Regular Functions on the Scaled Hypercomplex Numbers

Daniel Alpayo and Ilwoo Cho

Abstract

In this paper, we study the regularity of \mathbb{R}-differentiable functions on open connected subsets of the scaled hypercomplex numbers $\left\{\mathbb{H}_{t}\right\}_{t \in \mathbb{R}}$ by studying the kernels of suitable differential operators $\left\{\nabla_{t}\right\}_{t \in \mathbb{R}}$, up to scales in the real field \mathbb{R}. Mathematics Subject Classification. Primary 46S10, 47S10; Secondary 20G20. Keywords. Scaled hypercomplex rings, Scaled hypercomplex \mathbb{R}-spaces, Scaled hypercomplex \mathbb{R}-algebras, Differential operators.

1. Introduction

In this paper, we study differentiation on scaled hypercomplex numbers scaled by an arbitrary quantity $t \in \mathbb{R}$. Roughly speaking, scaled hypercomplex numbers are the ordered pairs of complex numbers under an arbitrary fixed real number. We let \mathbb{C}^{2} be the usual 2-dimensional Hilbert space over the complex field \mathbb{C}, and understand each vector $(a, b) \in \mathbb{C}^{2}$ as a hypercomplex number $(a, b) \in \mathbb{H}_{t}$, inducing the algebraic triple,

$$
\mathbb{H}_{t}=\left(\mathbb{C}^{2},+, \cdot t\right)
$$

with the usual vector addition $(+)$ on \mathbb{C}^{2}, and the t-scaled vector multiplication $(\cdot t)$,

$$
\left(a_{1}, b_{1}\right) \cdot{ }_{t}\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}+t b_{1} \overline{b_{2}}, a_{1} b_{2}+b_{1} \overline{a_{2}}\right)
$$

for all $\left(a_{l}, b_{l}\right) \in \mathbb{C}^{2}$, for $l=1,2$, forms a well-defined unital ring with its unity (or, the $(\cdot t)$-identity) $(1,0)$, where \bar{z} mean the conjugates of $z \in \mathbb{C}$ (e.g., see [2]).

From the Hilbert-space representation $\left(\mathbb{C}^{2}, \pi_{t}\right)$ of the t-scaled hypercomplex ring \mathbb{H}_{t}, introduced in [2], a hypercomplex number $h=(a, b) \in \mathbb{H}_{t}$ is realized to be a (2×2)-matrix, or a Hilbert-space operator acting on \mathbb{C}^{2},

$$
\pi_{t}(h) \stackrel{\text { denote }}{=}[h]_{t} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
a & t b \\
\bar{b} & \bar{a}
\end{array}\right) \text { in } M_{2}(\mathbb{C}),
$$

where $M_{2}(\mathbb{C})$ is the matricial algebra (which is $*$-isomorphic to the operator C^{*}-algebra $B\left(\mathbb{C}^{2}\right)$ of all bounded linear operators acting on the Hilbert space \mathbb{C}^{2}) over \mathbb{C}, for $t \in \mathbb{R}$. The construction of such rings $\left\{\mathbb{H}_{t}\right\}_{t \in \mathbb{R}}$ provides the generalized structures of well-known quaternions (e.g., $[5-8,12,15,18,21]$), and split-quaternions (e.g., $[4,9,14]$). Indeed, the ring \mathbb{H}_{-1} is nothing but the noncommutative field \mathbb{H} of all quaternions, and the unital ring \mathbb{H}_{1} is the ring of all split-quaternions (e.g., $[1-3]$). The algebra, spectral theory, operator theory, and free probability on $\left\{\mathbb{H}_{t}\right\}_{t \in \mathbb{R}}$ are studied in $[1,2]$, under the above representation $\left(\mathbb{C}^{2}, \pi_{t}\right)$. Different from the approaches of $[1,2]$, we study those on $\left\{\mathbb{H}_{t}\right\}_{t \in \mathbb{R}}$ by defining suitable bilinear forms $\left\{\langle,\rangle_{t}\right\}_{t \in \mathbb{R}}$ on $\left\{\mathbb{H}_{t}\right\}_{t \in \mathbb{R}}$, in [3]. In the approaches of [3], the pairs $\left\{\left(\mathbb{H}_{t},\langle,\rangle_{t}\right)\right\}_{t<0}$ form (definite) inner product spaces over \mathbb{R}, meanwhile, the pairs $\left\{\left(\mathbb{H}_{t},\langle,\rangle_{t}\right)\right\}_{t \geq 0}$ become indefinite semi-inner product spaces over \mathbb{R}, inducing the complete semi-normed spaces $\left\{\left(\mathbb{H}_{t},\|\cdot\|_{t}\right)\right\}_{t \in \mathbb{R}}$, having their semi-norms,

$$
\|h\|_{t}=\sqrt{\left|\langle h, h\rangle_{t}\right|}, \quad \forall h \in \mathbb{H}_{t}, \forall t \in \mathbb{R}
$$

where $|$.$| is the absolute value on \mathbb{R}$. (e.g., [3]). Meanwhile, it is considered in [3] that each t-scaled hypercomplex number $h \in \mathbb{H}_{t}$ is regarded as a multiplication operator M_{h} acting on $\left(\mathbb{H}_{t},\|\cdot\|_{t}\right)$,

$$
M_{h}\left(h^{\prime}\right)=h \cdot_{t} h^{\prime} \in\left(\mathbb{H}_{t},\|\cdot\|_{t}\right), \quad \forall h^{\prime} \in \mathbb{H}_{t},
$$

with its adjoint,

$$
M_{(a, b)}^{*}=M_{(\bar{a},-b)}, \quad \forall(a, b) \in \mathbb{H}_{t},
$$

where $(\bar{a},-b) \stackrel{\text { denote }}{=}(a, b)^{\dagger}$ is the hypercomplex-conjugate in \mathbb{H}_{t}, i.e., $M_{h}^{*}=$ $M_{h^{\dagger}}$ in the operator space $B_{\mathbb{R}}\left(\mathbb{H}_{t}\right)$ of all bounded linear operators acting on \mathbb{H}_{t} "over \mathbb{R}," for all scales $t \in \mathbb{R}$, which is a Banach space equipped with the operator semi-norm,

$$
\|T\|=\sup \left\{\|T h\|_{t}:\|h\|_{t}=1\right\}, \forall T \in B_{\mathbb{R}}\left(\mathbb{H}_{t}\right) .
$$

Furthermore, the subset,

$$
\mathcal{M}_{t} \stackrel{\text { def }}{=}\left\{M_{h} \in B_{\mathbb{R}}\left(\mathbb{H}_{t}\right): h \in \mathbb{H}_{t}\right\},
$$

of $B_{\mathbb{R}}\left(\mathbb{H}_{t}\right)$ forms a complete semi-normed $*$-algebra over \mathbb{R} of the adjointable operators $\left\{M_{h}\right\}_{h \in \mathbb{R}}$ in $B_{\mathbb{R}}\left(\mathbb{H}_{t}\right)$ (e.g., see [3]), for $t \in \mathbb{R}$. i.e., case-by-case, we understand the set \mathbb{H}_{t} of t-scaled hypercomplex numbers as a unital ring \mathbb{H}_{t} with its unity $(1,0)$ algebraically; or, as a complete semi-normed \mathbb{R}-vector space $\left(\mathbb{H}_{t},\|\cdot\|_{t}\right)$, which is either a \mathbb{R}-Hilbert space if $t<0$, or an indefinite semi-inner product \mathbb{R}-space if $t \geq 0$, analytically; or as a complete seminormed $*$-algebra \mathcal{M}_{t} over \mathbb{R}, operator-algebra-theoretically, for all $t \in \mathbb{R}$.

