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Abstract. In this paper, we study the regularity of R-differentiable func-
tions on open connected subsets of the scaled hypercomplex numbers
{Ht}t∈R

by studying the kernels of suitable differential operators {∇t}t∈R
,

up to scales in the real field R.
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1. Introduction

In this paper, we study differentiation on scaled hypercomplex numbers scaled
by an arbitrary quantity t ∈ R. Roughly speaking, scaled hypercomplex num-
bers are the ordered pairs of complex numbers under an arbitrary fixed real
number. We let C2 be the usual 2-dimensional Hilbert space over the complex
field C, and understand each vector (a, b) ∈ C

2 as a hypercomplex number
(a, b) ∈ Ht, inducing the algebraic triple,

Ht =
(
C

2, +, ·t
)
,

with the usual vector addition (+) on C
2, and the t-scaled vector multiplica-

tion (·t),
(a1, b1) ·t (a2, b2) =

(
a1a2 + tb1b2, a1b2 + b1a2

)
,

for all (al, bl) ∈ C
2, for l = 1, 2, forms a well-defined unital ring with its unity

(or, the (·t)-identity) (1, 0), where z mean the conjugates of z ∈ C (e.g., see
[2]).

From the Hilbert-space representation
(
C

2, πt

)
of the t-scaled hyper-

complex ring Ht, introduced in [2], a hypercomplex number h = (a, b) ∈ Ht

is realized to be a (2×2)-matrix, or a Hilbert-space operator acting on C
2,

πt (h) denote= [h]t
def=

(
a tb

b a

)
in M2 (C) ,
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where M2 (C) is the matricial algebra (which is ∗-isomorphic to the operator
C∗-algebra B

(
C

2
)

of all bounded linear operators acting on the Hilbert space
C

2) over C, for t ∈ R. The construction of such rings {Ht}t∈R
provides the

generalized structures of well-known quaternions (e.g., [5–8,12,15,18,21]),
and split-quaternions (e.g., [4,9,14]). Indeed, the ring H−1 is nothing but the
noncommutative field H of all quaternions, and the unital ring H1 is the ring
of all split-quaternions (e.g., [1–3]). The algebra, spectral theory, operator
theory, and free probability on {Ht}t∈R

are studied in [1,2], under the above
representation

(
C

2, πt

)
. Different from the approaches of [1,2], we study those

on {Ht}t∈R
by defining suitable bilinear forms {〈, 〉t}t∈R

on {Ht}t∈R
, in [3].

In the approaches of [3], the pairs {(Ht, 〈, 〉t)}t<0
form (definite) inner prod-

uct spaces over R, meanwhile, the pairs {(Ht, 〈, 〉t)}t≥0
become indefinite

semi-inner product spaces over R, inducing the complete semi-normed spaces
{(Ht, ‖.‖t)}t∈R

, having their semi-norms,

‖h‖t =
√

|〈h, h〉t|, ∀h ∈ Ht, ∀t ∈ R,

where |.| is the absolute value on R. (e.g., [3]). Meanwhile, it is considered in
[3] that each t-scaled hypercomplex number h ∈ Ht is regarded as a multipli-
cation operator Mh acting on (Ht, ‖.‖t),

Mh (h′) = h ·t h′ ∈ (Ht, ‖.‖t) , ∀h′ ∈ Ht,

with its adjoint,

M∗
(a,b) = M(a,−b), ∀ (a, b) ∈ Ht,

where (a,−b) denote= (a, b)† is the hypercomplex-conjugate in Ht, i.e., M∗
h =

Mh† in the operator space BR (Ht) of all bounded linear operators acting on
Ht “over R,” for all scales t ∈ R, which is a Banach space equipped with the
operator semi-norm,

‖T‖ = sup {‖Th‖t : ‖h‖t = 1} , ∀T ∈ BR (Ht) .

Furthermore, the subset,

Mt
def= {Mh ∈ BR (Ht) : h ∈ Ht} ,

of BR (Ht) forms a complete semi-normed ∗-algebra over R of the adjointable
operators {Mh}h∈R

in BR (Ht) (e.g., see [3]), for t ∈ R. i.e., case-by-case, we
understand the set Ht of t-scaled hypercomplex numbers as a unital ring Ht

with its unity (1, 0) algebraically; or, as a complete semi-normed R-vector
space (Ht, ‖.‖t), which is either a R-Hilbert space if t < 0, or an indefinite
semi-inner product R-space if t ≥ 0, analytically; or as a complete semi-
normed ∗-algebra Mt over R, operator-algebra-theoretically, for all t ∈ R.

In this paper, we regard Ht as a complete semi-normed R-vector space,
and act a differential operators ∇t on the R-differentiable functions on Ht,
where

∇t =
∂

∂x1
+ i

∂

∂x2
− jt

sgn (t) ∂
√

|t|∂x3

− kt
sgn (t) ∂
√

|t|∂x4

, if t 
= 0,
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and

∇0 =
∂

∂x1
+ i

∂

∂x2
+ j0

∂

∂x3
+ k0

∂

∂x4
, if t = 0, (1.1)

for an arbitrarily fixed scale t ∈ R, where

sgn (t) def=
{

1 if t > 0
−1 if t < 0,

for all t ∈ R \ {0}, and

i2 = −1, and j2
t = k2

t = t, (1.2)

satisfying the commuting diagrams,

i
1 ↙ ↖−t

jt −→
1

kt ,
and

i
t ↗ ↘−1

jt ←−
−1

kt .
(1.3)

Here, the first diagram of (1.3) means that

ijt = kt, jtkt = −ti, and kti = jt,

while the second diagram of (1.3) means that

ikt = −jt, ktjt = ti, and jti = −kt,

for t ∈ R.
We study the left, or right t-regular functions contained in the kernel,

ker∇t of ∇t, and the t-harmonic functions determined by the t-regular func-
tions, by defining t-scaled Laplacians,

Δt =
∂2

∂x2
1

+
∂2

∂x2
2

− sgn (t) ∂2

∂x2
3

− sgn (t) ∂2

∂x2
4

, if t 
= 0,

and

Δ0 =
∂2

∂x2
1

+
∂2

∂x2
2

+ 0
(

∂2

∂x2
3

+
∂2

∂x2
4

)
=

∂2

∂x2
1

+
∂2

∂x2
2

, if t = 0,

for all t ∈ R.

2. Scaled Hypercomplex Numbers

In this section, we review scaled hypercomplex numbers. For details, e.g., see
[1–3].

2.1. Scaled Hypercomplex Rings

Fix an arbitrarily scale t ∈ R. Define an operation (·t) on C
2 by

(a1, b1) ·t (a2, b2)
def=

(
a1a2 + tb1b2, a1b2 + b1a2

)
, (2.1.1)

for (al, bl) ∈ C
2, for all l = 1, 2.

Proposition 2.1. The algebraic triple
(
C

2,+, ·t
)

forms a unital ring with its
unity (1, 0), where (+) is the usual vector addition on C

2, and (·t) is the
operation (2.1.1).
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Proof. See [1] for details. �

One can understand these unital rings
{(

C
2,+, ·t

)}
t∈R

as topological
rings, since the operations (+) and {(·t)}t∈R

are continuous on C
2.

Definition 2.2. For t ∈ R, the ring Ht
denote=

(
C

2,+, ·t
)

is called the t-scaled
hypercomplex ring.

For t ∈ R, define an injective map,

πt : Ht → M2 (C) ,

by

πt ((a, b)) =
(

a tb

b a

)
, ∀ (a, b) ∈ Ht. (2.1.2)

Such an injective map πt of (2.1.2) satisfies that

πt (h1 + h2) = πt (h1) + πt (h2) ,

and

πt (h1 ·t h2) = πt (h1) πt (h2) , (2.1.3)

in M2 (C), for all h1, h2 ∈ Ht, where πt (h1) πt (h2) is the usual matricial
multiplication (e.g., see [1] for details).

Proposition 2.3. The pair
(
C

2, πt

)
forms an injective Hilbert-space represen-

tation of our t-scaled hypercomplex ring Ht, where πt is an action (2.1.2).

Proof. It is shown by (2.1.3), and by the continuity of πt (e.g., [1,2]). �

By the injectivity of πt, one can understand Ht as its realization πt (Ht)
as matrices of M2 (C).

Definition 2.4. The subset,

πt (Ht) =
{(

a tb

b a

)
∈ M2 (C) : (a, b) ∈ Ht

}
, (2.1.4)

of M2 (C), denoted by Ht
2, is called the t-scaled (hypercomplex-)realization

of Ht (in M2 (C)) for t ∈ R. For convenience, we denote the realization πt (h)
of h ∈ Ht by [h]t in Ht

2.

If H×
t

denote= Ht\ {(0, 0)} , where (0, 0) is the (+)-identity of Ht, then, it
is the maximal monoid,

H
×
t

denote=
(
H

×
t , ·t

)
,

in Ht, with its (·t)-identity (1, 0), the unity of Ht (e.g., [2]).

Definition 2.5. The monoid H
×
t =

(
H

×
t , ·t

)
of Ht is called the t-scaled hyper-

complex monoid.
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2.2. Invertible Hypercomplex Numbers of Ht

For an arbitrarily fixed t ∈ R, let Ht be the corresponding t-scaled hypercom-
plex ring, isomorphic to its t-scaled realization Ht

2 of (2.1.4). Observe that,
for any (a, b) ∈ Ht, one has

det ([(a, b)]t) = det

(
a tb

b a

)
= |a|2 − t |b|2 . (2.2.1)

where det is the determinant, and |.| is the modulus on C.
Recall that an algebraic triple (X,+, ·) is a noncommutative field, if it

is a unital ring, containing (X×, ·) as a non-abelian group (e.g., [2,3]).

Lemma 2.6. If (a, b) ∈ Ht, then |a|2 
= t |b|2 in C, if and only if (a, b) is
invertible in Ht with its inverse,

(a, b)−1 =

(
a

|a|2 − t |b|2
,

−b

|a|2 − t |b|2

)

in Ht,

satisfying
[
(a, b)−1

]

t
= [(a, b)]−1

t in Ht
2. (2.2.2)

Moreover, we have the algebraic characterization,

t < 0 inR ⇐⇒ Ht is a noncommutative field. (2.2.3)

The proof is straightfoward; see [1].
By the proof of the above proposition, {Hs}s<0 are noncommutative

fields, but, {Ht}t≥0 cannot be noncommutative fields by (2.2.3). For any
scale t ∈ R, the t-scaled hypercomplex ring Ht is decomposed by

Ht = H
inv
t � H

sing
t

with

H
inv
t =

{
(a, b) : |a|2 
= t |b|2

}
, (2.2.4)

and

H
sing
t =

{
(a, b) : |a|2 = t |b|2

}
,

where � is the disjoint union.

Proposition 2.7. The subset H
inv
t of (2.2.4) is a non-abelian group in the

monoid H
×
t . Meanwhile, the subset H

×sing
t

denote= H
sing
t \ {(0, 0)} forms a

semigroup without identity in H
×
t .

Proof. Note that, in general, det (AB) = det (A) det (B), for all A,B ∈
Mn (C), for all n ∈ N. See [2] for details. �

Definition 2.8. The block H
inv
t of (2.2.4) is called the group-part of H×

t (or,
of Ht), and the other algebraic block H

×sing
t of the above proposition is called

the semigroup-part of H×
t (or, of Ht).
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By (2.2.3), if t < 0 in R, then the semigroup-part H
×sing
t is empty in

H
×
t , and hence,

H
×
t = H

inv
t ⇐⇒ Ht = H

inv
t ∪ {(0, 0)} ,

Meanwhile, if t ≥ 0 in R, then the semigroup-part H
×sing
t is non-empty, and

is properly contained in the t-scaled monoir H
×
t , satisfying (2.2.4).

2.3. Scaled-Hypercomplex Conjugation

In this section, we define a suitable R-adjoint on {Ht}t∈R
, as in [3]. For a

scale t ∈ R, define a unary operation (†) on the t-scaled hypercomplex ring
Ht by

(a, b)† def= (a, −b) , ∀ (a, b) ∈ Ht. (2.3.1)

This operation (†) of (2.3.1) is indeed a well-defined unary operation on
Ht, inducing the equivalent operation, also denoted by (†), on the t-scaled
realization Ht

2 of Ht,

[(a, b)]†t
def=

[
(a, b)†

]

t
= [(a,−b)]t , (2.3.2)

for all (a, b) ∈ Ht. Since the action πt : Ht → Ht
2 and the operation (†) of

(2.3.1) are bijective, the function (2.3.2) is also a well-defined bijection on
Ht

2.

