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Abstract. A unital C∗-algebra is called N -subhomogeneous if its irre-
ducible representations are finite dimensional with dimension at most
N . We extend this notion to operator systems, replacing irreducible rep-
resentations by boundary representations. This is done by considering
UCP (S) which is the matrix state space associated with an operator
system S and identifying the boundary representations as absolute ma-
trix extreme points. We show that two N -subhomogeneous operator
systems are completely order equivalent if and only if they are N -order
equivalent. Moreover, we show that a unital N -positive map into a finite
dimensional N -subhomogeneous operator system is completely positive.
We apply these tools to classify pairs of q-commuting unitaries up to
∗-isomorphism. Similar results are obtained for operator systems related
to higher dimensional non-commutative tori.
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1. Introduction and Preliminaries

1.1. Introduction

Let q, q′ be two complex numbers of modulus 1, and let (u, v), (u′, v′) be two
pairs of q-commuting unitaries and q′-commuting unitaries, respectively. If φ :
C∗(u, v) → C∗(u′, v′) is a ∗-homomorphism such that φ(u) = u′, φ(v) = v′,
we get that q = q′. Therefore, no ∗-homomorphism can map a q-commuting
pair to a q′-commuting pair, unless of course q = q′.

Now, consider S(u, v) and S(u′, v′), the operator systems generated by
such unitaries. One can show (see Theorem 4.9 below) that a unital and com-
pletely positive map between S(u, v) to S(u′, v′) which also maps u �→ u′,v �→
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v′, extends to a ∗-homomorphism from C∗(u, v) to C∗(u′, v′). It follows that
q = q′ whenever such a map exists.

This leads to a natural question. Does the existence of a unital positive
map u �→ u′, v �→ v′ already implies that q = q′? Or maybe being merely
positive is not enough, but n-positive will do? More generally, we ask when
does the n-order structure encode all of the information about the complete
order structure of an operator system.

One particular case for which we know the answer is the case of op-
erator systems acting on finite dimensional spaces. When S is acting on an
NS -dimensional space, Choi proved (see Theorem 1.3) that any NS -positive
map into S is completely positive. In particular, if S,R both act on a fi-
nite dimensional spaces of dimensions NS and NR respectively, we get that
a max{NS , NR}-order isomorphism is a complete order isomorphism. There
are, however, operator systems which cannot be faithfully represented on a
finite dimensional space.

In this paper, we show that the answers to the above questions are
related to the notion of subhomogeneous C∗-Algebras, and to an extension
of this notion to operator systems. Recall that a unital C∗-algebra is called n-
subhomogeneous if its irreducible representations are finite dimensional with
dimension at most n, and subhomogeneous if it is n-subhomogeneous for some
n ∈ N. We shall show in Theorem 3.1, that a C∗-algebra A is subhomogeneous
if its associated matrix state space, UCP (A), has matrix extreme points
at level at most n. Inspired by this result we define an n-subhomogeneous
operator system, replacing irreducible representations by finite dimensional
boundary representations.

Using this framework, we show in Theorem4.2 that n-order isomor-
phisms between NS -subhomogeneous and NR-subhomogenous operator sys-
tems (with NS , NR ≤ n) is a complete order isomorphism, proving that for
N -subhomogeneous operator systems with N ≤ n, the n-order structure does
encode the complete order structure. Moreover, we prove that a unital and
n-positive map into a finite dimensional n-subhomogeneous operator system
is completely positive, giving an extension to Choi’s theorem.

We then consider finite dimensional operator systems generated by uni-
taries. We shall prove in Theorem4.11 that two d-tuples of unitaries, gener-
ating Ns-subhomogeneous and Nr-subhomogeneous operator systems (with
Ns, Nr ≤ n) are n-order equivalent if and only if they generate isomorphic
C∗-algebras.

In Sect. 5, we return to our motivating question regarding q-commuting
unitaries. For S = S(u, v), we provide a characterization of matrix extreme
points in UCP (S) in terms of boundary representations for S, proving that
when q is of the form e2πi k

n for (k, n) = 1, S is n-subhomogeneous and
when q = e2πiθ with θ ∈ [0, 1] /∈ Q, UCP (S) is not subhomogeneous (see
Theorems 5.3 and 5.5).

As a consequence, we get that if (u, v) is a pair of q-commuting unitaries
and (u′, v′) is a pair of q′ = e2πi k

n -commuting unitaries, then the existence
of a unital n-positive map taking (u, v) to (u′, v′), implies q = q′, and the
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map is in fact completely positive (this is Theorem 5.6). Similar results are
obtained for higher dimensional non-commutative tori in Theorems 5.9 and
5.10.

The results we obtain show that in certain cases, the exitence of an
n-order isomorphism implies the existence of a complete order isomorphism.
It is natural to ask: how low can one take n to be? In Sect. 6, we treat the
question of whether the existence of a unital isometry (which is in particular
an order isomorphism) implies a complete order equivalence. We provide a
family of examples of q = e2πi k

n -commuting unitaries which are isometrically
isomorphic to a pair of q = e2πi n−k

n -commuting unitaries (although they are
not n-order isomorphic).

1.2. Positive Maps and Order Isomorphisms

Given a unital C∗-algebra A, we say that a subspace S ⊂ A is an operator
system if it contains the unit and it is closed under the ∗-operation. Given
a tuple s = (s1, . . . , sd) of elements in A, we denote by S(s) the operator
system generated by s. There is a natural partial ordering endowed on S, in
which s ≥ s′ if s−s′ is positive in A, which we will call the order-structure or
1-order structure on S. Identifying A with some subalgebra of B(H) for some
H, we can endow Mn(A) with the order structure from Mn(B(H)) ∼= B(Hn),
where Hn is the n-fold direct sum of H with itself. This gives us a notion
of positivity for elements in Mn(A) and therefore for elements in Mn(S).
We will call the partial ordering endowed on Mn(S) the n-order structure
of S. We shall loosely refer to the totality of n-order structures on S as the
complete order structure.

For two operator systems S,R, and a linear map φ : S → R, we can
define φn : Mn(S) → Mn(R) for all n ∈ N by acting entry-wise, namely,
φn(sij) = (φ(sij)) for all (sij) ∈ Mn(S). We say that φ is positive if φ(s) is
positive in R whenever s is positive in S. We also say that φ is n-positive if φn

is a positive map, and we say that φ is completely positive if it is n-positive
for all n ∈ N. Note that n-positive maps are precisely the maps that preserve
that n-order structure of S.

Completely positive maps arise naturally in the study of operator sys-
tems through the C∗-algebras that they generate. For example, given an
operator system S contained in some C∗-algebra A, and a ∗-homomorphism
π : A → B for some C∗-algebra B, we know that the restriction π|S is a
completely positive map. If we assume that S ⊂ B(H),R ⊂ B(K) for some
Hilbert spaces H,K, any operator V : K → H induces a completely positive
map φV : S → B(K) given by φ(s) = V ∗sV . In fact, for an operator system
S, an application of [1, Theorem 1.2.3] and [20, Theorem 1] shows that any
completely positive map φ : S → B(H) is of the form φ = V ∗ π|S (·)V where
π : C∗(S) → B(H′) is a ∗-homomorphism for some Hilbert space H′ and
V : H → H′ is a bounded operator.

For n-positive maps which are not completely positive, we do not have
such a characterization, and it might seem that these maps “miss” some of
the C∗-algebraic structure encoded in S about C∗(S).
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Definition 1.1. Let S,R be two operator systems and let φ : S → R be a
unital linear map. We say that:

• φ is an order isomorphism if φ is a bijection and both φ, φ−1 are positive.
• φ is an n-order isomorphism if φ is a bijection and both φ, φ−1 are

n-positive.
• φ is a complete order isomorphism if φ is an n-order isomorphism for

all n.

We say that S,R are order/n-order/completely order isomorphic if there
exists an order/n-order/complete order isomorphism between them.

Definition 1.2. Let s, r be d-tuples generating operator systems S,R respec-
tively. We say that:

• s, r are order/n-order/completely order equivalent if there exists an
order/n-order/complete order isomorphism between S,R mapping si

to ri for all i.
• s, r are ∗-isomorphic if there exists a ∗-isomorphism of C∗(S), C∗(R)

mapping si to ri for all i.

It is well known that for all n ∈ N, there are n-positive maps which are
not completely positive. Indeed, if N > n, the map φ(n) : MN → MN given
by φ(n)(A) = ntr(A)IN −A is an n-positive map but not completely positive
(see [21] for proof).

