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Abstract. We study the gauge-invariant ideal structure of the Nica-
Toeplitz algebra NT (X) of a product system (A,X) over N

n. We ob-
tain a clear description of X-invariant ideals in A, that is, restrictions
of gauge-invariant ideals in NT (X) to A. The main result is a classifica-
tion of gauge-invariant ideals in NT (X) for a proper product system in
terms of families of ideals in A. We also apply our results to higher-rank
graphs.
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1. Introduction

Product systems of C∗-correspondences over semigroups are a powerful frame-
work for studying symmetries and dynamics in noncommutative geometry.
The theory was first developed by Pimsner [22] for a single correspondence,
and then it was extended to discrete semigroups by Fowler [9]. A prod-
uct system (A,X) over a C∗-algebra A is a collection {Xp}p∈P of A-A-
correspondences (A-bimodules with special properties) indexed by a semi-
group P together with specified isomorphisms Xp ⊗A Xq ∼= Xpq (see Defini-
tion 2.8). There are product systems associated to semigroup dynamical sys-
tems, higher-rank (topological) graphs [12,14,24], self-similar groups [8,18],
and factorial languages [6], yet this merely represents a portion of the appli-
cations of product systems.

Like many other mathematical objects, product systems are studied
through their representations (see Definition 2.9). There is a universal algebra
TX for representations of (A,X). When the semigroup is embedded into a
group G, the algebra TX comes with a natural coaction of C∗(G) such that
Xp is homogeneous of degree p ∈ G. When the group is abelian, the coaction
is equivalent to an action of the dual group ̂G, which is called the gauge
action. We only study product systems over N

n, in which case the gauge
group is T

n.
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To incorporate classical constructions such as graph C∗-algebras and
semicrossed products into the theory, we have to restrict the set of repre-
sentations by imposing additional conditions. The corresponding universal
algebra is then a certain gauge-invariant quotient of TX . In case of a single
correspondence X, Katsura [13] classified all the gauge-invariant ideals in
TX in terms of pairs of ideals in A. Among these, there is a unique maxi-
mal gauge-invariant ideal CI which intersects trivially with the base algebra
A. The quotient OX := TX/CI is called the Cuntz-Pimsner algebra of X.
Katsura also defined relative Cuntz-Pimsner algebras as quotients by other
gauge-invariant ideals.

The higher rank case is much more complicated since ideals in TX come
not only from ideals of A but also from linear relations on projections corre-
sponding to the base semigroup P . Further information about the emerging
problems can be found in [16,17]. Based on the work [19] by Nica, Fowler
[9] proposed to restrict the set of representations by imposing the so-called
Nica-covariance condition. It turns out that most of the interesting represen-
tations are Nica-covariant and in the case of compactly aligned X there is
a universal algebra NT (X) called the Nica-Toeplitz algebra. This algebra is
much more tractable than TX .

A substantial work on the generalization of Katsura’s results to the
higher rank case was done by several authors. Sims and Yeend [27] defined the
Cuntz-Nica-Pimsner algebra NO(X) of a product system over a quasi-lattice
ordered group. Their construction unifies algebras of higher-rank graphs and
Katsura’s Cuntz-Pimsner algebra. Carlsen, Larsen, Sims, and Vittadello [3]
proposed another definition, which coincides with that of Sims-Yeend un-
der a certain amenability condition. In terms relevant to our paper, they
demonstrated the existence of a unique maximal gauge-invariant ideal within
NT (X) not meeting the base algebra A. The quotient by this ideal is then the
co-universal Cuntz-Nica-Pimsner algebra of the product system (A,X). The
co-universal property was extensively studied by several authors in [5,7,25].

However, the gauge-invariant ideal structure of the Nica-Toeplitz alge-
bra NT (X) remained unknown (see [6, Question 9.2]). We aim to fill this
gap by describing the gauge-invariant ideal lattice of NT (X) in the special
case of proper product systems over the semigroups N

n. The main result is
a description of the gauge-invariant ideal lattice of NT (X) in Theorem 4.15.

In order to classify gauge-invariant ideals in NT (X) we adapt the meth-
ods of [13] to the higher-rank case. The adaptation significantly relies on the
results of Dor-On and Kakariadis [6]. They defined a wide class of strongly
compactly aligned product systems and described the Cuntz-Nica-Pimsner
algebra NO(X) of a strongly compactly aligned N

n-product system (A,X)
as a universal algebra for CNP-representations. These are representations
where certain covariance conditions are satisfied on explicitly defined ideals
{IF }F⊂{1,...,n} of A (see Definition 2.13).

We first consider an arbitrary strongly compactly aligned N
n-product

system (B, Y ). We define invariant ideals in B as ideals coming from the
gauge-invariant ideals of NO(Y ) (see Definition 3.1). In order to describe
these ideals we define two weaker notions: positively invariant (Definition 3.2)
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and negatively invariant (Definition 3.7) ideals. Finally, we show that an
ideal is invariant if and only if it is negatively and positively invariant (Theo-
rem 3.9). The whole Sect. 3 is a direct generalization of [13, Sect. 4], including
the three notions of invariance.

Next, we focus on a proper product system (A,X) and classify gauge-
invariant ideals in NT (X) and NO(X). In the rank 1 case, these ideals are
classified by T-pairs and O-pairs of ideals in A (see [13, Sect. 5]). It turns out
that we need families of 2n ideals in the rank n case. We define three types of
families of ideals in A: T-families, O-families (see Definition 4.2) and invari-
ant families (see Definition 4.1). We show that there is an order-preserving
bijection between T-families and invariant families in Proposition 4.4.

Following this, given an invariant family K = {KF }F⊂{1,...,n}, we define
an extended product system XK over a C∗-algebra AK =

⊕

F A/KF . We
show that XK-invariant ideals in AK are in bijection with invariant fami-
lies K ′ containing K. Moreover, we show that every invariant ideal of AK is
separating, meaning that gauge-invariant ideals of NO(XK) are in bijection
with invariant ideals of AK . While the construction is inspired by Katsura’s
[13, Definition 6.1], it differs even in the rank 1 case. Unlike Katsura’s con-
struction, there is no immediate generalization to the non-proper case.

Finally, for every T-family I we define an I-relative Cuntz-Nica-Pimsner
algebra NO(X, I) as a certain gauge-invariant quotient of NT (X) (Defi-
nition 4.9). In particular, NO(X, 0) is isomorphic to NT (X) as expected.
We prove in Proposition 4.13 that NO(X, I) is canonically isomorphic to
NO(XKI

), where KI is the invariant family corresponding to I. Together
with the classification of invariant ideals of AK , this leads to an order-
preserving bijection between gauge-invariant ideals in NT (X) (resp. NO(X))
and T-pairs (resp. O-pairs) in Theorem 4.15. Moreover, this also shows that
the quotient by the ideal corresponding to a T-family I is the I-relative
Cuntz-Nica-Pimsner algebra NO(X, I).

The paper is structured as follows. In Sect. 2 we give basic definitions
and constructions. Section 3 is devoted to the description of invariant ideals.
The main result here is Theorem 3.9, which states that invariant ideals are
exactly positively and negatively invariant ideals. We start Sect. 4 with neces-
sary constructions and definitions. First, the definitions of invariant families,
T-families, and O-families are given in Sect. 4.1. Secondly, we construct an
extended product system (AK ,XK) in Sect. 4.2. Next, in Definition 4.9, we
define I-relative algebras and prove the main result of the paper: the clas-
sification of gauge-invariant ideals in NT (X) and NT (X) (Theorem 4.15).
Finally, we apply our results to the theory of higher-rank graphs in Sect. 5.
We represent any quotient of the Toeplitz algebra of a row-finite higher-rank
graph as the algebra of some extended higher rank graph in Theorem 5.5, gen-
eralizing an analogous result of Bates-Hong-Raeburn-Szymański [1, Corollary
3.5] for rank 1 graphs.

During the preparation of this preprint, the author became aware of
independent work by Dessi and Kakariadis [4], who have achieved similar
results. Our results relate as follows. The generalizations of Katsura’s pos-
itively and negatively invariant ideals to product systems are equivalent in
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this paper and [4, Definition 2.3.5 and Definition 5.1.1]. The notion of T-
family (Definition 4.2) is equivalent to specialization of [4, Definition 4.1.4]
to the case of proper product systems. This can be seen from the classifi-
cation of gauge-equivariant ideals in [4, Theorem 4.2.3] which corresponds
to Theorem 4.15. The I-relative GIUT (Corollary 4.14) is given by [4, The-
orem 3.2.11 and Theorem 3.4.9]. Both of our works contain an application
of the above results to higher-rank graphs. It is important to note that the
methods of the two papers are quite different. We hope that understanding
relations between two approaches will help us to resolve more open questions
in the field.

2. Preliminaries

In this section, we establish notation and recall basic definitions and con-
structions as well as relevant recent results. We refer the reader to [15] for
details on Hilbert C∗-modules and tensor products of C∗-correspondences.
Fowler’s paper [9] is a good reference for product systems and Nica-covariance
for quasi-lattice ordered semigroups.

2.1. Notation

We denote elements of the semigroup N
n by bold Latin letters like m =

(m1, . . . ,mn). If m,k ∈ N
n, we write m ≤ k if mi ≤ ki for all i = 1, . . . , n.

We use the notation m ∨ k and m ∧ k for the coordinatewise maximum
and minimum of m and k, respectively. These are the meet and the join
operations in the lattice N

n with the partial order ≤.
We use [n] to denote the set {1, . . . , n} and F := 2[n] to denote the set of

all subsets of [n]. Given F ∈ F, we write 1F ∈ N
n for the characteristic vector

of F : (1F )i is 1 if i ∈ F and 0 otherwise. We write 1i instead of 1{i} for a
singleton {i} ∈ F and 0 for the zero vector. Conversely, if m ∈ N

n, we denote
by suppm ∈ F the subset of non-zero coordinates of m. For m,k ∈ N

n, we
write m ⊥ k if suppm ∩ suppk = ∅.

2.2. Hilbert C*-Modules

Let A be a C∗-algebra. A (right) Hilbert A-module is a right A-module X
equipped with a map 〈·, ·〉 : X × X → A which is C-linear in the second
variable and such that
(1) 〈x, y〉∗ = 〈y, x〉 for all x, y ∈ X,
(2) 〈x, x〉 ≥ 0 for all x ∈ X,
(3) 〈x, y〉 · a = 〈x, y · a〉 for all x, y ∈ X and a ∈ A,
(4) X is complete with respect to the norm ‖x‖ = ‖〈x, x〉‖1/2.

If X,Y are Hilbert A-modules, a bounded operator T : X → Y is called
adjointable if there exists a bounded operator T ∗ : Y → X such that 〈Tx, y〉 =
〈x, T ∗y〉 for all x ∈ X and y ∈ Y . The space of all adjointable operators from
X to Y is denoted by LA(X,Y ). The space of all adjointable operators from X
to itself is a C∗-algebra denoted by LA(X) := LA(X,X). One can show that
adjointable operators are automatically right A-module homomorphisms.
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For x ∈ X and y ∈ Y , we define the rank-one operator θy,x : X → Y by
θy,x(z) = y〈x, z〉 for all z ∈ X. The closed linear span of all rank-one operators
is denoted by KA(X,Y ) ⊂ LA(X,Y ) and called the space of (generalized)
compact operators. The (generalized) compact operators on X are defined as
KA(X) := KA(X,X), and they form a closed two-sided ideal in LA(X). We
write K and L instead of KA and LA if A is clear from the context.