Proposition 2.9. The bijection (†) of (2.3.1) is an adjoint on Ht over R.

See [3] for details.
Note that the R-adjoint (†) of (2.3.1) (or, of (2.3.2)) is free from the

choice of scales t ∈ R. So, we call (†) the hypercomplex-conjugate.
If h = (a, b) ∈ Ht, then one obtains that

[h]†t [h]t =
[(

|a|2 − t |b|2 , 0
)]

t
= [h]t [h]†t , (2.3.3)

for all h = (a, b) ∈ Ht, for “all” t ∈ R.

2.4. The Normalized Trace τ on {Ht}t∈R
Over R

Recall that the t-scaled realization Ht
2 of the t-scaled hypercomplex ring Ht

is an embedded ring of M2 (C). So, the normalized trace τ = 1
2 tr on M2 (C)

is naturally restricted to τ |Ht
2
, also denoted by τ , on Ht

2, where tr is the
usual trace on M2 (C). Observe that, for any [(a, b)]t ∈ Ht

2, one has

τ ([(a, b)]t) =
1
2
tr

((
a tb

b a

))
=

1
2

(a + a) ,

i.e.,

τ ([(a, b)]t) = Re (a) , ∀ (a, b) ∈ Ht. (2.4.1)

Remark and Discussion. Since Ht
2 is a sub-structure of M2 (C), the linear

functional τ = 1
2 tr on M2 (C) is well-restricted to that on Ht

2. However, note
that, since τ (Ht

2) ⊆ R by (2.4.1), it becomes a linear functional “over R.” So,
in the following text, if we mention “τ is a linear functional,” then it actually
means that “this restriction is linear over R.” The construction of such a
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R-linear functional on Ht
2 is motivated by free probability (e.g., [17,20]), and

such a free-probabilistic model is considered in detail in [1–3].�
By (2.4.1), one can define a (R-)linear functional, also denoted by τ , on

Ht, by

τ ((a, b)) def= Re (a) , ∀ (a, b) ∈ Ht. (2.4.2)

By using this linear functional τ of (2.4.2) on Ht, we define a form,

〈, 〉t : Ht × Ht → R,

by

〈h1, h2〉t
def= τ

(
h1 ·t h†

2

)
, ∀h1, h2 ∈ Ht, (2.4.3)

where the linear functional τ in (2.4.3) is in the sense of (2.4.2), whose range
is contained in R in C. Since the hypercomplex-conjugation (†) is bijective,
this form (2.4.3) is a well-defined function.

Lemma 2.10. The function 〈, 〉t of (2.4.3) is a bilinear form on Ht “over R.”

Proof. By the straightforward computations, one has

〈h1 + h2, h3〉t = 〈h1, h2〉t + 〈h2, h3〉t ,

〈h1, h2 + h3〉t = 〈h1, h2〉t + 〈h1, h3〉t ,

and

〈rh1, h2〉t = r 〈h1, h2〉t , 〈h1, rh2〉t = r 〈h1, h2〉t ,

for all h1, h2, h3 ∈ Ht, and r ∈ R, where

rh = (r, 0) ·t h, ∀h ∈ Ht, r ∈ R.

See [3] for details. �

The above lemma shows that the forms {〈, 〉t}t∈R
of (2.4.3) are well-

determined bilinear forms on {Ht}t∈R
, induced by the linear functionals τ of

(2.4.2) and the hypercomplex-conjugate (†) of (2.3.1).

Lemma 2.11. For all h1, h2 ∈ Ht, we have

〈h1, h2〉t = 〈h2, h1〉t inR. (2.4.4)

Proof. Observe that, for any h1, h2 ∈ Ht,

〈h1, h2〉t = τ
(
h1 ·t h†

2

)
= Re

(
h1 ·t h†

2

)

since τ of (2.4.1) is a trace

= Re (h2 ·t h1) = τ
(
h2 ·t h†

1

)
= 〈h2, h1〉t .

�

The above lemma shows our bilinear form 〈, 〉t of (2.4.3) is symmetric
by (2.4.4).
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Lemma 2.12. If h1, h2 ∈ Ht, then

|〈h1, h2〉t|
2 ≤ |〈h1, h1〉t|

2 |〈h2, h2〉t|
2
, (2.4.5)

where |.| is the absolute value on R.

Proof. See [3] for details. �

Observe now that if h = (a, b) ∈ Ht, then

〈h, h〉t = τ
(
(a, b) ·t (a, b)†

)
= Re

(
|a|2 − t |b|2

)
,

by (2.4.1) and (2.4.2), implying that

〈h, h〉t = |a|2 − t |b|2 = det ([h]t) ,

and hence,

〈h, h〉t = 0 ⇐⇒ det ([h]t) = 0 in R,

if and only if

h = (a, b) ∈ Ht, with |a|2 = t |b|2 . (2.4.6)

Proposition 2.13. Let h = (a, b) ∈ Ht. Then 〈h, h〉t = 0, if and only if |a|2 =
t |b|2, if and only if det ([h]t) = 0, if and only if h is not invertible in Ht, if
and only if h ∈ H

sing
t . i.e.,

〈h, h〉t = 0,⇐⇒ h ∈ H
sing
t , in Ht. (2.4.7)

Proof. The relation (2.4.7) is shown by (2.4.6). �

If either h1 or h2 is contained in H
sing
t , then h1 ·t h†

2 ∈ H
sing
t in Ht,

since

det
([

h1 ·t h†
2

]

t

)
= det

(
[h1]t [h2]

†
t

)
,

implying that

det
([

h1 ·t h†
2

]

t

)
= (det ([h1]t))

(
det

(
[h2]

†
t

))
= 0.

Definition 2.14. For a vector space X over R, a bilinear form 〈, 〉 : X×X → R

is called a (definite) semi-inner product on X over R, if (i)

〈x1, x2〉 = 〈x2, x1〉 , ∀x1, x2 ∈ X,

and (ii) 〈x, x〉 ≥ 0, for all x ∈ X. In such a case, the pair (X, 〈, 〉) is called
a semi-inner product space over R. If a semi-inner product 〈, 〉 on a R-vector
space X satisfies an additional condition (iii) 〈x, x〉 = 0, if and only if x = 0X ,
the zero vector of X, then it is called an (definite) inner product on X over
R, and the pair (X, 〈, 〉) is said to be an inner-product space over R.

Definition 2.15. For a vector space X over R, a bilinear form 〈, 〉 : X×X → R

is called an indefinite semi-inner product on X over R, if (i)

〈x1, x2〉 = 〈x2, x1〉 , ∀x1, x2 ∈ X,

and (ii) 〈x, x〉 ∈ R, for all x ∈ X. In such a case, the pair (X, 〈, 〉) is called
an indefinite-semi-inner product space over R.
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If an indefinite semi-inner product 〈, 〉 on a R-vector space X satisfies an
additional condition; 〈x, y〉 = 0 for “all” y ∈ X, if and only if x = 0X , then it
is called an indefinite inner product on X over R, and the pair (X, 〈, 〉) is said
to be an indefinite-inner product space over R. i.e., an indefinite semi-inner
product is non-degenerated as above, then it becomes an indefinite inner
product.

By the above lemmas and proposition, one obtains the following result.

Theorem 2.16. If t < 0 in R, then the bilinear form 〈, 〉t of (2.4.3) is a con-
tinuous inner product on Ht over R, i.e.,

t < 0 =⇒ (Ht, 〈, 〉t) is aR − inner product space. (2.4.8)

Meanwhile, if t ≥ 0, then 〈, 〉t is a continuous indefinite semi-inner product
on Ht over R, i.e.,

t ≥ 0 =⇒ (Ht, 〈, 〉t) is aR − indefinite semi − inner product space.

(2.4.9)

However, if t > 0, then (Ht, 〈, 〉t) is a R-indefinite inner product space, mean-
while, if t = 0, then it is a R-indefinite semi-inner product space.

Proof. Assume first that a given scale t is negative in R. Then the bilinear
form 〈, 〉t forms a semi-inner product by the symmetry (2.4.4), and

〈(a, b) , (a, b)〉t = |a|2 − t |b|2 ≥ 0,

since t < 0, for all (a, b) ∈ Ht. Also, recall that, if t < 0, then Ht = H
inv
t ∪

{(0, 0)}, equivalently, Hsing
t = {(0, 0)}. It implies that

〈h, h〉t = 0 ⇐⇒ h ∈ H
sing
t ⇐⇒ h = (0, 0) ∈ Ht.

i.e., 〈, 〉t is an inner product on Ht over R, whenever t < 0 in R. The continuity
of 〈, 〉t is guaranteed by (2.4.5). So, if t < 0, then the pair (Ht, 〈, 〉t) is not only
a R-semi inner product space, but also a R-inner product space. Therefore,
the relation (2.4.8) holds.

Assume now that a scale t is nonnegative in R. Then the bilinear form
〈, 〉t forms an indefinite semi-inner product by the symmetry (2.4.4), and

〈h, h〉t = det ([h]t) ∈ R,

since t ≥ 0, for all h ∈ Ht. Note that if t > 0, then the semigroup-part H×sing
t

is not empty in Ht, satisfying

〈h, h〉t = 0 ⇐⇒ h ∈ H
sing
t ,

by (2.4.7). However, if

〈h, q〉t = 0, ∀q ∈ Ht,

then h = 0 in Ht. i.e., the indefinite semi-inner product 〈, 〉t is non-degenera-
ted. So, the form 〈, 〉t becomes an indefinite inner product on Ht, whenever
t > 0. Meanwhile, if t = 0, then it is not non-degenerated. So, (H0, 〈, 〉0) is
a R-indefinite semi-inner product space. In conclusion, the statement (2.4.9)
holds. �
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The above theorem shows that {Ht}t<0 are R-inner product spaces,
meanwhile, {Ht}t≥0 form R-indefinite semi-inner product space, by (2.4.8)
and (2.4.9), respectively.

Definition 2.17. Let X be a vector space over R, and ‖.‖X : X → R, a
function satisfying (i) ‖x‖X ≥ 0, for all x ∈ X, and (ii) ‖rx‖X = |r| ‖x‖X ,
for all r ∈ R and x ∈ X, and (iii)

‖x1 + x2‖X ≤ ‖x1‖X + ‖x2‖X , ∀x1, x2 ∈ X.

Then the function ‖.‖X is called a semi-norm on X over R, and the pair
(X, ‖.‖X) is said to be a semi-normed space over R. If a semi-norm ‖.‖X

satisfies an additional condition (iv) ‖x‖X = 0, if and only if x = 0X in X,
then it is called a norm on X over R, and the pair (X, ‖.‖X) is said to be a
normed space over R.

Let (Ht, 〈, 〉t) be either a R-inner product space (if t < 0), or a R-
indefinite semi-inner product space (if t ≥ 0), for an arbitrary scale t ∈ R.
Define a function,

‖.‖t : Ht → R,

by

‖h‖t
def=

√
|〈h, h〉t| =

√
|det ([h]t)| =

√
|τ ([h ·t h†])|, (2.4.10)

for all h ∈ Ht, where |.| is the absolute value on R. Then it is not hard to
check that

‖h‖t ≥ 0, since |〈h, h〉t| =
∣
∣
∣|a|2 − t |b|2

∣
∣
∣ ≥ 0,

and

‖rh‖t =
√

|〈rh, rh〉t| =
√

r2

√
|〈h, h〉t| = |r| ‖h‖t ,

for all r ∈ R and h ∈ Ht, and

‖h1 + h2‖2
t = |〈h1 + h2, h1 + h2〉t| ≤ (‖h1‖t + ‖h2‖t)

2
,

by (2.4.5) and the bilinearity of 〈, 〉t, implying that

‖h1 + h2‖t ≤ ‖h1‖t + ‖h2‖t , in R,

for all h1, h2 ∈ Ht (See [3] for details).

Theorem 2.18. The pair (Ht, ‖.‖t) of the t-scaled hypercomplex ring Ht and
the function ‖.‖t of (2.4.10) forms a complete R-semi-normed space. In par-
ticular,

t < 0 =⇒ (Ht, ‖.‖t) is a completeR − normed space, (2.4.11)

and

t ≥ 0 =⇒ (Ht, ‖.‖t) is a completeR − semi − normed space. (2.4.12)
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Proof. By the very above paragraph, the map ‖.‖t of (2.4.10) is a semi-norm
on Ht over R. In particular, the R-semi-normed space (Ht, ‖.‖t) is complete by
(2.4.5) and (2.4.10), since Ht is a subspace of the finite-dimensional R-vector
space R

4. More precisely, if t < 0 in R, then this semi-norm ‖.‖t satisfies the
additional condition,

‖h‖t = 0 ⇐⇒ 〈h, h〉t = 0 ⇐⇒ h ∈ H
sing
t ⇐⇒ h = (0, 0) ,

implying that ‖.‖t forms a norm on Ht over R. So, the statement (2.4.11)
holds true. Meanwhile if t ≥ 0, then this semi-norm ‖.‖t cannot be a norm,
because,

‖h‖t = 0 ⇐⇒ h ∈ H
sing
t ,

by (2.4.7). Therefore, the statement (2.4.12) holds. �

Recall that complete inner product spaces (over R, or over C) are said
to be Hilbert spaces (over R, respectively, over C). So, the statement (2.4.11)
can be re-stated by that: if t < 0, then (Ht, 〈, 〉t) is a Hilbert space over R

(or, a R-Hilbert space).

