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Abstract. We study abstract sufficient criteria for cost-uniform open-
loop stabilizability of linear control systems in a Banach space with a
bounded control operator, which build up and generalize a sufficient con-
dition for null-controllability in Banach spaces given by an uncertainty
principle and a dissipation estimate. For stabilizability these estimates
are only needed for a single spectral parameter and, in particular, their
constants do not depend on the growth rate w.r.t. this parameter. Our
result unifies and generalizes earlier results obtained in the context of
Hilbert spaces. As an application we consider fractional powers of elliptic
differential operators with constant coefficients in Lp(R

d) for p ∈ [1,∞)
and thick control sets.
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1. Introduction

Let X,U be Banach spaces, (St)t≥0 a C0-semigroup on X with generator
−A, B ∈ L(U,X), x0 ∈ X. We consider the control system

ẋ(t) = −Ax(t) + Bu(t), t > 0, x(0) = x0 (1.1)

with a control function u ∈ Lr((0,∞);U) for some r ∈ [1,∞]. In this paper we
focus on the question whether the system (1.1) is open-loop stabilizable; that
is, there is a control function u ∈ Lr((0,∞);U) such that the corresponding
mild solution decays exponentially. We give a sufficient condition for cost-
uniform open-loop stabilizability which is based on a well-known strategy
to prove null-controllability. The system (1.1) is called null-controllable in
time T > 0 if there is a control function u ∈ Lr((0, T );U) such that the
corresponding solution of (1.1) satisfies x(T ) = 0. Clearly, null-controllability
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implies stabilizability. We weaken sufficient conditions for null-controllability
to obtain more general criteria for stabilizability.

One possible approach to prove null-controllability is a method known
as the Lebeau–Robbiano strategy, originating in the seminal work by Lebeau
and Robbiano [16], see also [11,17]. Subsequently, this strategy was gener-
alised in various steps to C0-semigroups on Hilbert spaces, see, e.g., [3,21–
23,27], and more recently to C0-semigroups on Banach spaces, see [4,7]. The
essence of this approach is to show an uncertainty principle and a dissipation
estimate for the dual system which are valid for an infinite sequence of so-
called spectral parameters, and prove that the growth rate in the uncertainty
principle is strictly smaller than the decay rate of the dissipation estimate.
In Sect. 3 we show that for proving stabilizability in general Banach spaces
one can drop the assumption on the growth and decay rate in the estimates.
This was first observed in [10,20] in the context of Hilbert spaces. Similar to
what was used in a proof in [20], we show that it is sufficient to prove the
uncertainty principle and the dissipation estimate only for one single spectral
parameter. This leads to a plain condition for stabilizability in Banach spaces
which does not involve assumptions on the constant in the uncertainty prin-
ciple. In particular, one novel observation is that the uncertainty principle
and the dissipation estimate are needed only for a particular fixed operator
P (in the notion of Proposition 3.1) instead of a whole family. Let us stress
that the latter improvement allows to apply our result to models where an
uncertainty principle is available only for some spectral parameters as in [18].
We will pursue this application in a forthcoming paper.

In order to prove the sufficient condition for stabilizability we introduce
in Sect. 2 two auxiliary concepts, namely α-controllability and a weak ob-
servability inequality. Similar to a result in [24] for Hilbert spaces, we show
a duality result for these concepts in general Banach spaces. In order to deal
with this more general framework, we directly use a separation theorem in-
stead of a Fenchel–Rockafellar duality argument applied in [24].

Finally, in Sect. 4, we verify the sufficient conditions for fractional powers
of elliptic differential operators −A with constant coefficients on Lp(Rd) for
p ∈ [1,∞) and where B = 1E : Lp(E) → Lp(Rd) is the embedding from a so-
called thick set E ⊂ R

d to R
d. This complements recent results in the Hilbert

space L2(Rd) for the fractional heat equation and more general Fourier mul-
tipliers, see [1,10,12,19,20].

The paper is a result of two independent reseach questions raised by
M.E. and D.G., C.S., M.T., which turned out address the same topic.

2. Stabilizability and Related Concepts

Let X,U be Banach spaces, (St)t≥0 a C0-semigroup on X with generator
−A, B ∈ L(U,X), and x0 ∈ X. We consider the control system

ẋ(t) = −Ax(t) + Bu(t), t > 0, x(0) = x0 (2.1)
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where u ∈ Lr((0,∞);U) with some r ∈ [1,∞]. The unique mild solution of
(2.1) is given by Duhamel’s formula

x(t) = Stx0 +
∫ t

0

St−τBu(τ) dτ, t > 0.