Let S be a finite set and let {AS}S∈S be a family of C∗-algebras. Let
A =

⊕

S∈S As be their direct sum. Suppose that we are provided with a
Hilbert AS-module XS for each S ∈ S. Then the (algebraic) direct sum
X :=

⊕

S∈S XS is a Hilbert A-module with the inner product 〈x,y〉 =
(〈xS , yS〉)S∈S for x = (xS)S∈S and y = (yS)S∈S.

Lemma 2.1. Let A =
⊕

S∈S AS and let X be a Hilbert A-module. Then it has
the form X =

⊕

S∈S XS as above. Moreover, we have L(X) =
⊕

S∈S L(XS)
and K(X) =

⊕

S∈S K(XS).

Proof. Consider the subspace XS = XAS of X. We claim that it is a closed
submodule and 〈X,XS〉 ⊂ AS . Indeed, AS is an ideal in A and, hence,
〈X,XS〉 = 〈X,XAS〉 ⊂ 〈X,X〉AS ⊂ AS . Closedness is proved in [12,
Corollary 1.4]. Therefore, XS is a Hilbert AS-module.

Moreover, 〈XS ,XS′〉 ⊂ AS ∩ AS′ = 0 for S′ �= S, so submodules XS ⊂
X are pairwise orthogonal. Since S is a finite set, we have X = XA =
X

⊕

S∈S AS =
⊕

S∈S XAS =
⊕

S∈S XS , where all the direct sums are
algebraic. This proves the first claim.

For the second claim, consider T ∈ L(X). Then, we have TXS =
T (XAS) = (TX)AS ⊂ XS , so T can be described as a diagonal opera-
tor matrix with diagonal entries TS = T |XS

. The same argument works for
K(X). �
2.3. C*-Correspondences

Let A and B be C∗-algebras. An A-B-correspondence is a right Hilbert B-
module X equipped with a ∗-homomorphism ϕX : A → L(X). A correspon-
dence is proper if ϕX(A) ⊂ K(X). It is injective (or faithful) if ϕ is injective
and non-degenerate if ϕX(A)X is dense in X. When the map ϕX(A) is clear
from the context, we simply write a · x instead of ϕX(a)x for a ∈ A and
x ∈ X.

Let C be another C∗-algebra and let Y be a B-C-correspondence. The
tensor product X ⊗B Y is a Hilbert C-module defined as the Hausdorff com-
pletion of the algebraic tensor product X ⊗B Y with respect to the inner
product

〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈y1, ϕY (〈x1, x2〉)y2〉 ∈ C

for x1, x2 ∈ X and y1, y2 ∈ Y .
There is a map ιX⊗Y

X : L(X) → L(X⊗BY ), defined by ιX⊗Y
X (T )(x⊗y) =

Tx⊗y for T ∈ L(X), x ∈ X and y ∈ Y . It is a homomorphism of C∗-algebras.

Lemma 2.2. ([15, Proposition 4.7]) If Y is proper, then ιX⊗Y
X (K(X)) ⊂ K(X

⊗B Y ). Moreover, ιX⊗Y
X |K(X) is injective (surjective) if ϕY is injective (sur-

jective).
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We can now define a structure of A-C-correspondence on the Hilbert C-
module X ⊗B Y by ϕX⊗Y = ιX⊗Y

X ◦ ϕX . By Lemma 2.2, the correspondence
X ⊗B Y is proper if X and Y are proper.

Let I ⊂ B be an ideal. Then, we can consider B/I as a B-B/I-
correspondence. We define the quotient Hilbert B/I-module YI := Y ⊗B

B/I ∼= Y/Y I. The last isomorphism follows from the fact that Y I is a
closed submodule of Y . The quotient maps are denoted by [−]I : B → BI ,
[−]I : Y → YI . For a bounded operator T ∈ L(Y ), we abuse notation and
write [T ]I ∈ L(YI) to denote the operator ιYI

Y (T ).

Lemma 2.3. ([13, Lemma 1.6]) We have

[K(Y )]I = K(YI)

and [T ]I = 0 for compact T if and only if T ∈ K(Y I).

Proof. The B-B/I-correspondence B/I is proper and the map ϕB/I : B →
KB/I(B/I) = B/I is surjective. Therefore, by Lemma2.2, the map [−]I =
ι
B/I
B maps K(B) onto K(B/I). See the proof of[13, Lemma 1.6] for the second

claim. �

When Y is an A-B-correspondence, then YI is an A-B/I-correspondence
with left multiplication map ϕYI

= [−]I◦ϕY . We define an inclusion-preserving
map Y −1 : I(B) → I(A) from the set of ideals of B to the set of ideals of A
by

Y −1(I) = kerϕYI
= {a ∈ A : a · Y ⊂ Y I}.

Lemma 2.4. ([13, Proposition 1.3]) The following are equivalent for an ideal
I ⊂ B and a ∈ A.
(1) a ∈ Y −1(I).
(2) 〈x, a · y〉 ∈ I for all x, y ∈ Y .
(3) 〈x, a · x〉 ∈ I for all x ∈ Y .

Lemma 2.5. The operation Y −1 commutes with taking intersections. Let I ⊂
I(B) be a collection of ideals. Then

Y −1

(

⋂

I∈I

I

)

=
⋂

I∈I

Y −1(I).

Proof. Let x ∈ Y and a ∈ A. Then, 〈x, a·x〉 ∈
⋂

I∈I I if and only if 〈x, a·x〉 ∈ I
for all I ∈ I. The statement then follows by Lemma 2.4. �

Lemma 2.6. Let X be an A-B-correspondence and Y be a B-C-correspondence.
Then, we have (X ⊗B Y )−1(I) = X−1(Y −1(I)) ⊂ A for all ideals I ⊂ C.

Proof. Let a ∈ A, x1, x2 ∈ X, and y1, y2 ∈ Y be arbitrary. Then, we have

〈x1 ⊗ y1, a · (x2 ⊗ y2)〉 = 〈y1, 〈x1, a · x2〉y2〉.
By Lemma 2.4, the right-hand side is in I for all y1, y2 ∈ Y if and only if
〈x1, a·x2〉 ∈ Y −1(I). Applying Lemma 2.4 again, we see that this is equivalent
to a ∈ X−1(Y −1(I)). �
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Now, suppose that C =
⊕

S∈S CS is a finite sum of C∗-algebras and
Y =

⊕

S∈S YS is a Hilbert C-module. By Lemma 2.1, a homomorphism
ϕY : B → L(Y ) is equivalent to a family of homomorphisms ϕYS

: B → L(YS)
for all S ∈ S. Therefore, any B-C-correspondence is isomorphic to a direct
sum of a family of B-CS-correspondences.

Lemma 2.7. Let Y be as above and let X be an A-B-correspondence. Then,
the tensor product of X and Y is given by

X ⊗B Y =
⊕

S∈S

X ⊗B YS .

Proof. Observe that the decomposition Y =
⊕

S∈S YS is a direct sum of left
B-modules. The statement follows because the tensor product is distributive
over direct sums. �

2.4. Product Systems

Definition 2.8. An N
n-product system (A,X) over a C∗-algebra A is a col-

lection of A-A-correspondences X = (Xm)m∈Nn such that X0 = A together
with isomorphisms of correspondences

μm,k
X : Xm ⊗A Xk → Xm+k

for all m,k ∈ N
n \ {0}, satisfying certain associativity conditions. A product

system is called proper, injective, or non-degenerate if all its correspondences
are.

We denote the left action homomorphism A → L(Xm) by ϕm
X for m ∈

N
n\{0}. We also write x · y instead of μm,k

X (x ⊗ y) for x ∈ Xm and y ∈ Xk

for m,k ∈ N
n\{0}.

For m ≥ k, the conjugation of the map ιX
k⊗Xm−k

Xk with the multi-
plication map μk,m−k

X gives a map ιmk : L(Xk) → L(Xm). It is given by
ιmk (T )(x · y) = (Tx) · y for all T ∈ L(Xk), x ∈ Xk and y ∈ Xm−k. A product
system is called compactly aligned if S ∨ T := ιk∨m

k (S)ιk∨m
m (T ) ∈ K(Xk∨m)

for all S ∈ K(Xk) and T ∈ K(Xm). If, additionally, ιm+1i
m (K(Xm)) ⊂

K(Xm+1i) for all i /∈ suppm and m ∈ N
n\{0}, we say that the product

system is strongly compactly aligned (see [6, Definition 2.2]).

Definition 2.9. A representation of a product system (A,X) in a C∗-algebra
D is a pair (σ, s) consisting of a ∗-homomorphism σ : A → D and a family
of maps s = (sm : Xm → D)m∈Nn\{0} such that the following conditions are
satisfied for all m,k ∈ N

n\{0}:
(1) sm(x)∗sm(y) = σ(〈x, y〉) for all x, y ∈ Xm,
(2) sm(x)sk(y) = sm+k(x · y) for all x ∈ Xm, y ∈ Xk,
(3) σ(a)sm(x) = sm(ϕm(a)x) for all a ∈ A, x ∈ Xm.

A representation (σ, s) admits a gauge action if there is a pointwise norm-
continuous action γ : T

n
� D such that it fixes σ(A) and acts by the character

z �→ zm on sm(Xm) for all m ∈ N
n\{0}. That is, for all x ∈ Xm and

z = (z1, . . . , zn) ∈ T
n, we have γz(sm(x)) = zm1

1 · · · · · zmn
n · sm(x).
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When the degree m of x ∈ Xm is clear, we sometimes write s(x) instead
of sm(x).

Given a representation (σ, s), we define homomorphisms ψm
s : K(Xm) →

D for all m ∈ N
n\{0} first on rank-one operators by

ψm
s (θx,y) = sm(x)sm(y)∗

for x, y ∈ Xm. Then, we may extend ψm
s to all of K(Xm) by linearity and

continuity (see [11, Lemma 2.2]).
Let (km

λ )λ∈Λ be a canonical approximate identity for K(Xm). We define
projections

pms = w*-lim
λ∈Λ

ψm
s (km

λ ) ∈ D′′,

where D′′ is the enveloping von Neumann algebra of D, i.e., the strong closure
of D in its universal representation (see [21, 3.7.6]).

Definition 2.10. ([9, Definition 5.1]) A representation (σ, s) of a product sys-
tem (A,X) on D is called Nica-covariant if pms pks = pm∨k

s for all m,k ∈
N

n\{0}.

Remark. Fowler defines Nica-covariance for representations of non-degenerate
product systems on Hilbert spaces. Let πD : D → B(H) be the universal rep-
resentation of D. Since we defined the projections pms as elements of the en-
veloping von Neumann algebra D′′ ⊂ B(H), our definition is equivalent to the
Nica-covariance (in the sense of Fowler) of the representation (πD ◦σ, πD ◦ s)
of (A,X) on the Hilbert space H. Moreover, Fowler shows in [9, Propo-
sition 5.6] that for non-degenerate compactly-aligned product systems, the
Nica-covariance is equivalent to ψm

s (S)ψk
s (T ) = ψm∨k

s (S ∨ T ) for all nonzero
m,k ∈ N

n and for all S ∈ K(Xm), T ∈ K(Xk). However, he never uses
the non-degeneracy assumption in the proof, so this fact holds for all com-
pactly aligned product systems and applies to our definition. For the sake of
completeness, we include a proof of this fact here.

Proposition 2.11. ([9, Proposition 5.6]) A representation (σ, s) is Nica-
covariant in the sense of Definition 2.10 if and only if ψm

s (S)ψk
s (T ) = ψm∨k

s (S∨
T ) for all nonzero m,k ∈ N

n and for all S ∈ K(Xm), T ∈ K(Xk).