3. Scaled Hypercomplex R-Spaces Ht

In the rest of this paper, we understand the t-scaled hypercomplex ring Ht

as the R-vector space Ht
denote= (Ht, 〈, 〉t), which is either a R-Hilbert space

if t < 0, or a complete R-indefinite semi-inner product space (where the
completeness is up to that of the corresponding complete R-semi-normed
space, (Ht, ‖.‖t) induced by the semi-norm ‖.‖t of (2.4.10)) if t ≥ 0. Remark
that if t > 0, then Ht forms a R-indefinite inner product space, while if t = 0,
then it is a R-indefinite semi-inner product space. In this section, we consider
a suitable setting of Ht to study the differentiation of the functions acting on
it. More precisely, to study how an operator,

Dt =
∂

∂x1
+ i

∂

∂x2
+ jt

∂

∂x3
+ kt

∂

∂x4

under the conditions (1.2) and (1.3), acts on the set of R-differentiable func-
tions, we investigate an equivalent setting for Ht, which is different from that
of Sect. 2, notationally.

Let

a = x + yi, and b = u + vi

be complex numbers with i =
√

−1 and x, y, u, v ∈ R, and let (a, b) ∈ Xt,
whose realization is

[(a, b)]t =
(

a tb

b a

)
=

⎛

⎝
x + yi tu + tvi

u − vi x − yi

⎞

⎠ , (3.1)

in the t-scaled realization Ht
2 of Ht. Then it is identified with

x

(
1 0
0 1

)
+ y

(
i 0
0 −i

)
+ u

(
0 t
1 0

)
+ v

(
0 ti
−i 0

)
, (3.2)
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by (3.1), where
(

1 0
0 1

)
= [(1, 0)]t ,

(
i 0
0 −i

)
= [(i, 0)]t ,

and
(

0 t
1 0

)
= [(0, 1)]t ,

(
0 ti
−i 0

)
= [(0, i)]t ,

in Ht
2. It means that every realization T of Ht

2 is expressed by

T = x [(1, 0)]t + y [(i, 0)]t + u [(0, 1)]t + v [(0, i)]t ,

for some x, y, u, v ∈ R. i.e., the t-scaled realization Ht
2 is spanned by

{[(1, 0)]t , [(i, 0)]t , [(0, 1)] , [(0, i)]t} ,

over R.

Lemma 3.1. For t ∈ R, the R-vector space Ht is spanned by the subset,

Bt = {(1, 0) , (i, 0) , (0, 1) , (0, i)} , (3.3)

over R, in the sense that: for every h ∈ Ht, there exist x, y, u, v ∈ R, such
that

h = x (1, 0) + y (i, 0) + u (0, 1) + v (0, i) ,

where r (a, b) = (r, 0) ·t (a, b) = (ra, rb), for all r ∈ R and (a, b) ∈ Ht. i.e.,

Ht = span
R

(Bt) .

Proof. By the injective Hilbert-space representation
(
C

2, πt

)
, the t-scaled

hypercomplex ring Ht is isomorphic to the t-scaled realization Ht
2. And since

Ht
2 and Ht are isomorphic as R-vector spaces. Therefore, the subset Bt of

(3.3) spans Ht over R, by (3.2). �

The R-basis Bt of (3.3) satisfies the following properties in Xt.

Proposition 3.2. By i (t), j(t) and k(t), we denote the spanning vectors (i, 0),
(0, 1) and (0, i) of Bt, where Ht = spanRBt. Then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i (t)2 = (−1, 0) , j(t)2 = (t, 0) = k(t)2,

i (t) j(t) = k(t), j(t)k(t) = −ti (t) , and k(t)i (t) = j(t),

k(t)j(t) = ti (t) , j(t)i (t) = −k(t), and i (t) k(t) = −j(t).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.4)

Proof. By the above lemma, equivalently, one has that

Ht
2 = span

R
({1, i, jt, kt}) ,

where

1 = [(1, 0)]t , i = [(i, 0)]t ,

and

jt = [(0, 1)]t , and kt = [(0, i)]t .
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So, to prove the formulas of (3.4), it suffices to show that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i2 = [(−1, 0)]t , j2t = [(t, 0)]t = k2
t ,

ijt = kt, jtkt = −ti, and kti = jt,

ktjt = ti, jti = −kt, and ikt = −jt,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

in Ht
2, respectively. And they are proven by the straightforward computa-

tions. For instance,

k2
t =

(
0 ti
−i 0

)(
0 ti
−i 0

)
=
(

t 0
0 t

)
= [(t, 0)]t = t1;

ijt =
(

i 0
0 −i

)(
0 t
1 0

)
=
(

0 ti
−i 0

)
= [(0, i)]t = kt,

ikt =
(

i 0
0 −i

)(
0 ti
−i 0

)
=
(

0 −t
−1 0

)
= − [(0, 1)]t = −jt,

ktjt =
(

0 ti
−i 0

)(
0 t
1 0

)
=
(

ti 0
0 −ti

)
= t [(i, 0)]t = ti,

and

jtkt =
(

0 t
1 0

)(
0 ti
−i 0

)
=
(

−ti 0
0 ti

)
= −t [(i, 0)]t = −ti.

etc.. Therefore, the formulas of (3.4) are shown. �

By the above proposition, one can conclude that

i (t)2 = (−1, 0) , and j(t)2 = (t, 0) = k(t)2, (3.5)

and the following commuting diagrams hold;

i (t)
1 ↙ ↖−t

j(t) −→
1

k(t) ,

and
i (t)

t ↗ ↘−1

j(t) ←−
−1

k(t) ,
(3.6)

where, the first diagram of (3.6) illustrates that

i (t) j(t) = k(t), j(t)k(t) = −ti (t) , and k(t)i (t) = j(t),

meanwhile the second diagram of (3.6) illustrates that

i (t) k(t) = −j(t), k(t)j(t) = ti (t) , and j(t)i (t) = −k(t),

for t ∈ R.
If we define a vector space Ht over R, by

Ht = {x + yi + ujt + vkt : x, y, u, v ∈ R} ,
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i.e.,

Ht = span
R

{1, i, jt, kt} ,

where i =
√

−1, jt and kt are certain imaginary numbers (as spanning vec-
tors) satisfying (1.2) and (1.3), then the morphism,

x (1, 0) + y (i, 0) + uj(t) + vk(t) ∈ Xt �→ x + yi + ujt + vkt ∈ Ht,

is a well-defined bijection preserving the formulas of (3.4) to the relations of
(1.2) and (1.3). Since Ht = span

R
Bt, and

Ht = span
R

({1, i, jt, kt}) ,

this bijection becomes a R-vector-space-isomorphism. More precisely, we have
the following structure theorem of the set Ht of (3.7).

Theorem 3.3. Let Ht be the vector space (3.7) spanned by {1, i, jt, kt}, satis-
fying the conditions (1.2) and (1.3), over R. Then

Ht is a unital ring with its unity1 = 1 + 0i + 0jt + 0kt, (3.8)

algebraically, and

Ht is a completeR − semi − normed space, isomorphic toHt, (3.9)

analytically, especially, it is a R-Hilbert space if t < 0, while it is a complete
R-indefinite semi-inner product space if t ≥ 0, and

Ht is a complete semi − normed ∗ −algebra overR, (3.10)

operator-algebraically, especially, it becomes a C∗-algebra over R if t < 0,
meanwhile it forms a complete semi-normed ∗-algebra over R if t ≥ 0.

Proof. By the bijection,

x (1, 0) + y (i, 0) + uj(t) + vk(t) ∈ Ht �−→ x + yi + ujt + vkt ∈ Ht,

two mathematical structures Ht and Ht are isomorphic algebraically, and
analytically, because

Ht = span
R

{(1, 0) , (i, 0) , jt, kt} , and Ht = span
R

{1, i, jt, kt} ,

over R. So, the statements (3.8) and (3.9) hold, since Ht is a unital ring
algebraically, and a complete R-semi-normed space analytically.

In [3], we showed that, on Ht, one can define the operator space BR (Ht)
of all bounded linear transformation (simply, operators) acting on this R-
vector space Ht “over R,” equipped with the operator “semi-norm,”

‖T‖ def= sup {‖T (h)‖t : ‖h‖t = 1} ,

for all T ∈ BR (Ht). Then one can canonically define multiplication operators
Mh ∈ BR (Ht) with their symbols h ∈ Ht, by

Mh (η) def= h ·t η ∈ Ht ∀η ∈ Ht.

And the subset,

Mt = {Mh ∈ BR (Ht) : h ∈ Ht} ,
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of BR (Ht) forms a well-defined complete semi-normed ∗-algebra over R. In
particular, the operator semi-norm ‖.‖ becomes an operator “norm,” if t < 0
(because if t < 0, then ‖.‖t is a norm induced by the inner product 〈, 〉t),
meanwhile, it is a operator “semi-norm,” if t ≥ 0 (because if t ≥ 0, then
‖.‖t forms a semi-norm induced by the indefinite semi-inner product 〈, 〉t).
See [3] for details. Since Ht is isomorphic to Ht, this complete semi-normed
∗-algebra Mt is isomorphic to Ht, by a ∗-isomorphism,

Mh ∈ Mt �−→ h ∈ Ht
iso= Ht,

operator-algebraically. Therefore, the statement (3.10) holds, too. �

The above theorem characterizes the algebraic, analytic, and operator-
algebraic structures of the set Ht of (3.7), for t ∈ R. So, one can re-define
the set Ht of t-scaled hypercomplex numbers by the equivalent set Ht, i.e.,

Ht
def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x + yit + ujt + vkt

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x, y, u, v ∈ R,
it = i =

√
−1 ∈ C, and

i2t = −1, j 2t = t = k2
t ,

ijt = kt, jtkt = −ti, kti = jt,
jti = −kt, ikt = −jt, ktjt = ti

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

For convenience, we call Ht, the t-scaled hypercomplexes from now on. By
the above theorem, the t-scaled hypercomplexes Ht is a unital ring with its
unity,

1 = 1 + 0it + 0jt + 0kt = (1, 0) ∈ Ht,

algebraically, and a complete R-semi-normed space analytically (in general,
for all t ∈ R), and a complete semi-normed ∗-algebra over R operator-
algebraically (in particular, it forms a C∗-algebra over R if t < 0). It is
not difficult to check that each hypercomplex number h = x+ yit +ujt + vkt

of Ht has its hypercomplex conjugate,

h† = x − yit − ujt − vkt, in Ht,

and one can have a well-defined R-linear functional τ on Ht,

τ (h) = x.

So, under this new setting, one can define the real part,

Re (x + yi + ujt + vkt) = x,

and the imaginary part,

Im (x + yit + ujt + vkt) = yit + ujt + vkt,

for all x + yit + ujt + vkt ∈ Ht , which are understood to be

(x + yi) + (u + vi) jt, since ijt = kt,

where i =
√

−1 = it, for all t ∈ R. Recall that, in [3], we generalized complex
numbers C, and hyperbolic numbers D in a similar way.
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Definition 3.4. Let t ∈ R, and Ht, the corresponding t-scaled hypercomplex
ring. The subring,

Dt = {(x, u) ∈ Ht : x, u ∈ R} ,

is called the t-scaled hyperbolic (sub)ring, and all elements of Dt are called
t-scaled hyperbolic numbers.

Note that, by definition, this t-scaled hyperbolic ring Dt forms a closed
subspace of the R-vector space (Ht, 〈, 〉t), and it becomes a closed ∗-subalgebra
of the complete semi-normed ∗-algebra Ht over R. By our new notational set-
ting, the t-scaled hyperbolic ring Dt of [3] can be re-defined by

Dt = {x + 0it + ujt + 0kt ∈ Ht : x, u ∈ R} , (3.11)

in the t-scaled hypercomplexes Ht. It is not hard to check that D−1 is iso-
morphic to the complex field,

C =
{
x + ui : x, u ∈ C, i2 = −1

}
,

and D1 is isomorphic to the classical hyperbolic numbers,

D =
{
x + uj : x, u ∈ R, j2 = 1

}
,

algebraically, and analytically (e.g., see [3] for details).

