ1, . . . λN and all remaining eigenvalues are positive. By
Theorem 3.1 we can choose real-valued functions ω1, . . . , ωN ∈ C∞

0 (0, 1) such that the map (3.1) is
invertible in a certain neighborhood Γ ⊂ R

N of the point (λ1, . . . , λN ). Furthermore, we assume that for
every (μ1, ..., μN ) ∈ Γ we have μj < 0, j = 1, ..., N. In what follows we will use μ = (μ1, . . . , μN ) ∈ Γ
as a parameter of our water wave problem and denote by ω(p;μ), u(z;μ) the perturbed vorticity ωδ(μ)

and stream solution uδ(μ). We choose also μ∗ = (μ∗
1, . . . , μ

∗
N ) ∈ Γ so that μ∗

j/μ∗
l are rational numbers

for all 1 ≤ j, l ≤ N . In this case all bounded solutions (2.13) to the linear problem (2.11) for the triple
(ω(p;μ∗), d, u(z;μ∗)) have a common period which we denote by Λ∗. Since the set Γ is open, we can
always find some μ∗ with this property.

The aim of the present paper is to give an affirmative answer to the question raised in [9]: does
higher-order bifurcation occur so that N -modal waves exist for all N ≥ 1?

Theorem 4.1. For any integer N ≥ 1 and d > 0 there exist constants β, ε > 0, a linear vorticity distribution
ω0(p) = bp with b > 0 and a smooth function μ : [−β, β]N → Γ with the following property: for any
t := (t1, ..., tN ) ∈ IRN such that |t| < β and |t|2/|tj | ≤ ε the nonlinear water wave problem (2.5)–(2.7)
with the vorticity ω(p;μ(t)) possesses a unique Λ∗-periodic and even solution (Ψ, η) corresponding to the
Bernoulli constant r(t) = [uz(d;μ(t))2 + 2d]/3 such that

η(x) = d + t1 cos(
√

|μ∗
1|x) + · · · + tN cos(

√
|μ∗

N |x) + O(|t|2).
The constants β and δ depend only on N, d, μ∗ and Λ∗.
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The waves constructed in Theorem 4.1 are symmetric with respect to the vertical line x = 0 and this
is essential for the proof of the theorem. The only existence result for non-symmetric two-dimensional
waves in the absence of surface tension is [15], while there are several numerical results: [20–22]. There
are also some results on two-dimensional non-symmetric gravity-capillary steady water waves (see [4]).

4.1. Functional-Analytic Setup

In order to write equations (2.5)–(2.7) in an operator form, we define nonlinear operators

F̂1(Φ̂, η;μ) =
[
Φ̂x − zηx

η
Φ̂z

]

x

− zηx

η

[
Φ̂x − zηx

η
Φ̂z

]

z

+
(

d

η

)2

Φ̂zz + ω(Φ̂;μ),

F̂2(Φ̂, η;μ) = Φ̂2
z|z=d − η2

d2

(
3r(μ) − 2η

1 + η2
x

)
,

where

r(μ) = [u′(d;μ)]2 − 2d.

The definitions above imply that

F̂1(u(·;μ), d;μ) = F̂2(u(·;μ), d;μ) = 0

for all μ ∈ Γ. Next, we put

Φ(x, z) = Φ̂(x, z) − u(z;μ) − zuz(z;μ)(η(x) − d)
d

.

The purposes of this change of variables are twofold. First, it gives a formal linearization near the stream
solution u(z;μ). Second, it allows to eliminate the profile η from the equations. Indeed, the definition
above implies that

η(x) = d − Φ|z=d

u′(d)
. (4.1)

Thus, we naturally define

Fj(Φ;μ) = F̂j

(
Φ + u +

zuz(η − d)
d

, d − Φ|z=d

uz(d)
;μ

)
, j = 1, 2.