Proof. Suppose that (σ, s) is Nica-covariant. For S and T as in the statement,
we have

ψm
s (S)ψk

s (T ) = ψm
s (S)pms pks ψk

s (T ) = ψm
s (S)pm∨k

s ψk
s (T )

= w*-lim
λ∈Λ

ψm
s (S)ψm∨k(km∨k

λ )ψk
s (T )

= w*-lim
λ∈Λ

ψm∨k
s (ιm∨k

m (S)km∨k
λ ιm∨k

k (T )) = ψm∨k
s (S ∨ T ).

This proves the “only if” direction.
Conversely, suppose that ψm

s (S)ψk
s (T ) = ψm∨k

s (S ∨ T ) for all nonzero
m,k ∈ N

n and for all S ∈ K(Xm), T ∈ K(Xk). We have

pms pks = w*-lim
λ∈Λ

ψm
s (km

λ )ψk
s (kk

λ) = w*-lim
λ∈Λ

ψm∨k
s (km

λ ∨ kk
λ),
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where in the first equality we have used that the multiplication is jointly
strongly continuous on bounded sets by [2, I.3.2.1]. It is easy to see that
km

λ ∨kk
λ is an approximate identity for K(Xm∨k), so we conclude that pms pks =

pm∨k
s and the representation is Nica-covariant. �

The Nica-Toeplitz algebra NT (X) is the universal algebra generated
by A and X with respect to Nica-covariant representations. Fowler proved
its existence in [9, Theorem 6.3]. The representation (τX , tX) of (A,X) on
NT (X) is then the universal Nica-covariant representation: if (σ, s) is another
Nica-covariant representation, then there is a unique homomorphism σ ×0

s : NT (X) → D such that (σ, s) = ((σ ×0 s) ◦ τX , (σ ×0 s) ◦ tX).
We introduce two more families of projections. For F ∈ F, we define

QF
s =

∏

i∈F

(1 − p1i
s ),

PF
s =

∏

i∈F

(1 − p1i
s )

∏

i/∈F

p1i
s = QF

s

∏

i/∈F

p1i
s .

Here, we mean Q∅
s = 1 by the empty product.

Lemma 2.12. Let (σ, s) be a Nica-covariant representation of a product sys-
tem (A,X) on D. Then, the projections introduced above have the following
properties. Let m ∈ N

n \ {0} and F ∈ F be arbitrary.

(1) Elements of σ(A) commute with pms , QF
s and PF

s . Additionally, for all
a ∈ (ϕm)−1(K(Xm)), we have σ(a)pms = pms σ(a) = ψm

s (ϕm(a)) ∈ D.
(2) The equality pms sm(x) = sm(x) holds for all x ∈ Xm. If p ∈ D′′ is some

other projection with this property, then p ≥ pms .
(3) For all x ∈ Xm, we have p1i

s sm(x) = sm(x)p1i
s if i �∈ suppm and

p1i
s sm(x) = sm(x) otherwise.

(4) For all F,G ∈ F and x ∈ Xm, we have

PF
s sm(x)PG

s =

{

sm(x)PG
s if F = G \ suppm,

0 otherwise.

(5) For a homomorphism f : D → D2, we have f(pms ) = pmf◦s, f(QF
s ) =

QF
f◦s, and f(PF

s ) = PF
f◦s. In particular, f ◦ (σ, s) is a Nica-covariant

representation.

Proof. We may assume that the algebra A is unital. Indeed, if A is not unital,
then the product system structure on X can be lifted to the unitization
A+ by letting the attached unit to act as identity on both left and right.
Then, the representation σ of A lifts uniquely to a representation σ+ of A+,
and it is easy to see that (σ+, s) is a representation of the product system
(A+,X). Moreover, all the projections ps, Qs, and Ps do not change, since
their definition only involves the map s, which stays the same.

To prove (1), suppose that A is unital so that it is a linear span of
unitary elements. Consider an arbitrary unitary element u ∈ A. Then, we
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have

σ(u)pms = σ(u)pms σ(u)∗σ(u) = w*-lim
λ∈Λ

σ(u)ψm
s (km

λ )σ(u)∗σ(u) =

= w*-lim
λ∈Λ

ψm
s (ϕm(u)km

λ ϕm(u∗))σ(u).

Since u is unitary, the net ϕm(u)km
λ ϕm(u∗) is also a c.a.i. for K(Xm). There-

fore, the right-hand side of the above equation equals pms σ(u). We conclude
that σ(A) commutes with pms and hence with QF

s and PF
s .

Let a be an element of (ϕm)−1(K(Xm)). Then, we have

σ(a)pms = w*-lim
λ∈Λ

σ(a)ψm
s (km

λ ) = w*-lim
λ∈Λ

ψm
s (ϕm(a)km

λ ) = ψm
s (ϕm(a)),

where the last equality follows from the definition of approximate identity.
This is the second part of (1).

To prove (2), consider an arbitrary x ∈ Xm. Then, we have

pms sm(x) = w*-lim
λ∈Λ

ψm
s (km

λ )sm(x) = w*-lim
λ∈Λ

sm(km
λ x) = sm(x).

Suppose that p is some other projection with this property. Observe that each
ψm

s (km
λ ) lies in the closed linear span of elements of the form s(x)s(y)∗ for

x, y ∈ Xm. Therefore, we have pψm
s (km

λ ) = ψm
s (km

λ ) and hence ppms = pms .
The latter means p ≥ pms by definition.

Let us now prove (3). We have p1i
s sm(x) = p1i

s pms sm(x) = p1i∨m
s sm(x).

If i ∈ suppm, then 1i ∨ m = m and the above equation gives p1i
s sm(x) =

sm(x). If i /∈ suppm, then 1i ∨ m = m + 1i. Let y, z ∈ X1i be arbitrary.
Then, we have

pm+1i
s sm(x)ψ1i

s (θy,z) = pm+1i
s sm(x)s1i(y)s1i(z)∗

= pm+1ism+1i(x · y)s1i(z)∗ = sm+1i(x · y)s1i(z)∗ = sm(x)ψ1i
s (θy,z).

By linearity and continuity, it follows that p1i
s sm(x)ψ1i

s (T ) = sm(x)ψ1i
s (T )

for all T ∈ K(X1i). Therefore, we also have p1i
s sm(x)p1i

s = sm(x)p1i
s by

applying the above to T = k1i

λ and taking the limit.
Now, consider arbitrary elements y, z ∈ X1i and y′, z′ ∈ Xm. We have

y′ · y, z′ · z ∈ Xm+1i and hence

ψm+1i
s (θy′·y,z′·z)s(x) = s(y′ · y)s(z′ · z)∗s(x) = s(y′)s(y)s(z)∗s(z′)∗s(x)

= s(y′)ψ1i
s (θy,z)σ(〈z′, x〉) = s(y′)ψ1i

s (θy,zϕ
1i(〈z′, x〉)) ∈ s(y′)ψ1i

s (K(X1i)).

Since p1i
s fixes ψ1i

s (K(X1i)) with right multiplication, the inclusion implies
that for any T ∈ K(Xm+1i) we have ψm+1i

s (T )s(x)p1i
s = ψm+1i

s (T )s(x).
Again, we get p1i

s s(x)p1i
s = pm+1i

s s(x)p1i
s = s(x)p1i

s by applying the above to
T = km+1i

λ and taking the limit. This, together with the previous paragraph,
gives p1i

s sm(x) = sm(x).
We can prove (4) by expanding

PF
s sm(x)PG

s =
∏

i∈F

(1 − p1i
s )

∏

i/∈F

p1i
s sm(x)

∏

i∈G

(1 − p1i
s )

∏

i/∈G

p1i
s .
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If there is i ∈ F ∩ suppm, then the factor 1 − p1i
s annihilates sm(x) by (3)

and the above expression is zero. Otherwise, we use (3) iteratively to get

PF
s sm(x)PG

s = sm(x)
∏

i∈F

(1 − p1i
s )

∏

i∈G

(1 − p1i
s )

∏

i/∈suppm∪F

p1i
s

∏

i/∈G

p1i
s .

This is nonzero if and only if F ⊂ G and G ⊂ suppm ∪ F or, equivalently,
F = G\ suppm. When F = G \ suppm, this equals sm(x)PG

s .
Finally, (5) follows easily from the fact that ψm

f◦s = f ◦ ψm
s . This fact is

trivial for rank-one operators and hence holds in general. �

We now recall the results of Dor-On and Kakariadis [6]. Suppose that
(A,X) is a strongly compactly aligned product system. The CNP-ideals IF

X

are defined in two steps. First, we define the family of pre-CNP-ideals for
F ∈ F by

J F
X =

(

⋂

i∈F

ker ϕ1i

)⊥
∩

n
⋂

i=1

(ϕ1i)−1(K(X1i)) ⊂ A, (1)

and then we set

IF
X = J F

X ∩
⋂

m⊥1F
(Xm)−1(J F

X ). (2)

Definition 2.13. ([6, Definition 2.8]) A Nica-covariant representation (σ, s) of
(A,X) is Cuntz-Nica-Pimsner (CNP-representation) if

σ(a) · QF
s =

∑

0≤m≤1F

(−1)|m|ψm
s (ϕm(a)) = 0 for all F ∈ F and a ∈ IF

X .

By construction, we have

IF
X ⊂

n
⋂

i=1

(ϕ1i)−1(K(X1i)) =
⋂

F∈F

(ϕ1F )−1(K(X1F )),

where the last equality follows from strong compact alignment. Therefore,
the inclusion σ(IF

X) · QF
t ⊂ NT (X) holds by Lemma 2.12.(1) and these

subspaces generate a gauge-invariant ideal CIX
in NT (X). A Nica-covariant

representation (σ, s) is CNP if and only if σ×0s factors through NT (X)/CIX
.

We use the notation (ωX , oX) for the representation of (A,X) on the Cuntz-
Nica-Pimsner algebra NO(X) := NT (X)/CIX

. By the above, it is universal
with respect to CNP-representations. If (σ, s) is a CNP-representation on D,
then we denote by σ × s the induced map NO(X) → D.

In our proofs, we need the following lemma.

Lemma 2.14. Let (σ, s) be a Nica-covariant representation of (A,X) such
that σ is injective. Suppose that σ(a)QF

s = 0 holds for some element a ∈
⋂n

i=1(ϕ
1i)−1(K(X1i)) ⊂ A and F ∈ F. Then, a is an element of IF .

Proof. The proof of [6, Proposition 3.4] uses only the assumptions on a from
the lemma. Therefore, it applies to this situation, and we conclude that a ∈
IF . �
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Proposition 2.15. (Gauge-invariant uniqueness theorem, [6, Theorem 4.2])
Suppose that (σ, s) is a CNP-representation of (A,X). The map σ × s is a
faithful representation of NO(X) if and only if σ is faithful and (σ, s) admits
a gauge action.

Proposition 2.16. (Co-universal property, [6, Corollary 4.7]) Let (σ, s) be a
Nica-covariant representation of (A,X) on D such that it admits a gauge
action, σ is faithful, and σ×0s is surjective. Then, there is a unique surjective
homomorphism Ωσ,s : D → NO(X) such that (ωX , oX) = Ωσ,s ◦ (σ, s).

The co-universal property was proven in increasing levels of generality
for product systems over more general classes of semigroups in [5,7,25].

3. Invariant Ideals

In this section we determine ideals of a base algebra coming from the CNP-
algebra. All the definitions and results of this section are a direct generaliza-
tion of Katsura’s results in [13, Sect. 4].