Theorem 3.5. Let h = x + ujt ∈ Dt. Then there exists ejtθ ∈ Dt, such that

h = ‖h‖t ejtθ, in Dt,

where
∥
∥ejtθ

∥
∥

t
= 1, with θ = Arg ((x, u)) ∈ [0, 2π] , (3.12)

where [0, 2π] is the closed interval in R, and Arg ((x, u)) is the argument of
the vector (x, u) ∈ R

2, and

ejtθ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos
(√

|t|θ
)

+ jt

(
sin

(√
|t|θ

)

√
|t|

)
if t < 0

±1 + ujt, if t = 0

cosh
(√

tθ
)

+ jt

(
sinh(

√
tθ)√

t

)
if t > 0.

Proof. In [3], we showed that if (x, u) ∈ Dt in Ht, then it is expressed by

(x, u) = ‖(x, u)‖t expjtθ, in Dt,

where

expjtθ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
cos

(√
|t|θ

)
,

sin
√

|t|θ√
|t|

)
if t < 0

(±1, u) , for all u ∈ R if t = 0

(
cosh

(√
tθ
)
,

sinh(
√

tθ)√
t

)
if t ≥ 0,

(3.13)
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where θ = Arg ((x, u)) ∈ [0, 2π] is the argument of the point (x, u) in R
2. So,

the t-scaled polar decomposition (3.12) holds by (3.11) and (3.13). �

As in [3], if we construct the unit set Tt = {h ∈ Dt : ‖h‖t = 1} of all
units in the t-scaled hyperbolic ring Dt, then

Tt =
{
ejtθ : θ ∈ R

}
,

where ejtθ are in the sense of (3.12) in Dt.

4. Nonzero-Scaled Regular Functions

Let t ∈ R be a fixed scale, and

Ht = span
R

({1, it, jt, kt}) ,

the t-scaled hypercomplexes, where it =
√

−1 = i, jt and kt satisfy (1.2) and
(1.3). We consider functions,

f : Ht → Ht,

in the t-scaled hypercomplex variable,

w = x1 + x2it + x3jt + x4kt, with x1, x2, x3, x4 ∈ R.

In particular, we are interested in the case where such functions f are R-
differentiable in an open connected set Ω ⊂ Ht. Our study is motivated by
the main results of [4], [5], [6], [8], and [9].

4.1. Motivation: Hyperholomorphic Functions on H−1

For more about hyperholomorphic theory on the (−1)-scaled hypercomplexes
H−1, see e.g., [5], [6] and [8]. Recall that the (−1)-scaled hypercomplexes H−1

is the noncommutative field of the quaternions (e.g., see Sects. 2 and 3 above,
or [1], [2] and [3]). Recall that the quaternions H−1 is noncommutative for the
(−1)-scaled multiplication (·−1), and hence, the hyperholomorphic property
is considered in two ways from the left, and from the right. Also, in this
quaternionic case, the differential operator D−1 is called the Cauchy-Fueter
(differential) operator (e.g., see [5], [6] and [8]).

Define two operators D−1 and D†
−1 by

D−1 =
∂

∂x1
+ i

∂

∂x2
+ j−1

∂

∂x3
+ k−1

∂

∂x4
,

and

D†
−1 =

∂

∂x1
− ∂

∂x2
i − ∂

∂x3
j−1 − ∂

∂x4
k−1,

on the set of all R-differentiable quaternionic functions.

Definition 4.1. A R-differentiable quaternionic function f : H−1 → H−1 is
left-hyperholomorphic on an open subset Ω of H−1, if

D−1f
denote=

∂f

∂x1
+ i

∂f

∂x2
+ j−1

∂f

∂x3
+ k−1

∂f

∂x4
= 0;
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and f is said to be right-hyperholomorphic on Ω, if

fD−1
denote=

∂f

∂x1
+

∂f

∂x2
i +

∂f

∂x3
j−1 +

∂f

∂x4
k−1 = 0,

in a H−1-variable w = x1 + x2i + x3j−1 + x4k−1 with x1, x2, x3, x4 ∈ R.
We simply say that f is hyperholomorphic on Ω, if it is both left and right
hyperholomorphic on Ω.

Readers can verify that we later define the (left, and right) scaled-
hyperholomorphic property of R-differentiable functions on {Ht}t∈R

similarly
as above. In this section, we concentrate on the left-hyperholomorphic func-
tions on the quaternions H−1.

It is well-known that

D†
−1D−1 = Δ−1,

with

Δ−1
def=

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂x2
4

. (4.1.1)

Thus, hyperholomorphic functions are harmonic on H−1.

Proposition 4.2. A left hyperholomorphic function f : H−1 → H−1 on an
open connected subset U of H−1 is harmonic on U , i.e.,

Δ−1f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

+
∂2f

∂x2
4

= 0, on U. (4.1.2)

Proof. If f is left-hyperholomorphic on H−1, then

Δ−1f = D†
−1D−1f = D†

−1 (D−1f) = 0,

by (4.1.1). So, the harmonicity (4.1.2) holds for f . �

It is shown that every left-hyperholomorphic function f on an open
subset containing 0 is expressed by the form,

f (w) = f (0) +
3∑

n=1

ζn+1 (w) Rn+1f (w) ,

with

ζn+1 (w) = xn+1 − x1en+1, (4.1.3)

and

Rn+1f (w) =
∫ 1

0

∂f

∂xn+1
(tw) dt,

where

e2 = i, e3 = j−1, and e4 = k−1

(e.g., see [5], [6] and [8]). Note that the functions ζ2, ζ3, and ζ4 of (4.1.3)
are both left and right entire hyperholomorphic (on H−1), called the Cauchy-
Fueter polynomials on the quaternions H−1. Are the above harmonicity (4.1.2)
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and the expansion (4.1.3) generalized for arbitrary scales t ∈ R, under a cer-
tain “scaled” hyperholomorphic property?

Independently, in [4] and [9]., the hyperholomorphic property (called
the left, or right regularity there), and the harmonicity of R-differentiable
functions on open connected subsets of the split-quaternions H1 is studied
and characterized, under slightly different differential-operator and Laplacian
settings based on [9] and [14].

4.2. Discussion and Assumption

Let Ht be the t-scaled hypercomplexes, for a scale t ∈ R.

Definition 4.3. Suppose Tt is the semi-norm topology on Ht = Xt, the t-
hypercomplex R-space induced by the semi-norm ‖.‖t of (2.4.10) under (3.7).
Define a set,

Ft.U
def= {f : Ht → Ht |f is R-differentiable on U ∈ Tt } ,

and the set Ft
def= ∪

U∈Tt

Ft,U .

Note that each R-differentiable-function family Ft,U is understood to
be

Ft,U = �
k∈Λ

Ft,Uk
, if U = �

k∈Λ
Uk ∈ Tt, (4.2.1)

where � is the disjoint union, and {Uk}k∈Λ ⊂ Tt for an index set Λ, where
{Uk}k∈Λ are connected in Tt. i.e., each R-differentiable-function family Ft,U

for U ∈ Tt is the disjoint union of the collection {Ft,Uk
}k∈Λ of R-differentiable-

function families on open connected subsets {Uk}k∈Λ of Ht, as in (4.2.1). Of
course, if U is both open and connected in Tt, then the index set Λ in (4.2.1)
becomes a singleton set, and hence, Ft,U becomes itself in the sense of (4.2.1).
Assumption. From below, if we take a R-differentiable-function family Ft,U ,
then the open subset U ∈ Tt of Ht is automatically regarded as a connected
subset, for convenience. �

It is not difficult to check that the R-differentiable-function family Ft,U

of U ∈ Tt forms a well-defined R-vector space. Also, the R-differentiable-
function family Ft forms a R-vector space in the sense that: if r1, r2 ∈ R and
f1, f2 ∈ Ft, and hence, if r1f1 ∈ Ft,U1 and r2f2 ∈ Ft,U2 , for U1, U2 ∈ Tt, then

r1f1 + r2f2 ∈ Ft,U1∩U2 , in Ft.

Before proceeding our works, we discuss the difficulties to maintain sim-
ilar settings of Sect. 4.1 for the cases where we replace the (−1)-scaled hy-
percomplexes (which is the quaternions) H−1 to a general t-scaled hypercom-
plexes Ht, for t ∈ R \ {−1}. Naturally, we want to extend the results (4.1.2)
and (4.1.3) of Sect. 4.1 to those on Ht, for any scales t ∈ R. However, if we
use the operators,

Dt =
∂f

∂x1
+ i

∂f

∂x2
+ jt

∂f

∂x3
+ kt

∂f

∂x4
,
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and

D†
t =

∂f

∂x1
− ∂f

∂x2
i − ∂f

∂x3
jt − ∂f

∂x4
kt, (4.2.2)

for a fixed t ∈ R, then one “cannot” have

D†
t Dt =

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂x2
4

in general, like in Sect. 4.1, especially, where t 
= −1 in R (e.g., see Sect. 4.3
below). In other words, one cannot have a natural Laplacian-like operator
from the operators (4.2.2). So, we need new settings for studying the hyper-
holomorphic property, and harmonicity of Ft,U on Ht.

Also, if a given scale t is zero, i.e., t = 0 in R, then the analysis of F0,U

on H0, for U ∈ T0, seems totally different from those on {Ht}t∈R\{0}. So, in
the rest of Sect. 4 below, we first concentrate on the cases where t 
= 0 in R.
The case where t = 0 will be considered in Sect. 5, independently.
Assumption. In the following Sects. 4.3, 4.4 and 4.5, we assume t ∈ R\ {0}.�

4.3. The Scaled Regularity

As we have seen in Sect. 4.1, the (−1)-scaled differential operator D−1 satisfies
that

D†
−1D−1 = Δ−1 =

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂x2
4

,

by (4.1.1), allowing us to study harmonicity independent from the imaginary
R-basis elements {i, j−1, k−1} of H−1. In this section, let’s construct ideas
and approaches to extend the results of Sect. 4.1 to the general cases where
t ∈ R \ {0}. Throughout this section, we let t ∈ R \ {0} as we assumed in
Sect. 4.2, and Ht, the corresponding t-scaled hypercomplexes.

First, consider the case where we have operators Dt and D†
t on Ft by

Dt =
∂

∂x1
+ i

∂

∂x2
+ jt

∂

∂x3
+ kt

∂

∂x4
,

and

D†
t

def=
∂

∂x1
− ∂

∂x2
i − ∂

∂x3
jt − ∂

∂x4
kt, (4.3.1)

as in Sect. 4.1. Observe that

D†
t Dt =

(
∂

∂x1
− ∂

∂x2
i − ∂

∂x3
jt − ∂

∂x4
kt

)(
∂

∂x1
+ i

∂

∂x2
+ jt

∂

∂x3
+ kt

∂

∂x4

)

=
∂

∂x1

∂

∂x1
+

∂

∂x1
i

∂

∂x2
+

∂

∂x1
jt

∂

∂x3
+

∂

∂x1
kt

∂

∂x4

− ∂

∂x2
i

∂

∂x1
− ∂

∂x2
i2

∂

∂x2
− ∂

∂x2
ijt

∂

∂x3
− ∂

∂x2
ikt

∂

∂x4

− ∂

∂x3
jt

∂

∂x1
− ∂

∂x3
jti

∂

∂x2
− ∂

∂x3
j2
t

∂

∂x3
− ∂

∂x3
jtkt

∂

∂x4

− ∂

∂x4
kt

∂

∂x1
− ∂

∂x4
kti

∂

∂x2
− ∂

∂x4
ktjt

∂

∂x3
− ∂

∂x4
k2

t

∂

∂x4
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=
∂2

∂x2
1

− ∂2

∂x2
2

i2 − ∂

∂x2
ijt

∂

∂x3
− ∂

∂x2
ikt

∂

∂x4

− ∂

∂x3
jti

∂

∂x2
− ∂

∂x3
j2
t

∂

∂x3
− ∂

∂x3
jtkt

∂

∂x4

− ∂

∂x4
kti

∂

∂x2
− ∂

∂x4
ktjt

∂

∂x3
− ∂

∂x4
k2

t

∂

∂x4

=
∂2

∂x2
1

+
∂2

∂x2
2

− ∂

∂x3
(−ti)

∂

∂x4
− ∂

∂x4
(ti)

∂

∂x3
− t

∂2

∂x2
3

− t
∂2

∂x2
4

,

(4.3.2)

by (3.5) and (3.6), i.e.,

D†
t Dt =

∂2

∂x2
1

+
∂2

∂x2
2

+ t
∂

∂x3
i

∂

∂x4
− t

∂

∂x4
i

∂

∂x3
− t

∂2

∂x2
3

− t
∂2

∂x2
4

, (4.3.3)

by (4.3.2).