For t > 0 the controllability map Lt ∈ L(Lr((0, t);U),X) is given by

Ltu =
∫ t

0

St−τBu(τ) dτ. (2.2)

Definition 2.1. The system (2.1) is called cost-uniformly open-loop stabilizable
with respect to Lr((0,∞);U) if there exist M ≥ 1, ω < 0, and K ≥ 0 such
that for all x0 ∈ X there exists u ∈ Lr((0,∞);U) such that

‖u‖Lr((0,∞);U) ≤ K‖x0‖X and

‖x(t)‖X = ‖Stx0 + Ltu‖X ≤ Meωt‖x0‖X , t ≥ 0.

Remark 2.2. Recall that one says that the system (2.1) is closed-loop sta-
bilizable or stabilizable by feedback if there exists F ∈ L(X,U) such that
−A + BF generates an exponentially stable C0-semigroup. Then F is called
state feedback operator and the control u given by u(t) = Fx(t) yields an
exponentially stable solution x. In Hilbert spaces the existence of a state
feedback operator follows from classical Riccati theory, see e.g. [28, Theorem
IV.4.4]. The notion of cost-uniform open-loop stabilizability is clearly weaker
than closed-loop stabilizability.

Next we introduce two concepts, namely α-controllability and weak ob-
servability inequalities, and discuss their close connection to cost-uniform
open-loop stabilizability.

2.1. α-Controllability

In this section we define α-controllability and show that for α ∈ [0, 1) it is
equivalent to cost-uniform open-loop stabilizability.

Definition 2.3. Let α ≥ 0 and T > 0. The system (2.1) is called cost-uniformly
α-controllable in time T with respect to Lr((0, T );U) if there exists K ≥ 0
such that for all x0 ∈ X there exists u ∈ Lr((0, T );U) such that

‖u‖Lr((0,T );U) ≤ K‖x0‖X and ‖x(T )‖X = ‖ST x0 + LT u‖X ≤ α‖x0‖X .

Remark 2.4. If the system (2.1) is cost-uniformly α-controllable for all α > 0,
it is usually called cost-uniform approximate null-controllable. For the control
system (2.1), the quantity ‖u‖Lr((0,T );U) is called cost.

Similarly to [24, Lemma 31] (see also [24, Theorem 26]) we obtain the fol-
lowing relationship between cost-uniform α-controllability and cost-uniform
open-loop stabilizability.

Proposition 2.5. The system (2.1) is cost-uniformly open-loop stabilizable if
and only if there exist α ∈ [0, 1) and T > 0 such that (2.1) is cost-uniformly
α-controllable in time T .
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Proof. Assume that (2.1) is cost-uniformly open-loop stabilizable. Then for
all α ∈ (0, 1) there exists T > 0 such that MeωT ≤ α, with M and ω
as in Definition 2.1. Hence the solution of (2.1) satisfies ‖x(T )‖X ≤ α‖x0‖X .
Moreover the cost ‖u‖Lr((0,∞);U) can be controlled uniformly w.r.t. the initial
value x0. This proves the claim.

We now show the converse and assume that (2.1) is cost-uniformly α-
controllable in time T . For α = 0 we have x(T ) = 0 and therefore x(t) = 0 for
all t ≥ T , so the statement is trivial. Thus, let α ∈ (0, 1). Let x0 ∈ X and u0 ∈
Lr((0, T );U) such that ‖u0‖Lr((0,T );U) ≤ K‖x0‖X and ‖ST x0 + LT u0‖X ≤
α‖x0‖X . For k ∈ N0 := N ∪ {0} we recursively define xk+1 = ST xk + LT uk

and choose uk ∈ Lr((0, T );U) such that

‖uk‖Lr((0,T );U) ≤ K‖xk‖X and ‖ST xk + LT uk‖X ≤ α‖xk‖X . (2.3)

Define u : [0,∞) → U as the concatenation

u(t) = uk(t − kT ) if t ∈ [kT, (k + 1)T ).

For r ∈ [1,∞), using (2.3) and the fact ‖xk‖X ≤ αk ‖x0‖X for all k ∈ N0, we
have

‖u‖r
Lr((0,∞);U) ≤

∞∑
k=0

∫ (k+1)T

kT

‖u(τ)‖r
Udτ ≤ Kr 1

1 − αr
‖x0‖r

X ,

and hence u ∈ Lr((0,∞);U). For r = ∞, since α < 1 we similarly estimate

‖u‖L∞((0,∞);U) = sup
k∈N0

‖uk‖L∞((0,T );U) ≤ K ‖x0‖X ,

and therefore also u ∈ L∞((0,∞);U).
The control u generates a trajectory

x(t) = Stx0 +
∫ t

0

St−τBu(τ)dτ, t > 0

satisfying x(kT ) = xk for all k ∈ N0. Let MS ≥ 1 be such that

sup
t∈[0,T ]

‖St‖L(X) ≤ MS .