In this paper, we regard \mathbb{H}_{t} as a complete semi-normed \mathbb{R}-vector space, and act a differential operators ∇_{t} on the \mathbb{R}-differentiable functions on \mathbb{H}_{t}, where

$$
\nabla_{t}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}-j_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{3}}-k_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{4}}, \text { if } t \neq 0
$$

and

$$
\begin{equation*}
\nabla_{0}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+j_{0} \frac{\partial}{\partial x_{3}}+k_{0} \frac{\partial}{\partial x_{4}}, \text { if } t=0 \tag{1.1}
\end{equation*}
$$

for an arbitrarily fixed scale $t \in \mathbb{R}$, where

$$
\operatorname{sgn}(t) \stackrel{\text { def }}{=}\left\{\begin{array}{cc}
1 & \text { if } t>0 \\
-1 & \text { if } t<0,
\end{array}\right.
$$

for all $t \in \mathbb{R} \backslash\{0\}$, and

$$
\begin{equation*}
i^{2}=-1, \text { and } j_{t}^{2}=k_{t}^{2}=t \tag{1.2}
\end{equation*}
$$

satisfying the commuting diagrams,

Here, the first diagram of (1.3) means that

$$
i j_{t}=k_{t}, j_{t} k_{t}=-t i, \text { and } k_{t} i=j_{t},
$$

while the second diagram of (1.3) means that

$$
i k_{t}=-j_{t}, k_{t} j_{t}=t i, \text { and } j_{t} i=-k_{t},
$$

for $t \in \mathbb{R}$.
We study the left, or right t-regular functions contained in the kernel, $\operatorname{ker} \nabla_{t}$ of ∇_{t}, and the t-harmonic functions determined by the t-regular functions, by defining t-scaled Laplacians,

$$
\Delta_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{3}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{4}^{2}}, \quad \text { if } t \neq 0
$$

and

$$
\Delta_{0}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+0\left(\frac{\partial^{2}}{\partial x_{3}^{2}}+\frac{\partial^{2}}{\partial x_{4}^{2}}\right)=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}, \quad \text { if } t=0
$$

for all $t \in \mathbb{R}$.

2. Scaled Hypercomplex Numbers

In this section, we review scaled hypercomplex numbers. For details, e.g., see [1-3].

2.1. Scaled Hypercomplex Rings

Fix an arbitrarily scale $t \in \mathbb{R}$. Define an operation $\left({ }^{*}\right)$ on \mathbb{C}^{2} by

$$
\begin{equation*}
\left(a_{1}, b_{1}\right) \cdot t\left(a_{2}, b_{2}\right) \stackrel{\text { def }}{=}\left(a_{1} a_{2}+t b_{1} \overline{b_{2}}, a_{1} b_{2}+b_{1} \overline{a_{2}}\right), \tag{2.1.1}
\end{equation*}
$$

for $\left(a_{l}, b_{l}\right) \in \mathbb{C}^{2}$, for all $l=1,2$.
Proposition 2.1. The algebraic triple $\left(\mathbb{C}^{2},+, \cdot{ }_{t}\right)$ forms a unital ring with its unity $(1,0)$, where $(+)$ is the usual vector addition on \mathbb{C}^{2}, and $(\cdot t)$ is the operation (2.1.1).

Proof. See [1] for details.
One can understand these unital rings $\left\{\left(\mathbb{C}^{2},+,{ }^{\prime}\right)\right\}_{t \in \mathbb{R}}$ as topological rings, since the operations $(+)$ and $\left\{\left({ }^{\prime}\right)\right\}_{t \in \mathbb{R}}$ are continuous on \mathbb{C}^{2}.

Definition 2.2. For $t \in \mathbb{R}$, the ring $\mathbb{H}_{t} \stackrel{\text { denote }}{=}\left(\mathbb{C}^{2},+, \cdot{ }_{t}\right)$ is called the t-scaled hypercomplex ring.

For $t \in \mathbb{R}$, define an injective map,

$$
\pi_{t}: \mathbb{H}_{t} \rightarrow M_{2}(\mathbb{C}),
$$

by

$$
\pi_{t}((a, b))=\left(\begin{array}{cc}
a & t b \tag{2.1.2}\\
\bar{b} & \bar{a}
\end{array}\right), \forall(a, b) \in \mathbb{H}_{t} .
$$

Such an injective map π_{t} of (2.1.2) satisfies that

$$
\pi_{t}\left(h_{1}+h_{2}\right)=\pi_{t}\left(h_{1}\right)+\pi_{t}\left(h_{2}\right),
$$

and

$$
\begin{equation*}
\pi_{t}\left(h_{1} \cdot{ }_{t} h_{2}\right)=\pi_{t}\left(h_{1}\right) \pi_{t}\left(h_{2}\right) \tag{2.1.3}
\end{equation*}
$$

in $M_{2}(\mathbb{C})$, for all $h_{1}, h_{2} \in \mathbb{H}_{t}$, where $\pi_{t}\left(h_{1}\right) \pi_{t}\left(h_{2}\right)$ is the usual matricial multiplication (e.g., see [1] for details).

Proposition 2.3. The pair $\left(\mathbb{C}^{2}, \pi_{t}\right)$ forms an injective Hilbert-space representation of our t-scaled hypercomplex ring \mathbb{H}_{t}, where π_{t} is an action (2.1.2).

Proof. It is shown by (2.1.3), and by the continuity of π_{t} (e.g., $[1,2]$).
By the injectivity of π_{t}, one can understand \mathbb{H}_{t} as its realization $\pi_{t}\left(\mathbb{H}_{t}\right)$ as matrices of $M_{2}(\mathbb{C})$.

Definition 2.4. The subset,

$$
\pi_{t}\left(\mathbb{H}_{t}\right)=\left\{\left(\begin{array}{cc}
a & t b \tag{2.1.4}\\
\bar{b} & \bar{a}
\end{array}\right) \in M_{2}(\mathbb{C}):(a, b) \in \mathbb{H}_{t}\right\},
$$

of $M_{2}(\mathbb{C})$, denoted by \mathcal{H}_{2}^{t}, is called the t-scaled (hypercomplex-)realization of $\mathbb{H}_{t}\left(\right.$ in $\left.M_{2}(\mathbb{C})\right)$ for $t \in \mathbb{R}$. For convenience, we denote the realization $\pi_{t}(h)$ of $h \in \mathbb{H}_{t}$ by $[h]_{t}$ in \mathcal{H}_{2}^{t}.

If $\mathbb{H}_{t}^{\times} \stackrel{\text { denote }}{=} \mathbb{H}_{t} \backslash\{(0,0)\}$, where $(0,0)$ is the $(+)$-identity of \mathbb{H}_{t}, then, it is the maximal monoid,

$$
\mathbb{H}_{t}^{\times} \stackrel{\text { denote }}{=}\left(\mathbb{H}_{t}^{\times}, \cdot{ }_{t}\right),
$$

in \mathbb{H}_{t}, with its $(\cdot t)$-identity $(1,0)$, the unity of \mathbb{H}_{t} (e.g., [2]).
Definition 2.5. The monoid $\mathbb{H}_{t}^{\times}=\left(\mathbb{H}_{t}^{\times},{ }_{t}\right)$ of \mathbb{H}_{t} is called the t-scaled hypercomplex monoid.

2.2. Invertible Hypercomplex Numbers of \mathbb{H}_{t}

For an arbitrarily fixed $t \in \mathbb{R}$, let \mathbb{H}_{t} be the corresponding t-scaled hypercomplex ring, isomorphic to its t-scaled realization \mathcal{H}_{2}^{t} of (2.1.4). Observe that, for any $(a, b) \in \mathbb{H}_{t}$, one has

$$
\operatorname{det}\left([(a, b)]_{t}\right)=\operatorname{det}\left(\begin{array}{cc}
a & t b \tag{2.2.1}\\
\bar{b} & \bar{a}
\end{array}\right)=|a|^{2}-t|b|^{2} .
$$

where det is the determinant, and $|$.$| is the modulus on \mathbb{C}$.
Recall that an algebraic triple $(X,+, \cdot)$ is a noncommutative field, if it is a unital ring, containing $\left(X^{\times}, \cdot\right)$ as a non-abelian group (e.g., $\left.[2,3]\right)$.

Lemma 2.6. If $(a, b) \in \mathbb{H}_{t}$, then $|a|^{2} \neq t|b|^{2}$ in \mathbb{C}, if and only if (a, b) is invertible in \mathbb{H}_{t} with its inverse,

$$
(a, b)^{-1}=\left(\frac{\bar{a}}{|a|^{2}-t|b|^{2}}, \frac{-b}{|a|^{2}-t|b|^{2}}\right) \text { in } \mathbb{H}_{t},
$$

satisfying

$$
\begin{equation*}
\left[(a, b)^{-1}\right]_{t}=[(a, b)]_{t}^{-1} \quad \text { in } \mathcal{H}_{2}^{t} \tag{2.2.2}
\end{equation*}
$$

Moreover, we have the algebraic characterization,

$$
\begin{equation*}
t<0 \text { in } \mathbb{R} \Longleftrightarrow \mathbb{H}_{t} \text { is a noncommutative field. } \tag{2.2.3}
\end{equation*}
$$

The proof is straightfoward; see [1].
By the proof of the above proposition, $\left\{\mathbb{H}_{s}\right\}_{s<0}$ are noncommutative fields, but, $\left\{\mathbb{H}_{t}\right\}_{t \geq 0}$ cannot be noncommutative fields by (2.2.3). For any scale $t \in \mathbb{R}$, the t-scaled hypercomplex ring \mathbb{H}_{t} is decomposed by

$$
\mathbb{H}_{t}=\mathbb{H}_{t}^{i n v} \sqcup \mathbb{H}_{t}^{\text {sing }}
$$

with

$$
\begin{equation*}
\mathbb{H}_{t}^{i n v}=\left\{(a, b):|a|^{2} \neq t|b|^{2}\right\}, \tag{2.2.4}
\end{equation*}
$$

and

$$
\mathbb{H}_{t}^{s i n g}=\left\{(a, b):|a|^{2}=t|b|^{2}\right\}
$$

where \sqcup is the disjoint union.
Proposition 2.7. The subset $\mathbb{H}_{t}^{i n v}$ of (2.2.4) is a non-abelian group in the monoid \mathbb{H}_{t}^{\times}. Meanwhile, the subset $\mathbb{H}_{t}^{\times \text {sing }} \stackrel{\text { denote }}{=} \mathbb{H}_{t}^{\text {sing }} \backslash\{(0,0)\}$ forms a semigroup without identity in \mathbb{H}_{t}^{\times}.