Proposition 4.4. If Dt = ∂
∂x1

+ i ∂
∂x2

+ jt
∂

∂x3
+ kt

∂
∂x4

on Ft,U , for U ∈ Tt,
then

D†
t Dt =

∂2

∂x2
1

+
∂2

∂x2
2

+ t
∂

∂x3
i

∂

∂x4
− t

∂

∂x4
i

∂

∂x3
− t

∂2

∂x2
3

− t
∂2

∂x2
4

, on U.(4.3.4)

Proof. The proof is done by the straightforward computations (4.3.3). �

Motivated by (4.3.4), we define new differential operators ∇t and ∇†
t

by

∇t =
∂

∂x1
+ i

∂

∂x2
− jt

sgn (t) ∂
√

|t|∂x3

− kt
sgn (t) ∂
√

|t|∂x4

,

and

∇†
t =

∂

∂x1
− ∂

∂x2
i +

sgn (t) ∂
√

|t|∂x3

jt +
sgn (t) ∂
√

|t|∂x4

kt, (4.3.5)

on Ft,U , for any U ∈ Tt, where

sgn (t) ∂
√

|t|∂xl

=

(
sgn (t)
√

|t|

)
∂

∂xl
, for l = 3, 4,

where

sgn (t) =
{

1 if t > 0
−1 if t < 0,

(4.3.6)

for all t ∈ R \ {0}. i.e., by (4.3.5) and (4.3.6),

∇t
def=

⎧
⎪⎨

⎪⎩

∂
∂x1

+ i ∂
∂x2

− jt
∂√

t∂x3
− kt

∂√
t∂x4

if t > 0

∂
∂x1

+ i ∂
∂x2

+ jt
∂√

|t|∂x3
+ kt

∂√
|t|∂x4

if t < 0.
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Lemma 4.5. Let ∇t and ∇†
t be the operators (4.3.6) on Ft,U . Then

∇†
t∇t =

∂2

∂x2
1

+
∂2

∂x2
2

− sgn (t) ∂2

∂x2
3

− sgn (t) ∂2

∂x2
4

, (4.3.7)

on Ft,U .

Proof. Consider that,

∇†
t∇t =

(
∂

∂x1
− ∂

∂x2
i +

sgn (t) ∂
√

|t|∂x3

jt +
sgn (t) ∂
√

|t|∂x4

kt

)

(
∂

∂x1
+ i

∂

∂x2
− jt

sgn (t) ∂
√

|t|∂x3

− kt
sgn (t)
√

|t|∂x4

)

=
∂

∂x1

∂

∂x1
+

∂

∂x1
i

∂

∂x2
− ∂

∂x1
jt

sgn (t) ∂
√

|t|∂x3

− ∂

∂x1
kt

sgn (t) ∂
√

|t|∂x4

− ∂

∂x2
i

∂

∂x1
− ∂

∂x2
i2

∂

∂x2
+

∂

∂x2
ijt

sgn (t) ∂
√

|t|∂x3

+
∂

∂x2
ikt

sgn (t) ∂
√

|t|∂x4

+
sgn (t) ∂
√

|t|∂x3

jt
∂

∂x1
+

sgn (t) ∂
√

|t|∂x3

jti
∂

∂x2
− sgn (t) ∂

√
|t|∂x3

j2
t

sgn (t) ∂
√

|t|∂x3

−sgn (t) ∂
√

|t|∂x3

jtkt
sgn (t) ∂
√

|t|∂x4

+
sgn (t) ∂
√

|t|∂x4

kt
∂

∂x1
+

sgn (t) ∂
√

|t|∂x4

kti
∂

∂x2
− sgn (t) ∂

√
|t|∂x4

ktjt
sgn (t) ∂
√

|t|∂x3

−sgn (t) ∂
√

|t|∂x4

k2
t

sgn (t) ∂
√

|t|∂x4

=
∂2

∂x2
1

− ∂

∂x2
i2

∂

∂x2
+

∂

∂x2
ijt

sgn (t) ∂
√

|t|∂x3

+
∂

∂x2
ikt

sgn (t) ∂
√

|t|∂x4

+
sgn (t) ∂
√

|t|∂x3

jti
∂

∂x2
− 1

|t|
∂

∂x3
j2
t

∂

∂x3
− 1

|t|
∂

∂x3
jtkt

∂

∂x4

+
sgn (t) ∂
√

|t|∂x4

kti
∂

∂x2
− 1

|t|
∂

∂x4
ktjt

∂

∂x3
− 1

|t|
∂

∂x4
k2

t

∂

∂x4

since(sgn (t)) (sgn (t)) = 1in {±1}

=
∂2

∂x2
1

− ∂

∂x2
i2

∂

∂x2
− 1

|t|
∂

∂x3
j2
t

∂

∂x3
− 1

|t|
∂

∂x3
jtkt

∂

∂x4
,

− 1
|t|

∂

∂x4
ktjt

∂

∂x3
− 1

|t|
∂

∂x4
k2

t

∂

∂x4

=
∂2

∂x2
1

+
∂2

∂x2
2

− t

|t|
∂2

∂x2
3

− 1
|t|

∂

∂x3
(−ti)

∂

∂x4
− 1

|t|
∂

∂x4
(ti)

∂

∂x3
− t

|t|
∂2

∂x2
4

=
∂2

∂x2
1

+
∂2

∂x2
2

− sgn (t) ∂2

∂x2
3

+ sgn (t)
∂

∂x3
(i)

∂

∂x4

−sgn (t)
∂

∂x4
(i)

∂

∂x3
− sgn (t) ∂2

∂x2
4
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since t
|t| = sgn (t)

=
∂2

∂x2
1

+
∂2

∂x2
2

− sgn (t) ∂2

∂x2
3

− sgn (t) ∂2

∂x2
4

,

by (3.5) and (3.6), implying that

∇†
t∇t =

∂2

∂x2
1

+
∂2

∂x2
2

− sgn (t) ∂2

∂x2
3

− sgn (t) ∂2

∂x2
4

.

�

The above lemma shows that if we define a t-scaled Laplacian operator
Δt on Ft by

Δt
def=

∂2

∂x2
1

+
∂2

∂x2
2

− sgn (t) ∂

∂x2
3

− sgn (t) ∂

∂x2
4

,

then we have the following factorization of Δt.

Theorem 4.6. If Δt
def
= ∂2

∂x2
1

+ ∂2

∂x2
2

− sgn(t)∂2

∂x2
3

− sgn(t)∂2

∂x2
4

on Ft, then

Δt = ∇†
t∇t. (4.3.8)

Proof. The formula (4.3.8) is shown by (4.3.7). �

Note that the above factorization (4.3.8) shows that if t < 0, then

∇†
t∇t =

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂x2
4

,

meanwhile, if t > 0, then

∇†
t∇t =

∂2

∂x2
1

+
∂2

∂x2
2

− ∂2

∂x2
3

− ∂2

∂x2
4

,

for all t ∈ R \ {0}. For example, if t = −1, then this formula (4.3.8) becomes

Δ−1 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+
∂2

∂x2
4

= ∇†
−1∇−1,

as in Sect. 4.1. Meanwhile, if t = 1, then the formula (4.3.8) goes to

Δ1 =
∂2

∂x2
1

+
∂2

∂x2
2

− ∂2

∂x2
3

− ∂2

∂x2
4

= ∇†
1∇1,

as in [4]. Thus, the factorization (4.3.8) can be re-stated as

Δt =
{

Δ−1 if t < 0
Δ1 if t > 0.

We now consider how the new differential operator ∇t of (4.3.6) acts on
the functions,

ζ2 = x2 − x1i, ζ3 = x3 − x1jt, and ζ4 = x4 − x1kt.

Observe that

∇tζ2 = ζ2∇t =
∂ζ2

∂x1
+ i

∂ζ2

∂x2
− jt

sng (t) ∂ζ2√
|t|∂x3

− kt
sgn (t) ∂ζ2√

|t|∂x4
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=
∂(x2 − x1i)

∂x1
+ i

∂ (x2 − x1i)
∂x2

− jt
sgn (t) ∂ (x2 − x1i)√

|t|∂x3

−kt
sgn (t) ∂ (x2 − x1i)√

|t|∂x4

= (−i) + (1) i − (0) jt − (0) kt = −i + i = 0; (4.3.9)

∇tζ3 = ζ3∇t =
∂ (x3 − x1jt)

∂x1
+ i

∂ (x3 − x1jt)
∂x2

−jt
sgn (t) ∂ (x3 − x1jt)√

|t|∂x3

− kt
sgn (t) ∂ (x3 − x1jt)√

|t|∂x4

= (−jt) + (0) i −
(

sgn (t)
√

|t|

)

jt − (0) kt =

(

−1 − sgn (t)
√

|t|

)

jt; (4.3.10)

and

∇tζ4 = ζ4∇t =
∂ (x4 − x1kt)

∂x1
+ i

∂ (x4 − x1kt)
∂x2

−jt
sgn (t) ∂ (x4 − x1kt)√

|t|∂x3

− kt
sgn (t) ∂ (x4 − x1kt)√

|t|∂x4

= (−kt) + (0) i − (0) jt −
(

sgn (t)
√

|t|

)

kt =

(

−1 − sgn (t)
√

|t|

)

kt; (4.3.11)

Proposition 4.7. Let ∇t be the differential operator (4.3.6), and let {ζl}4
l=2 ⊂

Ft,Ht
be the functions introduced as in the very above paragraph. Then

∇tζ2 = ζ2∇t = 0,

and

∇tζ3 = ζ3∇t = ρjt, ∇ζ4 = ζ4∇t = ρkt, (4.3.12)

where

ρ = −1 − sgn (t)
√

|t|
, in R.

Proof. The formula (4.3.12) is proven by (4.3.9), (4.3.10) and (4.3.11). �

The formulas in (4.3.12) show how the operator ∇t acts on the Fueter-
like functions {ζl}4

l=2 in Ft,Ht
.

Definition 4.8. Let ∇t be the operator (4.3.6) on Ft,U , for U ∈ Tt in Ht, and
f ∈ Ft,U . If

∇tf =
∂f

∂x1
+ i

∂f

∂x2
− jt

sgn (t) ∂f
√

|t|∂x3

− kt
sgn (t) ∂f
√

|t|∂x4

= 0,

then f is said to be left t(-scaled)-regular on U . If

f∇t =
∂f

∂x1
+

∂f

∂x2
i − sgn (t) ∂f

√
|t|∂x3

jt − sgn (t) ∂f
√

|t|∂x4

kt = 0,
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then f is said to be right t(-scaled)-regular on U . If f ∈ Ft,U is both left and
right t-regular, then it is said to be t(-scaled)-regular.

A function f ∈ Ft,U is called a t(-scaled)-harmonic function, if

Δtf =
∂2f

∂x2
1

+
∂2f

∂x2
2

− sgn (t) ∂2f

∂x2
3

− sgn (t) ∂2f

∂x2
4

= 0,

where

Δt =
∂2

∂x2
1

+
∂2

∂x2
2

− sgn (t) ∂2

∂x2
3

− sgn (t) ∂2

∂x2
4

.

is in the sense of (4.3.8).

By (4.3.12), one can realize that ζ2 = x2 − x1i is t-regular, but, ζ3 =
x3 − x1jt and ζ4 = x4 − x1kt are neither left nor right t-regular, in general,
especially, if t 
= −1 in R\ {0}. As in Sect. 4.1, we concentrate on the left
t-regular functions. We finish this section with the following theorem.