Note that if π : C∗(S) → A is a ∗-homomorphism, then π|S is a com-
pletely positive map. This means that π|S can be extended to the generated
algebra, to a completely positive map which is also multiplicative. Although
any completely positive map into B(H) can be extended from an operator
system to the C∗-algebra that it generates, there might not be any extension
which is multiplicative.

In this work, we study to what extent does the n-order structure deter-
mine the complete order structure (and perhaps, the C∗-algebraic structure).
The following theorem shows a case in which the n-order structure does de-
termine the complete order structure.

Theorem 1.3. (Theorem 5, [4]) Let A be a unital C∗-algebra, and let φ : A →
Mn be n-positive. Then, φ is completely positive.

A closer look at the proof shows that this remains true if we replace A
by an operator system S. Therefore, if S ⊂ Mn and R ⊂ Mm are two opera-
tor systems acting on finite dimensional spaces, then being max{n,m}-order
isomorphic is equivalent to being completely order isomorphic. This is a case
where the N -order structure for some (maybe large) N encodes the complete
order structure. In Sect. 3 we find a generalization of this phenomenon.

1.3. Matrix Convex Sets and Matrix Extreme Points

Definition 1.4. Let V be a vector space. A matrix convex set over V is a
collection K = (Kn)n∈N of subsets Kn ⊂ Mn(V ) such that:

k∑

i=1

γ∗
i viγi ∈ Kn (1)
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for all vi ∈ Kni
and γi ∈ Mni

n for i = 1, . . . , k satisfying
∑k

i=1 γ∗
i γi = 1n.

The sum in (1) is called a matrix convex combination. When γi is surjec-
tive for all i (implying, in particular, ni ≤ n) we say that this matrix convex
combination is proper.

When V is a locally convex topological vector space, we can also say
that K = (Kn)n∈N is a compact matrix convex set if each Kn is compact in
Mn(V ) in the product topology.

The following are the two prime examples of compact matrix convex
sets, the first associated with an operator system and the second is associated
with a d-tuple of operators.

Definition 1.5. Let S be an operator system. The matrix state space of S is
the collection UCP (S) = (UCP(S,Mn))n∈N, where:

UCP(S,Mn) = {φ : S → Mn

∣∣φ is unital and completely positive}.

Note that UCP (S) is a matrix convex set over S∗, and it is compact
(see the proof of Lemma 1.2.4 in [1]).

Definition 1.6. Let A be a unital C∗-algebra, and let s = (s1, . . . , sd) ∈ Ad

be a d-tuple which generates an operator system S. The matrix range of s is
the collection W(s) = (Wn(s))n∈N, where:

Wn(s) = {(φ(s1), . . . , φ(sd))
∣∣φ ∈ UCP(S,Mn)}

This a matrix convex set over C
d. Matrix ranges are the typical form

of compact matrix convex sets over C (see [16, Proposition 31]). The follow-
ing theorem shows that matrix ranges are related to n-order and complete
order equivalence of d-tuples. Since this theorem will be used extensively
throughout this work, we present it here as well.

Theorem 1.7. (Theorem 5.1, [5]) Let s ∈ B(H)d, r ∈ B(H)d be d-tuples of
operators.

1. Given n ∈ N, if there exists a unital n-positive map φ : S(s) → S(r)
sending s to r, then Wn(r) ⊂ Wn(s).

2. There exists a UCP map φ : S(s) → S(r) sending s to r if and only
if W(r) ⊂ W(s). If s is a commuting tuples of normal operators, this
inclusion is equivalent to σ(r) ⊂ W1(s), which is also equivalent to
W1(r) ⊂ W1(s).

3. There exists a unital and completely isometric map φ : S(s) → S(r)
sending s to r if and only if W(s) = W(r).

Definition 1.8. Let K = (Kn)∞
n=1 and L = (Ln)∞

n=1 be two matrix convex
sets over vector spaces V and W , respectively. A matrix affine map from K
to L is a collection θ = (θn)∞

n=1 of mappings θn : Kn → Ln such that:

θn(
k∑

i=1

γ∗
i viγi) =

k∑

i=1

γ∗
i θni

(vi)γi
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for all vi ∈ Kni
and γi ∈ Mni,n for i = 1, . . . , k satisfying

∑k
i=1 γ∗

i γi = 1n.
When V,W are both topological vector spaces, we say that θ is continu-
ous if θn is continuous for all n ∈ N. Such a map is called a matrix affine
homeomorphism if each θn is a homeomorphism.

Example 1.9. Let s be a d-tuple and set S = S(s) to be the operator system
they generate. The collection θ = (θn)∞

n=1 of mappings θn : UCP(S,Mn) →
Wn(s) defined by θn(φ) = (φ(s1), . . . , φ(sd)) is a matrix affine homeomor-
phism. Indeed, it is surjective by the definition of W(s), and it is injective be-
cause positive maps are self-adjoint, which means that any φ ∈ UCP(S,Mn)
is uniquely defined by the values of φ(si) for all i. Finally, θn is continuous
because the topology induced on UCP(S,Mn) is the weak* topology, which
means that φm converges to φ if and only if φm(s) converges in Mn to φ(s)
for all s ∈ S, which in particular means that φm(si) converges to φ(si) for
all i (and therefore θn(φm) converges to θn(φ)). θn is a continuous bijection
from a compact space to a Hausdorff space, so θ−1

n is also continuous.
This shows that we can switch between the two perspectives when study-

ing operator systems generated by d-tuples of operators.

Given a compact matrix convex set K = (Kn)∞
n=1, A(K) denotes the

set of all functions F = (Fn)∞
n=1 with Fn : Mn(K) → Mn such that F1 is

continuous, and F is matrix affine, in the sense that:

Fn(
k∑

i=1

γ∗
i viγi) =

k∑

i=1

γ∗
i Fni

(vi)γi,

for every vi ∈ Kni
, γi ∈ Mni,n such that

∑k
i=1 γ∗

i γi = 1n. In the discussion
leading to [22, Proposition 3.5], it was shown that A(K) can be endowed with
a structure of an abstract operator system. The following proposition shows
us a deep connection between matrix state spaces of operator systems and
their complete order structure.

Proposition 1.10. (Proposition 3.5, [22])
1. If R is an operator system, then UCP (R) is a self-adjoint compact ma-

trix convex set in R∗, equipped with the weak* topology, and A(UCP (R))
and R are isomorphic as operator systems.

2. If K = (Kn)∞
n=1 is a compact matrix convex set in a locally convex

space V , then A(K) is an operator system, and K and UCP (A(K))
are matrix affinely homeomorphic as operator systems.

We will also make use of the particular isomorphism which appeared in
the proposition. The set A(K) has a positive cone in which F is positive if
Fn(v) is positive for all n ∈ N, v ∈ Kn. In the case of A(UCP (S)) and S,
The complete order isomorphism of S and A(UCP (S)), is implemented by
the mapping s �→ δS = ((δS)n)∞

n=1, where:

(δS)n(φ) = φ(s)

for all φ ∈ UCP(S,Mn). This gives us a concrete way of studying S through
its matrix state space.
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When we shift our perspective from an operator system to its matrix
state space, we can use the theory of matrix convex sets to study it. In
particular, in Sect. 2, we use special points in UCP (S) which are the matrix
extreme points to study the structure of UCP (S).

Definition 1.11. Let K = (Kn)∞
n=1 be a matrix convex set and let v ∈ Kn for

some n ∈ N. We say that v is a matrix extreme point in K, if whenever v is
a proper matrix convex combination:

v =
k∑

i=1

γ∗
i viγi

then for all i, ni = n and v = u∗
i viui for some unitary ui ∈ Mn.

We set ∂K = (∂Kn)∞
n=1 to denote the set of matrix extreme points in

Kn for all n ∈ N.
Webster and Winkler proved in [22, Theorem 4.3] an analogue of the

Krein-Milman theorem for matrix extreme points in a compact matrix convex
set, namely that any compact matrix convex set is the closed matrix convex
hull of its matrix extreme points. In that sense, matrix extreme points are
analogous to extreme points in locally convex vector spaces. There is another,
stronger notion of matrix extreme points introduced in [8], which are called
absolute matrix extreme points.

Definition 1.12. Let K = (Kn)∞
n=1 be matrix convex and let v ∈ Kn for some

n ∈ N. We say that v is an absolute matrix extreme point in K if whenever v
is a matrix convex combination (not necessarily proper):

v =
k∑

i=1

γ∗
i viγi

such that γi are all non-zero, then for all i:
• if ni ≤ n, then ni = n and v = u∗

i viui for some unitary ui ∈ Mn.
• if ni > n, then there exists some wi ∈ Kni−n such that vi = u∗

i (v⊕wi)ui

for some unitary ui ∈ Mni
.