Proof. Note that, in general, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, for all $A, B \in$ $M_{n}(\mathbb{C})$, for all $n \in \mathbb{N}$. See [2] for details.

Definition 2.8. The block $\mathbb{H}_{t}^{i n v}$ of (2.2.4) is called the group-part of \mathbb{H}_{t}^{\times}(or, of \mathbb{H}_{t}), and the other algebraic block $\mathbb{H}_{t}^{\times \text {sing }}$ of the above proposition is called the semigroup-part of $\mathbb{H}_{t}^{\times}\left(\right.$or, of $\left.\mathbb{H}_{t}\right)$.

By (2.2.3), if $t<0$ in \mathbb{R}, then the semigroup-part $\mathbb{H}_{t}^{\times \text {sing }}$ is empty in \mathbb{H}_{t}^{\times}, and hence,

$$
\mathbb{H}_{t}^{\times}=\mathbb{H}_{t}^{i n v} \Longleftrightarrow \mathbb{H}_{t}=\mathbb{H}_{t}^{i n v} \cup\{(0,0)\}
$$

Meanwhile, if $t \geq 0$ in \mathbb{R}, then the semigroup-part $\mathbb{H}_{t}^{\times \operatorname{sing}}$ is non-empty, and is properly contained in the t-scaled monoir \mathbb{H}_{t}^{\times}, satisfying (2.2.4).

2.3. Scaled-Hypercomplex Conjugation

In this section, we define a suitable \mathbb{R}-adjoint on $\left\{\mathbb{H}_{t}\right\}_{t \in \mathbb{R}}$, as in [3]. For a scale $t \in \mathbb{R}$, define a unary operation (\dagger) on the t-scaled hypercomplex ring \mathbb{H}_{t} by

$$
\begin{equation*}
(a, b)^{\dagger} \stackrel{\text { def }}{=}(\bar{a},-b), \quad \forall(a, b) \in \mathbb{H}_{t} \tag{2.3.1}
\end{equation*}
$$

This operation (\dagger) of (2.3.1) is indeed a well-defined unary operation on \mathbb{H}_{t}, inducing the equivalent operation, also denoted by (\dagger), on the t-scaled realization \mathcal{H}_{2}^{t} of \mathbb{H}_{t},

$$
\begin{equation*}
[(a, b)]_{t}^{\dagger} \stackrel{\text { def }}{=}\left[(a, b)^{\dagger}\right]_{t}=[(\bar{a},-b)]_{t} \tag{2.3.2}
\end{equation*}
$$

for all $(a, b) \in \mathbb{H}_{t}$. Since the action $\pi_{t}: \mathbb{H}_{t} \rightarrow \mathcal{H}_{2}^{t}$ and the operation (\dagger) of (2.3.1) are bijective, the function (2.3.2) is also a well-defined bijection on \mathcal{H}_{2}^{t}.

Proposition 2.9. The bijection (\dagger) of (2.3.1) is an adjoint on \mathbb{H}_{t} over \mathbb{R}.
See [3] for details.
Note that the \mathbb{R}-adjoint (\dagger) of (2.3.1) (or, of (2.3.2)) is free from the choice of scales $t \in \mathbb{R}$. So, we call (\dagger) the hypercomplex-conjugate.

If $h=(a, b) \in \mathbb{H}_{t}$, then one obtains that

$$
\begin{equation*}
[h]_{t}^{\dagger}[h]_{t}=\left[\left(|a|^{2}-t|b|^{2}, 0\right)\right]_{t}=[h]_{t}[h]_{t}^{\dagger} \tag{2.3.3}
\end{equation*}
$$

for all $h=(a, b) \in \mathbb{H}_{t}$, for "all" $t \in \mathbb{R}$.

2.4. The Normalized Trace τ on $\left\{\mathbb{H}_{t}\right\}_{t \in \mathbb{R}}$ Over \mathbb{R}

Recall that the t-scaled realization \mathcal{H}_{2}^{t} of the t-scaled hypercomplex ring \mathbb{H}_{t} is an embedded ring of $M_{2}(\mathbb{C})$. So, the normalized trace $\tau=\frac{1}{2} \operatorname{tr}$ on $M_{2}(\mathbb{C})$ is naturally restricted to $\left.\tau\right|_{\mathcal{H}_{2}^{t}}$, also denoted by τ, on \mathcal{H}_{2}^{t}, where tr is the usual trace on $M_{2}(\mathbb{C})$. Observe that, for any $[(a, b)]_{t} \in \mathcal{H}_{2}^{t}$, one has

$$
\tau\left([(a, b)]_{t}\right)=\frac{1}{2} \operatorname{tr}\left(\left(\begin{array}{cc}
a & t b \\
\bar{b} & \bar{a}
\end{array}\right)\right)=\frac{1}{2}(a+\bar{a})
$$

i.e.,

$$
\begin{equation*}
\tau\left([(a, b)]_{t}\right)=\operatorname{Re}(a), \quad \forall(a, b) \in \mathbb{H}_{t} \tag{2.4.1}
\end{equation*}
$$

Remark and Discussion. Since \mathcal{H}_{2}^{t} is a sub-structure of $M_{2}(\mathbb{C})$, the linear functional $\tau=\frac{1}{2} \operatorname{tr}$ on $M_{2}(\mathbb{C})$ is well-restricted to that on \mathcal{H}_{2}^{t}. However, note that, since $\tau\left(\mathcal{H}_{2}^{t}\right) \subseteq \mathbb{R}$ by (2.4.1), it becomes a linear functional "over \mathbb{R}." So, in the following text, if we mention " τ is a linear functional," then it actually means that "this restriction is linear over \mathbb{R}." The construction of such a
\mathbb{R}-linear functional on \mathcal{H}_{2}^{t} is motivated by free probability (e.g., [17,20]), and such a free-probabilistic model is considered in detail in [1-3].

By (2.4.1), one can define a $(\mathbb{R}$-)linear functional, also denoted by τ, on \mathbb{H}_{t}, by

$$
\begin{equation*}
\tau((a, b)) \stackrel{\text { def }}{=} \operatorname{Re}(a), \quad \forall(a, b) \in \mathbb{H}_{t} . \tag{2.4.2}
\end{equation*}
$$

By using this linear functional τ of (2.4.2) on \mathbb{H}_{t}, we define a form,

$$
\langle,\rangle_{t}: \mathbb{H}_{t} \times \mathbb{H}_{t} \rightarrow \mathbb{R}
$$

by

$$
\begin{equation*}
\left\langle h_{1}, h_{2}\right\rangle_{t} \stackrel{\text { def }}{=} \tau\left(h_{1} \cdot{ }_{t} h_{2}^{\dagger}\right), \quad \forall h_{1}, h_{2} \in \mathbb{H}_{t} \tag{2.4.3}
\end{equation*}
$$

where the linear functional τ in (2.4.3) is in the sense of (2.4.2), whose range is contained in \mathbb{R} in \mathbb{C}. Since the hypercomplex-conjugation (\dagger) is bijective, this form (2.4.3) is a well-defined function.