Therefore, the problem (2.5)–(2.7) with the vorticity ω(·;μ) and Bernoulli constant r(μ) reads as

F(Φ;μ) = 0, (4.2)

where F = (F1,F2) : X × Γ → Y := Y1 × Y2 and the spaces are defined by

X = {Φ ∈ C2,α
per(S̄) : Φ(x, 0) = 0, Φ(x, z) = Φ(−x, z) for all (x, y) ∈ S}

and

Y1 = C0,α
per(S̄), Y2 = C1,α

per(IR), Y = Y1 × Y2.

Here and elsewhere the subscript per denotes Λ∗-periodicity and evenness in the horizontal x-variable.
As the norms in these spaces we will use ‖ · ‖C0,α([−Λ∗/2,Λ∗/2]×[0,d]) and ‖ · ‖C1,α([−Λ∗/2,Λ∗/2]) respectively.

Proposition 4.2. The Fréchet derivative DΦF at Φ = 0 is given by

[DΦF1(0, μ)](Φ) = Φxx + Φzz + ω′(u)Φ (4.3)

[DΦF2(0, μ)](Φ) = Φz|z=d − κΦ|z=d, (4.4)
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where

κ =
1

[uz(d;μ)]2
− ω(1;μ)

uz(d, μ)
.

Proof. The statement follows from a direct calculation. �

4.2. Spectral Decomposition

According to our notations μ = (μ1, ..., μN ) stands for the first N eigenvalues of the Sturm–Liouville
problem (2.12) for the triple (ω(·, μ), d, u(·, μ)). Note that by construction these eigenvalues are negative,
while all others are positive. Let

φ1(z;μ), ..., φN (z;μ)

be the corresponding eigenfunctions. We define projectors

PΦ =
N∑

j=1

Φjφj , P̃ = id − P.

Here Φj = 〈Φ, φj〉 and 〈·, ·〉 stands for the standard scalar product in L2(0, d). The projectors P and P̃
are orthogonal projectors in L2(0, d) and are well defined operators on X. Note that the complete set of
eigenfunctions {φj}j∈N is a basis in the spaces

Hn
0 (0, d) = {φ ∈ Hn(0, d) : φ(0) = 0}

for n = 0 and n = 1. In general the eigenfunction are orthogonal with respect to the following bilinear
form

B(φ, ψ) =
∫ d

0

[φ′ψ′ − ω′(u)φψ]dz − κφ(d)ψ(d),

which is well defined on H1
0 (0, d) × H1

0 (0, d). Integrating by parts, we find that

B(φ, φj) = μj〈φ, φj〉, j ∈ N, φ ∈ C2,α
0 ([0, d]).

In what follows we will often use the following identity
∫ d

0

(−φzz − ω′(u(z)))φ)φjdz = −[φz(d) − κφ(d)]φj(d) + B(φ, φj)

= −[φz(d) − κφ(d)]φj(d) + μj〈φ, φj〉,
(4.5)

which is valid for any function φ ∈ C2,α
0 ([0, d]) and j ≥ 1.

Let us write Eq. (4.2) in the following form, where linear and nonlinear parts of the operator are
separated:

Φxx + Φzz + ω′(u)Φ = N1(Φ;μ) (4.6)

Φz|z=d − κΦ|z=d = N2(Φ;μ), (4.7)

where N1 and N2 are nonlinear parts of the operators F1 and F2 respectively. Thus, multiplying (4.6) by
φj , j = 1, ..., N and using (4.5), we obtain equations for projections:

Φ′′
j − μjΦj = 〈N1, φj〉 − N2φj(d), j = 1, ..., N ; (4.8)

and

Φ̃xx + Φ̃zz + ω′(u)Φ̃ = P̃ (N1) + N2

N∑
j=1

φj(d)φj(z) (4.9)

Φ̃z(x, d) − κΦ̃(x, d) = N2 (4.10)
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where Φj = 〈Φ, φj〉 and Φ̃ = P̃Φ. It is clear that if some functions Φj and Φ̃ ∈ ran(id − P ) solve Eqs.
(4.8)–(4.10), then the function

Φ(x, z) =
N∑

j=1

Φj(x)φj(z) + Φ̃(x, z)

solves (4.2).
We will show below that the function Φ̃ can be resolved from Eqs. (4.9)–(4.10) as an operator of

(Φ1, ...,ΦN ) and μ in a neighbourhood of the origin.
We note that an asymptotic analysis of solutions to ordinary differential equations with operator

coefficients based on spectral decomposition was developed by Kozlov and Maz’ya in [18] for linear
problems and in [19] for non-linear ones.