The set of absolute matrix extreme points in K is denoted by Abex(K).

In other words, matrix extreme points are points which cannot be writ-
ten as matrix combinations from below, except in a trivial way, and absolute
matrix extreme points are points which cannot be written as matrix com-
bination from above or below, except in a trivial way. It is obvious that an
absolute matrix extreme point is in particular matrix extreme.

Unlike matrix extreme points, absolute matrix extreme points do not
give a nice generalization of the Krein-Milman theorem for any compact
matrix convex set. In fact, there are compact matrix convex sets which do
not have any absolute matrix extreme points (see [15, Example 6.30], and also
Theorem 5.5). But as we will see in Sect. 2, when considering UCP (S) for
some operator system S, the matrix extreme points are pure UCP maps, and
absolute matrix extreme points are restrictions of boundary representations
for S, which makes it easier to identify them.
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2. Matrix Extreme Points in Compact Matrix Convex Sets

In this section, we prove the following theorem:

Theorem 2.1. Let S be an operator system and let A = C∗(S). A point φ ∈
UCP(S,Mn) is an absolute matrix extreme points of UCP (S) if and only if
it extends to a boundary representation on A.

Several proofs for particular cases of this result appear in the literature.
In [15, Corollary 6.28], there is a proof of this theorem for operator systems
generated by self-adjoint matrices, and in [14, Theorem 4.2], there is a version
of this theorem for general compact matrix convex sets K such that A(K)
acts on a finite dimensional space. Another matricial version appears in [8,
Theorem 3.10].

Before getting to the proof we will need some terminology. Recall that a
UCP map φ : S → B(H) is called pure if whenever ψ is a CP map such that
φ − ψ is CP, then ψ = tφ for t ∈ [0, 1]. Given some s ∈ S, h ∈ H, we say that
a UCP map φ : S → B(H) is maximal at (s, h) if whenever φ(·) = V ∗ψ(·)V
for an isometry V : H → K and ψ ∈ UCP(S, B(K)), we get that ‖φ(s)h‖ =
‖ψ(s)V h‖. A UCP map which is maximal at every (s, h) ∈ S × H is called
maximal. Note that φ is maximal if and only if whenever φ(·) = V ∗ψ(·)V
for some isometry V : H → K, then ψ(·) = V φ(·)V ∗ ⊕ ρ(·) for some UCP
ρ : S → B((V H)⊥).

A UCP map φ : S → B(H) is said to have the unique extension property
if it has a unique UCP extension to some Φ : C∗(S) → B(H), and Φ is
multiplicative. Lastly, we say that a ∗-representation π : C∗(S) → B(H) is
a boundary representation for S if it is irreducible, and π|S has the unique
extension property.

We will now state some known results which will be needed for our
proof.

Theorem 2.2. ((Theorem B, [9])) Let S be an operator system in a unital
C∗-algebra A. Then:

1. A matrix state φ on S is a matrix extreme point of UCP (S) if and only
if φ is pure.

2. Every pure UCP map φ ∈ UCP (S) extends to a pure map Φ ∈ UCP (A).

The following proposition is due to Farenick and Tessier, showing that
restrictions of boundary representations are always pure and thus matrix
extreme:

Proposition 2.3. (Proposition 2.12, [10]) Let A be a unital C∗-algebra gener-
ated by an operator system S and let π : A → B(K) be a boundary represen-
tation for S. Then, π|S is pure.

The next step is to show that restrictions of boundary representations
are maximal. This observation was made in the context of operator algebras
by Dritschel and McCullough in [7, Theorem 1.1] (who followed Muhly and
Solel, see [17, Theorem 1.2]). The following reformulation in the context of
operator systems is due to Arveson.
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Proposition 2.4. (Proposition 2.4, [2]) Let S be an operator system and let
A = C∗(S). Then, a map φ : S → B(H) is maximal if and only if it has the
unique extension property.

We can now proceed to the proof of the main theorem of this section.

Proof. Assume that φ extends to a boundary representation of A, and assume
that

φ =
∑

i

γ∗
i φiγi

is a matrix convex combination with γi non-zero for all i. For each i, we get
that φ − γ∗

i φiγi is completely positive. By Proposition 2.3, φ is pure, which
means that there exists some t ∈ (0, 1] such that γ∗

i φiγi = tφ, from which it
holds that

(t−
1
2 γi)∗φi(t−

1
2 γi) = φ.

φ and φi both being UCP, we get that (t−
1
2 γi)∗(t−

1
2 γi) = 1n, so that when-

ever ni ≤ n, we get that ni = n and that this matrix is unitary. When ni > n,
we get that φi is a dilation of φ, and since φ has the UEP (being a bound-
ary representation), Proposition 2.4 implies that φi is unitarily equivalent to
φ ⊕ ρi for some ρi ∈ UCP(S,Mni−n). Therefore, φ is an absolute matrix
extreme point.

As for the converse, note that if φ is an absolute matrix extreme point, it
is pure by Theorem 2.2. By [6, Lemma 2.1], we can finish the proof by showing
that φ is maximal. Assuming it is not maximal, we apply [6, Lemma 2.3], and
find some pure UCP map ψ ∈ UCP(S,Mn+1) such that φ = V ∗ψV . Since
that is a matrix convex combination and φ is an absolute matrix extreme
point, we get that ψ = U∗(φ ⊕ ρ)U for some unitary U and a state ρ ∈
UCP(S,C). But now, defining:

γ1 =

⎛

⎜⎜⎜⎝

1 0 . . . 0 0
0 1 . . . 0 0
...

. . . . . .
...

...
0 . . . 0 1 0

⎞

⎟⎟⎟⎠ ∈ Mn,n+1, γ2 = (0, . . . , 0, 1) ∈ M1,n+1,

we get that:

ψ = U∗(γ∗
1φγ1 + γ∗

2ργ2)U = (γ1U)∗φ(γ1U) + (γ2U)∗ρ(γ2U)

is a non-trivial proper matrix convex combination, which shows ψ is not
matrix extreme (and thus not pure, by Theorem2.2). This proves that φ is
maximal. Finally, it follows that φ is pure and maximal and thus extends to
a boundary representation for S. �

It follows from Theorem 2.1 that the restrictions to S of finite dimen-
sional boundary representations are precisely the absolute matrix extreme
points of UCP (S). We would also like to find out whether UCP (S) con-
tains information about infinite dimensional boundary representations, and
to characterize matrix extreme points which are not absolute. The first part
was answered by Davidson and Kennedy:
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Theorem 2.5. (Theorem 2.4, [6]) Let S be an operator system and let φ : S →
B(H) be a pure UCP map. Then, φ dilates to a boundary representation for
S.

This means that any matrix extreme point which is not absolute (namely,
it is not already a restriction of a boundary representation) is of the form
V ∗ π|S V for some boundary representation π. In Sect. 5 we will see an ex-
ample of an operator system for which UCP (S) has a matrix extreme point
of this form, with π being infinite dimensional.

As for the second part, we saw that matrix extreme points that are
not absolute dilate to another matrix extreme point which lies in the next
level of UCP (S). This gives a dilation-theoretic characterization of these
points, namely, matrix extreme points are either restrictions of boundary
representations or they dilate non trivially to another matrix extreme point
at the next level. In the last case, they are also compressions of restrictions
of boundary representations.

The above were stated for matrix state spaces, but through Proposi-
tion 1.10, we have the following corollary for a general compact matrix convex
set:

Corollary 2.6. Let K = (Kn)∞
n=1 be a compact matrix convex set over a lo-

cally convex vector space V . Then v ∈ ∂Kn is a matrix extreme point which
is not absolute if and only if it is of the form γ∗ṽγ for some ṽ ∈ ∂Kn+1.

3. Subhomogeneous Matrix Convex Sets

In this section, we introduce the notion of Subhomogeneous matrix convex
sets. Recall that a unital C∗-algebra A is called Subhomogeneous, if there
exists some N ∈ N such that every irreducible representation of A is of
dimension less than or equal to N . We say that A is N -Subhomogeneous, if
N is the smallest integer satisfying this condition.

Proposition 3.1. Let A be a unital C∗-algebra. The following are equivalent:
• A is N -Subhomogeneous.
• ∂UCP (A) ⊂ ⋃N

n=1 UCP(A,Mn).

Proof. Assume that A is N -Subhomogeneous and let
ϕ ∈ ∂UCP(A,Mm) for some m. Our goal is to show that m ≤ N . Using

[1, Corollary 1.4.3], we know that ϕ(x) = V ∗π(x)V for some irreducible
representation π on some Hilbert space K, and V : H → K is an isometry.
Since π is an irreducible representation, it must be finite dimensional with
dimension less then or equal to N . But then, we have that ϕ is a compression
of π, which means that m ≤ N and we are done.