Then for all k ∈ N0 and t ∈ [kT, (k + 1)T ), by Hölder’s inequality, we have

‖x(t)‖X =
∥∥∥St−kT xk +

∫ t−kT

0

St−kT−τBuk(τ − kT )dτ
∥∥∥

X

≤ MS‖xk‖X + MS‖B‖L(U,X)

∫ T

0

‖uk(τ)‖Udτ

≤ MS‖xk‖X + MS‖B‖L(U,X)T
1/r′‖uk‖Lr((0,T );U)

≤ MS(1 + ‖B‖L(U,X)T
1/r′

K)αk‖x0‖X ,

where r′ ∈ [1,∞] such that 1/r + 1/r′ = 1 (and 1/∞ = 0 as usual). Since
lnα < 0 and αk+1 = e(k+1)T ln α

T ≤ e
ln α
T t for t ∈ [kT, (k + 1)T ) we infer that

‖x(t)‖X ≤ MS

α
(1 + ‖B‖L(U,X)T

1/r′
K)e

ln α
T t‖x0‖X .
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Thus, we obtain the assertion with M = MS

α (1 + ‖B‖L(U,X)T
1/r′

K) ≥ 1 and
ω = lnα/T < 0. �

Remark 2.6. Let us observe that in [24] the authors are able to show that
cost-uniformly α-controllability is equivalent to closed-loop stabilization, see
Remark 2.2 for the terminology, using Riccati theory, which, to the best of
our knowledge, is not available in our setting. Indeed, although there are
instances of extensions of Riccati theory and the use of Riccati operators for
generators of C0-semigroups on Banach spaces [6,13,25], the operator B is
always assumed to map a Hilbert space to a Banach space, which does not
reflect our assumptions for the system (2.1). The main difficulty in carrying
over the theory to the case of B defined on a Banach space is how to make
sense of the quadratic functional leading to the state feedback operator.

2.2. Weak Observability Inequalities

In this section, we prove the duality between cost-uniform α-controllability
and a weak observability estimate for the dual system.

Definition 2.7. Let X,Y be Banach spaces, (St)t≥0 a semigroup on X, C ∈
L(X,Y ), T > 0, and assume that [0, T ] 
 t �→ ‖CStx‖Y is measurable for all
x ∈ X. Let r ∈ [1,∞]. Then we say that a weak observability inequality is
satisfied if there exist Kobs ≥ 0 and α ≥ 0 such that for all x ∈ X we have

‖ST x‖X ≤

⎧⎪⎨
⎪⎩

Kobs

(∫ T

0
‖CStx‖r

Y dt
)1/r

+ α‖x‖X if r ∈ [1,∞),

Kobs sup
t∈[0,T ]

‖CStx‖Y + α‖x‖X if r = ∞.
(2.4)

We write X ′ and U ′ for the dual spaces of X and U , respectively, and
S′

T ∈ L(X ′) and B′ ∈ L(X ′, U ′) for the dual operators of ST and B, respec-
tively.

Theorem 2.8. Let X,U be Banach spaces, (St)t≥0 a C0-semigroup on X,
T > 0, r ∈ [1,∞] and LT ∈ L(Lr((0, T );U),X) the controllability map
defined in (2.2). Let further K ≥ 0 and α ≥ 0. Then the following statements
are equivalent:

(a) For every x ∈ X and ε > 0 there exists u ∈ Lr((0, T );U) with

‖u‖Lr((0,T );U) ≤ K‖x‖X and ‖ST x + LT u‖X < (α + ε)‖x‖X .

(b) For all x′ ∈ X ′ we have

‖S′
T x′‖X′ ≤

⎧⎪⎨
⎪⎩

K
(∫ T

0
‖B′S′

tx
′‖r′

U ′dt
)1/r′

+ α‖x′‖X′ if r′ ∈ [1,∞),

K sup
t∈[0,T ]

‖B′S′
tx

′‖U ′ + α‖x′‖X′ if r′ = ∞,

where r′ ∈ [1,∞] with 1/r + 1/r′ = 1.

In contrast to [24] we refrain to use the Fenchel–Rockafellar duality the-
orem to prove Theorem 2.8 and instead employ a shorter argument involving
the following well-known separation theorem. Note that by means of the sep-
aration theorem, also a version of the Fenchel–Rockafellar duality theorem
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can be shown. However, we prefer to use it directly to show the duality, with-
out making the detour via Fenchel–Rockafellar theory. We cite here a version
from [5, Lemma 1.2], for a proof see [8, Theorem I.5.10, Lemma II.4.1].

Lemma 2.9. Let A,B be convex sets in a Banach space X. Then A ⊂ B if
and only if

sup
x∈A

〈x, x′〉X,X′ ≤ sup
x∈B

〈x, x′〉X,X′ for all x′ ∈ X ′.