Consider a strongly compactly aligned N
n-product system (B, Y ). Let

(ω, o) be the representation of (B, Y ) on the CNP-algebra NO(Y ). We use
I(B) to denote the set of all ideals of B, and I

γ(NO(Y )) to denote the set of all
gauge-invariant ideals of NO(Y ). We define the restriction −r : I

γ(NO(Y )) →
I(B) and induction −i : I(B) → I

γ(NO(Y )) maps by

Jr = ω−1(J) and Ii = NO(Y )ω(I)NO(Y )

for J ∈ I
γ(NO(Y )) and I ∈ I(B) (see [10, Sect. 3] for more properties of

these maps).

Definition 3.1. An ideal I ∈ I(B) is said to be Y -invariant if it can be ex-
pressed as I = Jr for some J ∈ I

γ(NO(Y )). If such an ideal J is unique, I
is called Y -separating. When the context is clear, we simply use the terms
invariant and separating instead of Y -invariant and Y -separating. We denote
the sets of separating and invariant ideals by I

s
Y (B) ⊂ I

i
Y (B) ⊂ I(B).

Our goal is to characterize the sets I
s
Y (B) and I

i
Y (B).

Definition 3.2. An ideal I ⊂ B is called positively Y -invariant if IY 1i ⊂ Y 1iI
for all i ∈ [n].

From positive invariance, it automatically follows that IY m ⊂ Y mI for
all m ∈ N

n. It is easy to see that in the rank one case, Definition 3.2 coincides
with Katsura’s definition of positive invariance [13, Definition 4.8].

Proposition 3.3. An invariant ideal I ∈ I
i
Y (B) is positively invariant.

Proof. Let J ∈ I
γ(NO(Y )) be such that I = Jr. Consider the quotient

representation (σ, s) = ([−]J ◦ ω, [−]J ◦ o) of (B, Y ) on NO(Y )/J . Observe
that the kernel of σ is I. Then, for all i ∈ [n], x, y ∈ Y 1i , and b ∈ I, we have

0 = s(x)∗σ(b)s(y) = σ(〈x, b · y〉).
Hence, we have 〈x, b · y〉 ∈ I. We obtain IY 1i ⊂ Y 1iI by Lemma 2.4. We
conclude that I is positively invariant. �
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Proposition 3.4. Let I ⊂ B be a positively invariant ideal. The left action
of B on Y m descends to an action of BI = B/I on Y m

I . This turns YI =
(Y m

I )m∈Nn into a strongly compactly aligned N
n-product system over BI .

Proof. Consider an arbitrary element b ∈ I. Then, ϕm
Y (b)Y m ⊂ Y mI for all

m ∈ N
n. Hence, we have [ϕm

Y (b)]I = 0 by Lemma 2.3. Therefore, I is in
the kernel of the map [−]I ◦ ϕm

Y : B → L(Y m
I ), so that it descends to a map

ϕm
YI

: BI → L(Y m
I ). This proves the first claim.

We now show that YI is a product system. For any m,k ∈ N
n\{0},

where a unitary multiplication map μ = μm,k
Y : Y m ⊗B Y k → Y m+k. The

map μ ⊗ idBI
: Y m ⊗B Y k

I = Y m ⊗B Y k ⊗B BI → Y m+k
I is also unitary.

Moreover, we have Y mI ⊗B Y k = Y m ⊗B IY k ⊂ Y m ⊗B Y kI, so that
Y mI ⊗B Y k ⊗B BI = 0 and hence Y m ⊗B Y k

I
∼= Y m

I ⊗BI
Y k

I as B-BI -
correspondences. Therefore, μ ⊗ idBI

defines a unitary multiplication map
μm,k

YI
: Y m

I ⊗BI
Y k

I → Y m+k
I . This map is given by μm,k

YI
([x]I ⊗ [y]I) = [μ(x⊗

y)]I . The associativity of the multiplication is trivial from this formula and
the associativity of μ.

We now use Lemma 2.3 to show that YI is strongly compactly aligned.
Let S ∈ K(Y m

I ) and T ∈ K(Y k
I ). Then, we may find S′ ∈ K(Y m) and

T ′ ∈ K(Y k) such that S = [S′]I and T = [T ′]I . Then, we have S ∨ T =
[S′ ∨ T ′]I ∈ K(Y m∨k

I ). This proves that YI is compactly aligned.
Analogously, for strong compact alignment we consider T ∈ K(Y m

I )
and choose its preimage T ′ ∈ K(Y m). Then, for all i /∈ suppm, we have
ιm+1i
m (T ) = [ιm+1i

m (T ′)]I ∈ K(Y m+1i

I ). We conclude that YI is a strongly
compactly aligned N

n-product system over BI . �

Consider a representation (σ, s) of (BI , YI). The pair (σ ◦ [−]I , s ◦ [−]I)
forms a representation of (B, Y ).

Proposition 3.5. The mapping (σ, s) �→ (σ ◦ [−]I , s ◦ [−]I) defines a bijection
between the set of representations of (BI , YI) and the set of representations
(σ′, s′) of (B, Y ) with kernel of σ′ containing I. Moreover, the following state-
ments hold:
(1) The representation (σ, s) admits a gauge action if and only if (σ◦[−]I , s◦

[−]I) does.
(2) For all T ∈ K(Y m), we have ψs◦[−]I (T ) = ψs([T ]I). Therefore, the

equalities pms◦[−]I
= pms , QF

s◦[−]I
= QF

s and PF
s◦[−]I

= PF
s hold.

(3) The representation (σ, s) is Nica-covariant if and only if (σ◦[−]I , s◦[−]I)
is.

Proof. Obviously, the kernel of π ◦ [−]I contains I. Conversely, let (σ′, s′) be
a representation of (B, Y ) with kernel containing I. Then, σ′ and s′ descend
to maps σ′

I and s′
I on BI and YI , respectively. It is routine check that the

resulting pair (σ′
I , s

′
I) is a representation of (BI , YI).

The first statement is trivial. It is enough to prove the second statement
for a rank-one operator T = θx,y, where x, y ∈ Y m. We have ψσ◦[−]I (T ) =
s([x]I)s([y]I)∗ = ψs(θ[x]I ,[y]I ) = ψs([T ]I). If (km

λ )λ∈Λ is a c.a.i. for Y m, then
([km

λ ]I)λ∈Λ is a c.a.i. for Y m
I . Hence, pms◦[−]I

= pms for all m ∈ N
n and the
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equalities for Q and P follow from the definitions. The third statement follows
immediately from the second one. �

We use (ωYI
, oYI

) to denote the universal CNP-representation of (BI , YI)
on NO(YI).

Lemma 3.6. A positively invariant ideal I ⊂ B is invariant if and only if
(ωYI

◦ [−]I , oYI
◦ [−]I) is a CNP-representation of (B, Y ).

Proof. Suppose that I is invariant. Then, there exists a gauge-invariant ideal
J ∈ I

γ(NO(Y )) such that I = Jr. By Proposition 3.5, the quotient repre-
sentation (σ, s) of (B, Y ) on NO(Y )/J descends to a faithful representation
(σI , sI) of (BI , YI) on NO(Y )/J . By the co-universal property (Proposi-
tion 2.16) of NO(YI), this representation defines a canonical epimorphism
NO(Y )/J → NO(YI). Together with the quotient map NO(Y ) → NO(Y )/J ,
this induces a factorization of (ωYI

◦[−]I , oYI
◦[−]I) through (ω, o). Since (ω, o)

is a CNP-representation, we conclude that (ωYI
◦ [−]I , oYI

◦ [−]I) is also a
CNP-representation of (B, Y ).

(B, Y ) NO(Y )

(BI , YI) NO(Y )/J

NO(YI)

[−]I

(ω,o)

(σ,s)

(ωYI
◦[−]I ,oYI

◦[−]I)

(ωYI
,oYI

)

(σI ,sI)

Conversely, suppose that (ωYI
◦ [−]I , oYI

◦ [−]I) is a CNP-representation
of (B, Y ). Since it admits a gauge action, the representation induces a gauge-
invariant homomorphism NO(Y ) → NO(YI). Then, the kernel J of this
epimorphism is a gauge-invariant ideal of B such that I = Jr. Hence, I is
invariant. �

We define ideals

Li
I = (Y 1i)−1(I) = {b ∈ B : bY 1i ⊂ Y 1iI},

and LF
I =

⋂

i∈F Li
I .

Definition 3.7. An ideal I ⊂ B is called negatively invariant if LF
I ∩ IF

Y ⊂ I
for all F ∈ F.

Again, in the rank one case, Definition 3.7 transforms to just Y −1(I) ∩
I{1}

Y ⊂ I, which is the definition of a negatively invariant ideal in [13, Defi-
nition 4.8].

Lemma 3.8. Let J F
YI

and IF
YI

be the (pre)-CNP-ideals defined in (1) and (2)
corresponding to (BI , YI). Then,

[−]−1
I (J F

YI
) = {b ∈ B : [ϕ1i

Y (b)]I ∈ K(Y 1i

I ) for all i ∈ [n] and bLF
I ⊂ I},
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and

[−]−1
I (IF

YI
) = {b ∈ [−]−1

I (J F
YI

) : bY m ⊂ Y m([−]−1
I (J F

YI
)) for all m ⊥ 1F }.

Consequently, [IF
Y ]I ⊂ IF

YI
for all F ∈ F if and only if I is negatively invari-

ant.

Proof. Firstly, observe that [Li
I ]I = ker ϕ1i

YI
. Indeed, [b]I is in the kernel if and

only if bY 1i ⊂ Y 1iI. Analogously, [b]I ⊥
⋂

i∈F ker ϕ1i

YI
if and only if bLF

I ⊂ I.
The expression for [−]−1

I (J F
YI

) then follows from the definition of J F
YI

.
An element b ∈ [−]−1

I (J F
YI

) is in [−]−1
I (IF

YI
) if and only if [b]IY m

I ⊂
Y m

I J F
YI

for all m ⊥ 1F . This is equivalent to bY m ⊂ Y m([−]−1
I (J F

YI
) + I) =

Y m([−]−1
I (J F

YI
)). The last equality follows from the fact that I = [−]−1

I (0) ⊂
[−]−1

I (J F
YI

). This proves the expression for the preimage of IF
YI

.
Now, consider an arbitrary b ∈ IF

Y . Then, the condition [ϕ1i

Y (b)]I ∈
K(Y 1i

I ) is always satisfied. Observe that since IF
Y Y m ⊂ Y mIF

Y for all m ⊥
1F , we have [IF

Y ]I ⊂ IF
YI

if and only if [IF
Y ]I ⊂ J F

YI
. Therefore, [IF

Y ]I ⊂ IF
YI

if and only if bLF
I ⊂ I for all b ∈ IF

Y or, equivalently, IF
Y LF

I = LF
I ∩ IF

Y ⊂ I,
which is exactly the definition of negative invariance. This proves the second
statement. �
Theorem 3.9. An ideal I ⊂ B is invariant if and only if it is positively in-
variant and negatively invariant.

Proof. Suppose that I is invariant. Then, I is positively invariant by Propo-
sition 3.5 and (ωYI

◦ [−]I , oYI
◦ [−]I) is a CNP-representation of (B, Y ) by

Lemma 3.6. To prove that I is negatively invariant, by Lemma 3.8, it suffices
to show that [IF

Y ]I ⊂ IF
YI

for all F ∈ F.
Let b ∈ IF

Y be arbitrary. Since (ωYI
◦ [−]I , oYI

◦ [−]I) is a CNP-
representation, we have ωYi

([b]I)QF
oYI

◦[−]I
= 0. By Proposition 3.5, we have

QF
oYI

◦[−]I
= QF

oYI
. Hence, we have ωYi

([b]I)QF
oYI

= 0. Since b ∈ IF
Y ⊂

⋂n
i=1(ϕ

1i)−1(K(X1i)) by definition, we can apply Lemma 2.14 and get [b]I ∈
IF

YI
. We conclude that [IF

Y ]I ⊂ IF
YI

and thus I is negatively invariant.
Conversely, suppose that I is positively and negatively invariant. Then,

by Lemma 3.8, [IF
Y ]I ⊂ IF

YI
for all F ∈ F. This implies that any b ∈ IF

Y

satisfies the equation

ωYI
([b]I)QF

oYI
= ωYI

([b]I)QF
oYI

◦[−]I
= 0.