For the converse, assume that ∂UCP (A) ⊂ ⋃N
n=1 UCP(A,Mn), and

let π be an irreducible representation of A. If π is finite dimensional, it is
a matrix extreme point, which means it has to lie in some UCP(A,Mn) for
n ≤ N , and we are done. Otherwise, assume that π : A → B(H) with H being
infinite dimensional. Choose some N + 1 dimensional subspace M ⊂ H, and
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define V : M → H by V m = m. Then, we have that ϕ(x) = V ∗π(x)V is
a matrix extreme point by [1, Corollary 1.4.3] which lies in UCP(A,MN+1)
which is a contradiction. This shows that all irreducible representations are
finite dimensional and of dimension less then or equal to N , so A is N -
Subhomogeneous. �

Definition 3.2. Let K = (Kn)∞
n=1 be a compact matrix convex set over a

locally convex vector space V . We say that K is Subhomogeneous if there
exists some N ∈ N such that ∂Kn = ∅ for all n > N . If N is the smallest
integer satisfying these conditions, we say that K is N -Subhomogeneous.

Proposition 3.1 shows that if K = UCP (A) for some unital C∗-algebra
A, K is N -Subhomogeneous if and only if A is Subhomogeneous.

We use this relation in order to extend the notion of subhomogeneity to
operator systems.

Definition 3.3. Let S be an operator system. We say that S is Subhomoge-
neous if UCP (S) is Subhomogeneous, and that it is

N -Subhomogeneous if UCP (S) is N -Subhomogeneous.

By Theorem 2.1, we see that S is N -Subhomogeneous if and only if
the finite dimensional boundary representations for S are of dimension less
than or equal to N . We do not know whether a Subhomogeneous operator
system may admit an infinite dimensional boundary representation. Note,
however, that regardless of the answer to that question, subhomogeneous
operator systems are completely normed by their finite dimensional boundary
representations.

In the rest of the section we show that Subhomogeneous compact matrix
convex sets can be recovered from a finite number of levels.

Proposition 3.4. Let K = (Kn)∞
n=1 be an N -Subhomogeneous compact matrix

convex set over some locally convex vector space V . Then

K = co(KN ).

Proof. Let v be a matrix extreme point in ∂Kn for some n < N . Then for
any u ∈ KN−n we have that v ⊕ u ∈ KN by matrix convexity. Therefore,
any matrix convex combination of matrix extreme points, can be written as
a matrix convex combination of points which all lie in KN . Therefore, by
applying the Webster-Winkler Krein-Milman theorem ( [22, Theorem 4.3]):

K = co(∂K) = co(KN )

�

In particular, we get that if K = (Kn)∞
n=1 is the smallest compact

matrix convex set for which the N -th level is KN . For the special case of
matrix convex sets over C

d for some d ∈ N, we can improve this result. For
a compact matrix convex set K = (Kn)∞

n=1 in C
d and some N ∈ N, the set

WN-min(K) is defined as the smallest matrix convex set which has KN at
level N . We can also describe those sets in terms of their matrix extreme
points.
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Proposition 3.5. Let K = (Kn)∞
n=1 be a compact matrix convex set in C

d.
Then, K = WN-min(K) if and only if it is n-Subhomogeneous for some
n ≤ N .

Proof. Assume first that K = WN-min(K) = co(KN ). In that case, any
point v ∈ Km for m > N is a proper matrix convex combination of points
from level N , which means it is not matrix extreme. Therefore, the highest
level which contains a matrix extreme point is N or lower, which proves the
claim.

For the converse, note that by [13, Corollary 2.5] and Proposition 3.4:

K = co(Kn) = co(Kn) ⊂ co(KN ),

and by matrix convexity, we get equality. We finish the proof by noting that
co(KN ) is (by definition) the minimal matrix convex set which has KN at
level N . �

4. Subhomogeneous Operator Systems

According to Proposition 1.10, S is completely order isomorphic to A(UCP ()S),
via the map δS : S → A(UCP (S)) such that δS(s) = ((δS(s))n)n∈N is given
by:

(δS(s))n(φ) = φ(s)

for all n ∈ N and φ ∈ UCP(S,Mn). In this section, we show that this map
gives us a way to lift an equivalence of two matrix state spaces to an equiv-
alence of the associated operator systems.

Proposition 4.1. Let S and R be two operator systems, and assume that T =
(Tn)∞

n=1 is a matrix affine homeomorphism of UCP (S) and UCP (R). Then,
T induces a complete order isomorphism of S,R.

Proof. Define a mapping T∗ : A(UCP (R)) → A(UCP (S)) by T∗F = (Fn ◦
Tn)∞

n=1. We claim that this is a complete order isomorphism of the two oper-
ator systems. In order to do so, we use the identification Mn(A(UCP (R)))
with A(UCP (R),Mn) and similarly for S. In that case, one may write
(T∗)nF as the map (Fm ◦ Tm)∞

m=1 for all F ∈ A(UCP (R),Mn). By defi-
nition, (T∗)nF is positive if and only if Fm ◦ Tm(φ) is positive for all m ∈ N

and φ ∈ UCP(S,Mm). But because T is a bijection, we get this this is true if
and only if Fm(ψ) is positive for all m ∈ N and ψ ∈ UCP(R,Mm), which is
equivalent to F being positive. T∗ is obviously unital (the unit does not de-
pend on the argument), meaning the map is indeed UCP. Similar arguments
for T−1 shows that this map is a complete order isomorphism. Finally, the
map δ−1

S ◦ T∗ ◦ δR is a complete order isomorphism of S,R as a composition
of such. �

We are now ready to show that the N -order structure (for some large
enough N) encodes the complete order structure of the operator system.
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Theorem 4.2. Let S,R be NS-Subhomogeneous and NR-Subhomogeneous op-
erator systems, and set N = max{NS , NR}. Then, S and R are completely
order isomorphic if and only if they are N -order isomorphic.

Before proving this theorem, we need the next two propositions.

Proposition 4.3. Let φ : S → R be an N -order isomorphism and let k ≤ N .
Then, the collection φ∗ = (φ∗

n)n∈N of mappings φ∗
n : L(R,Mn) → L(S,Mn)

given by φ∗
n(ψ) := ψ◦φ restricts to a bijection of UCP(S,Mk) and UCP(R,Mk)

for all k ≤ N . In addition, the restriction is a bijection of ∂UCP(S,Mk) and
∂UCP(R,Mk) for k ≤ N .

Proof. First note that φ∗ is a matrix affine map. Indeed, by definition we get
that:

φ∗
n(

k∑

i=1

γ∗
i ψiγi) = (

k∑

i=1

γ∗
i ψiγi) ◦ φ =

k∑

i=1

γ∗
i ψi ◦ φγi

=
k∑

i=1

γ∗
i φ∗

ni
(ψi)γi

for every matrix convex combination of linear maps. Moreover, note that if
k ≤ N , then for every ψ ∈ UCP(R,Mk), the map φ∗

k(ψ) = ψ ◦ φ is a com-
position of k positive maps and thus makes a k-positive map into Mk, which
is completely positive (by Theorem 1.3). Assume that ψ ∈ UCP(R,Mk) is a
matrix extreme point of UCP (R), and assume that φ∗

kψ is a proper matrix
convex combination of the form:

φ∗
kψ =

�∑

i=1

γ∗
i ψiγi

for ψi ∈ UCP(S,Mki
), γi ∈ Mki

k for i = 1, . . . , � satisfying
∑�

i=1 γ∗
i γi = 1k,

and that ki ≤ k for all i. Because φ−1 is an N positive map satisfying:

(φ−1)∗
n[θ] = θ ◦ φ−1, ∀θ ∈ UCP(S,Mn).

we get that:

ψ = (φ−1)∗
kφ∗

kψ =
�∑

i=1

γi(φ−1)∗
ki

ψiγi

is a matrix convex combination in UCP (R) from levels below k. ψ is a matrix
extreme point, which means that ki = k and ψ = u∗

i (φ
−1)∗

ki
ψiui for some

unitary ui. But from this it follows that φ∗
kψ = u∗

i ψiui, which proves that
φ∗

kψ is matrix extreme. Similar arguments for φ−1∗ shows that the map is
indeed bijective. �

Proposition 4.4. Let φ : S → R be an N -order isomorphism. Then, φ∗

restricts to a matrix affine homeomorphism of co{∂UCP(R,Mk)}N
k=1 and

co{∂UCP(S,Mk)}N
k=1.
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Proof. We already showed that the restriction of φ∗ to the matrix extreme
points at levels below N is a bijection. But because φ is matrix affine with
φ−1∗ as an inverse, we get that it also restricts to a matrix affine invertible
map between co{∂UCP(R,Mk)}N

k=1 and co{UCP(S,Mk)}N
k=1. In order to

extend this map to the closure, it suffices to prove that φ∗
k : L(R,Mk) →

L(S,Mk) is continuous for all k ≤ N . Indeed, since the topology is the weak*
topology, we get that ψn converges to ψ in L(R,Mk) if and only if ψn(r)
converges to ψ(r) for all r ∈ R. But this means that for all s ∈ S, φ(s) ∈ R
and thus φ∗

k(ψn)(s) = ψn(φ(s)) converges to ψ(φ(s)) = φ∗
k(ψ)(s) and thus

φ∗
kψn converges to φ∗

kψ, which means that φ∗
k is continuous. Finally, we get

that a limit point of co{∂UCP(R,Mk)}N
k=1 is mapped to a limit point of

co{∂UCP(S,Mk)}N
k=1, which completes the proof. �

We are ready to provide a proof for Theorem 4.2.