Proof of Theorem 2.8. We consider the convex sets

A = {ST x : ‖x‖X ≤ 1} and

B = {LT u + αx : ‖u‖Lr((0,T );U) ≤ K, ‖x‖X ≤ 1}.

We observe that the following three statements are equivalent:

(a) A ⊂ B
(b) for all ε > 0 and x1 ∈ X with ‖x1‖X ≤ 1 there exists u ∈ Lr((0, T );U)

with ‖u‖Lr((0,T );U) ≤ K and x2 ∈ X with ‖x2‖X ≤ 1 such that

‖ST x1 + LT u + αx2‖X < ε.

(c) for all ε > 0 and x1 ∈ X with ‖x1‖X ≤ 1 there exists u ∈ Lr((0, T );U)
with ‖u‖Lr((0,T );U) ≤ K such that

‖ST x1 + LT u‖X < α + ε.

While (a) ⇔ (b) and (b) ⇒ (c) are obvious, we note that (b) follows from
(c) by choosing x2 = −(ST x1 + LT u)/(α + ε). Since

∥∥ST x/‖x‖X + LT u
∥∥

X
=

1
‖x‖X∥∥ST x + LT ‖x‖Xu

∥∥
X

for all x ∈ X \ {0}, we find that (c) (and thus also (a) and (b)) is equivalent
to statement (a) of the theorem. Next, for x′ ∈ X ′ we compute

sup
x∈A

〈x, x′〉X,X′ = sup
‖x‖X≤1

〈ST x, x′〉X,X′ = ‖S′
T x′‖X′

and

sup
x∈B

〈x, x′〉X,X′ = sup
‖u‖Lr((0,T );U)≤K,

‖x‖X≤1

〈LT u + αx, x′〉X,X′

= sup
‖u‖Lr((0,T );U)≤K

〈LT u, x′〉X,X′ + sup
‖x‖X≤1

α〈x, x′〉X,X′

= K‖L′
T x′‖Lr((0,T );U)′ + α‖x′‖X′ .

Finally by [26, Theorem 2.1] we have

‖L′
T x′‖Lr((0,T );U)′ =

⎧⎪⎨
⎪⎩

(∫ T

0
‖B′S′

tx
′‖r′

U ′dt
)1/r′

if r′ ∈ [1,∞),

sup
t∈[0,T ]

‖B′S′
tx

′‖U ′ if r′ = ∞,
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where r′ ∈ [1,∞] such that 1/r + 1/r′ = 1. Hence, we observe that

sup
x∈A

〈x, x′〉X,X′ ≤ sup
x∈B

〈x, x′〉X,X′

is equivalent to statement (b) of the theorem and the claim follows from
Lemma 2.9. �

3. Sufficient Conditions for Stabilizability

In this section we give a sufficient condition for weak observability inequalities
in terms of an uncertainty principle and a dissipation estimate, similar to
[10,20]. We emphasize that instead of assuming the uncertainty principle
and the dissipation estimate for a family (Pλ)λ>0 with certain dependencies
of the constants on the “spectral parameter” λ, we need these assumptions
to hold only for one single operator P . We will relate our result to Lemma
2.2 in [10] and Theorem 2.1 in [7]. Using duality we give, similar to [20,
Theorem 4.1], a sufficient condition for cost-uniform open-loop stabilizability
in Banach spaces without any compatible condition between the uncertainty
principle and a dissipation estimate.

Proposition 3.1. Let X and Y be Banach spaces, C ∈ L(X,Y ), P ∈ L(X),
(St)t≥0 a semigroup on X, M ≥ 1 and ω ∈ R such that ‖St‖L(X) ≤ Meωt

for all t ≥ 0, and assume that for all x ∈ X the mapping t �→ ‖CStx‖Y

is measurable. Further, let r ∈ [1,∞], T > 0 and K1,K2 : (0, T ] → [0,∞)
continuous functions such that for all x ∈ X and t ∈ (0, T ] we have

‖PStx‖X ≤ K1(t)‖CPStx‖Y , (3.1)

and

‖(Id −P )Stx‖X ≤ K2(t)‖x‖X . (3.2)

Then there exist Kobs ≥ 0 and α ≥ 0 with

∀x ∈ X : ‖ST x‖X ≤

⎧⎪⎨
⎪⎩

Kobs

(∫ T

0
‖CStx‖r

Y dt
)1/r

+ α‖x‖X if r ∈ [1,∞),

Kobs sup
t∈[0,T ]

‖CStx‖Y + α‖x‖X if r = ∞.

(3.3)

Moreover, for all δ ∈ [0, 1) we have

Kobs ≤ Meω+T

(1 − δ)T 1/r
max

t∈[δT,T ]
K1(t) and

α ≤ Meω+T

(1 − δ)T

∫ T

δT

(
K1(t)‖C‖L(X,Y ) + 1

)
K2(t)dt,

where ω+ = max{ω, 0} and T 1/r = 1 if r = ∞.