Lemma 2.10. The function \langle,\rangle_{t} of (2.4.3) is a bilinear form on \mathbb{H}_{t} "over \mathbb{R}."
Proof. By the straightforward computations, one has

$$
\begin{aligned}
& \left\langle h_{1}+h_{2}, h_{3}\right\rangle_{t}=\left\langle h_{1}, h_{2}\right\rangle_{t}+\left\langle h_{2}, h_{3}\right\rangle_{t}, \\
& \left\langle h_{1}, h_{2}+h_{3}\right\rangle_{t}=\left\langle h_{1}, h_{2}\right\rangle_{t}+\left\langle h_{1}, h_{3}\right\rangle_{t},
\end{aligned}
$$

and

$$
\left\langle r h_{1}, h_{2}\right\rangle_{t}=r\left\langle h_{1}, h_{2}\right\rangle_{t},\left\langle h_{1}, r h_{2}\right\rangle_{t}=r\left\langle h_{1}, h_{2}\right\rangle_{t},
$$

for all $h_{1}, h_{2}, h_{3} \in \mathbb{H}_{t}$, and $r \in \mathbb{R}$, where

$$
r h=(r, 0) \cdot{ }_{t} h, \quad \forall h \in \mathbb{H}_{t}, r \in \mathbb{R} .
$$

See [3] for details.
The above lemma shows that the forms $\left\{\langle,\rangle_{t}\right\}_{t \in \mathbb{R}}$ of (2.4.3) are welldetermined bilinear forms on $\left\{\mathbb{H}_{t}\right\}_{t \in \mathbb{R}}$, induced by the linear functionals τ of (2.4.2) and the hypercomplex-conjugate (\dagger) of (2.3.1).

Lemma 2.11. For all $h_{1}, h_{2} \in \mathbb{H}_{t}$, we have

$$
\begin{equation*}
\left\langle h_{1}, h_{2}\right\rangle_{t}=\left\langle h_{2}, h_{1}\right\rangle_{t} i n \mathbb{R} . \tag{2.4.4}
\end{equation*}
$$

Proof. Observe that, for any $h_{1}, h_{2} \in \mathbb{H}_{t}$,

$$
\left\langle h_{1}, h_{2}\right\rangle_{t}=\tau\left(h_{1} \cdot{ }_{t} h_{2}^{\dagger}\right)=\operatorname{Re}\left(h_{1} \cdot{ }_{t} h_{2}^{\dagger}\right)
$$

since τ of (2.4.1) is a trace

$$
=\operatorname{Re}\left(h_{2} \cdot{ }_{t} h_{1}\right)=\tau\left(h_{2} \cdot{ }_{t} h_{1}^{\dagger}\right)=\left\langle h_{2}, h_{1}\right\rangle_{t} .
$$

The above lemma shows our bilinear form \langle,\rangle_{t} of (2.4.3) is symmetric by (2.4.4).

Lemma 2.12. If $h_{1}, h_{2} \in \mathbb{H}_{t}$, then

$$
\begin{equation*}
\left|\left\langle h_{1}, h_{2}\right\rangle_{t}\right|^{2} \leq\left|\left\langle h_{1}, h_{1}\right\rangle_{t}\right|^{2}\left|\left\langle h_{2}, h_{2}\right\rangle_{t}\right|^{2}, \tag{2.4.5}
\end{equation*}
$$

where $|$.$| is the absolute value on \mathbb{R}$.
Proof. See [3] for details.
Observe now that if $h=(a, b) \in \mathbb{H}_{t}$, then

$$
\langle h, h\rangle_{t}=\tau\left((a, b) \cdot t(a, b)^{\dagger}\right)=\operatorname{Re}\left(|a|^{2}-t|b|^{2}\right)
$$

by (2.4.1) and (2.4.2), implying that

$$
\langle h, h\rangle_{t}=|a|^{2}-t|b|^{2}=\operatorname{det}\left([h]_{t}\right),
$$

and hence,

$$
\langle h, h\rangle_{t}=0 \Longleftrightarrow \operatorname{det}\left([h]_{t}\right)=0 \text { in } \mathbb{R},
$$

if and only if

$$
\begin{equation*}
h=(a, b) \in \mathbb{H}_{t}, \text { with }|a|^{2}=t|b|^{2} . \tag{2.4.6}
\end{equation*}
$$

Proposition 2.13. Let $h=(a, b) \in \mathbb{H}_{t}$. Then $\langle h, h\rangle_{t}=0$, if and only if $|a|^{2}=$ $t|b|^{2}$, if and only if $\operatorname{det}\left([h]_{t}\right)=0$, if and only if h is not invertible in \mathbb{H}_{t}, if and only if $h \in \mathbb{H}_{t}^{\text {sing }}$. i.e.,

$$
\begin{equation*}
\langle h, h\rangle_{t}=0, \Longleftrightarrow h \in \mathbb{H}_{t}^{\text {sing }}, \text { in } \mathbb{H}_{t} . \tag{2.4.7}
\end{equation*}
$$

Proof. The relation (2.4.7) is shown by (2.4.6).
If either h_{1} or h_{2} is contained in $\mathbb{H}_{t}^{\text {sing }}$, then $h_{1} \cdot{ }_{t} h_{2}^{\dagger} \in \mathbb{H}_{t}^{\text {sing }}$ in \mathbb{H}_{t}, since

$$
\operatorname{det}\left(\left[h_{1} \cdot{ }_{t} h_{2}^{\dagger}\right]_{t}\right)=\operatorname{det}\left(\left[h_{1}\right]_{t}\left[h_{2}\right]_{t}^{\dagger}\right),
$$

implying that

$$
\operatorname{det}\left(\left[h_{1} \cdot{ }_{t} h_{2}^{\dagger}\right]_{t}\right)=\left(\operatorname{det}\left(\left[h_{1}\right]_{t}\right)\right)\left(\operatorname{det}\left(\left[h_{2}\right]_{t}^{\dagger}\right)\right)=0 .
$$

Definition 2.14. For a vector space X over \mathbb{R}, a bilinear form $\langle\rangle:, X \times X \rightarrow \mathbb{R}$ is called a (definite) semi-inner product on X over \mathbb{R}, if (i)

$$
\left\langle x_{1}, x_{2}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle, \forall x_{1}, x_{2} \in X,
$$

and (ii) $\langle x, x\rangle \geq 0$, for all $x \in X$. In such a case, the pair $(X,\langle\rangle$,$) is called$ a semi-inner product space over \mathbb{R}. If a semi-inner product \langle,$\rangle on a \mathbb{R}$-vector space X satisfies an additional condition (iii) $\langle x, x\rangle=0$, if and only if $x=0_{X}$, the zero vector of X, then it is called an (definite) inner product on X over \mathbb{R}, and the pair $(X,\langle\rangle$,$) is said to be an inner-product space over \mathbb{R}$.

Definition 2.15. For a vector space X over \mathbb{R}, a bilinear form $\langle\rangle:, X \times X \rightarrow \mathbb{R}$ is called an indefinite semi-inner product on X over \mathbb{R}, if (i)

$$
\left\langle x_{1}, x_{2}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle, \quad \forall x_{1}, x_{2} \in X
$$

and (ii) $\langle x, x\rangle \in \mathbb{R}$, for all $x \in X$. In such a case, the pair $(X,\langle\rangle$,$) is called$ an indefinite-semi-inner product space over \mathbb{R}.

If an indefinite semi-inner product \langle,$\rangle on a \mathbb{R}$-vector space X satisfies an additional condition; $\langle x, y\rangle=0$ for "all" $y \in X$, if and only if $x=0_{X}$, then it is called an indefinite inner product on X over \mathbb{R}, and the pair $(X,\langle\rangle$,$) is said$ to be an indefinite-inner product space over \mathbb{R}. i.e., an indefinite semi-inner product is non-degenerated as above, then it becomes an indefinite inner product.

By the above lemmas and proposition, one obtains the following result.

Theorem 2.16. If $t<0$ in \mathbb{R}, then the bilinear form \langle,\rangle_{t} of (2.4.3) is a continuous inner product on \mathbb{H}_{t} over \mathbb{R}, i.e.,

$$
\begin{equation*}
t<0 \Longrightarrow\left(\mathbb{H}_{t},\langle,\rangle_{t}\right) \text { is a } \mathbb{R} \text { - inner product space. } \tag{2.4.8}
\end{equation*}
$$

Meanwhile, if $t \geq 0$, then \langle,\rangle_{t} is a continuous indefinite semi-inner product on \mathbb{H}_{t} over \mathbb{R}, i.e.,

$$
\begin{equation*}
t \geq 0 \Longrightarrow\left(\mathbb{H}_{t},\langle,\rangle_{t}\right) \text { is a } \mathbb{R} \text { - indefinite semi - inner product space. } \tag{2.4.9}
\end{equation*}
$$

However, if $t>0$, then $\left(\mathbb{H}_{t},\langle,\rangle_{t}\right)$ is a \mathbb{R}-indefinite inner product space, meanwhile, if $t=0$, then it is a \mathbb{R}-indefinite semi-inner product space.