Proof of Theorem 4.2. A complete order isomorphism is in particular an N -
order isomorphism, so we will only prove the converse. Assuming φ is an
N -order isomorphism, we use Proposition 4.4, to show that φ∗ : UCP (R) →
UCP (S) is a matrix affine homeomorphism (recall that both sets are n-
generated for n ≤ N). Therefore, we can now apply Proposition 4.1 to get
a complete order isomorphism of S and R given by δ−1

R ◦ (φ∗)∗ ◦ δS . This
completes the proof.

It is worth noting, that a direct calculation which follows the last part
of the proof, shows that:

((φ∗)∗ ◦ δS(s))k(ψ) = (δS(s))k ◦ φ∗
k(ψ) = (δS(s))k(ψ ◦ φ)

= ψ(φ(s)) = (δR(φ(s)))k(ψ),

from which it holds that δ−1
R ◦ (φ∗)∗ ◦ δS = φ. Therefore, the N -order iso-

morphism φ is the complete order isomorphism.

4.1. Subhomogeneous Matrix Ranges

Theorem 4.5. Let s, r be two d-tuples of operators such that S(s) is NS-
Subhomogeneous and S(r) is NR-Subhomogeneous, respectively. For N =
max{NS , NR}, the following are equivalent:

1. s and r are N -order equivalent.
2. s and r are completely order equivalent.
3. WN (s) = WN (r).
4. W(s) = W(r).

Proof. (1) ⇐⇒ (2) is a consequence of Theorem 4.2. (1) =⇒ (3) and (4) ⇐⇒
(2) follow from Theorem 1.7, which means we only need to prove (3) =⇒ (4).
But note that by Proposition 3.5, we have that:

W(s) = WN-min(W(s)) = co(WN (s)) = co(WN (r))

= WN-min(W(r)) = W(r)

which completes the proof. �



IEOT Subhomogeneous Operator Systems Page 15 of 27    15 

In general, choosing an N lower then max{NS , NR} might not be suffi-
cient. Before giving a concrete example, we will require the following lemma.

Lemma 4.6. Let s, r be any two d-tuples. Then, W1(s) = W1(r) if and only
if the tuples are 1-order equivalent.

Proof. By 1.7, the tuples being 1-order equivalent implies that
W1(s) = W1(r), which means we only have to prove the converse. We

assume that the equality holds and show that the mapping si �→ ri extends to
a well defined 1-order isomorphism of the generated operator systems. Define
φ : S(s) → S(r) by:

φ(a01s +
∑

i

aisi + bis
∗
i ) := a01r +

∑

i

airi + bir
∗
i .

We show that whenever the argument on the left hand side is positive, so
is the image on the right hand side. Positive maps are bounded, which will
also prove that this map is a well defined extension from span {si} to S(s).
Assuming positivity for the argument on the right hand side, we will prove
that for any state ψ : S(r) → C:

ψ(a01r +
∑

i

airi + bir
∗
i ) = a0 +

∑

i

aiψ(ri) + biψ(ri)∗ ≥ 0.

Indeed, because ψ : R → C = M1 is positive, it is completely positive, which
means:

(ψ(r1), . . . , ψ(rd)) ∈ W1(r) = W1(s),

and thus (ψ(r1), . . . , ψ(rd)) is of the form (ρ(s1), . . . , ρ(sd)) for some com-
pletely positive ρ : S → C. We can now conclude that:

a0 +
∑

i

aiψ(ri) + biψ(ri)∗ =a0 +
∑

i

aiρ(si) + biρ(si)∗

=ρ(a01s +
∑

i

aisi + bis
∗
i ) ≥ 0,

which is what we wanted to prove. This gives is positivity for φ and positiv-
ity of φ−1 follows the same argument as for φ, which means φ is a 1-order
isomorphism. �

The next is an example of 1-Subhomogeneous tuple and a 2-Subhomog-
eneous tuple, which are 1-order equivalent but not 2-order equivalent, thus
proving that in general, Theorem 4.5 cannot be improved by choosing N ≤
max{NS , NR}.

Example 4.7. Let H = L2(B̄2) such that B̄2 is the closed unit ball in R
2, and

let Mx1 ,Mx2 be the multiplication by coordinate functions Mxi
f(x1, x2) =

xif(x1, x2) for i = 1, 2. (Mx1 ,Mx2) is a pair of self-adjoint and commuting
operators, which means by [5, Corollary 4.4] (and also, the first paragraph of
Sect. 3) that the matrix range of this set is the minimal matrix convex set
which has σ(Mx1 ,Mx2) at its first level:

W(Mx1 ,Mx2) = Wmin(σ(Mx1 ,Mx2)).
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Moreover, [5, Theorem 2.7] tells us that:

W1(Mx1 ,Mx2) = conv (σ(Mx1 ,Mx2)) = B̄2.

We then consider another pair (F1, F2) ∈ B(C2)2 of matrices given by:

F1 =
(

1 0
0 −1

)
, F2 =

(
0 1
1 0

)
.

It is easily verified that this is a pair of anti-commuting unitaries. Applying
[18, Corollary 5.9], we get that the mapping Mxi

�→ Fi for i = 1, 2, extends
to a unital and positive map from S(Mx1 ,Mx2) to S(F1, F2), and then, by
Theorem 1.7:

W1(F1, F2) ⊂ W1(Mx1 ,Mx2).

We can prove that the converse inclusion also holds. Note that for every
ξ = (ξ1, ξ2) ∈ C

2 with |ξ1|2 + |ξ2|2 = 1, we get that:

(ξ∗F1ξ, ξ
∗F2ξ) ∈ W1(F1, F2).

Therefore, we have that for all θ ∈ [0, 2π], we can choose ξ = (r1e
iθ1 , r2e

iθ2)
with:

r1 =

√
1 + cos (θ)

2
, r2 =

√
1 − cos (θ)

2
, cos (θ1 − θ2) = sgn(sin (θ)),

and get that:

‖ξ‖ = 1, (ξ∗F1ξ, ξ
∗F2ξ) = (cos (θ), sin (θ)).

This proves that W1(F1, F2) contains the unit circle in R
2, and by convexity:

W1(Mx1 ,Mx2) = B̄2 ⊂ W1(F1, F2)

which gives the equality. By Lemma 4.6, we have that the pairs are 1-order
equivalent.

We now show that they cannot be 2-order equivalent. Indeed, by Theo-
rem 5.3 we have that W(F1, F2) is 2-Subhomogeneous, while W(Mx1 ,Mx2) is
1-Subhomogeneous (by minimality). Therefore, a 2-order isomorphism would
imply an existence of a matrix extreme point in W2(Mx1 ,Mx2) by Proposi-
tion 4.3 which is impossible.

Another consequence of the fact that N -Subhomogeneous operator sys-
tems correspond to N -Subhomogeneous matrix range, is the following gener-
alization of Theorem 1.3 for Subhomogeneous operator systems.

Theorem 4.8. Let s, r be two d-tuples such that S(s) is N -Subhomogeneous.
If the mapping ri �→ si defines a unital N -positive map φ : S(r) → S(s), it
is completely positive.

Proof. By Proposition 3.5, W(s) = WN-min(s). For any UCP map ψ : S(s) →
Mn (with n ≤ N), we have that ψ ◦ φ : S(r) → Mn is completely positive,
which means that:

Wn(s) ⊂ Wn(r).
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From this inclusion, and the minimality of W(s):

W(s) = co(WN (s)) ⊂ W(r).