Proof. Assume we have shown the statement of the proposition in the case
r = 1, i.e. for all x ∈ X we have

‖ST x‖X ≤ Kobs

∫ T

0

‖CStx‖Y dt + α‖x‖X .
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Then, for all r ∈ [1,∞] and all x ∈ X using Hölder’s inequality we obtain

‖ST x‖X ≤ KobsT
1/r′

(∫ T

0

‖CStx‖r
Y dt

)1/r

+ α‖x‖X ,

where r′ ∈ [1,∞] is such that 1/r + 1/r′ = 1. Since T−1T 1/r′
= T−1/r the

statement of the proposition follows. Thus, it is sufficient to prove the case
r = 1.

Let t ∈ (0, T ] and x ∈ X. Using (3.1) and (3.2) we obtain

‖Stx‖X ≤ ‖PStx‖X + ‖(Id −P )Stx‖X ≤ K1(t)‖CPStx‖Y +‖(Id −P )Stx‖X

≤ K1(t)‖CStx‖Y + K1(t)‖C‖L(X,Y )‖(Id −P )Stx‖X + ‖(Id −P )Stx‖X

≤ K1(t)‖CStx‖Y +
(
K1(t)‖C‖L(X,Y ) + 1

)
K2(t)‖x‖X . (3.4)

Since (St)t≥0 is a semigroup we get

‖ST x‖X = ‖ST−tStx‖X≤ Meω+T ‖Stx‖X ,

where ω+ = max{ω, 0}. Since t �→ ‖CStx‖Y is measurable by assumption,
integrating (3.4) with respect to t ∈ [δT, T ] we obtain

(1 − δ)T
Meω+T

‖ST x‖X

≤
∫ T

δT

K1(t)‖CStx‖Y dt +
∫ T

δT

(
K1(t)‖C‖L(X,Y ) + 1

)
K2(t)dt ‖x‖X

≤ max
t∈[δT,T ]

K1(t)
∫ T

δT

‖CStx‖Y dt +
∫ T

δT

(
K1(t)‖C‖L(X,Y ) + 1

)
K2(t)dt ‖x‖X .

The claim now follows by estimating
∫ T

δT
‖CStx‖Y dt ≤ ∫ T

0
‖CStx‖Y dt and

multiplying both sides by Meω+T /(1 − δ)T . �

The advantage of Proposition 3.1 is the explicit dependence of Kobs and
α on the functions K1,K2 which allows to give conditions to ensure α ∈ [0, 1).
Thus, in order to prove cost-uniform open-loop stabilizabiliy of a system one
can combine Theorem 2.8 and Proposition 2.5 in case α ∈ [0, 1).

Remark 3.2. In Proposition 3.1 we can replace the uncertainty principle in
(3.1) by

∀x ∈ X : ‖PST0x‖X ≤

⎧⎪⎨
⎪⎩

K1

(∫ T0

0
‖CPStx‖r

Y dt
)1/r

if r ∈ [1,∞),

K1 sup
t∈[0,T ]

‖CPStx‖Y if r = ∞

for some K1 > 0 and 0 < T0 ≤ T . We then obtain (3.3) with

Kobs ≤ Meω+T 21−1/rC1 and

α ≤ Meω+T
(
21−1/rK1 ‖C‖L(X,Y ) ‖K2‖Lr(0,T0)

+ K2(T0)
)
.

The case r = ∞ is similar and the term 21−1/r can be set to 1.
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Remark 3.3. Let us relate Proposition 3.1 to the results obtained in [10] and
[4,7]. By choosing the functions K1,K2 : (0, T ] → [0,∞) appropriately we can
mimic the assumptions of [10, Lemma 2.2] and [7, Theorem 2.1], respectively.
For given T, λ > 0 suppose we have for all x ∈ X and t ∈ (0, T ] the inequalities
(3.1) and (3.2) with

K1(t) = d0ed1λγ1 and K2(t) = d2e−d3λγ2 tγ3
, (3.5)

where d0, d1, d2, d3, γ1, γ2, γ3 > 0. Then Proposition 3.1 implies for all δ ∈
(0, 1) the weak observability inequality (3.3) with

Kobs ≤ Md0

δT 1/r
d0ed1λγ1+ω+T and

α ≤ Md2

(
d0‖C‖L(X,Y ) + 1

)
e−d3λγ2 (δT )γ3+d1λγ1+ω+T .

Imposing conditions on T and λ we can achieve α ∈ [0, 1). We list here only
some interesting cases:

(a) Assume γ1 > γ2. Choose γ3 > 1−γ2/γ1, T > 0 large enough such that

ln
(
Md2(d0‖C‖L(X,Y ) + 1)

)
<

(
d3

2d1

) γ2
γ1−γ2 d3

2
(δT )

γ1γ3
γ1−γ2 − ω+T,

and λ = (d3(δT )γ3/(2d1))
1/(γ1−γ2). Then α < 1.