Hence, (ωYI
◦[−]I , oYI

◦[−]I) is a CNP-representation of (B, Y ). By Lemma 3.6,
I is invariant. �
Proposition 3.10. Let I ⊂ B be a positively invariant ideal. Suppose that
[IF

Y ]I = IF
YI

for all F ∈ F. Then, I is separating.

Proof. By Lemma 3.8, [IF
Y ]I = IF

YI
⊂ IF

YI
implies that I is negatively invari-

ant and, hence, invariant. Therefore, there is an ideal J ∈ I
γ(NO(Y )) such

that I = Jr. Let Jmin be the intersection of all such ideals. Then, Jmin is
gauge-invariant, Jr

min = I and Jmin is the minimal ideal with these proper-
ties.
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Let F ∈ F and a ∈ IF
YI

be an arbitrary element. By assumption, there
exists â ∈ IF

Y such that [â]I = a. Therefore, we have

0 = [ωY (â)QF
oY

]Jmin = ω′(a)QF
o′ ∈ NO(Y )/Jmin,

where (ω′, o′) is the representation of (BI , YI) on NO(Y )/Jmin induced by
(ωY , oY ). Since F and a were arbitrary, we conclude that (ω′, o′) is a CNP-
representation of (BI , YI). Since it is injective and gauge-invariant, it induces
an isomorphism NO(Y )/Jmin

∼= NO(BI).
Suppose that J ∈ I

γ(NO(Y )) is some other ideal such that I = Jr.
Then, the representation of (BI , YI) on NO(Y )/J ∼= (NO(Y )/Jmin)/(J/Jmin)
is also injective and gauge-invariant. By the GIUT, we conclude that J/Jmin =
0 or J = Jmin. Hence, I is separating. �

Corollary 3.11. Let (B, Y ) be a regular (proper and injective) N
n-product sys-

tem. Then, any invariant ideal I ⊂ B is separating. Consequently, I �→ Ii is
a bijection I

i
Y (B) → I

γ(NO(Y )).

Proof. Since Y is regular, we have IF
Y = B for all F ∈ F. Let I ⊂ B

be an invariant ideal. Then, I is negatively invariant and by Lemma 3.8,
BI = [IF

Y ]I ⊂ IF
YI

for all F ∈ F. Hence, we have [IF
Y ]I = IF

YI
for all

F ∈ F and by Proposition 3.10, I is separating. The rest of the proof is
straightforward. �

Remark. In case of regular N
n-product systems, the set of invariant ideals has

a particularly nice description: an ideal I ⊂ B is invariant (and separating)
if and only if I = (Y 1i)−1(I) for all i ∈ [n].

4. Gauge-Invariant Ideals

Let (A,X) be a proper product system of rank n. This means that the left
action of A is given by homomorphisms ϕm : A ↪→ K(Xm). Such a system is
always strongly compactly aligned. We denote by (τ, t) the representation of
(A,X) on NT (X).

4.1. Invariant Families, T-Families, and O-Families of Ideals

Definition 4.1. A collection K = {KF }F∈F of ideals of A is an invariant
family if it satisfies the condition

KG = (X1i)−1(KG ∩ KG∪{i})

for all G ∈ F and i ∈ [n]\G. We define a partial order on invariant families
by setting K1 � K2 if KF

1 ⊂ KF
2 for all F ∈ F.

Invariant families are closely related to invariant ideals as shown in
Proposition 4.8.

Definition 4.2. A collection I = {IF }F∈F of ideals of A is a T-family if it
satisfies the condition

IF = (X1i)−1(IF ) ∩ IF∪{i}



IEOT Ideal structure of Nica-Toeplitz algebras Page 17 of 33    12 

for all F ∈ F and i ∈ [n]\F . We define a partial order on the set of T-families
by setting I1 � I2 if IF

1 ⊂ IF
2 for all F ∈ F. A T-family I is called an O-family

if I � I.

It is easy to see that in the case n = 1, the notions of T-families and
O-families coincide with Katsura’s T-pairs and O-pairs [13].

For an invariant family K we define a family IK by IF
K :=

⋂

G⊃F KG.
Analogously, for a T-family I we define a family KI by

KF
I := (X1−1F )−1(IF ).

Here and in the following, by (X0)−1 we mean the identity map on the ideals
of A.

Lemma 4.3. Let I be a T-family and K be an invariant family. Let F ⊂ H
be finite subsets of [n]. Then, we have

(1)
⋂

G,H⊃G⊃F

(X1H−1G)−1(IG) = IF ;

(2)

(X1H−1F )−1

⎛

⎝

⋂

G,H⊃G⊃F

KG

⎞

⎠ = KF .

Proof. We prove both statements simultaneously by induction on k = |H| −
|F |. If k = 0, then H = G and the statements are trivial.

Suppose that k > 0 and the statements hold for all H ′ with |H ′|−|F | <
k. Let i be any element in H\F and let H ′ = H\{i}. For any G ⊂ H ′, we
have

(X1H−1G)−1(IG) = (X1H′ −1G)−1((X1i)−1(IG)),

by Lemma 2.6. Additionally, we have 1H − 1G∪{i} = 1H′ − 1G and

(X1H−1G)−1(IG) ∩ (X1H−1G∪{i})−1(IG∪{i})

= (X1H′ −1G)−1((X1i)−1(IG)) ∩ (X1H′ −1G)−1(IG∪{i})

= (X1H′ −1G)−1((X1i)−1(IG) ∩ IG∪{i}) = (X1H′−1G)−1(IG).

Here, we used Lemma 2.6 in the first equality and Lemma 2.5 in the second
one. Applying induction hypothesis yields

⋂

G,H⊃G⊃F

(X1H−1G)−1(IG)

=
⋂

G,H′⊃G⊃F

(X1H−1G)−1(IG) ∩ (X1H−1G∪{i})−1(IG∪{i})

=
⋂

G,H′⊃G⊃F

(X1H′ −1G)−1(IG) = IF .
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The induction step for the second statement can be deduced by a cal-
culation

(X1H−1F )−1

⎛

⎝

⋂

G,H⊃G⊃F

KG

⎞

⎠

= (X1H′−1F )

⎛

⎝

⋂

G,H′⊃G⊃F

(X1i)−1(KG ∩ KG∪{i})

⎞

⎠

= (X1H′−1F )−1

⎛

⎝

⋂

G,H′⊃G⊃F

KG

⎞

⎠ = KF . �

Proposition 4.4. The maps K �→ IK and I �→ KI are mutually inverse order-
preserving bijections between the set of invariant families and the set of T-
families.

Proof. We first show that IK is a T-family. First, we compute

(X1i)−1
(

IF
K

)

= (X1i)−1

(

⋂

G⊃F

KG

)

=
⋂

G⊃F,i/∈G

(X1i)−1(KG ∩ KG∪{i}) =
⋂

G⊃F,i/∈G

KG

and

(X1i)−1(IF
K) ∩ I

F∪{i}
K =

⋂

G⊃F,i/∈G

KG ∩
⋂

G⊃F∪{i}
KG =

⋂

G⊃F

KG = IF
K .

Now, we show that KI is an invariant family. For all i /∈ G, we have

(X1i)−1(KG
I ∩ KG∪{i})

= (X1i)−1((X1−1G)−1(IG) ∩ (X1−1G∪{i})−1(IG∪{i}))

= (X1−1G)−1
(

(X1i)−1(IG) ∩ IG∪{i}
)

= (X1−1G)−1(IG) = KG
I .

Here, the second equality follows from Lemma 2.6.
Our next goal is to show that IKI

= I. Indeed, we have

IF
KI

=
⋂

G⊃F

(X1−1G)−1(IG),

which is equal to I by the special case H = [n] of Lemma 4.3.
Finally, we show that KIK = K. Analogously, we have

KF
IK = (X1−1F )−1

(

⋂

G⊃F

KG

)

= KF

by Lemma 4.3. This completes the proof. �
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4.2. Extended Product System

Let K be an invariant family. Define a C∗-algebra AK :=
⊕

F∈F A/KF to-
gether with a diagonal morphism ΔK : A → AK given by ΔK(a) = ([a]KF )F∈F.
Consider the induced Hilbert AK-modules

Xm
K := Xm ⊗A AK

∼=
⊕

F∈F

Xm
KF .

The last isomorphism follows from Lemma 2.1.

Notation. In the following, we will frequently face the situation when we have
some vector space V and a family of subspaces WF ⊂ V indexed by F ∈ F.
We use bold letters like v for elements of V W =

⊕

F∈F V/WF . For v ∈ V W ,
we denote by vF ∈ V/WF the component of v corresponding to F . For an
element v ∈ V/WF , we denote by v̂ an arbitrary lift of v to V .

Suppose that there are subspaces UF ⊂ V/WF for all F ∈ F. We denote
by U =

⊕

F∈F UF ⊂ V their direct sum. Conversely, if U ⊂ V is a subspace
of the above form, then we denote by UF its F -component.

As an example of the above notation, consider the case V = Xm and
WF = XmKF . Then, we use x,y for elements of Xm

K =
⊕

F∈F Xm
KF and x̂F

stands for an element of Xm such that [x̂F ]KF is the F -component of X.
We would like to define a left action of AK on XK to obtain a product

system (AK ,XK). By Lemma 2.1, we have K(Xm
K ) =

⊕

F∈F K(Xm
KF ) =

⊕

F∈F K(Xm)/K(XmKF ).

Lemma 4.5. Let F ∈ F and m ∈ N
n. We have ϕm(KF\ suppm) ⊂ K(XmKF )

and, hence, the expression

b �→ [ϕm(b̂)]KF ∈ K(Xm
KF )

is well-defined for any b = [b̂]KF\ suppm ∈ A/KF\ suppm. It defines a homo-
morphism A/KF\suppm → K(Xm

KF ).

Proof. The inclusion ϕm(KF\ suppm) ⊂ K(XmKF ) is equivalent to the in-
clusion KF\ suppmXm ⊂ XmKF and to (Xm)−1(KF ) ⊃ KF\ suppm. We will
show this by induction on |m|. Suppose that m = 1i for some i ∈ [n]. Let us
prove that (X1i)−1(KF ) ⊃ KF\{i}. Indeed, if i ∈ F , then (X1i)−1(KF ) ⊃
(X1i)−1(KF ∩ KF\{i}) = KF\{i} by the definition of invariant family. Anal-
ogously, if i /∈ F , then (X1i)−1(KF ) ⊃ (X1i)−1(KF ∩ KF∪{i}) = KF =
KF\{i}. This shows the base of induction.

For induction step, write Xm = Xm−1i ⊗A X1i for some i ∈ suppm.
Then, we have

(Xm)−1(KF ) = (Xm−1i)−1((X1i)−1(KF )) ⊃ (Xm−1i)−1(KF\{i}) ⊃
⊃ K(F\{i})\supp(m−1i) = KF\suppm.

Here we used Lemma 2.6 and the induction hypothesis twice. We have proved
the first claim.