Theorem 4.9. Let f ∈ Ft,U , for U ∈ Tt in Ht. If

f is left t-regular,

then

f is t-harmonic on U. (4.3.13)

Proof. Suppose f is left t-regular in Ft,U , i.e., ∇tf = 0. Then Δtf = 0,
because

Δtf = ∇†
t (∇tf) = ∇†

t (0) = 0,

implying that it is t-harmonic on U . �

4.4. Certain t-Regular Functions on Ht

Throughout this section, we automatically assume that a given scale t is
non-zero, i.e., t ∈ R \ {0}. Let ∇t and ∇†

t be the operators (4.3.6),

∇t =
∂

∂x1
+ i

∂

∂x2
− jt

sgn (t) ∂
√

|t|∂x3

− kt
sgn (t) ∂
√

|t|∂x4

,

and

∇†
t =

∂

∂x1
− ∂

∂x2
i +

sgn (t) ∂
√

|t|∂x3

jt +
sgn (t) ∂
√

|t|∂x4

kt,

on Ft,U , for any U ∈ Tt in the t-scaled hypercomplexes Ht, and let

Δt =
∂2

∂x2
1

+
∂2

∂x2
2

− sgn (t) ∂2

∂x2
3

− sgn (t) ∂2

∂x2
4

,

on Ft,U , satisfying

Δt = ∇†
t∇t, on Ft,U ,

by (4.3.8), where i =
√

−1 = is ∈ Hs, for all s ∈ R. Motivated by (4.3.12)
and (4.3.13), define entire R-differentiable functions {ηl}4

l=2 on Ht by

η2 (w) = x2 − x1i,
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and

η3 (w) = x3 +
sgn (t)x1√

|t|
jk, η4 (w) = x4 +

sgn (t) x1√
|t|

kt, (4.4.1)

in a Ht-variable w = x1 + x2i + x3jt + x4kt, with x1, x2, x3, x4 ∈ R.
Observe first that

η2 = x2 − x1i in Ft,Ht
,

is t-regular in Ft,Ht
, i.e.,

η2∇t = 0 = ∇tη2, on Ht, (4.4.2)

by (4.3.12), since η2 is identical to the function ζ2 introduced in Sect. 4.3.

Lemma 4.10. If η2 = x2 − x1i ∈ F1,Ht
is in the sense of (4.4.1), then

η2 is a t-harmonic t-regular function on Ht. (4.4.3)

Proof. The function η2 is t-regular on Ht by (4.4.2). Therefore, by (4.3.13),
it is t-harmonic on Ht, too. �

Let’s denote the quantity
√

|t| by ρ and sgn (t) by st ∈ {±}, and let
η3 = x3 + stx1

ρ jt ∈ Ft,Ht
be in the sense of (4.4.1). Observe that

∇tη3 =
∂
(
x3 + stx1

ρ jt

)

∂x1
+ i

∂
(
x3 + stx1

ρ jt

)

∂x2

−jt

st∂
(
x3 + sxt1

ρ jt

)

ρ∂x3
− kt

st∂
(
x3 + stx1

ρ jt

)

ρ∂x4

=
(

st

ρ
jt

)
+ i (0) − jt

(
st

ρ

)
− kt (0) =

st

ρ
jt − st

ρ
jt = 0,

and

η3∇t =
∂
(
x3 + stx1

ρ jt

)

∂x1
+

∂
(
x3 + stx1

ρ jt

)

∂x2
i −

st∂
(
x3 + stx1

ρ jt

)

ρ∂x3
jt

−
st∂

(
x3 + stx1

ρ jt

)

ρ∂x4
kt

=
(

st

ρ
jt

)
+ (0) i −

(
st

ρ

)
jt − (0) kt =

st

ρ
jt − st

ρ
jt = 0; (4.4.4)

also, if η4 = x4 + stρx1kt ∈ F1,Ht
is in the sense of (4.4.1), then

∇tη4 =
∂
(
x4 + stx1

ρ kt

)

∂x1
+ i

∂
(
x4 + stx1

ρ kt

)

∂x2

−jt

st∂
(
x4 + stx1

ρ kt

)

ρ∂x3
− kt

st∂
(
x4 + stx1

ρ kt

)

ρ∂x4

=
(

st

ρ
kt

)
+ i (0) − jt (0) − kt

(
st

ρ

)
=

st

ρ
kt − st

ρ
kt = 0,
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and

η4∇t =
∂
(
x4 + stx1

ρ kt

)

∂x1
+

∂
(
x4 + stx1

ρ kt

)

∂x2
i

−
st∂

(
x4 + x1

ρ kt

)

ρ∂x3
jt −

st∂
(
x4 + x1

ρ kt

)

ρ∂x4
kt

=
(

st

ρ
kt

)
+ (0) i − (0) jt −

(
st

ρ

)
kt =

st

ρ
kt − st

ρ
kt = 0. (4.4.5)

Lemma 4.11. If η3 = x3+ sng(t)x1√
|t|

jt, and η4 = x4+ sgn(t)x1√
|t|

kt are in the sense

of (4.4.1) in F1,Ht
, then

η3 and η4 are t-harmonic t-regular on Ht. (4.4.6)

Proof. The functions η3, η4 ∈ F1,Ht
are both left and right t-regular on Ht,

by (4.4.4) and (4.4.5). Therefore, the functions η3 and η4 are t-harmonic on
Ht, too, by (4.3.13). �

By the above two lemmas, one obtains the following result.

Theorem 4.12. The functions {ηl}4
l=2 of (4.4.1) are t-harmonic t-regular func-

tions on Ht.

Proof. The proof is done by (4.4.3) and (4.4.6). �

The following corollary is an immediate consequence of the above the-
orem.

Corollary 4.13. Let f = s1η2 + s2η3 + s3η4 ∈ Ft,Ht
be a R-linear combination

of the t-regular functions {ηl}4
l=2 of (4.4.1), where s1, s2, s3 ∈ R. Then f is

t-harmonic t-regular on Ht.

Proof. Let f =
3∑

n=1
snηn+1 ∈ F1,Ht

be a R-linear combination of {ηl}4
l=2, for

s1, s2, s3 ∈ R. Then

∇tf =
3∑

n=1

sn (∇tηn+1) = 0,

and

f∇t =
3∑

n=1

sn (ηn+1∇t) = 0,

by (4.4.2), (4.4.4) and (4.4.5). Therefore, this function f is t-regular on Ht.
So, by (4.3.13), this function f is t-harmonic on Ht, too. �
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4.5. Left t-Regular Functions of Ft

In this section, we consider left t-regular functions in Ft more in detail. As
in Sects. 4.3 and 4.4, throughout this section, we assume that t ∈ R \ {0}.
Recall that the functions,

η2 (w) = x2 − x1i,

and

η3 (w) = x3 +
sgn (t) x1√

|t|
jt, η (w) = x4 +

sgn (t)x1√
|t|

kt,

of (4.4.1) in a Ht-variable w = x1 +x2i+x3jt +x4kt, with x1, x2, x3, x4 ∈ R,
are t-harmonic t-regular functions on Ht. We first study t-regular functions
induced by {ηl}4

l=2. To do that we define a new operation (×) on the t-scaled
hypercomplexes Ht.

Definition 4.14. Let h1, ..., hN ∈ Ht, for N ∈ N. Then the symmetrized prod-
uct of h1, ..., hN is defined by a new hypercomplex number,

N
×

n=1
hn

denote= h1 × ... × hN
def=

1
N !

∑

σ∈SN

hσ(1) ·t hσ(2) ·t ... ·t hσ(N), (4.5.1)

where SN is the symmetric (or, permutation) group over {1, ..., N}, where
(·t) is the t-scaled multiplication (2.1.1) on Ht.

Notation. From below, if there are no confusions, we denote the operation
(·t) simply by (·) for convenience. i.e., the above definition (4.5.1) can be
re-written to be

N
×

n=1
hn =

1
N !

∑

σ∈SN

hσ(1)hσ(2)...hσ(N), (4.5.2)

for h1, ..., hN ∈ Ht, for t ∈ R\ {0}.�
Remark. The above symmetrized product (×) of (4.5.1) is well-defined for
“all” t ∈ R, including the case where t = 0. As we assumed, we restrict our
interests to the cases where t 
= 0 in R in this section, but we emphasize that
the above symmetrized product of (4.5.1) is also well-defined where t = 0
(See Sect. 5 below).�

Remark that, actually, the above definition (4.5.1) of the symmetrized
product implies the following case. If we consider

h(n) denote= h × h × ... × h︸ ︷︷ ︸
n-times

, for n ∈ N,

then, all permutations σ of Sn induce exactly same element, so,

h(n) =
1
n!

∑

σ∈Sn

(
hσ(1)...hσ(n)

)
, with hσ(j) = h, ∀j,

in Ht, implying that

h(n) =
1
n!

∑

σ∈Sn

hσ(1)...hσ(n) =
1
n!

(n!hn) = hn, (4.5.3)
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where hn = hh.......h︸ ︷︷ ︸
n-times

denote= h ·t h ·t ... ·t h︸ ︷︷ ︸
n-times

, for all n ∈ N, by (4.5.2). So, if we

consider “mutually distinct” h1 and h2 in Ht, and

h
(n)
1 × h2 in Ht,

then

h
(n)
1 × h2 = h1 × ... × h1︸ ︷︷ ︸

n-times

× h2,

satisfying

h
(n)
1 × h2 =

1
(n + 1)!

∑

σ∈Sn+1

(
(h1)σ(1) ... (h1)σ(n)

)
(h2)σ(n+1) ,

and hence,

h
(n)
1 × h2 =

n!
(n + 1)!

∑

σ∈Sn+1

(hn
1 ) (h2)σ(n+1) ,

by (4.5.3). More generally, if h1, ..., hN ∈ Ht are “mutually distinct,” and
n1, ..., nN ∈ N, then

N
×

j=1
h

(nj)
j =

N∏

j=1

(nj !)
(

N∑

j=1

nj

)

!

⎛

⎜
⎜
⎜
⎝

∑

σ∈S N∑

j=1
nj

hσ(1)...h
σ

(
N∑

j=1
nj

)

⎞

⎟
⎟
⎟
⎠

, (4.5.4)

by (4.5.3), where hσ(j) ∈ {h1, ..., hN}, for all j ∈
{

1, ...,
n∑

j=1

nj

}

.

Proposition 4.15. Let h1, ..., hN be mutually distinct elements of the t-scaled
hypercomplexes Ht, for N ∈ N \ {1}, and let n1, ..., nN ∈ N. If

n
denote=

N∑

j=1

nj = n1 + ... + nN ∈ N,

then

N
×

j=1
h(nj) =

N∏

j=1

(nj !)

n!

(
∑

σ∈Sn

hσ(1)hσ(2)...hσ(n)

)

,

with

h
(k)
j = hj × hj × ... × hj︸ ︷︷ ︸

k-times

= hk
j , ∀j = 1, ..., N, (4.5.5)

for all k ∈ {1, ..., n}, where hσ(j) ∈ {h1, ..., hN}, for all j = 1, ..., n.

Proof. The refined computation (4.5.5) of the definition (4.5.1) is obtained
by (4.5.4). �
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Let f1, ..., fN : Ht → Ht be functions for N ∈ N. Then, similar to (4.5.1)
(expressed by (4.5.2)), one can define a symmetrized-product function of them
by

N
×

n=1
fn =

1
N !

∑

σ∈SN

fσ(1)fσ(2)...fσ(N),

where
(
fσ(1)fσ(2)...fσ(N)

)
(h) = fσ(1) (h) ·t ... ·t fσ(N) (h) , (4.5.6)

simply denoted by
(
fσ(1)fσ(2)...fσ(N)

)
(h) = fσ(1) (h) ...fσ(N) (h) ,

as in (4.5.2), for all σ ∈ SN and h ∈ Ht. Also, similar to (4.5.3), one write

f
(n)
j = fj × fj × ... × fj︸ ︷︷ ︸

n-times

= fn
j , ∀n ∈ N,

in terms of (4.5.6). Then, for any h ∈ Ht, the image
(

N
×

n=1
f

(nj)
n

)
(h) is ex-

pressed similar to (4.5.5), if we replace hσ(j) to fσ(j) (h) in (4.5.5). Without
loss of generality, let’s axiomatize that

f (0) = 1, the constant 1-function on Ht,

for all functions f : Ht → Ht.

Definition 4.16. Let n denote= (n1, n2, n3) ∈ N
3
0 be a triple of numbers in N0 =

N∪ {0}, and let {ηl}4
l=2 be the t-harmonic t-regular functions (4.4.1). Define

a function ηn by

ηn def=
1
n!

(
η
(n1)
2 × η

(n2)
3 × η

(n3)
4

)
,

where

n! = (n1!) (n2!) (n3!) ∈ N, (4.5.7)

and

η
(nl)
l+1 = ηl+1 × ηl+1 × ... × ηl+1︸ ︷︷ ︸

nl-times

= ηnl

l+1, ∀l = 1, 2, 3.

For an arbitrary n = (n1, n2, n3) ∈ N
3
0, let ηn : Ht → Ht be a function

(4.5.7). By the very construction, this function ηn is contained in F1,Ht
.

Observe that, if we let

e2 = −i, e3 =
sgn (t)
√

|t|
jt, and e4 =

sgn (t)
√

|t|
kt,

making

ηl = xl + x1el, ∀l = 2, 3, 4,

then

(n!) ∇tη
n = (n!) ∇t

(
1
n!