4.3. The Reduction to a Finite-Dimensional System

First, we consider the linear part of (4.9)–(4.10) which is given by

Φ̃xx + Φ̃zz + ω′(u)Φ̃ = f (4.11)

Φ̃z(x, d) − κΦ̃(x, d) = g (4.12)

Φ̃(x, 0) = 0. (4.13)

Let X̃ be the subspace of X which consists of functions Φ satisfying

P̃ [Φ(x, ·)] = Φ(x, ·) for all x ∈ IR

or equivalently
〈Φ(x, ·), φj(·)〉 = 0, j = 1, . . . , N. (4.14)

Furthermore, we define the range space Ỹ to be a subspace of Y which consists of all (f, g) ∈ Y satisfying

〈f(x, ·), φj(·)〉 = g(x)φj(d), j = 1, . . . , N, (4.15)

for all x ∈ IR. These compatibility conditions for the problem (4.11)–(4.13) are obtained by multiplication
of (4.11) by φj and application of (4.5) and (4.14). Let us define a linear operator L := (L1, L2) : X̃ → Ỹ
by

L1Φ̃ = Φ̃xx + Φ̃zz + ω′(u)Φ̃

L2Φ̃ = Φ̃z(x, d) − κΦ̃(x, d).

Now we are ready to prove

Lemma 4.3. The mapping L : X̃ → Ỹ is a linear isomorphism and the norm of it’s inverse is estimated
by a constant depending only on b, d, μN+1 and Λ∗.

Proof. First, we note that operator L is bounded and L(X̃) ⊂ Ỹ and its kernel is contained in the set of
linear combinations of the functions (2.13). To construct a solution we consider first the problem (4.11)–
(4.13) in the spaces X and Y . Since this problem is elliptic and its kernel belongs to the set spanned by
the functions (2.13) for every right-hand side (f, g) ∈ Ỹ subject the compatibility conditions (4.15) this
problem has a unique solution Φ ∈ X orthogonal to the kernel of the problem. Let us show that this
solution belongs to X̃. Indeed, multiplying (4.11) by φj , j = 1, . . . , N , and integrating over (0, d), we get

∫ d

0

(Φ
′′
(x, z)φj(z) − μjΦ(x, z)φj(z))dz = 0,
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where we have applied (4.5). Hence
∫ d

0

Φ(x, z)φj(z)dz =
N∑

j=1

cj cos(
√

|μj | x), j = 1, . . . , N.

Since the solution is periodic and is orthogonal to the kernel cj = 0, which implies Φ ∈ X̃. This prove
the existence and uniqueness.

It remains to estimate the norm of L−1. Applying the Schauder estimate (see Theorem 7.3 [3]) to the
system (4.11)–(4.13) we find

‖Φ̃‖C2,α(RΛ∗ ) ≤ C[‖f‖Y1 + ‖g‖Y2 + ‖Φ̃‖L2(RΛ∗ )], (4.16)

where RΛ∗ = [−Λ∗/2,Λ∗/2] × [0, d] and the constant C depends on b, d and Λ∗. Let us show that

‖Φ̃‖L2(RΛ∗ ) ≤ C∗[‖f‖Y1 + ‖g‖Y2 ] (4.17)

with C∗ depending on b, d, μN+1 and Λ∗. We multiply equation (4.11) by Φ̃ and integrate over z ∈ [0, d],
which gives ∫ d

0

Φ̃xxΦ̃dz +
∫ d

0

[Φ̃zz + ω′(u)Φ̃]Φ̃dz =
∫ d

0

fΦ̃dz. (4.18)

To calculate the second integral on the left-hand side, we use (4.5) to show that

−
∫ d

0

[Φ̃zz + ω′(u)Φ̃]φjdz = −φj(d)g(x) + μj

∫ d

0

Φ̃φjdz.