Now, the proved inclusion implies that the kernel of the homomorphism
[−]KF ◦ ϕm : A → K(Xm) contains KF\ suppm. Therefore, it descends to a
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homomorphism A/KF\ suppm → K(Xm
KF ) given by the formula in the state-

ment. �

Proposition 4.6. For any invariant family K there is a proper product system
(AK ,XK) with a left action of AK given componentwise by

ϕm
K (a)F = [ϕm(âF\suppm)]KF for all a ∈ AK , and F ∈ F.

That is, the left action on the F -component is given by the action of the
F \ suppm-component.

Proof. We know by Lemma 4.5 that the formula in the statement gives a well-
defined homomorphism ϕm

K : AK → K(Xm
K ). Hence, it defines a left action of

AK on Xm
K .

Let us analyze the tensor product Xk
K ⊗AK

Xm
K for k,m ∈ N

n. By
Lemma 2.7, we have

(Xk
K ⊗AK

Xm
K )F =

⊕

G∈F

Xk
KG ⊗AKG

Xm
KF = Xk

KF\suppm ⊗A
KF\suppm

Xm
KF .

The last equality follow from the fact that AKG acts by zero on Xm
KF unless

G = F \ suppm. Now, define a multiplication map (Xk
K ⊗AK

Xm
K )F =

Xk
KF\ suppm ⊗A

KF\ suppm
Xm

KF → (Xk+m
K )F = Xk+m

KF by the formula

x · y = [x̂ · ŷ]KF

for x ∈ Xk
KF\ suppm and y ∈ Xm

KF . It is well-defined by Lemma 4.5. Moreover,
it is unitary since it is induced by the unitary multiplication Xm ⊗A Xk →
Xm+k. This defines multiplication isomorphism of Hilbert AK-modules Xk

K

⊗AK
Xm

K
∼= Xk+m

K . It is also easy to see that the isomorphism is compatible
with the left actions of AK . This shows that (AK ,XK) is a product system,
which is proper by definition. �

Remark. The construction of the product system (AK ,XK) above is inspired
by Katsura’s [13, Definition 6.1]. However, it is different from Katsura’s ex-
tended product system even for rank 1 product systems and his construc-
tion does not have a straightforward generalization to the higher rank case.
Katsura works solely with T-pairs of ideals, while the equivalent picture of
invariant families turns out to be more useful for the higher rank case. The
extended product system is our main tool for the definition of relative CNP-
algebras and classification of gauge-invariant ideals.

Our next goal is to compute the CNP-ideals IK of (AK ,XK). We have

ker ϕ1i

K = {a ∈ AK : [ϕ1i(âF\{i})]KF = 0 for all F ∈ F}.

Therefore, for any a ∈ ker ϕ1i

K , there is no condition on aG with i ∈ G and
there are two conditions for aG with i /∈ G. These conditions are [ϕ1i(aG)]KG =
0 and [ϕ1i(aG)]KG∪{i} = 0. They can be rewritten as âGX1i ⊂ X1i(KG ∩
KG∪{i}). In its turn, this is equivalent to âG ∈ (X1i)−1(KG∩KG∪{i}) = KG.
Therefore, we have âG ∈ KG and hence aG = 0. Finally, we obtain

ker ϕ1i

K = {a ∈ AK : aG = 0 for all G ∈ F with i /∈ G}
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and
⋂

i∈F

ker ϕ1i

K = {a ∈ AK : aG = 0 for all G ∈ F with F �⊂ G}

for any F ∈ F.

Lemma 4.7. For any F ∈ F, we have

IF
K = J F

K = {a ∈ AK : aG = 0 for all G ∈ F with F ⊂ G}.

Proof. Since the product system is proper, we have

J F
K =

(

⋂

i∈F

ker ϕ1i

K

)⊥
= {a ∈ AK : aG = 0 for all G ∈ F with F ⊂ G}.

To prove the equality IF
K = J F

K , it is enough to show that J F
KX1i

K ⊂ X1i

K J F
K

for any i /∈ F . Indeed, in this case we have (X1i)−1(J F
K ) ⊃ J F

K for all i /∈ F
and hence (Xm)−1(J F

K ) ⊃ J F
K for all m ⊥ 1F by Lemma 2.6. Then, the

formula (2) implies IF
K = J F

K .
Let a ∈ J F

K and x ∈ X1i

K be arbitrary. Then, we have

(a · x)G = aG\{i} · xG for all G ∈ F.

This equals zero if F ⊂ G \ {i}, which is equivalent to F ⊂ G since i /∈ F .
Therefore, we have

J F
KX1i

K ⊂ {x ∈ X1i

K : xG = 0 for all G ∈ F with F ⊂ G} = X1i

K J F
K .

We conclude that IF
K = J F

K . �

We now classify XK-invariant ideals in AK . Since AK is a direct sum of
C∗-algebras, every ideal in AK is a direct sum of ideals in (AK)F = A/KF .
Moreover, ideals in A/KF are in bijective correspondence with ideals in A
containing KF . For a family of ideals {NF }F∈F of A with NF ⊃ KF , we
denote by N/K the ideal

⊕

F∈F NF /KF of AK .

Proposition 4.8. In the above notation, the ideal N/K of AK is invariant if
and only if N is an invariant family. There is a canonical isomorphism of
product systems ((AK)N/K , (XK)N/K) ∼= (AN ,XN ), and we identify those.
Therefore, there is an order-preserving bijection between invariant ideals in
AK and invariant families N � K. Moreover, every invariant ideal of AK

is separating.

Proof. Suppose N/K is an ideal of AK . We will find necessary and sufficient
conditions for N/K to be positively invariant and negatively invariant. Then,
we will apply Theorem 3.9 to deduce the conditions for N/K to be invariant
and compare them to the definition of invariant families.

Positive invariance. Recall that N/K is positively invariant if and only
if (N/K)X1i

K ⊂ X1i

K (N/K) for all i ∈ [n]. Component-wise, we have

((N/K)X1i

K )G = (NG\{i}/KG\{i})X1i/X1iKG

= (NG\{i}X1i)/(X1iKG ∩ NG\{i}X1i)
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and

(X1i

K (N/K))G = (X1i/X1iKG)(NG/KG) = (X1iNG/X1iKG)

for all G ∈ F. The former contains the latter if and only if NG\{i}X1i ⊂
X1iNG. Combining these conditions for G = F and G = F ∪{i}, we conclude
that N is positively invariant if and only if

NF ⊂ (X1i)−1(NF ∩ NF∪{i}) for all F ∈ F and i ∈ [n] \ F. (3)

In particular, we see that N/K is positively invariant if N is an invariant
family.

Negative invariance. We compute the ideals LF
N/K . For i ∈ [n], we have

Li
N/K = {a ∈ AK : aF\{i}X1i/X1iKF ⊂ X1iNF /X1iKF for all F ∈ F}.

The inclusion aF\{i}X1i/X1iKF ⊂ X1iNF /X1iKF is equivalent to the con-
dition âF\{i} ∈ (X1i)−1(NF ), where âF\{i} is an arbitrary lift of aF\{i} to
A. Therefore, we have

Li
N/K = {a ∈ AK : âG ∈ (X1i)−1(NG ∩ NG∪{i}) for all G ∈ F, i /∈ G},

LF
N/K = {a ∈ AK : âG ∈ (X1i)−1(NG ∩ NG∪{i}) for all G ∈ F, i ∈ F \ G},

and

LF
N/K ∩ IF

K = {a ∈ LF
N/K : âG = 0 for all G ∈ F with F ⊂ G}.

The condition for negative invariance LF
N/K ∩ IF

K ⊂ N/K is therefore equiv-
alent to

(X1i)−1(NG ∩ NG∪{i}) ⊂ NG for all G ∈ F, i ∈ F \ G.

Since this condition should hold for all F ∈ F, we conclude that N/K is
negatively invariant if and only if

(X1i)−1(NG ∩ NG∪{i}) ⊂ NG for all G ∈ F, i ∈ [n] \ G. (4)

Invariance. Combining (3) and (4), we see that N/K is invariant if and
only if

NF = (X1i)−1(NF ∩ NF∪{i}) for all F ∈ F and i ∈ [n] \ F.

This is exactly the condition for N to be an invariant family. Moreover, this
shows that there is an order-preserving bijection between the poset of invari-
ant families containing K and the lattice of invariant ideals in (AK ,XK).

Separation. Let us use Proposition 3.10 to check that N/K is separating
for any invariant family N � K. First, observe that (AK/(N/K),XK/(N/K))
is isomorphic to (AN ,XN ). By Lemma 4.7, we know exactly how the CNP-
ideals of AK and AN look like. The equality [IF

K ]N/K = IF
N/K is trivial from

the description of these ideals. �

Proposition 4.8 classifies gauge-invariant ideals in NO(XK). We will
soon see that NO(XK) is isomorphic to a certain gauge-invariant quotient
of NT (X). This is how we obtain a classification of gauge-invariant ideals in
NT (X) and NO(X).
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4.3. Relative Cuntz-Nica-Pimsner Algebra

We assume henceforth that our product systems are proper. By Lemma 2.12.(1),
for any representation (σ, s) of a proper product system (B, Y ) in a C∗-
algebra D, the elements σ(a) · pms , σ(a) · QF

s , and σ(a) · PF
s are in D for any

a ∈ B, nonzero m ∈ N
n, and F ∈ F. We will use this fact without further

elaboration.

Definition 4.9. Let I be a T-family of ideals of A. We define a gauge-invariant
ideal CI ⊂ NT (X) to be the one generated by the elements

τ(a) · QF
t =

∑

0≤m≤1F

(−1)|m|ψm
t (ϕm(a))

for all F ∈ F and a ∈ IF . We call the algebra NO(X, I) := NT (X)/CI the
I-relative Cuntz-Nica-Pimsner algebra of (A,X).

A Nica-covariant representation (σ, s) is called I-Cuntz-Nica-Pimsner-
covariant if τ(a) · QF

s = 0 for all F ∈ F and a ∈ IF . Equivalently, it is
I-relative if and only if the induced representation σ ×0 s of NT (X) factors
through NO(X, I). We denote the corresponding representation of NO(X, I)
by σ ×I s.

From the definition, it is obvious that NT (X) ∼= NO(X, 0) and NO(X) ∼=
NO(X, I), where I is the CNP-familiy of ideals from Definition 2.13. Also,
observe that CI ⊂ CI′ if I � I ′.

Lemma 4.10. The ideal CI is also the ideal generated by the elements τ(a)·PF
t

for all F ∈ F and a ∈ KF
I .

Proof. Denote by C′
I the ideal generated by the subspaces τ(KF

I ) · PF
t . We

first show that CI ⊂ C′
I . Proposition 4.4 implies

IF = IF
KI

=
⋂

G⊃F

KG.

Therefore, for any a ∈ IF and G ⊃ F , we have a ∈ KG and the element
τ(a) · PG

t is in C′
I . Thus,

a · QF
t = a ·

∑

G⊃F

PG
t =

∑

G⊃F

a · PG
t

is also an element of C′
I . We conclude that τ(IF ) ·QF

t ⊂ C′
I for all F ∈ F and,

hence, the ideal CI lies inside C′
I .

To prove the other inclusion, consider arbitrary elements a ∈ IF , x, y ∈
X1−1F . We have

t(x)τ(a)QF
t t(y)∗ = t(x)τ(a)t(y)∗QF

t = ψ1−1F
τ (θxa,y)QF

t ∈ CI .