Proof. Assume first that a given scale t is negative in \mathbb{R}. Then the bilinear form \langle,\rangle_{t} forms a semi-inner product by the symmetry (2.4.4), and

$$
\langle(a, b),(a, b)\rangle_{t}=|a|^{2}-t|b|^{2} \geq 0
$$

since $t<0$, for all $(a, b) \in \mathbb{H}_{t}$. Also, recall that, if $t<0$, then $\mathbb{H}_{t}=\mathbb{H}_{t}^{i n v} \cup$ $\{(0,0)\}$, equivalently, $\mathbb{H}_{t}^{\text {sing }}=\{(0,0)\}$. It implies that

$$
\langle h, h\rangle_{t}=0 \Longleftrightarrow h \in \mathbb{H}_{t}^{\operatorname{sing}} \Longleftrightarrow h=(0,0) \in \mathbb{H}_{t} .
$$

i.e., \langle,\rangle_{t} is an inner product on \mathbb{H}_{t} over \mathbb{R}, whenever $t<0$ in \mathbb{R}. The continuity of \langle,\rangle_{t} is guaranteed by (2.4.5). So, if $t<0$, then the pair $\left(\mathbb{H}_{t},\langle,\rangle_{t}\right)$ is not only a \mathbb{R}-semi inner product space, but also a \mathbb{R}-inner product space. Therefore, the relation (2.4.8) holds.

Assume now that a scale t is nonnegative in \mathbb{R}. Then the bilinear form \langle,\rangle_{t} forms an indefinite semi-inner product by the symmetry (2.4.4), and

$$
\langle h, h\rangle_{t}=\operatorname{det}\left([h]_{t}\right) \in \mathbb{R},
$$

since $t \geq 0$, for all $h \in \mathbb{H}_{t}$. Note that if $t>0$, then the semigroup-part $\mathbb{H}_{t}^{\times s i n g}$ is not empty in \mathbb{H}_{t}, satisfying

$$
\langle h, h\rangle_{t}=0 \Longleftrightarrow h \in \mathbb{H}_{t}^{s i n g},
$$

by (2.4.7). However, if

$$
\langle h, q\rangle_{t}=0, \forall q \in \mathbb{H}_{t},
$$

then $h=0$ in \mathbb{H}_{t}. i.e., the indefinite semi-inner product \langle,\rangle_{t} is non-degenerated. So, the form \langle,\rangle_{t} becomes an indefinite inner product on \mathbb{H}_{t}, whenever $t>0$. Meanwhile, if $t=0$, then it is not non-degenerated. So, $\left(\mathbb{H}_{0},\langle,\rangle_{0}\right)$ is a \mathbb{R}-indefinite semi-inner product space. In conclusion, the statement (2.4.9) holds.

The above theorem shows that $\left\{\mathbb{H}_{t}\right\}_{t<0}$ are \mathbb{R}-inner product spaces, meanwhile, $\left\{\mathbb{H}_{t}\right\}_{t \geq 0}$ form \mathbb{R}-indefinite semi-inner product space, by (2.4.8) and (2.4.9), respectively.

Definition 2.17. Let X be a vector space over \mathbb{R}, and $\|\cdot\|_{X}: X \rightarrow \mathbb{R}$, a function satisfying (i) $\|x\|_{X} \geq 0$, for all $x \in X$, and (ii) $\|r x\|_{X}=|r|\|x\|_{X}$, for all $r \in \mathbb{R}$ and $x \in X$, and (iii)

$$
\left\|x_{1}+x_{2}\right\|_{X} \leq\left\|x_{1}\right\|_{X}+\left\|x_{2}\right\|_{X}, \forall x_{1}, x_{2} \in X
$$

Then the function $\|\cdot\|_{X}$ is called a semi-norm on X over \mathbb{R}, and the pair $\left(X,\|\cdot\|_{X}\right)$ is said to be a semi-normed space over \mathbb{R}. If a semi-norm $\|\cdot\|_{X}$ satisfies an additional condition (iv) $\|x\|_{X}=0$, if and only if $x=0_{X}$ in X, then it is called a norm on X over \mathbb{R}, and the pair $\left(X,\|\cdot\|_{X}\right)$ is said to be a normed space over \mathbb{R}.

Let $\left(\mathbb{H}_{t},\langle,\rangle_{t}\right)$ be either a \mathbb{R}-inner product space (if $t<0$), or a \mathbb{R} indefinite semi-inner product space (if $t \geq 0$), for an arbitrary scale $t \in \mathbb{R}$. Define a function,

$$
\|\cdot\|_{t}: \mathbb{H}_{t} \rightarrow \mathbb{R}
$$

by

$$
\begin{equation*}
\|h\|_{t} \stackrel{\text { def }}{=} \sqrt{\left|\langle h, h\rangle_{t}\right|}=\sqrt{\left|\operatorname{det}\left([h]_{t}\right)\right|}=\sqrt{\left|\tau\left(\left[h \cdot_{t} h^{\dagger}\right]\right)\right|} \tag{2.4.10}
\end{equation*}
$$

for all $h \in \mathbb{H}_{t}$, where $|$.$| is the absolute value on \mathbb{R}$. Then it is not hard to check that

$$
\|h\|_{t} \geq 0, \text { since }\left|\langle h, h\rangle_{t}\right|=\left.\left||a|^{2}-t\right| b\right|^{2} \mid \geq 0
$$

and

$$
\|r h\|_{t}=\sqrt{\left|\langle r h, r h\rangle_{t}\right|}=\sqrt{r^{2}} \sqrt{\left|\langle h, h\rangle_{t}\right|}=|r|\|h\|_{t},
$$

for all $r \in \mathbb{R}$ and $h \in \mathbb{H}_{t}$, and

$$
\left\|h_{1}+h_{2}\right\|_{t}^{2}=\left|\left\langle h_{1}+h_{2}, h_{1}+h_{2}\right\rangle_{t}\right| \leq\left(\left\|h_{1}\right\|_{t}+\left\|h_{2}\right\|_{t}\right)^{2},
$$

by (2.4.5) and the bilinearity of \langle,\rangle_{t}, implying that

$$
\left\|h_{1}+h_{2}\right\|_{t} \leq\left\|h_{1}\right\|_{t}+\left\|h_{2}\right\|_{t}, \text { in } \mathbb{R},
$$

for all $h_{1}, h_{2} \in \mathbb{H}_{t}$ (See [3] for details).
Theorem 2.18. The pair $\left(\mathbb{H}_{t},\|\cdot\|_{t}\right)$ of the t-scaled hypercomplex ring \mathbb{H}_{t} and the function $\|\cdot\|_{t}$ of (2.4.10) forms a complete \mathbb{R}-semi-normed space. In particular,

$$
\begin{equation*}
t<0 \Longrightarrow\left(\mathbb{H}_{t},\|\cdot\|_{t}\right) \text { is a complete } \mathbb{R} \text { - normed space }, \tag{2.4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
t \geq 0 \Longrightarrow\left(\mathbb{H}_{t},\|\cdot\|_{t}\right) \text { is a complete } \mathbb{R} \text { - semi - normed space. } \tag{2.4.12}
\end{equation*}
$$

Proof. By the very above paragraph, the map $\|.\|_{t}$ of (2.4.10) is a semi-norm on \mathbb{H}_{t} over \mathbb{R}. In particular, the \mathbb{R}-semi-normed space $\left(\mathbb{H}_{t},\|.\|_{t}\right)$ is complete by (2.4.5) and (2.4.10), since \mathbb{H}_{t} is a subspace of the finite-dimensional \mathbb{R}-vector space \mathbb{R}^{4}. More precisely, if $t<0$ in \mathbb{R}, then this semi-norm $\|\cdot\|_{t}$ satisfies the additional condition,

$$
\|h\|_{t}=0 \Longleftrightarrow\langle h, h\rangle_{t}=0 \Longleftrightarrow h \in \mathbb{H}_{t}^{\text {sing }} \Longleftrightarrow h=(0,0),
$$

implying that $\|\cdot\|_{t}$ forms a norm on \mathbb{H}_{t} over \mathbb{R}. So, the statement (2.4.11) holds true. Meanwhile if $t \geq 0$, then this semi-norm $\|\cdot\|_{t}$ cannot be a norm, because,

$$
\|h\|_{t}=0 \Longleftrightarrow h \in \mathbb{H}_{t}^{\operatorname{sing}},
$$

by (2.4.7). Therefore, the statement (2.4.12) holds.
Recall that complete inner product spaces (over \mathbb{R}, or over \mathbb{C}) are said to be Hilbert spaces (over \mathbb{R}, respectively, over \mathbb{C}). So, the statement (2.4.11) can be re-stated by that: if $t<0$, then $\left(\mathbb{H}_{t},\langle,\rangle_{t}\right)$ is a Hilbert space over \mathbb{R} (or, a \mathbb{R}-Hilbert space).