We can now use Theorem 1.7 again to conclude that the mapping ri �→ si

extends to a UCP map, which is precisely what we wanted to prove. �

4.2. Matrix Ranges Generated by Unitaries

The case where S,R are both generated by d-tuples s, r of unitaries is of par-
ticular interest. This is because unitaries are known to have some “rigidity”
properties with respect to the algebraic structure of the algebras that they
generate.

Recall that for an operator system S and the C∗-algebra B = B(H),
we say that the map φ ∈ UCP(S,B) has the unique extension property if φ
has a unique UCP extension to some Φ ∈ UCP(C∗(S),B), and this map is a
∗-homomorphism. UCP maps which map unitary d-tuples to unitary d-tuples
always have this property.

Theorem 4.9. Let s, r be d-tuples of unitaries and assume that si �→ ri defines
a UCP φ : S(s) → S(r). Then, this map has the unique extension property.

Proof. We may assume without loss of generality that C∗(s) and C∗(r) are
concrete subalgebras of operators on Hilbert spaces H,K respectively. In that
case, we may apply Arveson’s extension theorem (see [1, Corollary 1.2.3])
and find a UCP Φ : C∗(s) → B(K) which extends φ. Then, we may apply
Stinespring’s dilation theorem (see [20, Theorem 1]) to find a Hilbert space
K′, a ∗-homomorphism π : C∗(s) → B(K′) and an isometry V : K → K′ such
that for all s ∈ C∗(s):

Φ(s) = V ∗π(s)V.

Since V is an isometry, we may also identify K with the closed subspace
V K ⊂ K′. This way, we can decompose K′ = K ⊕ K⊥ and write for all
a ∈ C∗(s):

π(a) =
(

Φ(a) βa

γa δa

)
.

In particular, for all i, we have that si and φ(si) = Φ(si) are unitaries, which
means that:

π(si)∗π(si) =
(

φ(si)∗φ(si) + γ∗
i γi φ(si)∗βi + γ∗

i δi

β∗
i φ(si) + δ∗

i γi β∗
i βi + δ∗

i δi

)

=
(

IdK + γ∗
i γi φ(si)∗βi + γ∗

i δi

β∗
i φ(si) + δ∗

i γi β∗
i βi + δ∗

i δi

)
=

(
IdK 0
0 IdK⊥

)
,

so we can conclude that γ∗
i γi = 0 (and similarly, β∗

i βi = 0), which implies
that γi = βi = 0. Therefore:

π(si) =
(

ri 0
0 δi

)

for all i = 1, . . . , d, and since si generates C∗(s), we get that Φ is multiplica-
tive, which makes it a ∗-homomorphism. �
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Corollary 4.10. For a d-tuples s, r of unitaries, the mapping si �→ ri defines
a complete order isomorphism of S(s) and S(r) if and only if it extends to a
∗-isomorphism of C∗(s) and C∗(r). In particular, that ∗-isomorphism is the
unique UCP extension of that map.

For a tuple s, we say that s dilates to r if there are faithful ∗-represen-
tations π : C∗(s) → B(H), ρ : C∗(r) → B(K) and an isometry V : H → K
such that:

π(si) = V ∗ρ(ri)V

for all i = 1, . . . , d. Note that identifying V H with H as closed subspaces of
K, we can also write the dilation as:

π(si) = PH ρ(ri)|H ,

Note that the dilation gives rise to a UCP map of S(r) to S(s) which maps ri

to si. The converse is also true, meaning that the existence of such a UCP map
implies a dilation by using Arveson’s extension theorem and Stinespring’s
dilation theorem. We can now give significant improvement of Theorem4.5
for tuples of unitaries.

Theorem 4.11. Let s, r be two d-tuples of unitaries such that W(s) and W(r)
are Ns-Subhomogeneous and Nr-Subhomogeneous, respectively. Setting N =
max{Ns, Nr}, the following are equivalent.

1. s and r are N -order equivalent.
2. s and r are completely order equivalent.
3. s dilates to r and r dilates to s.
4. WN (s) = WN (r).
5. W(s) = W(r).
6. s and r are ∗-isomorphic.

Proof. We already have (1) ⇐⇒ (2) ⇐⇒ (4) ⇐⇒ (5). Note that (2) =⇒ (6)
follows Corollary 4.10, and the preceeding remarks are essentially the proof
of (3) ⇐⇒ (6). �

5. Operator Systems Related to the Noncommutative Tori

In this section, we apply the tools developed so far to the theory of q-
commuting unitaries and, more generally, Λ-commuting unitaries. Given a
self-adjoint matrix Λ = (λij)d

i,j=1 with |λij | = 1, we say that a d-tuple
u1, . . . , ud of unitaries are Λ-commuting if uiuj = λijujui. When d = 2,
Λ is uniquely determined by a single complex number q of modulus 1, and in
this case, we say that u, v are q-commuting if uv = qvu.

5.1. q-Commuting Unitaries

When q is of the form q = e2πi k
n for co-prime k, n ∈ N, we will use the

notation qn,k for convenience. The following proposition is folklore, and we
provide a proof for completeness.



IEOT Subhomogeneous Operator Systems Page 19 of 27    15 

Proposition 5.1. Let u, v be a pair of qk,n-commuting unitaries, and let π :
C∗(u, v) → B(H) be an irreducible representation. Then dim H = n and there
exists an orthonormal basis for H, such that π(u), π(v) can be written in the
form:

π(u) = λU, π(v) = ηV,

where U, V are given by:

U = diag(1, qn,k, . . . , qn−1
n,k ), V =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

. . . . . . . . .
...

0 0
. . . 1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (2)

The pair U, V will be referred as the standard representation of qn,k-commu-
ting unitaries.

Proof. Assume that π : C∗(u, v) → B(H) is an irreducible representation
and define ũ = π(u), ṽ = π(v). For all k,m ∈ N, we have that:

ũnπ(ukvm) = π(un+kvm) = qnm
k,n(ukvmun) = π(ukvm)ũn,

because qn
k,n = 1. The same calculation works for ṽn which shows that

ũn, ṽn ∈ π(C∗(u, v))′. Therefore, there exists some ξ, ζ of modulus 1 (be-
cause ũ, ṽ are unitaries), such that ũn = ξIdH and ṽn = ζIdH. Given some
non-zero vector h ∈ H, we have

K = span{ũ�ṽmh
∣∣�,m ∈ {−n + 1, . . . , n − 1}} ⊂ H

is invariant of π(C∗(u, v)), and by irreducibility, K = H, from which it holds
that H is finite dimensional. Now, we can use the fact that ũ is unitary, to find
an eigenvector h̃ for u for some eigenvalue λ of modulus 1, so that ũh̃ = λh̃.
But then, for all � ∈ N:

ũṽ�h̃ = q�
k,nṽ�ũh̃ = λq�

k,nṽ�h̃,

so that {h̃, ṽh̃, . . . , ṽn−1h̃} is a basis consisting of eigenvectors of ũ for n dis-
tinct eigenvalues. But again, we have that their span is an invariant subspace
for π(C∗(u, v)), which means that H = span{h̃, . . . , ṽn−1h̃}. Finally, choose
some η such that ηn = ζ−1. A direct calculation shows that with respect to
the basis {ηi−1ṽi−1h̃}n

i=1, ũ and ṽ take the desired form. �

Since any boundary representation is irreducible by definition, we now
have the following corollary.

Corollary 5.2. Let S = S(u, v) be an operator system generated by qk,n-
commuting unitaries. Then, Abex(UCP (S)) is not empty, and is contained
in ∂UCP(S,Mn).

Proof. First, we know by Theorem 2.1 that Abex(UCP (S)) are precisely
the restrictions of boundary representations for C∗(u, v) with respect to
S(u, v). Boundary representations are irreducible so in our case, Proposi-
tion 5.1 shows that the boundary representation are mappings into Mn so
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that Abex(UCP (S)) ⊂ UCP(S,Mn). By [6, Theorem 3.4], we know that
any operator system admits a boundary representation, which also shows
that Abex(UCP (S)) is non-empty. �

Using this corollary and our knowledge of matrix extreme points, we
can give a characterization of UCP (S) of an operator system generated by
qk,n-commuting unitaries.

Theorem 5.3. Let S = S(u, v) be an operator system such that u, v are qk,n-
commuting unitaries. Then:

1. UCP (S) is n-Subhomogeneous.
2. ∂UCP(S,Mn) = Abex(UCP (S)), and this is the set of all restrictions

of boundary representations for S.
3. For all 1 ≤ k < n, ∂UCP(S,Mk) is non-empty, and any

ϕ ∈ ∂UCP(S,Mk) can be written in one of two forms:
• ϕ = γ∗ψγ for ψ ∈ ∂UCP(S,Mk+1).
• ϕ = γ∗ψγ for ψ ∈ Abex(UCP (S)).