We have used that t(y) commutes with QF
t by Lemma 2.12. Therefore, we

have an inclusion ψ1−1F
τ (K(X1−1F IF )) · QF

t ⊂ CI . By definition, we have
KF X1−1F ⊂ X1−1F IF , so ϕ1−1F (KF ) ⊂ K(X1−1F IF ). It follows that

τ(KF )PF
t = τ(KF )

∏

i/∈F

p1i
τ QF

t = ψ1−1F
τ (ϕ1−1F (KF ))

∏

i∈F

QF
t ⊂ CI

and C′
I ⊂ CI . This shows that CI = C′

I and the lemma is proved. �
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Lemma 4.10 is useful, since covariance conditions coming from invariant
families are easier to work with. We denote the representation of (A,X) on
NO(X, IK) by (ρK , rK). We extend this representation to a representation
(ρ̄K , r̄K) of (AK ,XK) on NO(X, IK) by

ρ̄K(a) =
∑

F∈F

ρK(âF ) · PF
rK

,

r̄mK (x) =
∑

F∈F

rmK (x̂F ) · PF
rK

.
(5)

Recall that we have defined in Sect. 4.2 the diagonal homomorphism
ΔK : A → AK as ΔK(a) = ([a]KF )F∈F. We use the same notation for the
diagonal map ΔK : X → XK given by ΔK(x) = ([x]KF )F∈F.

Lemma 4.11. Formula (5) defines a gauge-equivariant CNP-representation of
(AK ,XK) on NO(X, IK). Moreover, we have (ρK , rK) = (ρ̄K◦ΔK , r̄K◦ΔK).

Proof. First, we show that the formula (5) does not depend on the choice
of the lift âF . For this, it is enough to show that ρK(b) · PF

rK
= 0 for any

b ∈ KF and rmK (x) · PF
rK

= 0 for any x ∈ XmKF . The first one is trivial,
since ρK(b) · PF

rK
= [τ(b) · PF

τ ]CIK
and the latter is zero by Lemma 4.10. For

the second one, write x = y · b for some y ∈ Xm and b ∈ KF . Then, we have
rmK (x) · PF

rK
= rmK (y) · ρK(b) · PF

rK
= 0.

The map ρ̄K is a ∗-homomorphism, since the projections PF
rK

are pair-
wise orthogonal and ρK is a ∗-homomorphism. Let us check whether (ρ̄K , r̄K)
agrees with the scalar product and the right action of AK . Let a ∈ AK ,
x,y ∈ Xm

K be arbitrary. We have

r̄K(x)ρ̄K(a) =
∑

F,G∈F

rK(x̂F ) · PF
rK

· ρK(âG) · PG
rK

=
∑

F,G∈F

rK(x̂F )ρK(âG) · PF
rK

PG
rK

=
∑

F∈F

rK(x̄F · āF ) · PF
rK

= r̄K(x · a),

and

r̄K(x)∗r̄K(y) =
∑

F,G∈F

PF
rK

· rK(x̂F )∗ · rK(ŷG) · PG
rK

=
∑

F,G∈F

PF
rK

· ρK(〈x̂F , ŷG〉) · PG
rK

=
∑

F,G∈F

ρK(〈x̄F , ȳG〉) · PF
rK

· PG
rK

=
∑

F,G∈F

ρK(〈x̄F , ȳF 〉) · PF
rK

= ρ̄K(〈x,y〉).

In both cases, we used the pairwise orthogonality of the P -projections and
Lemma 2.12.(1).
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The left action of A is more involved. For arbitrary a ∈ AK , x ∈ Xm
K ,

we have

ρ̄K(a)r̄K(x) =
∑

F,G∈F

ρK(âF ) · PF
rK

· rK(x̂F ) · PG
rK

.

By Lemma 2.12.(4), we have PF
rK

·rK(x̂G)PG
rK

= rK(x̂G)PG
rK

if F = G\ supp(m)
and 0 otherwise. Therefore, r̄K is a left AK-module homomorphism. A sim-
ilar calculation shows that r̄K preserves multiplication. We conclude that
(ρ̄K , r̄K) is a representation.

To prove that it is Nica-covariant and CNP we need to determine the
projections pmr̄K

. We claim that pmr̄K
= pmrK

. Indeed, observe that

pmrK
· r̄mK (x) =

∑

F∈F

pmrK
rmK (x̂F ) · PF

rK
= r̄mK (x) for any x ∈ Xm.

By Lemma 2.12.(2), pmr̄K
is the minimal projection fixing ρK(Xm) with left

multiplication, so pmr̄K
≤ pmrK

holds. On the other hand, we have rK(Xm) ⊂
r̄K(Xm

K ), so pmr̄K
fixes rK(Xm) with left multiplication and, hence, pmrK

≤ pmr̄K
.

We conclude that pmr̄K
= pmrK

and (ρ̄K , r̄K) is Nica-covariant since (ρK , rK) is
Nica-covariant.

To prove that (ρ̄K , r̄K) is CNP, we need to show that ρ̄K(a) · QF
r̄K

=
ρ̄K(a)·QF

rK
= 0 for all a ∈ IF

K and F ∈ F. By Lemma 4.7, an element a ∈ AK

lies in IF
K if and only if aG = 0 for all G ⊃ F . Therefore, we have

ρ̄K(a) · QF
rK

=
∑

G �⊃F

ρK(âG) · PG
rK

· QF
rK

= 0.

The second equality follows from the fact that PG
rK

QF
rK

= 0 for G �⊃ F .
Indeed, we have the factor p1i

rK
in the definition of PG

rK
and an orthogonal

factor (1 − p1i
rK

) in QF
rK

for i ∈ F\G. Hence, the representation is CNP. The
last statement is trivial. �

We define maps γK := ωXK
◦ ΔK : A → NO(XK) and gmK := ωXK

◦
ΔK : Xm → NO(XK).

Lemma 4.12. The pair (γK , gK) is an IK-relative Nica-covariant representa-
tion of (A,X) on NO(XK).

Proof. It is obvious that the pair (γK , gK) forms a representation. Since
gK(Xm) · ωXK

(AK) = oXK
(Xm

K ), a projection p satisfies p · gmK (x) = gmK (x)
for all x ∈ Xm if and only if p · omXK

(x) for all x ∈ Xm. We deduce from
Lemma 2.12.(2) that pmgK

= pmoX K
for all m ∈ N

k. In particular, the repre-
sentation is Nica-covariant.

To show that it is IK-relative, it is enough to show that ΔK(IF
K) ⊂ IF

K

for all F ∈ F. Indeed, in this case we have γK(a) · QF
gK

= ωXK
(ΔK(a)) ·

QF
oX K

= 0 for all a ∈ IF
K , since (ωXK

, oXK
) is CNP.

To prove the inclusion, recall that IF
K =

⋂

G⊃F KG. Therefore, for any
element a ∈ IF

K , we have a ∈ KG and (ΔK(a))G = [a]KG = 0 for all G ⊃ F .
But this is exactly the condition that ΔK(a) ∈ IF

K by Lemma 4.7. This proves
that (γK , gK) is IK-relative. �
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Proposition 4.13. The induced map ρ̄K × r̄K : NO(XK) → NO(X, IK) is an
isomorphism with inverse map γK ×IK gK : NO(X, IK) → NO(XK). It fits
into the commutative diagram

NO(XK) NO(X, IK)

NO(XK′) NO(X, IK′)

ρ̄K×r̄K

ρ̄K′ ×r̄K′

for any invariant family K ′ � K.

Proof. The map ρ̄K × r̄K is surjective and gauge-equivariant. By the GIUT
(Proposition 2.15), it is an isomorphism if and only if ρ̄K is injective.

By Proposition 4.8, the kernel of ρ̄K is described by an invariant family
N � K, i.e., ker ρ̄K = N/K =

⊕

F∈F NF /KF ⊂ AK . Suppose that the
kernel is nontrivial, so that K is strictly contained in N . By the poset iso-
morphism between invariant families and T-families, we also have that IK is
strictly contained in IN . Hence, there is G ∈ F such that IG

K � IG
N .

Consider an arbitrary element a ∈ IG
N \IG

K . Recall that IG
N =

⋂

H⊃G NG

and IG
K =

⋂

H⊃G KG. Therefore, a ∈ NF for all F ⊃ G and there is at least
one H ⊃ G such that a /∈ KH . Define an element b ∈ AK by

bF =

{

[a]KF if F ⊃ G,

0 otherwise.

By the discussion above, b ⊂ N/K and bH �= 0 for some H ⊃ G.
We calculate

0 = ρ̄K(b) =
∑

H⊃G

ρK(a) · PH
rK

= ρK(a) · QG
rK

.

Furthermore, we have

0 = (γK ×IK gK)(ρK(a) · QG
rK

) = γK(a) · QG
gK

= ωXK
(ΔK(a)) · QG

oX K
,

which implies that ΔK(a) ∈ IG
K by Lemma 2.14. This means that ΔK(a)H =

[a]KH = 0 for all H ⊃ G. This is a contradiction, since we have showed above
that a /∈ KH for some H ⊃ G. Therefore, ρ̄K is injective and ρ̄K × r̄K is an
isomorphism.

To show that γK ×IK gK is the inverse map, it is enough to show that
ρ̄K × r̄K ◦ γK = ρK and ρ̄K × r̄K ◦ gK = rK . This is because ρK ×IK rK =
idNO(X,IK). We calculate

ρ̄K × r̄K(γK(a)) = ρ̄K × r̄K(ωXK
(ΔK(a))) = ρ̄K(ΔK(a)) = ρK(a)

for all a ∈ A. The last equality follows from Lemma 4.11. The equality for
gK is proved similarly. The commutativity of the diagram is straightforward
from the definitions. �

Compare the statements of the following corollary with Proposition 2.15.
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Corollary 4.14. (I-relative GIUT) Let (A,X) be a proper product system and
let I ⊂ A be a T-family. Suppose that (σ, s) is an I-Cuntz-Nica-Pimsner
covariant representation on the C∗-algebra D. The map σ ×I s : NO(X, I) →
D is faithful if and only if σ(a)QF

s = 0 implies a ∈ IF and (σ, s) admits a
gauge action.

Proof. By Proposition 4.13, the map σ ×I s : NO(X, I) → D is equivalent to
the CNP-representation (σ̄, s̄) = ((σ ×I s) ◦ ρ̄k, (σ ×I s) ◦ r̄K) of (AK ,XK),
where K = KI . This reduces the statement to the ordinary GIUT, stated in
Proposition 2.15. �

We are now ready for the main result of the paper.

Theorem 4.15. Let (A,X) be a proper product system. The map I �→ CI

defines an order-preserving bijection between:
(1) the set of T-families and the set of gauge-invariant ideals of NT (X);
(2) the set of O-families and the set of gauge-invariant ideals of NO(X).

Proof. We know that NT (X) = NO(X, 0). Proposition 4.13 shows that it
is then isomorphic to NO(XK0), where K0 is the smallest invariant family.
By Proposition 4.8 we know that gauge-invariant ideals of NO(XK0) are in
bijection with T-families. If K is an invariant family, then the corresponding
gauge-invariant ideal is the kernel of NO(XK0) � NO(XK). By Proposi-
tion 4.13, this surjection fits into the commutative diagram

NO(XK0) NT (X)

NO(XK) NO(X, IK)

ρ̄K0×r̄K0

[−]CIK

ρ̄K×r̄K

.

This shows that K �→ CIK is an order-preserving bijection between in-
variant families and gauge-invariant ideals of NT (X). Since K �→ IK is
an order-preserving bijection between invariant families and T-families by
Proposition 4.4, we get the first part of the theorem.