3. Scaled Hypercomplex \mathbb{R}-Spaces \mathbb{H}_{t}

In the rest of this paper, we understand the t-scaled hypercomplex ring \mathbb{H}_{t} as the \mathbb{R}-vector space $\mathbb{H}_{t} \stackrel{\text { denote }}{=}\left(\mathbb{H}_{t},\langle,\rangle_{t}\right)$, which is either a \mathbb{R}-Hilbert space if $t<0$, or a complete \mathbb{R}-indefinite semi-inner product space (where the completeness is up to that of the corresponding complete \mathbb{R}-semi-normed space, $\left(\mathbb{H}_{t},\|\cdot\|_{t}\right)$ induced by the semi-norm $\|\cdot\|_{t}$ of (2.4.10)) if $t \geq 0$. Remark that if $t>0$, then \mathbb{H}_{t} forms a \mathbb{R}-indefinite inner product space, while if $t=0$, then it is a \mathbb{R}-indefinite semi-inner product space. In this section, we consider a suitable setting of \mathbb{H}_{t} to study the differentiation of the functions acting on it. More precisely, to study how an operator,

$$
D_{t}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+j_{t} \frac{\partial}{\partial x_{3}}+k_{t} \frac{\partial}{\partial x_{4}}
$$

under the conditions (1.2) and (1.3), acts on the set of \mathbb{R}-differentiable functions, we investigate an equivalent setting for \mathbb{H}_{t}, which is different from that of Sect. 2, notationally.

Let

$$
a=x+y i, \text { and } b=u+v i
$$

be complex numbers with $i=\sqrt{-1}$ and $x, y, u, v \in \mathbb{R}$, and let $(a, b) \in \mathbf{X}_{t}$, whose realization is

$$
[(a, b)]_{t}=\left(\begin{array}{cc}
a & t b \tag{3.1}\\
\bar{b} & \bar{a}
\end{array}\right)=\left(\begin{array}{cc}
x+y i & t u+t v i \\
u-v i & x-y i
\end{array}\right),
$$

in the t-scaled realization \mathcal{H}_{2}^{t} of \mathbb{H}_{t}. Then it is identified with

$$
x\left(\begin{array}{ll}
1 & 0 \tag{3.2}\\
0 & 1
\end{array}\right)+y\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)+u\left(\begin{array}{ll}
0 & t \\
1 & 0
\end{array}\right)+v\left(\begin{array}{cc}
0 & t i \\
-i & 0
\end{array}\right),
$$

by (3.1), where

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=[(1,0)]_{t}, \quad\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)=[(i, 0)]_{t},
$$

and

$$
\left(\begin{array}{ll}
0 & t \\
1 & 0
\end{array}\right)=[(0,1)]_{t}, \quad\left(\begin{array}{cc}
0 & t i \\
-i & 0
\end{array}\right)=[(0, i)]_{t},
$$

in \mathcal{H}_{2}^{t}. It means that every realization T of \mathcal{H}_{2}^{t} is expressed by

$$
T=x[(1,0)]_{t}+y[(i, 0)]_{t}+u[(0,1)]_{t}+v[(0, i)]_{t},
$$

for some $x, y, u, v \in \mathbb{R}$. i.e., the t-scaled realization \mathcal{H}_{2}^{t} is spanned by

$$
\left\{[(1,0)]_{t},[(i, 0)]_{t},[(0,1)],[(0, i)]_{t}\right\},
$$

over \mathbb{R}.
Lemma 3.1. For $t \in \mathbb{R}$, the \mathbb{R}-vector space \mathbb{H}_{t} is spanned by the subset,

$$
\begin{equation*}
\mathbf{B}_{t}=\{(1,0),(i, 0),(0,1),(0, i)\}, \tag{3.3}
\end{equation*}
$$

over \mathbb{R}, in the sense that: for every $h \in \mathbb{H}_{t}$, there exist $x, y, u, v \in \mathbb{R}$, such that

$$
h=x(1,0)+y(i, 0)+u(0,1)+v(0, i),
$$

where $r(a, b)=(r, 0) \cdot t(a, b)=(r a, r b)$, for all $r \in \mathbb{R}$ and $(a, b) \in \mathbb{H}_{t}$. i.e.,

$$
\mathbb{H}_{t}=\operatorname{span}_{\mathbb{R}}\left(\mathbf{B}_{t}\right) .
$$

Proof. By the injective Hilbert-space representation $\left(\mathbb{C}^{2}, \pi_{t}\right)$, the t-scaled hypercomplex ring \mathbb{H}_{t} is isomorphic to the t-scaled realization \mathcal{H}_{2}^{t}. And since \mathcal{H}_{2}^{t} and \mathbb{H}_{t} are isomorphic as \mathbb{R}-vector spaces. Therefore, the subset \mathbf{B}_{t} of (3.3) spans \mathbb{H}_{t} over \mathbb{R}, by (3.2).

The \mathbb{R}-basis \mathbf{B}_{t} of (3.3) satisfies the following properties in \mathbf{X}_{t}.
Proposition 3.2. By $i(t), j(t)$ and $k(t)$, we denote the spanning vectors $(i, 0)$, $(0,1)$ and $(0, i)$ of \mathbf{B}_{t}, where $\mathbb{H}_{t}=\operatorname{span}_{\mathbb{R}} \mathbf{B}_{t}$. Then

$$
\left\{\begin{array}{c}
i(t)^{2}=(-1,0), j(t)^{2}=(t, 0)=k(t)^{2}, \tag{3.4}\\
i(t) j(t)=k(t), j(t) k(t)=-t i(t), \text { and } k(t) i(t)=j(t), \\
k(t) j(t)=t i(t), j(t) i(t)=-k(t), \text { and } i(t) k(t)=-j(t)
\end{array}\right\}
$$

Proof. By the above lemma, equivalently, one has that

$$
\mathcal{H}_{2}^{t}=\operatorname{span}_{\mathbb{R}}\left(\left\{\mathbf{1}, \mathbf{i}, \mathbf{j}_{t}, \mathbf{k}_{t}\right\}\right),
$$

where

$$
\mathbf{1}=[(1,0)]_{t}, \quad \mathbf{i}=[(i, 0)]_{t},
$$

and

$$
\mathbf{j}_{t}=[(0,1)]_{t}, \text { and } \mathbf{k}_{t}=[(0, i)]_{t} .
$$

So, to prove the formulas of (3.4), it suffices to show that

$$
\left\{\begin{array}{c}
\mathbf{i}^{2}=[(-1,0)]_{t}, \mathbf{j}_{t}^{2}=[(t, 0)]_{t}=\mathbf{k}_{t}^{2}, \\
\mathbf{i}_{t}=\mathbf{k}_{t}, \mathbf{j}_{t} \mathbf{k}_{t}=-t \mathbf{i}, \text { and } \mathbf{k}_{t} \mathbf{i}=\mathbf{j}_{t} \\
\mathbf{k}_{t} \mathbf{j}_{t}=t \mathbf{i}, \mathbf{j}_{t} \mathbf{i}=-\mathbf{k}_{t}, \text { and } \mathbf{i} \mathbf{k}_{t}=-\mathbf{j}_{t},
\end{array}\right\}
$$

in \mathcal{H}_{2}^{t}, respectively. And they are proven by the straightforward computations. For instance,

$$
\begin{array}{r}
\mathbf{k}_{t}^{2}=\left(\begin{array}{cc}
0 & t i \\
-i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & t i \\
-i & 0
\end{array}\right)=\left(\begin{array}{cc}
t & 0 \\
0 & t
\end{array}\right)=[(t, 0)]_{t}=t \mathbf{1} ; \\
\mathbf{i} \mathbf{j}_{t}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)\left(\begin{array}{cc}
0 & t \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & t i \\
-i & 0
\end{array}\right)=[(0, i)]_{t}=\mathbf{k}_{t}, \\
\mathbf{i k}_{t}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)\left(\begin{array}{cc}
0 & t i \\
-i & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -t \\
-1 & 0
\end{array}\right)=-[(0,1)]_{t}=-\mathbf{j}_{t}, \\
\mathbf{k}_{t} \mathbf{j}_{t}=\left(\begin{array}{cc}
0 & t i \\
-i & 0
\end{array}\right)\left(\begin{array}{ll}
0 & t \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
t i & 0 \\
0 & -t i
\end{array}\right)=t[(i, 0)]_{t}=t \mathbf{i},
\end{array}
$$