Proof. Let ϕ be a matrix extreme point in UCP (S). By Theorem 2.2, we
know that ϕ ∈ UCP(S,Mk) is a pure UCP map, so by Theorem 2.5, it is of
the form ϕ = γ∗ψγ for an isometry γ and a restriction of a boundary repre-
sentation ψ = π|S . Since π is a boundary representation, it is of dimension n
by Proposition 5.1, which means that ψ ∈ UCP(S,Mn). From this it follows
that k ≤ n. Proposition 5.1 also shows that Abex(UCP (S)) ⊂ ∂UCP(S,Mn)
is non-empty, which proves that UCP (S) is n-Subhomogeneous. Lastly, if
ϕ ∈ ∂UCP(S,Mn), it is either in abex(UCP (S)) or it dilates to some matrix
extreme point ψ ∈ ∂UCP(S,Mn+1) by [6, Lemma 2.3]. Since ∂UCP(S,Mn+1)
is empty, ϕ has to be in abex(UCP (S)), and this completes the proof of the
first and second parts of the theorem. Lastly, note that UCP(S,C) is a com-
pact and convex set, so by the Krein-Milman theorem, it has a classical
extreme point, which has to be matrix extreme point in a trivial sense. By
[6, Lemma 2.3], it dilates to a matrix extreme point in ∂UCP(S,M2), which
is not an absolute matrix extreme point unless n = 2 (in which case we are
done). When n > 2, we can use the same lemma to dilate this point to other
matrix extreme points in ∂UCP(S,Mk) for all 2 ≤ k ≤ n, and then at level
n, the point will be an absolute matrix extreme point and will not dilate
to another point at a higher level. This proves that all levels up to level n
are non-empty in ∂UCP (S), and that all points below level n are compres-
sions of matrix extreme points from one level higher, which completes the
proof. �

We now move to consider the case where the angle is an irrational
multiple of π, that is, q = e2πiθ with θ ∈ [0, 1] \ Q.

Proposition 5.4. Let u, v be a pair of q-commuting unitaries where q is irra-
tional, and let π : C∗(u, v) → B(H) be an irreducible representation. Then
H is infinite dimensional.

Proof. Assume by contradiction that H is finite dimensional. In that case,
π(u) is a unitary acting on a finite dimensional vector space, which means
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that it has a non-zero eigenvector h ∈ H for some non-zero eigenvalue λ ∈ T.
In that case, π(v)kh is a non-zero vector satisfying:

π(u)π(v)kh = qkπ(v)kπ(u)h = λqkπ(v)kh

which means that {π(v)kh}∞
k=0 is an infinite set of eigenvectors of distinct

eigenvalues, and therefore, they are linearly independent which contradicts
the fact that H is finite dimensional. �

This provides us with enough information to describe the matrix state
space of UCP (S) in the irrational case.

Theorem 5.5. Let S = S(u, v) be an operator system such that u, v are q-
commuting unitaries for irrational q. Then:

1. UCP (S) is not finitely generated.
2. abex(UCP (S)) = ∅.
3. ∂UCP(S,Mk) is non-empty for all k ∈ N, and any

ϕ ∈ ∂UCP(S,Mk) can be written in the two forms:
• ϕ = γ∗ψγ for an isometry γ and ψ ∈ ∂UCP(S,Mk+1).
• ϕ = V ∗ π|S V for an isometry V and π a boundary representation

for S.

Proof. UCP(S,C) is a compact convex set in a locally convex topological
vector space. By the Krein-Milman theorem, there is a classical extreme point
in this set, which has to be a matrix extreme point, so ∂UCP(S,C) is non-
empty. For such a matrix extreme point ϕ, we know that it is a pure point by
Theorem 2.2, but it is not maximal, because then it would be a restriction of a
boundary representation by [6, Lemma 2.1] which contradicts Proposition 5.4.
We may now use [6, Lemma 2.3], and dilate ϕ to a matrix extreme point at
level 2, so that ∂UCP(S,M2) �= ∅. But we can now continue by repeating
this process and dilate a matrix extreme point in ∂UCP(S,Mn) to a matrix
extreme point in ∂UCP(S,Mn+1), because this process will reach a boundary
representation in a finite amount of steps of this form. This shows that there
are matrix extreme points at every level of the set, which proves (1) and proves
the first part of (3). (2) is an immediate consequence of Proposition 5.4, and
Theorem 2.1. Finally, the second part of (3) is the work of Davidson and
Kennedy (see [6, Theorem 2.4]). �

By using this characterization, we show that rational
qk,n-commuting unitaries can be detected through their n-order struc-

ture.

Theorem 5.6. Let u, v be a pair of qk,n-commuting unitaries, and let ũ, ṽ be a
pair of q-commuting unitaries (q might be irrational). Assume that the map-
ping ũ �→ u, ṽ �→ v defines a unital and n-positive map. Then, q = qk,n, and
this map is completely positive. If this mapping is an n-order isomorphism,
it extends to a ∗-isomorphism of C∗(u, v) and C∗(ũ, ṽ).

Proof. First note that by Theorem 5.3, UCP (S(u, v)) is n-generated. By
Theorem 4.8, the unital and n-positive map of S(ũ, ṽ) to S(u, v) which is
defined by φ(ũ) = u, φ(ṽ) = v is completely positive. Therefore, we invoke
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Theorem 4.9 and get that φ has the unique extension property, and thus ex-
tends to a ∗-homomorphism of C∗(ũ, ṽ) to C∗(u, v), which we denote as π.
We now have that uv = qk,nvu, but also:

uv = π(ũṽ) = qπ(ṽũ) = qvu,

from which it follows that q = qk,n. In the case where φ defines an n-order iso-
morphism of the corresponding operator systems, we also have an extension
of φ to a ∗-isomorphism of the generated C∗-algebras. �
5.2. Λ-Commuting d-tuples

Theorem 5.3 gives us a complete description of the boundary representations
of q-commuting unitaries. But the proof relies, in part, on the fact we are
working with pairs of q-commuting unitaries. Characterizing the boundary
representations for more general Λ-commuting unitaries is harder. Even the
dimensions of those representations are unknown in general (although there
are some results, such as [12, Proposition B.1]). But when Λ = (λij)d

i,j=1 is a

self-adjoint complex matrix with |λij | = 1 and λij = e
2πi

kij
nij are rational, we

can still give some bound on the dimension of the irreducible representations.

Proposition 5.7. Let s be a d-tuple of Λ-commuting unitaries for some ratio-
nal Λ. Let N = lcm{nij}. If π : C∗(s) → B(H) is irreducible, then H is finite
dimensional, and dim H ≤ Nd.

Proof. Similar to the q-commuting case, we set Ui = π(si), and note that for
all r1, . . . , rd ∈ Z:

UN
i

d∏

j=1

U
rj

j = (
d∏

j=1
j �=i

λ
Nrj

ij )(
d∏

j=1

U
rj

j )UN
i = (

d∏

j=1

U
rj

j )UN
i

which means that UN
i ∈ π(C∗(s))′ for i = 1, . . . , d. By irreducibility, there

exists some scalars η1, . . . , ηd of modulus 1, such that UN
i = ηiIdH for i =

1, . . . , d. Picking some non-zero vector ξ ∈ H, we have that:

K = span

⎧
⎨

⎩

d∏

j=1

U
rj

j ξ
∣∣∣rj ∈ {0, . . . , N − 1}, j = 1, . . . , d

⎫
⎬

⎭ ,

from which irreducibility implies K = H, and H is finite dimensional. Since
the space is spanned by at most Nd vectors, we also have the bound on the
dimension. �

Note that the example in [12, Proposition B.1] shows a 3-tuple of uni-
taries which are Λ-commuting for λi,i+1 = e2πim

n , but are irreducibly rep-
resented on an n-dimensional Hilbert space, a dimension smaller than the
estimate, n3. Although we do not have an exact knowledge of the dimensions
of irreducible representations of such tuples, we still have a bound. We can
thus show that they are all Subhomogeneous.

A d-tuple sΛ is said to be a universal d-tuple of Λ-commuting unitaries
is for every Λ-commuting d-tuple of unitaries s, there exists a surjective ∗-
homomorphism π : C∗(sΛ) → C∗(s) such that π(sΛ

i ) = si for all i.
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Proposition 5.8. Let Λ = (λij)d
i,j=1 be rational and set sΛ to be the universal

d-tuple of Λ-commuting unitaries. Then, UCP (S(sΛ)) is N(Λ)-Subhomog-
eneous for some N(Λ) ≤ Nd, and whenever r is a d-tuple of Λ-commuting
unitaries, then UCP (S(r)) is

n-Subhomogeneous for some n ≤ N(Λ).