The second part follows from the fact that CI ⊂ CI if and only if I � I.
This is exactly the condition that I is an O-family. �

5. Higher-Rank Graphs

Higher-rank graphs and their C∗-algebra were introduced by Kumjian and
Pask in [14]. A graph of rank n is a countable category Γ of paths with a
degree functor d : Γ → N

n, which satisfies the factorization property: for any
path γ ∈ Γ and any element m ∈ N

n with m ≤ d(γ), there are unique
paths γ(0,m), γ(m,d(γ)) ∈ Γ such that d(γ(0,m)) = m, d(γ(m,d(γ))) =
d(γ)−m, and γ = γ(0,m)γ(m,d(γ)). We denote by s, r : Γ → Γ0 the source
and range maps, respectively.

We can associate a product system (c0(Γ0),X(Γ)) to an n-graph Γ as
follows. The base algebra c0(Γ0) is just the algebra of functions that vanish on
infinity on the discrete set of vertices Γ0. Analogously, X(Γm) is the vector
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space of functions x : Γm → C on the set of paths of degree m such that
∑

α∈Γm,s(α)=v |ξ(α)|2 < ∞ for all v ∈ Γ0. If α is a path of degree m and
v ∈ Γ0 is a vertex, then we denote by δα ∈ X(Γm) and δv ∈ c0(Γ0) the
characteristic functions of α and v, respectively.

The multiplication μm,k is given by concatenation of paths:

δα · δβ =

{

δαβ if s(α) = r(β),
0 otherwise

for all paths α ∈ Γm and β ∈ Γk. The action of c0(Γ0) is defined analogously
and the scalar product on X(Γm) is given by

〈δα, δβ〉 =

{

δs(α) if α = β,

0 otherwise

for all paths α, β ∈ Γm.
Raeburn and Sims [23] introduced a class of higher-rank graphs called

finitely aligned graphs. It was shown in [24, Theorem 5.4] that the product
system (c0(Γ0),X(Γ)) is compactly aligned if and only if Γ is finitely aligned.
In this case, the algebra C∗(Γ) of a higher-rank graph Γ can be defined as
the Cuntz-Nica-Pimsner algebra NO(X(Γ)). Sims and Yeend showed in [27,
Propsition 5.4] that this definition is equivalent to the earlier definition in
terms of Cuntz-Krieger families. Dor-On and Kakariadis defined a subclass
of strongly finitely aligned graphs in [6, Definition 7.2]. They proved that
the product system is strongly compactly aligned if and only if Γ is strongly
finitely aligned. This fact can be used to describe the higher-rank graph C∗-
algebra using simpler covariance conditions (see [6, Theorem 7.6]).

Finally, a graph Γ is called row-finite if for every vertex v ∈ Γ0 there are
only finitely many paths with range v of any given degree. It is straightforward
to show that the graph is row-finite if and only if the associated product
system is proper.

Sims classified gauge-invariant ideals of C∗(Γ) for finitely aligned graphs
in [26]. We will show how our results can be used to recover this classifica-
tion in the case of row-finite graphs. Moreover, we will give an alternative
descriptions of the ideal lattices.

From now on, assume that Γ is a row-finite graph. If V ⊂ Γ0 is a subset,
then we denote by c0(V ) the closed ideal generated by {δv : v ∈ V }. This
defines a bijection between subsets of Γ0 and ideals of c0(Γ0).

For a subset V ∈ Γ0 and m ∈ N
n, we define

(Γm)−1(V ) = {v ∈ Γ0 : ∀α ∈ Γm with r(α) = v we have s(α) ∈ V }.

In particular, (Γm)−1(∅) is the set of m-sources, i.e., the set of vertices not
receiving any path of degree m. The following equalities are trivial:

(X(Γm))−1(c0(V )) = c0((Γm)−1(V )),

ker ϕm
X(Γ) = c0((Γm)−1(∅)),

(c0(V ))⊥ = c0(Γ0 \ V ).

(6)
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We can use these formulas to describe the (pre-)CNP ideals J F and IF

of (c0(Γ0),X(Γ)). For F ∈ F(Γ), define the subset WF of Γ0 by

WF = Γ0 \
⋂

i∈F

(Γ1i)−1(∅) =

= {v ∈ Γ0 : v receives at least one edge of degree 1i for some i ∈ F}.

It is easy to see that J F = c0(WF ). We can further define subsets UF ⊂ Γ0

by

UF = WF ∩
⋂

i/∈F

(Γ1i)−1(WF ) =

= {v ∈ WF : ∀γ ∈ vΓm with m ⊥ 1F we have s(γ) ∈ WF } =

= {v ∈ Γ0 : ∀γ ∈ vΓm with m ⊥ 1F , |s(γ)Γ1i | �= 0 for some i ∈ F}.

Here, the notation vΓm means the set of paths γ with r(γ) = v and d(γ) =
m ∈ N

n. Dor-On and Kakariadis defined these sets in [6, Definition 7.5]
and called them sets of F -tracing vertices. With formulas (6) in mind, it is
straightforward that IF = c0(UF ).

We now want to describe X(Γ)-invariant ideals of C∗(Γ). For this, we
define two properties of subsets of Γ0.

Definition 5.1. Let Γ be a row-finite n-graph and V ⊂ Γ0 be a subset.
(1) We say that V is hereditary if every path with range in V has source in

V . More precisely, V is hereditary if and only if V ⊂ (Γm)−1(V ) for all
m ∈ N

n.
(2) We say that V is F-saturated if for every F -tracing vertex v ∈ V such

that for all i ∈ F and all γ ∈ vΓ1i we have s(γ) ∈ V , we have v ∈ V .

Our definition of a hereditary set coincides with the definition of Sims in
[26, Definition 3.1]. However, the notion of F-saturated sets is different from
saturated sets of Sims. We do not know if these two properties are equivalent.
The following result can shed some light on it.

Theorem 5.2. Let Γ be a row-finite n-graph and let V ⊂ Γ0 be a subset. Then
c0(V ) is positively X(Γ)-invariant if and only if V is hereditary and negatively
invariant if and only if it is F-saturated. Therefore, c0(V ) is X(Γ)-invariant
if and only if V is both hereditary and F-saturated.

Proof. By Definition 3.2, the ideal c0(V ) is positively X(Γ)-invariant if and
only if c0(V ) ⊂ (X(Γm))−1(c0(V )) for all m ∈ N

n. By (6), this is equivalent
to V ⊂ (Γm)−1(V ) for all m ∈ N

n, which is the definition of a hereditary
subset.

The ideal c0(V ) is negatively X(Γ)-invariant if and only if
⋂

i∈F

(X(Γ)1i)−1(c0(V )) ∩ IF ⊂ c0(V )

for all F ∈ F. By (6), this is equivalent to
⋂

i∈F (Γ1i)−1(V ) ∩ UF ⊂ V for all
F ∈ F. A vertex v is in

⋂

i∈F (Γ1i)−1(V ) ∩ UF if and only if it is F -tracing
and for all i ∈ F and all γ ∈ vΓ1i we have s(γ) ∈ V . Therefore, c0(V ) is
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negatively invariant if and only if every such vertex is in V , which is the
definition of an F-saturated subset.

The last statement follows from the fact that c0(V ) is X(Γ)-invariant if
and only if it is both positively and negatively invariant by
Theorem 3.9. �

Corollary 5.3. A hereditary subset V ⊂ Γ0 of row-finite n-graph Γ is F-
saturated if and only if it is saturated in the sense of Sims (see [26, Definition
3.1]).

Proof. Section 3 of [26] shows that c0(V ) is invariant if and only if V is
hereditary and saturated. On the other hand, we have just shown that c0(V )
is invariant if and only if V is hereditary and F-saturated. We conclude that
these two properties are equivalent, whenever V is hereditary. �

Remark. Theorem 5.2 and Corollary 5.3 only require results from Sect. 3. We
have only assumed there that the product systems are strongly compactly
aligned but not necessarily proper. Therefore, it is possible to extend these
results to the case of strongly finitely aligned graphs.

We now want to use the results of Sect. 4 to describe ideals in C∗(Γ) =
NO(X(Γ)) and T (Γ) := NT (X(Γ)).

Definition 5.4. A collection V = {V F }F∈F of subsets of Γ0 is called a T-
family of vertices if the following condition holds: for every F ∈ F and i ∈
[n]\F , a vertex v ∈ V F∪{i} is in V F if and only if for all γ ∈ vΓ1i we have
s(γ) ∈ V F . It is further called an O-family of vertices if UF ⊂ V F for all
F ∈ F.

A collection W = {WF }F∈F ⊂ Γ0 of vertices is called an invariant
family if WG = (Γ1i)−1(WG ∩ WG∪{i}) for all G ∈ F and i ∈ [n] \ G.

We can rewrite Definition 5.4 as follows: V = {V F }F∈F is a T-family
of vertices if and only if (Γ1i)−1(V F ) ∩ V F∪{i} = V F for all F ∈ F and
i ∈ [n]\F . This is equivalent to (X(Γ)1i)−1(c0(V F )) ∩ c0(V F∪{i}) = c0(V F )
for all F ∈ F and i ∈ [n]\F by (6), which is the definition of a T-family of
ideals. A T-family of ideals is an O-family of ideals if IF ⊂ c0(V F ) for all
F ∈ F. This is the same as UF ⊂ V F for all F ∈ F, which is the definition of
an O-family of vertices.

Therefore, a collection of vertices is a T-family (resp. O-family) if and
only if the corresponding collection of ideals is a T-family (resp. O-family).
It is also obvious that V is an invariant family of vertices if and only if
c0(W ) is an invariant family of ideals. Moreover, by Proposition 4.4, there is
an inclusion-preserving bijection between T-families and invariant families of
vertices given by

WF
V := (Γ1−1F )−1(V F ).

Let W be an invariant family of vertices. We construct a higher-rank
graph ΓW as follows. Let Γ0

W :=
⊔

F∈F Γ0\WF . For a vertex v not in WF ,
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we denote by vF ∈ Γ0
W the corresponding vertex in the F -component. Fur-

thermore, we define

Γm
W :=

⊔

F∈F

Γm \ (ΓmWF ) =
⊔

F∈F

{γ ∈ Γm | s(γ) /∈ WF }.

Analogously, we write γF to denote the vertex in the F -component of Γm
W

corresponding to γ ∈ Γm. Finally, we set s(γF ) = s(γ)F and r(γF ) =
r(γ)F\suppm. With the obvious path composition map, this defines a higher-
rank graph ΓW .

Theorem 5.5. Let Γ be a row-finite higher-rank graph. There is an order-
preserving bijection between T-families (resp. O-families) of vertices and gauge-
invariant ideals in T (Γ) (resp. C∗(Γ)).

Moreover, the quotient of T (Γ) by the ideal corresponding to V is iso-
morphic to T (ΓWV

). Consequently, the algebra T (Γ) as well as all it gauge-
invariant quotients are higher-rank graph algebras.

Proof. We have established above that T-families and O-families of vertices
correspond bijectively to T-families and O-families of ideals. Therefore, the
first claim follows immediately from Theorem 4.15.

For the second claim, it is straightforward that the product system
(c0(ΓWV

),X(ΓWV
)) is isomorphic to (c0(Γ)c0(WV ),X(Γ)c0(WV )) constructed

in Proposition 4.6. Then, the claim follows from Proposition 4.13. �

The second claim of Theorem 5.5 is a generalization of [1, Corollary 3.5],
where the authors described quotients of rank-1 graph algebras as graph al-
gebras of extended graphs. To our knowledge, in case of higher-rank graphs,
such extended graph was constructed only for the Toeplitz algebra by Pan-
galela in [20] but not for their quotients.
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