Because the series

Φ̃ =
+∞∑

j=N+1

〈Φ̃, φj〉φj

converges uniformly on [0, d] (see Theorem 2.27, [2]), we find

−
∫ d

0

[Φ̃zz + ω′(u)Φ̃]Φ̃dzs =
∞∑

j=N+1

μk[〈Φ̃, φj〉]2 − Φ̃(x, d)g

≥ μN+1

∫ d

0

Φ̃2dz − Φ̃(x, d)g.

(4.19)

Now we integrate (4.18) over RΛ∗ . After integration by parts, we get
∫∫

RΛ∗

Φ̃2
xdxdz +

[
−

∫∫

RΛ∗

[Φ̃zz + ω′(u)Φ̃]Φ̃dxdz

]
≤

∫∫

RΛ∗

|fΦ̃|dxdz.

Combining this inequality with (4.19), we arrive at
∫∫

RΛ∗

Φ̃2dxdz ≤ μ−1
N+1

[∫∫

RΛ∗

|fΦ̃|dxdz +
∫

[−Λ∗/2,Λ∗/2]

|Φ̃(x, d)g|dx

]
.

For an arbitrary β > 0, we write∫∫

RΛ∗

|fΦ̃|dxdz ≤ β

∫∫

RΛ∗

Φ̃2dxdz + β−1

∫∫

RΛ∗

f2dxdz

and, similarly, ∫

[−Λ∗/2,Λ∗/2]

|Φ̃(x, d)g|dx ≤
∫∫

RΛ∗

|Φ̃z(x, z)g|dxdz

≤ βΛ∗d‖Φ̃‖2
C2,α(RΛ∗ ) + β−1‖g‖2

L2([−Λ∗/2,Λ∗/2]).
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Composing the last three inequalities, we obtain

‖Φ̃‖2
L2(RΛ∗ ) ≤ 2βΛ∗d

μN+1
‖Φ̃‖2

X +
Λ∗d

βμN+1
‖f‖2

Y1
+

Λ∗d
βμN+1

‖g‖2
Y2

.

Now this inequality and (4.16) with

β =
μN+1

C4Λ∗d
,

where C is the constant from (4.16), leads to (4.17). This delivers the required estimate for the inverse. �

Before formulating the next theorem, let us define the space

Xred = [C2,α
per(IR)]N ,

where the space C2,α
per(IR) consists of all even and Λ∗-periodical functions from C2,α(IR).

Theorem 4.4. For any m ≥ 1 there exist open neighborhoods of the origin U ⊂ Xred, V ⊂ X̃ and a
smooth operator h ∈ Cm(U ;V ) such that the function Φ̃ := h(Φ1, ...,ΦN ) is the unique solution of the
boundary problem (4.9)–(4.10), provided (Φ1, ...,ΦN ) ∈ U .

Proof. The statement follows directly from Lemma 4.3 and the implicit function theorem applied to the
system (4.9)-(4.10). �

Theorem 4.4 allows to reduce the problem for small-amplitude waves to a finite dimensional system
of the form

Φ′′
j − μjΦj = Nj(Φ̄;μ), (4.20)

where Φ̄ = (Φ1, ...,ΦN ) and Φj ∈ C2,α
per(IR), j = 1, ..., N . The nonlinear operators Nj are smooth and

DΦ̄Nj(0;μ) = 0.

4.4. The Lyapunov–Schmidt Reduction and the Existence of N -Modal Waves

The kernel of the linear operator on the left-hand side in (4.20) for μ = μ∗ is spanned by

ξ1 =

⎛
⎜⎜⎜⎝

cos(
√|μ∗

1|x)
0
...
0

⎞
⎟⎟⎟⎠ , ξ2 =

⎛
⎜⎜⎜⎝

0
cos(

√|μ∗
2|x)

...
0

⎞
⎟⎟⎟⎠ , ..., ξN =

⎛
⎜⎜⎜⎝

0
...
0

cos(
√|μ∗

N |x)

⎞
⎟⎟⎟⎠ .