(b) Assume γ1 = γ2. Choose T > δ(d1/d3)1/γ3 and

λ >

(
ln

(
Md2(d0‖C‖L(X,Y ) + 1)

)
+ ω+T

d3(δT )γ3 − d1

) 1
γ1

> 0.

Then again α ∈ (0, 1).
(c) Assume γ1 < γ2. For given T > 0 choose λ > 0 large enough such that

ln (Md2(d0‖C‖ + 1)) + ω+T < d3λ
γ2(δT )γ3 − d1λ

γ1 .

Then α ∈ (0, 1).
(d) Assume γ1 < γ2. Let λ∗ > 0 and suppose there exists P ∈ L(X) such

that Pλ = P for all λ > λ∗, and such that the inequalities (3.1) and
(3.2) hold with K1,K2 as in (3.5). Then by [7, Theorem 2.1], α = 0.

(e) Assume ω+ = 0. Then for arbitrary λ, γ1, γ2, γ3 > 0 we can achieve
α ∈ (0, 1) by choosing T > 0 large enough.

Note that, in contrast to the cases (a) and (b), in (c) we can ensure α ∈ (0, 1)
for every T > 0 by choosing λ > 0 appropriately. The cases (a)-(c) are very
similar to what was shown in [10, Lemma 2.2], where the inequalities (3.1)
and (3.2) with (3.5) where assumed to hold for all λ > 1. Note that here the
assumptions are only needed for some particular λ > 0.

By restricting to γ3 = 1, Proposition 3.1 and the duality in Theorem2.8
yield the following plain sufficient condition for cost-uniform open-loop sta-
bilizability similar to the Hilbert space result in [20, Theorem 4.1].

Corollary 3.4. Let X and U be Banach spaces, B ∈ L(U,X) and P ∈ L(X)
such that

Ran(P ) ⊂ Ran(PB). (3.6)
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Further let (St)t≥0 a C0-semigroup on X, and M ≥ 1, ω ∈ R such that
‖St‖L(X) ≤ Meωt for all t ≥ 0. Assume there exist MP ≥ 1 and ωP > ω+ :=
max{ω, 0} such that

∀x ∈ X ∀t > 0 : ‖St(Id −P )x‖X ≤ MP e−ωP t‖x‖X . (3.7)

Then the system (2.1) is cost-uniformly open-loop stabilizable.

Proof. We apply Proposition 3.1 to the dual semigroup (S′
t)t≥0 on X ′, Y :=

U ′, C := B′, and P replaced by its dual operator P ′. Note that (S′
t)t≥0

is exponentially bounded since (St)t≥0 is exponentially bounded. The mea-
surability of t �→ ‖B′S′

tx
′‖U ′ for all x′ ∈ X ′ follows from duality and the

description of dual norms via the Hahn–Banach theorem. It is well-known,
see [5], that (3.6) implies the existence of K ≥ 0 such that

∀x′ ∈ X ′ : ‖P ′x′‖X′ ≤ K‖B′P ′x′‖U ′ .

Further (3.7) implies

∀x′ ∈ X ′ ∀t > 0 : ‖(Id −P ′)S′
tx

′‖X′ ≤ MP e−ωP t‖x′‖X′ .

Thus, by Proposition 3.1 with K1(t) = K, K2(t) = MP e−ωP t and δ = (ωP +
ω+)/2ωP we obtain the weak observability inequality (3.3) for (S′

t)t≥0 for all
T > 0 and r′ ∈ [1,∞] with

Kobs ≤ 2Meω+T

(1 − ω+
ωP

)T 1/r
K and α ≤ MMP

(
K‖B‖L(U,X) + 1

)
e− 1

2 (ωP −ω+)T .

For

T >
2 ln

(
(MMP

(
K‖B‖L(U,X) + 1

))
ωP − ω+

we have α ∈ [0, 1) and the assertion follows from Theorem 2.8 and Proposi-
tion 2.5. �

Remark 3.5. The condition Ran(P ) ⊂ Ran(PB) for the control operator
B does not require any constants. In applications this means that for the
corresponding uncertainty principle for the dual system we do not need any
assumption on the growth order of the constants in terms of the spectral
parameter. An instance of this is when one considers the system (2.1) with
H being the harmonic oscillator in L2(Rd), i.e. H = −Δ + |x|2, and B the
characteristic function of a measurable subset of Rd with positive measure.
Indeed, it was shown in [2, Theorem 2.1] and in [10, Lemma 3.2] that a
spectral inequality with P being any element of the spectral family associated
to H is valid under different geometric assumptions on the measurable subset
with different growth orders of the constant with respect to the spectral
parameter, while the dissipation estimate satisfies an estimate like the one in
the corollary above (see, e.g., [10, Eq. (4.17)]).