and

$$
\mathbf{j}_{t} \mathbf{k}_{t}=\left(\begin{array}{ll}
0 & t \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & t i \\
-i & 0
\end{array}\right)=\left(\begin{array}{cc}
-t i & 0 \\
0 & t i
\end{array}\right)=-t[(i, 0)]_{t}=-t \mathbf{i} .
$$

etc.. Therefore, the formulas of (3.4) are shown.
By the above proposition, one can conclude that

$$
\begin{equation*}
i(t)^{2}=(-1,0), \text { and } j(t)^{2}=(t, 0)=k(t)^{2} \tag{3.5}
\end{equation*}
$$

and the following commuting diagrams hold;

and

$$
\begin{align*}
& t \nearrow^{i(t)} \searrow^{-1} \tag{3.6}\\
& j(t) \overleftarrow{-1} k^{-1}(t),
\end{align*}
$$

where, the first diagram of (3.6) illustrates that

$$
i(t) j(t)=k(t), j(t) k(t)=-t i(t), \text { and } k(t) i(t)=j(t),
$$

meanwhile the second diagram of (3.6) illustrates that

$$
i(t) k(t)=-j(t), k(t) j(t)=t i(t), \text { and } j(t) i(t)=-k(t),
$$

for $t \in \mathbb{R}$.
If we define a vector space \mathscr{H}_{t} over \mathbb{R}, by

$$
\mathscr{H}_{t}=\left\{x+y i+u j_{t}+v k_{t}: x, y, u, v \in \mathbb{R}\right\},
$$

i.e.,

$$
\mathscr{H}_{t}=\operatorname{span}_{\mathbb{R}}\left\{1, i, j_{t}, k_{t}\right\},
$$

where $i=\sqrt{-1}, j_{t}$ and k_{t} are certain imaginary numbers (as spanning vectors) satisfying (1.2) and (1.3), then the morphism,

$$
x(1,0)+y(i, 0)+u j(t)+v k(t) \in \mathbf{X}_{t} \mapsto x+y i+u j_{t}+v k_{t} \in \mathscr{H}_{t},
$$

is a well-defined bijection preserving the formulas of (3.4) to the relations of (1.2) and (1.3). Since $\mathbb{H}_{t}=\operatorname{span}_{\mathbb{R}} \mathbf{B}_{t}$, and

$$
\mathscr{H}_{t}=\operatorname{span}_{\mathbb{R}}\left(\left\{1, i, j_{t}, k_{t}\right\}\right),
$$

this bijection becomes a \mathbb{R}-vector-space-isomorphism. More precisely, we have the following structure theorem of the set \mathscr{H}_{t} of (3.7).

Theorem 3.3. Let \mathscr{H}_{t} be the vector space (3.7) spanned by $\left\{1, i, j_{t}, k_{t}\right\}$, satisfying the conditions (1.2) and (1.3), over \mathbb{R}. Then

$$
\begin{equation*}
\mathscr{H}_{t} \text { is a unital ring with its unity } 1=1+0 i+0 j_{t}+0 k_{t}, \tag{3.8}
\end{equation*}
$$

algebraically, and

$$
\begin{equation*}
\mathscr{H}_{t} \text { is a complete } \mathbb{R} \text { - semi - normed space, isomorphic to } \mathbb{H}_{t}, \tag{3.9}
\end{equation*}
$$

analytically, especially, it is a \mathbb{R}-Hilbert space if $t<0$, while it is a complete \mathbb{R}-indefinite semi-inner product space if $t \geq 0$, and

$$
\begin{equation*}
\mathscr{H}_{t} \text { is a complete semi - normed } *-\text { algebra over } \mathbb{R}, \tag{3.10}
\end{equation*}
$$

operator-algebraically, especially, it becomes a C^{*}-algebra over \mathbb{R} if $t<0$, meanwhile it forms a complete semi-normed $*$-algebra over \mathbb{R} if $t \geq 0$.

Proof. By the bijection,

$$
x(1,0)+y(i, 0)+u j(t)+v k(t) \in \mathbb{H}_{t} \longmapsto x+y i+u j_{t}+v k_{t} \in \mathscr{H}_{t},
$$

two mathematical structures \mathbb{H}_{t} and \mathscr{H}_{t} are isomorphic algebraically, and analytically, because

$$
\mathbb{H}_{t}=\operatorname{span}_{\mathbb{R}}\left\{(1,0),(i, 0), j_{t}, k_{t}\right\}, \text { and } \mathscr{H}_{t}=\operatorname{span}_{\mathbb{R}}\left\{1, i, j_{t}, k_{t}\right\},
$$

over \mathbb{R}. So, the statements (3.8) and (3.9) hold, since \mathbb{H}_{t} is a unital ring algebraically, and a complete \mathbb{R}-semi-normed space analytically.

In [3], we showed that, on \mathbb{H}_{t}, one can define the operator space $B_{\mathbb{R}}\left(\mathbb{H}_{t}\right)$ of all bounded linear transformation (simply, operators) acting on this \mathbb{R} vector space \mathbb{H}_{t} "over \mathbb{R}," equipped with the operator "semi-norm,"

$$
\|T\| \stackrel{\text { def }}{=} \sup \left\{\|T(h)\|_{t}:\|h\|_{t}=1\right\}
$$

for all $T \in B_{\mathbb{R}}\left(\mathbb{H}_{t}\right)$. Then one can canonically define multiplication operators $M_{h} \in B_{\mathbb{R}}\left(\mathbb{H}_{t}\right)$ with their symbols $h \in \mathbb{H}_{t}$, by

$$
M_{h}(\eta) \stackrel{\text { def }}{=} h \cdot{ }_{t} \eta \in \mathbb{H}_{t} \quad \forall \eta \in \mathbb{H}_{t} .
$$

And the subset,

$$
\mathcal{M}_{t}=\left\{M_{h} \in B_{\mathbb{R}}\left(\mathbb{H}_{t}\right): h \in \mathbb{H}_{t}\right\},
$$

of $B_{\mathbb{R}}\left(\mathbb{H}_{t}\right)$ forms a well-defined complete semi-normed $*$-algebra over \mathbb{R}. In particular, the operator semi-norm $\|$.$\| becomes an operator "norm," if t<0$ (because if $t<0$, then $\|\cdot\|_{t}$ is a norm induced by the inner product \langle,\rangle_{t}), meanwhile, it is a operator "semi-norm," if $t \geq 0$ (because if $t \geq 0$, then $\|\cdot\|_{t}$ forms a semi-norm induced by the indefinite semi-inner product \langle,\rangle_{t}). See [3] for details. Since \mathbb{H}_{t} is isomorphic to \mathscr{H}_{t}, this complete semi-normed *-algebra \mathcal{M}_{t} is isomorphic to \mathbb{H}_{t}, by a $*$-isomorphism,

$$
M_{h} \in \mathcal{M}_{t} \longmapsto h \in \mathbb{H}_{t} \stackrel{\text { iso }}{=} \mathscr{H}_{t},
$$

operator-algebraically. Therefore, the statement (3.10) holds, too.
The above theorem characterizes the algebraic, analytic, and operatoralgebraic structures of the set \mathscr{H}_{t} of (3.7), for $t \in \mathbb{R}$. So, one can re-define the set \mathbb{H}_{t} of t-scaled hypercomplex numbers by the equivalent set \mathscr{H}_{t}, i.e.,

$$
\mathbb{H}_{t} \stackrel{\text { def }}{=}\left\{\begin{array}{c|c}
x, y, u, v \in \mathbb{R}, \\
x+y i_{t}+u j_{t}+v k_{t} & \begin{array}{c}
x \\
i_{t}=i=\sqrt{-1} \in \mathbb{C}, \text { and } \\
i_{t}^{2}=-1, j_{t}^{2}=t=k_{t}^{2}, \\
i j_{t}=k_{t}, j_{t} k_{t}=-t i, k_{t} i=j_{t} \\
j_{t} i=-k_{t}, i k_{t}=-j_{t}, k_{t} j_{t}=t i
\end{array}
\end{array}\right\} .
$$