Let us write
Φj = tj cos(

√
|μ∗

j |x) + ζj , (4.21)

where ζj is orthogonal to cos(
√

|μ∗
j |x) in L2(−Λ∗/2,Λ∗/2). We note that the vector function (ζ1, ..., ζN )

is orthogonal to all ξj , j = 1, ..., N , and hence this splitting corresponds to the Lyapunov–Schmidt decom-
position under the action of the projection Φ̄ = (Φ1, ...,ΦN ) to the space XN spanned by ξ1, ..., ξN .

Thus, substituting (4.21) into (4.20) and taking the projection on XN and its compliment, we arrive
at the equations

ζ ′′
j − μ∗

jζj = ζj(μj − μ∗
j ) + N∗

j (t, ζ;μ) − Gj(t, ζ;μ) cos(
√

|μ∗
j |x), (4.22)

tj(μj − μ∗
j ) = Gj(t, ζ;μ). (4.23)

The nonlinear parts are defined by

N∗
j (t, ζ;μ) = Nj(Φ̄;μ), Gj(t, ζ;μ) =

2
Λ∗

∫ Λ∗/2

−Λ∗/2

Nj(Φ̄;μ) cos(
√

|μ∗
j |x)dx,
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where Φ̄ = (Φ1, ...,ΦN ) depends on t and ζ via (4.21). The linear operator on the left-hand side in (4.22)
defined on the space XN

∗ , where

X∗ = {g ∈ C2,α
per(IR) :

∫ Λ∗/2

−Λ∗/2

g(x) sin
√

|μ∗
j |xdx = 0, j = 1, ..., N}

with values in

{g ∈ Cα
per(IR) :

∫ Λ∗/2

−Λ∗/2

g(x) sin
√

|μ∗
j |xdx = 0, j = 1, ..., N}

is invertible, while the right hand side is presented by some terms of order |t|2 plus small perturbations
of ζ. Thus, using implicit function theorem, we can resolve ζ = (ζ1, ..., ζN ) from (4.22) as an operator
of t = (t1, ..., tN ) and μ = (μ1, ..., μN ), provided |t| and |μ − μ∗| are small enough. Furthermore, the
following estimate is valid:

‖ζj‖C2,α(−Λ∗/2,Λ∗/2) ≤ C|t|2.
Therefore, system (4.22)–(4.23) is reduced to a system of scalar equations:

tj(μj − μ∗
j ) = Gj(t, ζ(t, μ)μ), (4.24)

where the nonlinear term satisfies

|Gj(t, μ)| ≤ C|t|2,
∣∣∣∣
∂Gj

∂μ
(t, μ)

∣∣∣∣ ≤ C|t|2 (4.25)

for all sufficiently small |t| and |μ|, while the constant C is independent of μ. Let us rewrite (4.24) as

μj = μ∗
j + Gj(t, μ)/tj .

Thus, if |t|2/|tj | ≤ 1/(2C), where C is the constant from (4.25), we can apply fixed point theorem to
resolve μ as a function of t so that

μj = μ∗
j + O(|t|2/ε).

Thus, tracking back all changes of variables, we find a solution (Φ, μ) to (4.2) such that

Φ(x, z;μ) =
N∑

j=1

tj cos(
√

|μ∗
j |x)φj(z) + O(|t|2).

Now the formula (4.1) recovers the profile as

η(x) = d −
N∑

j=1

tj
u′(d)

cos(
√

|μ∗
j |x)φj(z) + O(|t|2).

Using these identities, we can express the stream function via
ψ(x, y) = u(yd/η(x))

+
N∑

j=1

tj cos(
√

|μ∗
j |x)

[
φj(yd/η(x)) − yduy(yd/η(x))

η(x)
uy(d))φj(d)

]

+ O(|t|2).
This completes the proof of the theorem.
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