Remark 3.6. The system (2.1) is called complete (or rapidly) cost-uniform
open-loop stabilizable if for all ν > 0 the system

ẋ(t) = −(A + ν)x(t) + Bu(t), t > 0, x(0) = x0 (3.8)
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is cost-uniform open-loop stabilizable. Analogously to [20, Theorem 4.1], by
Corollary 3.4 we obtain the following sufficient conditions for complete cost-
uniform open-loop stabilizability: Let (Pk)k∈N in L(X) satisfying (3.6) for all
k ∈ N and (Mk)k∈N in [1,∞), (ωk)k∈N in R with ωk → ∞ as k → ∞ such
that

∀x ∈ X ∀t > 0 : ‖St(Id −Pk)x‖X ≤ Mke−ωkt‖x‖X .

Then (2.1) is complete cost-uniform open-loop stabilizable. Indeed, for all
ν > 0 there exists k ∈ N such that ωk > ω+ + ν and by Corollary 3.4 the
system (3.8) is cost-uniform open-loop stabilizable.

4. Application: Fourier Multipliers and Fractional Powers

We denote by S(Rd) the Schwartz space of rapidly decreasing functions, which
is dense in Lp(Rd) for all p ∈ [1,∞). The space of tempered distributions,
i.e. the topological dual space of S(Rd), is denoted by S ′(Rd). We define the
Fourier transformation F : S(Rd) → S(Rd) by

Ff(ξ) :=
∫
Rd

f(x)e−iξ·xdx (ξ ∈ R
d).

By duality, we can extend the Fourier transformation as a bijection on S ′(Rd)
as well.

Let m ∈ N and a : Rd → C,

a(ξ) :=
∑

|α|≤m

aαξα (ξ ∈ R
d),

be a polynomial of degree m with coefficients aα ∈ C and assume that a is
strongly elliptic, i.e. there exists c > 0 and ω ∈ R such that

�a(ξ) ≥ c |ξ|m − ω (ξ ∈ R
d).

Let s ∈ (0, 1]. Then

�((a(ξ) + ω)s) ≥ (�a(ξ) + ω)s ≥ cs |ξ|sm (ξ ∈ R
d).

Let m̃ ∈ N0 be the largest integer less than sm, and b : Rd → C,

b(ξ) :=
∑

|α|≤m̃

bαξα (ξ ∈ R
d).

We consider as,b := (a + ω)s + b. Then there exists ν ∈ R such that

�as,b(ξ) = �(a(ξ) + ω)s + �b(ξ) ≥ cs |ξ|sm − ν (ξ ∈ R
d). (4.1)

Note that as,b may not be differentiable at 0. However, it can be shown
that for t > 0 we have e−tas,b ∈ L1(Rd) and F−1e−tas,b ∈ L1(Rd). In-
deed, e−tas,b decays faster than any polynomial. Thus, e−tas,b ∈ L1(Rd)
and F−1e−tas,b ∈ C∞(Rd). Moreover, the Riemann–Lebesgue lemma yields
F−1e−tas,b ∈ C0(Rd). Then by subordination techniques (see e.g. [15]), one
can show that f �→ F−1e−tas,0 ∗f yields a bounded operator on L1(Rd). By a
perturbation argument, also f �→ F−1e−tas,b ∗f is bounded on L1(Rd). Since
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this operator is also translation invariant, F−1e−tas,b is given by a finite Borel
measure (cf. [9, Theorem 2.58]) and therefore F−1e−tas,b ∈ L1(Rd).

Taking into account Young’s inequality, for p ∈ [1,∞] and t ≥ 0 we
define the operator S

(s),p
t : Lp(Rd) → Lp(Rd) by

S
(s),p
0 f := f, S

(s),p
t f := F−1e−tas,b ∗ f (t > 0).

It is easy to see that S(s),p is a C0-semigroup for p ∈ [1,∞) and S(s),∞ is a
weak∗ continuous exponentially bounded semigroup.

Definition 4.1. A set E ⊂ R
d is called thick if E is measurable and there

exist ρ ∈ (0, 1] and L ∈ (0,∞)d such that∣∣∣∣∣E ∩
( d×

i=1

(0, Li) + x
)∣∣∣∣∣ ≥ ρ

d∏
i=1

Li (x ∈ R
d).

Let η ∈ C∞
c ([0,∞)) with 0 ≤ η ≤ 1 such that η(r) = 1 for r ∈ [0, 1/2]

and η(r) = 0 for r ≥ 1. For λ > 0 we define χλ : Rd → R by χλ(ξ) = η(|ξ|/λ).
Since χλ ∈ S(Rd), we have F−1χλ ∈ S(Rd) and for all p ∈ [1,∞] we define
Pλ : Lp(Rd) → Lp(Rd) by Pλf = (F−1χλ) ∗ f .