Proof. First, note that by Proposition 5.7, all boundary representations of
S(sΛ) are of dimension lower or equal to Nd. Let N(Λ) be the largest integer
for which there exits a boundary representation on an N(Λ) dimensional
Hilbert space. By combining Theorems 2.1, 2.2 and [6, Theorem 2.4], we get
that all absolute matrix extreme points are in UCP(S(sΛ), k) with k ≤ N(Λ),
and that any other matrix extreme points are compressions of such points,
which means that all extreme points lie in UCP(S(sΛ),Mk) for k ≤ N(Λ).
Because there is an absolute matrix extreme point in UCP(S(sΛ),MN(Λ)),
we have that UCP (S(sΛ)) is N(Λ)-generated. Next, let r be a d-tuple of
Λ-commuting unitaries. By the universal property of S(sΛ), there exists a
∗-homomorphism ρ : C∗(sΛ) → C∗(r) such that ρ(sΛ

i ) = ri. Therefore, if
ϕ ∈ abex(UCP (S(r))), it is a restriction of a boundary representation π :
C∗(r) → B(H), which means that π ◦ ρ : C∗(sΛ) → B(H) is a boundary
representation, and thus an absolute matrix extreme point in UCP (S(sΛ)).
Therefore, dim H ≤ N(Λ). This means that the largest integer n for which a
boundary representation for S(r) exists, must satisfy n ≤ N(Λ), we get that
UCP (S(r)) is n-generated for some n ≤ N(Λ). �

We finish this part by extending Theorems 5.6 and 4.5 for the case of
Λ-commuting unitaries.

Theorem 5.9. Let Λ be rational and let s be a d-tuple of Λ-commuting uni-
taries. If r is a d-tuple of Λ̃-commuting unitaries. If the mapping ri �→ si

extends to a unital N(Λ)-positive map φ : S(r) → S(s), then Λ = Λ̃. In par-
ticular, if the mapping is an N(Λ)-order isomorphism, the tuples are com-
pletely order equivalent and generate isomorphic C∗-algebras.

Proof. Under the assumptions, we have that UCP (S(s)) is n-generated for
some n ≤ N(Λ). By Theorem 4.8, we have that the unital N(Λ)-positive
map which maps ri to si for i = 1, . . . , d, is completely positive. Therefore,
we use Theorem 4.9 to conclude that this mapping has the UEP, and thus
extends to a ∗-homomorphism of the generated C∗-algebras. Since this map
is multiplicative, we use similar calculations as the d = 2 case, to get that
Λ = Λ̃. If the mapping defines an N(Λ)-order isomorphism, we now have
an inverse which is N(Λ)-positive, and get that this map extends to a ∗-
isomorphism of the C∗-algebras. �

And finally:

Theorem 5.10. Let Λ be rational and s be a d-tuple of Λ-commuting unitaries.
For a d-tuple r of Λ̃-commuting unitaries, the following are equivalent:

1. s and r are N(Λ)-order equivalent.
2. s and r are completely order equivalent.
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3. s dilates to r and r dilates to s.
4. WN(Λ)(s) = WN(Λ)(r).
5. W(s) = W(r).
6. s and r are ∗-isomorphic.

Proof. (1) ⇐⇒ (2) follows Theorem 5.9. (2) ⇐⇒ (3) follows the discussion
following Corollary 4.10. (2) ⇐⇒ (5). For (5) =⇒ (4), note that we only
have to prove (4) =⇒ (5). Because W(s) is n-generated for some n ≤ N(Λ),
by Proposition 5.8. Therefore, we invoke Proposition 3.5 and conclude that
W(s) is N(Λ)-minimal, which means that W(s) ⊂ W(r) and by Theorem 1.7,
there exists a UCP map of the corresponding operator systems, mapping
ri to si. By Theorem 5.9, this map extends to a ∗-homomorphism of the
generated C∗-algebras, from which it follows that Λ = Λ̃. Now, we can repeat
those arguments for W(r), and get (5). Finally, (2) ⇐⇒ (6) also follows
Theorem 5.9. �

6. Classification Up to Unital Isometries

In this section, we try to investigate whether the conditions of Theorem5.6
are strict. Namely, does there exist a pair of qk,n commuting unitaries which
is m-order equivalent (for m < n) to some q-commuting pair, but the two
pairs are not completely order equivalent?

More specifically, we move to consider unital isometries. Because unital
isometries are positive, they are an example of 1-order isomorphism (see [19,
Proposition 2.11]). The following theorem provides a relation between the
existence of unital isometries to certain dilation properties of q-commuting
unitaries.

Theorem 6.1. [11, Theorem 6.4] Let θ, θ′ ∈ [0, 1], q = e2πiθ, q′ = e2πiθ′
and

γ = θ − θ′. The smallest constant cθ,θ′ such that every pair of q-commuting
unitaries can be dilated to cθ,θ′ times a pair of q′-commuting unitaries is given
by:

cθ,θ′ = cγ =
4

‖uγ + u∗
γ + vγ + v∗

γ‖ ,

where uγ , vγ are the universal pair of eiγ-commuting unitaries.

Setting cθ := cθ,0, we get from the theorem that the existence of a unital
isometry between (uθ, vθ) and (uθ′ , vθ′) (where the two pairs are universal),
implies that cθ = cθ′ . We do not know if the converse is true in general, but we
can deduce that whenever such an isometry cannot exist, the corresponding
dilation constants must be different. The following corollary now follows easily
from our now set of tools.

Corollary 6.2. For θ ∈ [0, 1], cθ = 1 if and only if θ = 0 or θ = 1.

Proof. If θ = 0 or θ = 1, there is nothing to prove, because every pair of
commuting unitaries is a dilation of itself. On the other hand, if a pair of q-
commuting unitaries dilate to a pair of commuting unitaries (with q′ = 1), we
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can invoke Theorem 5.6 (because a the dilation implies a completely positive
map which maps the commuting unitaries to the q-commuting unitaries) and
get that q′ = q so that θ = 0 or θ = 1. �

When θ �= 0, 1, there are still some cases of two different angles which
correspond to the same dilation constant. For example, for all θ ∈ [0, 1], it
is known that cθ = c1−θ. In the following proposition we provide another
proof for this fact, and we also give an example of a large family of 1-order
isomorphic but not completely order isomorphic q-commuting pairs.

Proposition 6.3. Let θ ∈ [0, 2π]. Then, the mapping uθ �→ u1−θ, vθ �→ v1−θ

extends to a unital isometry of the operator systems. Moreover, cθ = c1−θ.

Before giving the proof, note that for all n ∈ N, we have that the
universal pair of q1,n-commuting and the universal pair of q(n−1),n-commuting
unitaries are 1-order equivalent but not completely order equivalent. This
gives a family of examples for n-Subhomogeneous operator systems which
are 1-order isomorphic but not n-order isomorphic (and in particular, not
completely order isomorphic). We now move to the proof of the proposition.

Proof. Assume first that θ = k
n for coprime k, n ∈ N and set q = e2πiθ, q′ =

e2πi(1−θ). Considering U, V the standard representation as in (2), we see that
if UV = qV U , then:

U tV t = (V U)t = q̄(UV )t = q′V tU t,

which means that U t, V t is a pair of q′-commuting unitaries. Moreover, the
mapping φ : Mn → Mn given by φ(a) = at is a unital isometry, which means
that its restriction of S(U, V ) is a unital isometry. Next, we let Uθ, Vθ be the
universal pair of q-commuting unitaries, which is given by:

Uθ =
⊕

α,β∈T

Uθ,α,β , Vθ =
⊕

α,β∈T

Vθ,α,β

where Uθ,α,β = αU and Vθ,α,β = βV . In that case, the mapping Uθ �→ Uθ

and:

Vθ �→
⊕

α,β∈T

V t
θ,α,β

is a unital isometry from S(Uθ, Vθ) to S(Uθ, V
t
θ ). But Uθ, V

t
θ are a universal

pair of q̄ = q′ commuting unitaries, which completes the proof for the rational
case.

Assuming that θ is irrational, we consider the following pair of infinite
matrices:

u = (qnδn,m)n,m∈Z, v = (δn,m+1)n,m∈Z

which act on �2(Z). Those are clearly q-commuting unitaries, and they form
a universal pair (by [3, Theorem 1.9 and 1.10]). Working similarly to the
rational case, we have that the transpose map u �→ ut = u and v �→ vt,
defines a unital isometry of the generated operator systems, where the second
operator system is generated by u, vt, which is a universal pair of q′ = q̄-
commuting unitaries. This completes the proof. �
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