(
η×n1
2 × η×n2

3 × η×n3
4

)
)
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=
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

ησ(1)...ησ(k−1)elησ(k+1)... × ησ(N)

−
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

elησ(1)... × ησ(k−1)ησ(k+1)...ησ(N), (4.5.8)

where

N = n1 + n2 + n3 in N.

Now, note that

0 =
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

xlησ(1)...ησ(k−1)ησ(k+1)... × ησ(N)

−
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

ησ(1)... × ησ(k−1)xlησ(k+1)...ησ(N), (4.5.9)

by the formula (7) in the page 99 of [8]. Let’s multiply x1 to the formula
(4.5.8). Then

x1 (n!) ∇tη
n = x1 (n!) ∇tη

n + 0

= x1

⎛

⎝
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

ησ(1)...ησ(k−1)elησ(k+1)... × ησ(N)

−
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

elησ(1)... × ησ(k−1)ησ(k+1)...ησ(N)

⎞

⎠+ 0

by (4.5.8)

=
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

ησ(1)...ησ(k−1) (x1el) ησ(k+1)... × ησ(N)

−
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

(x1el) ησ(1)... × ησ(k−1)ησ(k+1)...ησ(N)

+
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

xlησ(1)...ησ(k−1)ησ(k+1)... × ησ(N)

−
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

ησ(1)... × ησ(k−1)xlησ(k+1)...ησ(N)

by (4.5.9)

=

⎛

⎝
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

ησ(1)...ησ(k−1) (x1el) ησ(k+1)... × ησ(N)
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+
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

xlησ(1)...ησ(k−1)ησ(k+1)... × ησ(N)

⎞

⎠

+

⎛

⎝−
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

(x1el) ησ(1)... × ησ(k−1)ησ(k+1)...ησ(N)

−
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

ησ(1)... × ησ(k−1)xlησ(k+1)...ησ(N)

⎞

⎠

=
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

ησ(1)...ησ(k−1)ηlησ(k+1)... × ησ(N)

−
∑

σ∈SN

4∑

l=2

∑

k∈{1,...,N},σ(k)=l

ηlησ(1)...ησ(k−1)ησ(k+1)... × ησ(N)

= 0, (4.5.10)

under the sum over SN .

Lemma 4.17. For any n = (n1, n2, n3) ∈ N
3
0, the function ηn of (4.5.7) is

t-regular on Ht, i.e.,

∇tη
n = 0 = ηn∇t. (4.5.11)

Proof. The first equality of the formula (4.5.11) is obtained by (4.5.10). The
second equality is obtained similarly by (4.5.10), by the definition of the
symetrized product (4.5.2) and (4.5.7), with help of the t-regularity (4.4.3)
of {ηl}4

l=2. �

By the above lemma, we obtain the following result.

Theorem 4.18. Let n = (n1, n2, n3) ∈ N
3
0, and let ηn ∈ Ft,Ht

be the function
(4.5.7). Then it is a t-harmonic t-regular function, i.e.,

ηn∇t = ∇tη
n = 0, andΔtη

n = 0, on Ht. (4.5.12)

Proof. The t-regularity of ηn on Ht is shown by (4.5.11), for all n ∈ N
3
0.

Thus, by (4.3.13), the functions {ηn}n∈N
3
0

are t-harmonic on Ht. Therefore,
the relation (4.5.12) holds. �

By the above theorem, all functions
{
ηn : n ∈ N

3
0

}
are t-harmonic t-

regular functions on Ht.
Now, recall the complete semi-norm ‖.‖t of (2.4.10) on the t-scaled hy-

percomplexes Ht,

‖h‖t =
√

|〈h, h〉t| =
√

|τ (hh†)| =
√∣
∣
∣|a|2 − t |b|2

∣
∣
∣,

for all h = a + bjt ∈ Ht, regarded as (a, b) ∈ Ht with a, b ∈ C (in the sense
of Sect. 2) satisfying (2.4.11) and (2.4.12). i.e., if t < 0, then it is a complete
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norm on Ht, while if t > 0, then it is a complete semi-norm on Ht. If we
understand,

η2 = x2 − x1i, η3 = x3 +
sgn (t)x1√

|t|
jt, η4 = x4 +

sgn (t) x1√
|t|

kt,

as their images of Ht, then they are regarded as

η2 = (x2 − x1i, 0) , η3 =

(

x3,
sgn (t)x1√

|t|

)

,

and

η4 =

(

x4,
sgn (t) x1√

|t|
i

)

,

in “the t-scaled hypercomplex ring Ht in the sense of Sect. 2.” So, one can
compute their norms on Ht,

‖η2‖t =
√∣
∣
∣|x2 − x1i|2 − t |0|2

∣
∣
∣ =

√∣
∣
∣x2

2 + (−x1)
2
∣
∣
∣ =

√
x2

1 + x2
2,

‖η3‖t =

√√
√
√
√

∣
∣
∣
∣
∣
∣
|x3|2 − t

∣
∣
∣
∣
∣
sgn (t)x1√

|t|

∣
∣
∣
∣
∣

2
∣
∣
∣
∣
∣
∣
=
√

|x2
3 − sgn (t)x2

1|,

and

‖η4‖t =

√√
√
√
√

∣
∣
∣
∣
∣
∣
|x4|2 − t

∣
∣
∣
∣
∣
sgn (t) x1√

|t|
i

∣
∣
∣
∣
∣

2
∣
∣
∣
∣
∣
∣
=
√

|x2
4 − sgn (t) x2

1|. (4.5.13)

Lemma 4.19. Let ηn ∈ Ft,Ht
be a function (4.5.7) for n = (n1, n2, n3) ∈ N

3
0.

Then

‖ηn‖t ≤
(√

x2
2 + x2

1

)n1
(√

|x2
3 − sgn (t) x2

1|
)n2

(√
|x2

4 − sgn (t) x2
1|
)n3

.

(4.5.14)

Proof. By (4.5.7), for any n = (n1, n2, n3) ∈ N
3
0,

‖ηn‖t =
∥
∥
∥
∥

1
n!

(
η
(n1)
2 × η

(n2)
3 × η

(n3)
4

)∥∥
∥
∥

t

=

∥
∥
∥
∥
∥

1
(n1!) (n2!) (n3!)

(
(n1!) (n2!) (n3!)

n!

∑

σ∈Sn

hσ(1)hσ(2)...hσ(n)

)∥∥
∥
∥
∥

t

where hσ(l) ∈ {η2, η3, η4}, for all σ ∈ Sn, with n = n1 + n2 + n3 ∈ N

= ‖ηn1
2 ηn2

3 ηn3
4 ‖t ≤ ‖η2‖n1

t ‖η3‖n2
t ‖η4‖n3

t

by (4.5.5)

=
(√

x2
2 + x2

1

)n1
(√

|x2
3 − sgn (t) x2

1|
)n2

(√
|x2

4 − sgn (t) x2
1|
)n3

,

by (4.5.13). Therefore, the inequality (4.5.14) holds. �
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The above lemma shows that, for any arbitrarily fixed n ∈ N
3
0, the

corresponding function ηn is bounded by (4.5.14).

Theorem 4.20. Let t 
= 0 in R, and f ∈ Ft,U , a R-differentiable function,
where U ∈ Tt containing 0 = 0 + 0i + 0jt + 0kt ∈ Ht. If f is R-analytic on
U , then

f is left t-regular on U,

if and only if

f = f (0) +
∑

n∈N3

ηnfn, (4.5.15)

with

fn =
1
n!

∂n1+n2+n3f

∂xn1
2 ∂xn2

3 ∂xn3
4

(0) , ∀n ∈ N
3.

Proof. Clearly, if f = f (0) +
∑

n∈N3
ηnfn, then it is left t-regular, by the t-

regularity (4.5.12) of
{
ηn : n ∈ N

3
0

}
.

Suppose f is left t-regular in Ft,U , satisfying ∇tf = 0. Then

f (w) − f (0) =
4∑

n=2

(ηn (w)) ((Rnf) (w)) ,

where

(Rnf) (w) =
∫ 1

0

∂f (tw)
∂xn

dt, ∀n = 2, 3, 4, (4.5.16)

in a Ht-variable w = x1 + x2i + x3jt + x4kt, with x1, x2, x3, x4 ∈ R. Indeed,

df (tw)
dt

= x1
∂f (tw)

∂x1
+

4∑

l=2

xl
∂f (tw)

∂xl
,

identical to

df (tw)
dt

= x1

(

−i
∂

∂x2
+ jt

sgn (t) ∂
√

|t|∂x3

+ kt
sgn (t) ∂
√

|t|∂x4

)

f (tw) +
4∑

l=2

xl
∂f (tw)

∂xl
,

implying that

df (tw)
dt

=
4∑

l=2

ηl (w)
∂f (tw)

∂xl
.

Thus, by iterating (4.5.16), one can get that

f = f (0) +
∑

n∈N3

ηnfn

where

fn =
1
n!

∂n1+n2+n3f

∂xn1
2 ∂xn2

3 ∂xn3
4

(0) , ∀n ∈ N
3.
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Note that, such an iteration can be done by the assumption that f is R-
analytic on U , by the boundedness condition (4.5.14). Therefore, the charac-
terization (4.5.15) holds true. �

Remark that, if a given scale t is negative, i.e., t < 0 in R, then the
R-regularity automatically implies the R-analyticity by (4.3.5), (4.3.6) and
(4.5.14). So, if t < 0, then the above theorem holds without the R-analyticity
assumption for f ∈ Ft,U .

5. 0-Regular Functions on H0

In Sect. 4, we studied the t-regularity and the t-hamonicity of R-differentiable
functions of Ft,U , for U ∈ Tt in the t-scaled hypercomplexes Ht, where a given
scale is nonzero, i.e., t ∈ R \ {0}. To do that, we defined the operators ∇t

and ∇†
t on Ft by

∇t =
∂

∂x1
+ i

∂

∂x2
− jt

sgn (t) ∂
√

|t|∂x3

− kt
sgn (t) ∂
√

|t|∂x4

,

and

∇†
t =

∂

∂x1
− ∂

∂x2
i +

sgn (t) ∂
√

|t|∂x3

jt +
sgn (t) ∂
√

|t|∂x4

kt, (5.1)

satisfying

Δt =
∂2

∂x2
1

+
∂2

∂x2
2

− sgn (t) ∂2

∂x2
3

− sgn (t) ∂2

∂x2
4

= ∇†
t∇t, (5.2)

in a Ht-variable w = x1 + x2i + x3jt + x4kt, with x1, x2, x3, x4 ∈ R, where
i =

√
−1 = i0 in H0. We showed in Sect. 4 that the functions,

η2 (w) = x2 − x1i, η3 (w) = x3 +
sgn (t) x1√

|t|
jt, η4 +

sgn (t) x1√
|t|

, (5.3)

are t-harmonic t-regular in Ft,Ht
, furthermore, all functions of Ft,Ht

formed
by

ηn =
1
n!

(
η
(n1)
2 × η

(n2)
3 × η

(n3)
4

)
, with n! =

3∏

l=1

(nl!) (5.4)

are t-harmonic t-regular in Ft,Ht
, for all n = (n1, n2, n3) ∈ N

3
0, characterizing

the left t-regularity (4.5.13) on Ft, whenever t 
= 0 in R.
In this section, we consider the case where the given scale t is zero in R,

i.e., we study 0-regularity on F0 acting on the 0-scaled hypercomplexes H0.
Recall that if

h = a + bi + cj0 + dk0 ∈ H0, with a, b, c, d ∈ R,

then

h = (a + bi) + (c + di) j0 = z1 + z2j0,

with

z1 = a + bi, and z2 = c + di, in C,
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realized to be

[(z1, z2)]0 =
(

z1 0 · z2

z2 z1

)
=
(

z1 0
z2 z1

)
, in H0

2,

where

H0 = span
R

{1, i, j0, k0} .