Proposition 4.2. There exists K ≥ 0 such that for all s ∈ (0, 1], p ∈ [1,∞]
and all λ > (2sm+4 max{ν, 0}/cs)1/(sm), t ≥ 0 and f ∈ Lp(Rd) we have

‖(I − Pλ)S(s),p
t f‖Lp(Rd) ≤ Ke−2−sm−4cstλsm ‖f‖Lp(Rd) .

Proof. (i) We first show the corresponding estimate for as,b(ξ) = |ξ|sm.
The proof is an adaptation of the proof of [4, Proposition 3.2], so we

only sketch the details. Let f ∈ Lp(Rd). Then

(I − Pλ)S(s),p
t f = F−1

(
(1 − χλ)e−t|·|sm) ∗ f.

With σt,λ :=
(
(1 − χt1/smλ)e−|·|sm)

we observe

‖F−1
(
(1 − χλ)e−t|·|sm)‖L1(Rd) =

∥∥F−1σt,λ

∥∥
L1(Rd)

,

so by Young’s inequality it suffices to estimate
∥∥F−1σt,λ

∥∥
L1(Rd)

. Using that
the inverse Fourier transform maps differentiation to multiplication, for α ∈
N

d
0 we observe
∣∣xαF−1σt,λ(x)

∣∣ ≤ 1
(2π)d

∫
Rd

∣∣∣∂α
ξ

(
(1 − χt1/smλ(ξ))e−|ξ|sm)∣∣∣ dξ (x ∈ R

d).

Estimating the derivatives in the integrand for |α| ≤ d + 1, we find K1 ≥ 0
such that ∣∣xαF−1σt,λ(x)

∣∣ ≤ K1e−tλsm/2sm+2
(x ∈ R

d).

Thus, there exists K ≥ 0 such that∥∥F−1σt,λ

∥∥
L1(Rd)

≤ Ke−tλsm/2sm+2

and therefore

‖(I − Pλ)S(s),p
t f‖Lp(Rd) ≤ Ke−2−sm−2tλsm ‖f‖Lp(Rd) .
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(ii) For the general case, we use a perturbation argument. Let ã(ξ) :=
cs |ξ|sm

/2 and denote the corresponding semigroup by S̃. Then by (i) we
have

‖(I − Pλ)S̃tf‖Lp(Rd) ≤ Ke−2−sm−3cstλsm ‖f‖Lp(Rd) .

Moreover, as,b = (as,b − ã) + ã and as,b − ã satisfies an estimate similar to
(4.1), so the corresponding semigroup (Tt)t≥0 obeys an exponential bound of
the form

‖Tt‖ ≤ Meνt (t ≥ 0).

Thus, since S
(s),p
t = TtS̃t and Fourier multipliers commute, we arrive at

‖(I − Pλ)S(s),p
t f‖Lp(Rd) = ‖S

(s),p
t (I − Pλ)f‖Lp(Rd)

≤ ‖Tt‖ ‖S̃t(I − Pλ)f‖Lp(Rd)

≤ MKe−t(2−sm−3csλsm−ν) ‖f‖Lp(Rd) .

Now, for λ > (2sm+4 max{ν, 0}/cs)1/(sm) we conclude 2−sm−3csλsm − ν >
2−sm−4csλsm. �

In view of of the Logvinenko–Sereda Theorem, see e.g. [14], and Propo-
sition 4.2, we can apply Proposition 3.1 and obtain various weak observability
estimates by the cases in Remark 3.3 with γ1 = 1, γ2 = sm and γ3 = 1. We
state this as a corollary.

Corollary 4.3. Let p ∈ [1,∞], s ∈ (0, 1].

(a) Let s ≤ 1/m. Then there exists T > 0 such that the semigroup (S(s),p
t )t≥0

satisfies a weak observability inequality with some α ∈ (0, 1).
(b) Let s > 1/m. Then for all T > 0 the semigroup (S(s),p

t )t≥0 satisfies a
weak observability inequality with α = 0.

In view of Theorem 2.8, by duality we thus obtain statements on cost-
uniform α-controllability and approximate null-controllability, and in view
of Proposition 2.5 also for cost-uniform open-loop stabilizability. Note that
for the fractional Laplacian −A = −(−Δ)s in L2(Rd), the system is not
null-controllable for s < 1/2, cf. [10,12]. For Corollary 4.3(a) even more is
true. By invoking that we prove the uncertainty principle and the dissipation
estimate for all λ > λ0 with some λ0 ≥ 0, we get, by using Remark 3.3(a) for
T > 0 large enough, that for all α ∈ (0, 1) there is T > 0 such that (S(s),p

t )t≥0

satisfies a weak observability inequality.
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