So, the R-basis elements {i, j0, k0} of H0 satisfy

i2 = −1, j2
0 = 0 = k2

0, (5.5)

and the commuting diagrams,

i
1 ↙ ↖−0=0

j0 −→
1

k0 ,
and

i
0 ↗ ↘−1

j0 ←−
−1

k0 ,

saying that

ij0 = k0, j0k0 = −0i = 0, k0i = j0,

and

j0i = −k0, ik0 = −j0, k0j0 = 0i = 0, (5.6)

by (3.4), (3.5) and (3.6).
Define first the operators ∇0 and ∇†

0 by

∇0 =
∂

∂x1
+ i

∂

∂x2
+ j0

∂

∂x3
+ k0

∂

∂x4
,

and

∇†
0 =

∂

∂x1
− ∂

∂x2
i − ∂

∂x3
j0 − ∂

∂x4
k0, (5.7)

on F0,U , for any U ∈ Tt in H0, similar to the differential operators of (5.1),
in a H0-variable x1 +x2i+x3j0 +x4k0, with x1, x2, x3, x4 ∈ R. Observe that

∇†
0∇0 =

(
∂

∂x1
− ∂

∂x2
i − ∂

∂x3
j0 − ∂

∂x4
k0

)(
∂

∂x1
+ i

∂

∂x2
+ j0

∂

∂x3
+ k0

∂

∂x4

)

=
∂2

∂x2
1

+
∂

∂x1
i

∂

∂x2
+

∂

∂x1
j0

∂

∂x3
+

∂

∂x1
k0

∂

∂x4

− ∂

∂x2
i

∂

∂x1
− ∂

∂x2
i2

∂

∂x2
− ∂

∂x2
ij0

∂

∂x3
− ∂

∂x2
ik0

∂

∂x4

− ∂

∂x3
j0

∂

∂x1
− ∂

∂x3
j0i

∂

∂x2
− ∂

∂x3
j2
0

∂

∂x3
− ∂

∂x3
j0k0

∂

∂x4

− ∂

∂x4
k0

∂

∂x1
− ∂

∂x4
k0i

∂

∂x2
− ∂

∂x4
k0j0

∂

∂x3
− ∂

∂x4
k2
0

∂

∂x4

=
∂2

∂x2
1

+
∂2

∂x2
2

− ∂

∂x2
ij0

∂

∂x3
− ∂

∂x2
ik0

∂

∂x4

− ∂

∂x3
j0i

∂

∂x2
− ∂

∂x3
j2
0

∂

∂x3
− ∂

∂x3
j0k0

∂

∂x4

− ∂

∂x4
k0i

∂

∂x2
− ∂

∂x4
k0j0

∂

∂x3
− ∂

∂x4
k2
0

∂

∂x4
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=
∂2

∂x2
1

+
∂2

∂x2
2

− ∂

∂x3
j2
0

∂

∂x3
− ∂

∂x3
j0k0

∂

∂x4

− ∂

∂x4
k0j0

∂

∂x3
− ∂

∂x4
k2
0

∂

∂x4

=
∂2

∂x2
1

+
∂2

∂x2
2

− ∂

∂x3
(0)

∂

∂x3
− ∂

∂x3
(−0i)

∂

∂x4

− ∂

∂x4
(0i)

∂

∂x3
− ∂

∂x4
(0)

∂

∂x4

=
∂2

∂x2
1

+
∂2

∂x2
2

, (5.8)

by (5.5) and (5.6).

Theorem 5.1. Let ∇0 be the operator (5.7) on F0. Then

∇†
0∇0 =

∂2

∂x2
1

+
∂2

∂x2
2

. (5.9)

Proof. The formula (5.9) is obtained by the computation (5.8). �

One can recognize that the formula (5.9) is similar to the formula (5.2).
However, we do not have xl-depending double-partial-derivatives, for l = 3, 4,
in (5.9). It shows that, in the 0-scaled case, the Laplacian on F0,U for an open
connected subset U ⊆ H0 is depending only on the first, and the second R-
variables x1 and x2. More generally, for any u3, u4 ∈ R \ {0}, if we define
operators Du3,u4 and D†

u3,u4
by

Du3,u4 =
∂

∂x1
+ i

∂

∂x2
+ j0

u3∂

∂x3
+ k0

u4∂

∂x4
,

and

D†
u3,u4

=
∂

∂x1
− ∂

∂x2
i − u3∂

∂x3
j0 − u4∂

∂x4
k0, (5.10)

as in (5.1), then, for any dilations (5.10) of ∇0 and ∇†
0, one has

D†
u3,u4

Du3,u4 =
∂2

∂x2
1

+
∂2

∂x2
2

, (5.11)

similar to (5.8), by (5.5) and (5.6). It shows that, indeed, the Laplacian Δ0

on F0 can be well-defined to be

Δ0 =
∂2

∂x2
1

+
∂2

∂x2
2

,

by (5.11).

Definition 5.2. Define an operator Δ0 on F0,U , for any open connected sub-
sets U of the 0-scaled hypercomplexes H0, by

Δ0
def=

∂2

∂x2
1

+
∂2

∂x2
2

=
(

∂2

∂x2
1

+
∂2

∂x2
2

)
+ 0 ·

(
∂2

∂x2
3

+
∂2

∂x2
4

)
. (5.12)
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A function f ∈ F0,U is said to be left 0(-scaled)-regular on U , if

∇0f =
∂f

∂x1
+ i

∂f

∂x2
+ j0

∂f

∂x3
+ k0

∂f

∂x4
= 0,

and it is said to be right 0(-scaled)-regular on U , if

f∇0 =
∂f

∂x1
+

∂f

∂x2
i +

∂f

∂x3
j0 +

∂f

∂x4
k0 = 0.

If f ∈ F0,U is both left and right 0-regular, then f is called a 0-regular
function on U . Also, a function f ∈ F0,U is said to be 0(-scaled)-harmonic
on U , if

Δ0f = 0,

where Δ0 is in the sense of (5.12).

By definition, we have the following result.

Theorem 5.3. Let f ∈ F0,U , for an open connected subset U of H0. Then

f is left 0 − regular =⇒ f is 0 − harmonic onU. (5.13)

Proof. By (5.9), one has Δ0 = ∇†
0∇0, on F0,U . So, if f is left 0-regular on U ,

then

Δ0f = ∇†
0 (∇0f) = ∇†

0 (0) = 0,

and hence, it is 0-harmonic on U . �

Similar to (5.3), we let

η2 (w) = x2 − x1i,

and

η3 (w) = x3 − x1j0, and η4 (w) = x4 − x1k0, (5.14)

in a H0-variable w = x1 + x2i + x3j0 + x4k0, with x1, x2, x3, x4 ∈ R. Then
these functions {ηl}4

l=2 are contained in F0,Ht
.

Lemma 5.4. Let {ηl}4
l=2 be in the sense of (5.14). Then they are not only

0-regular, but also, 0-harmonic on the 0-scaled hypercomplexes H0, i.e.,

{ηl}4
l=2 are 0 − harmonic 0 − regular functions onH0. (5.15)

Proof. If η2 = x2 − x1i ∈ F0,H0 , then

∇0η2 = η2∇0 =
∂ (x2 − x1i)

∂x1
+ i

∂ (x2 − x1i)

∂x2
+ j0

∂ (x2 − x1i)

∂x3
+ k0

∂ (x2 − x1i)

∂x4

= (−i) + i (1) + j0 (0) + k0 (0) = −i + i = 0;

and if η3 = x3 − x1j0 ∈ F0,H0 , then

∇0η3 = η3∇0 =
∂ (x3 − x1j0)

∂x1
+ i

∂ (x3 − x1j0)
∂x2

+j0
∂ (x3 − x1j0)

∂x3
+ k0

∂ (x3 − x1j0)
∂x4

= (−j0) + i (0) + j0 (1) + k0 (0) = −j0 + j0 = 0;



IEOT Regular Functions on the Scaled... Page 39 of 43     9 

and if η4 = x4 − x1k0 ∈ F0,H0 , then

∇0η3 = η3∇0 =
∂ (x4 − x1k0)

∂x1
+ i

∂ (x4 − x1k0)
∂x2

+j0
∂ (x4 − x1k0)

∂x3
+ k0

∂ (x4 − x1k0)
∂x4

= (−k0) + i (0) + j0 (0) + k0 (1) = −k0 + k0 = 0.

Therefore, the functions {ηl}4
l=2 of (5.14) are 0-regular on H0. Therefore,

these 0-regular functions {ηl}4
l=2 are 0-harmonic by (5.13). �

By (5.15), we consider the symmetrized product ηn, for n = (n1, n2, n3) ∈
N

3
0, defined by

ηn =
1
n!

(
η
(n1)
2 × η

(n2)
3 × η

(n3)
4

)
∈ F0,H0 , (5.16)

like (5.4), as in Sect. 4.5, where (×) is the symmetrized product (4.5.1),
expressed to be (4.5.2).

Theorem 5.5. The symmetrized products ηn ∈ F0,H0 of (5.16) are 0-harmonic
0-regular functions on H0, for all n ∈ N

3
0, i.e.,

ηn are 0 − harmonic 0 − regular functions onH0,∀n ∈ N
3
0. (5.17)

Proof. The proof of the 0-regularity of ηn are similar to that of (4.5.11). In
particular, if we let

e1 = −i, e2 = −j0, and e3 = −k0,

and if we replace ∇t to ∇0, then the formula (4.5.8) is obtained similarly,
and hence, the computation (4.5.10) holds by (4.5.9). i.e.,

x1n!∇0η
n = 0,=⇒ ∇0η

n = 0.

So, the symmetrized products ηn are 0-regular, for n ∈ N
3
0. By the 0-

regularity, ηn are 0-harmonic on H0, too, by (5.13). Therefore, the relation
(5.17) holds. �

The above theorem shows that all symmetrized products ηn of (5.16)
are 0-harmonic 0-regular functions on H0 by (5.17).

Now, consider that if {η2, η3, η4} ⊂ F0,H0 are the 0-harmonic 0-regular
functions (5.14), then they are understood to be their images,

η2 = (x2 − x1i, 0) , η3 = (x3,−x1) , η4 = (x4,−x1i) ,

as elements of the 0-scaled hypercomplex ring H0, having their norms,

‖η2‖0 =
√∣
∣
∣|x2 − x1i|2 − 0 |0|2

∣
∣
∣ =

√
x2

2 + (−x1)
2 =

√
x2

2 + x2
1,

‖η3‖0 =
√∣
∣
∣|x3|2 − 0 |−x1|2

∣
∣
∣ =

√
|x2

3| = |x3| ,

and

‖η4‖0 =
√∣
∣
∣|x4|2 − 0 |−x1i|2

∣
∣
∣ =

√
|x2

4| = |x4| . (5.18)
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Lemma 5.6. Let ηn ∈ F0,Ht
be a function (5.16) for n = (n1, n2, n3) ∈ N

3
0.

Then

‖ηn‖0 ≤
(√

x2
1 + x2

2

n1
)

(|x3|n2) (|x4|n3) . (5.19)

Proof. By (5.16), for any n = (n1, n2, n3) ∈ N
3
0,

‖ηn‖0 =
∥
∥
∥
∥

1
n!

(
η
(n1)
2 × η

(n2)
3 × η

(n3)
4

)∥∥
∥
∥

0

=

∥
∥
∥
∥
∥

1
(n1!) (n2!) (n3!)

(
(n1!) (n2!) (n3!)

n!

∑

σ∈Sn

hσ(1)hσ(2)...hσ(n)

)∥∥
∥
∥
∥

0

where hσ(l) ∈ {η2, η3, η4}, for all σ ∈ Sn, with n = n1 + n2 + n3 ∈ N

= ‖ηn1
2 ηn2

3 ηn3
4 ‖0 ≤ ‖η2‖n1

0 ‖η3‖n2
0 ‖η4‖n3

0

by (4.5.5)

=
√

x2
1 + x2

2

n1

|x3|n2 |x4|n3 ,

by (5.18). Therefore, the boundedness condition (5.19) holds. �

The above lemma shows that, for any arbitrarily fixed n ∈ N
3
0, the

corresponding function ηn is bounded by (5.19).

Theorem 5.7. Let f ∈ F0,U be a R-differentiable function, where U is an
open connected subset of H0 containing 0 ∈ H0. If f is R-analytic at 0 ∈ U ,
then

f is left 0-regular on U,

if and only if

f = f (0) +
∑

n∈N3

ηnfn, (5.20)

with

fn =
1
n!

∂n1+n2+n3f

∂xn1
2 ∂xn2

3 ∂xn3
4

(0) , ∀n ∈ N
3.

Proof. If f = f (0) +
∑

n∈N3
ηnfn, then it is left 0-regular, by the 0-harmonic-

0-regularity (5.17) of
{
ηn : n ∈ N

3
0

}
.

Suppose f is left 0-regular in F0,U , satisfying ∇0f = 0. Then

f (w) − f (0) =
4∑

n=2

(ηn (w)) ((Rnf) (w)) ,

where

(Rnf) (w) =
∫ 1

0

∂f (tw)
∂xn

dt, ∀n = 2, 3, 4, (5.21)

in the Ht-variable w = x1 + x2i + x3jt + x4kt, with x1, x2, x3, x4 ∈ R. By
iterating (5.21) under the R-analyticity assumption, one can get the function
in (5.20), by (5.19). �
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