For convenience, we call \mathbb{H}_{t}, the t-scaled hypercomplexes from now on. By the above theorem, the t-scaled hypercomplexes \mathbb{H}_{t} is a unital ring with its unity,

$$
1=1+0 i_{t}+0 j_{t}+0 k_{t}=(1,0) \in \mathbb{H}_{t},
$$

algebraically, and a complete \mathbb{R}-semi-normed space analytically (in general, for all $t \in \mathbb{R}$), and a complete semi-normed $*$-algebra over \mathbb{R} operatoralgebraically (in particular, it forms a C^{*}-algebra over \mathbb{R} if $t<0$). It is not difficult to check that each hypercomplex number $h=x+y i_{t}+u j_{t}+v k_{t}$ of \mathbb{H}_{t} has its hypercomplex conjugate,

$$
h^{\dagger}=x-y i_{t}-u j_{t}-v k_{t}, \text { in } \mathbb{H}_{t},
$$

and one can have a well-defined \mathbb{R}-linear functional τ on \mathbb{H}_{t},

$$
\tau(h)=x .
$$

So, under this new setting, one can define the real part,

$$
\operatorname{Re}\left(x+y i+u j_{t}+v k_{t}\right)=x,
$$

and the imaginary part,

$$
\operatorname{Im}\left(x+y i_{t}+u j_{t}+v k_{t}\right)=y i_{t}+u j_{t}+v k_{t},
$$

for all $x+y i_{t}+u j_{t}+v k_{t} \in \mathbb{H}_{t}$, which are understood to be

$$
(x+y i)+(u+v i) j_{t}, \text { since } i j_{t}=k_{t},
$$

where $i=\sqrt{-1}=i_{t}$, for all $t \in \mathbb{R}$. Recall that, in [3], we generalized complex numbers \mathbb{C}, and hyperbolic numbers \mathcal{D} in a similar way.

Definition 3.4. Let $t \in \mathbb{R}$, and \mathbb{H}_{t}, the corresponding t-scaled hypercomplex ring. The subring,

$$
\mathbb{D}_{t}=\left\{(x, u) \in \mathbb{H}_{t}: x, u \in \mathbb{R}\right\}
$$

is called the t-scaled hyperbolic (sub)ring, and all elements of \mathbb{D}_{t} are called t-scaled hyperbolic numbers.

Note that, by definition, this t-scaled hyperbolic ring \mathbb{D}_{t} forms a closed subspace of the \mathbb{R}-vector space $\left(\mathbb{H}_{t},\langle,\rangle_{t}\right)$, and it becomes a closed $*$-subalgebra of the complete semi-normed $*$-algebra \mathbb{H}_{t} over \mathbb{R}. By our new notational setting, the t-scaled hyperbolic ring \mathbb{D}_{t} of [3] can be re-defined by

$$
\begin{equation*}
\mathbb{D}_{t}=\left\{x+0 i_{t}+u j_{t}+0 k_{t} \in \mathbb{H}_{t}: x, u \in \mathbb{R}\right\} \tag{3.11}
\end{equation*}
$$

in the t-scaled hypercomplexes \mathbb{H}_{t}. It is not hard to check that \mathbb{D}_{-1} is isomorphic to the complex field,

$$
\mathbb{C}=\left\{x+u i: x, u \in \mathbb{C}, i^{2}=-1\right\},
$$

and \mathbb{D}_{1} is isomorphic to the classical hyperbolic numbers,

$$
\mathcal{D}=\left\{x+u j: x, u \in \mathbb{R}, j^{2}=1\right\}
$$

algebraically, and analytically (e.g., see [3] for details).
Theorem 3.5. Let $h=x+u j_{t} \in \mathbb{D}_{t}$. Then there exists $e^{j_{t} \theta} \in \mathbb{D}_{t}$, such that

$$
h=\|h\|_{t} e^{j_{t} \theta}, \quad \text { in } \quad \mathbb{D}_{t}
$$

where

$$
\begin{equation*}
\left\|e^{j_{t} \theta}\right\|_{t}=1, \quad \text { with } \theta=\operatorname{Arg}((x, u)) \in[0,2 \pi] \tag{3.12}
\end{equation*}
$$

where $[0,2 \pi]$ is the closed interval in \mathbb{R}, and $\operatorname{Arg}((x, u))$ is the argument of the vector $(x, u) \in \mathbb{R}^{2}$, and

$$
e^{j_{t} \theta}=\left\{\begin{array}{cl}
\cos (\sqrt{|t|} \theta)+j_{t}\left(\frac{\sin (\sqrt{|t|} \theta)}{\sqrt{|t|}}\right) & \text { if } t<0 \\
\pm 1+u j_{t}, & \text { if } t=0 \\
\cosh (\sqrt{t} \theta)+j_{t}\left(\frac{\sinh (\sqrt{t} \theta)}{\sqrt{t}}\right) & \text { if } t>0
\end{array}\right.
$$

Proof. In [3], we showed that if $(x, u) \in \mathbb{D}_{t}$ in \mathbb{H}_{t}, then it is expressed by

$$
(x, u)=\|(x, u)\|_{t} \exp ^{j_{t} \theta}, \quad \text { in } \mathbb{D}_{t}
$$

where

$$
\exp ^{j_{t} \theta}=\left\{\begin{array}{cl}
\left(\cos (\sqrt{|t|} \theta), \frac{\sin \sqrt{|t|} \theta}{\sqrt{|t|}}\right) & \text { if } t<0 \tag{3.13}\\
(\pm 1, u), \text { for all } u \in \mathbb{R} & \text { if } t=0 \\
\left(\cosh (\sqrt{t} \theta), \frac{\sinh (\sqrt{t} \theta)}{\sqrt{t}}\right) & \text { if } t \geq 0
\end{array}\right.
$$

where $\theta=\operatorname{Arg}((x, u)) \in[0,2 \pi]$ is the argument of the point (x, u) in \mathbb{R}^{2}. So, the t-scaled polar decomposition (3.12) holds by (3.11) and (3.13).

As in [3], if we construct the unit set $\mathbb{T}_{t}=\left\{h \in \mathbb{D}_{t}:\|h\|_{t}=1\right\}$ of all units in the t-scaled hyperbolic ring \mathbb{D}_{t}, then

$$
\mathbb{T}_{t}=\left\{e^{j_{t} \theta}: \theta \in \mathbb{R}\right\}
$$

where $e^{j_{t} \theta}$ are in the sense of (3.12) in \mathbb{D}_{t}.

4. Nonzero-Scaled Regular Functions

Let $t \in \mathbb{R}$ be a fixed scale, and

$$
\mathbb{H}_{t}=\operatorname{span}_{\mathbb{R}}\left(\left\{1, i_{t}, j_{t}, k_{t}\right\}\right),
$$

the t-scaled hypercomplexes, where $i_{t}=\sqrt{-1}=i, j_{t}$ and k_{t} satisfy (1.2) and (1.3). We consider functions,

$$
f: \mathbb{H}_{t} \rightarrow \mathbb{H}_{t}
$$

in the t-scaled hypercomplex variable,

$$
w=x_{1}+x_{2} i_{t}+x_{3} j_{t}+x_{4} k_{t}, \text { with } x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}
$$

In particular, we are interested in the case where such functions f are \mathbb{R} differentiable in an open connected set $\Omega \subset \mathbb{H}_{t}$. Our study is motivated by the main results of [4], [5], [6], [8], and [9].

4.1. Motivation: Hyperholomorphic Functions on \mathbb{H}_{-1}

For more about hyperholomorphic theory on the (-1)-scaled hypercomplexes \mathbb{H}_{-1}, see e.g., [5], [6] and [8]. Recall that the (-1)-scaled hypercomplexes \mathbb{H}_{-1} is the noncommutative field of the quaternions (e.g., see Sects. 2 and 3 above, or [1], [2] and [3]). Recall that the quaternions \mathbb{H}_{-1} is noncommutative for the (-1)-scaled multiplication $\left({ }_{-1}\right)$, and hence, the hyperholomorphic property is considered in two ways from the left, and from the right. Also, in this quaternionic case, the differential operator D_{-1} is called the Cauchy-Fueter (differential) operator (e.g., see [5], [6] and [8]).

Define two operators D_{-1} and D_{-1}^{\dagger} by

$$
D_{-1}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+j_{-1} \frac{\partial}{\partial x_{3}}+k_{-1} \frac{\partial}{\partial x_{4}},
$$

and

$$
D_{-1}^{\dagger}=\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i-\frac{\partial}{\partial x_{3}} j_{-1}-\frac{\partial}{\partial x_{4}} k_{-1},
$$

on the set of all \mathbb{R}-differentiable quaternionic functions.
Definition 4.1. A \mathbb{R}-differentiable quaternionic function $f: \mathbb{H}_{-1} \rightarrow \mathbb{H}_{-1}$ is left-hyperholomorphic on an open subset Ω of \mathbb{H}_{-1}, if

$$
D_{-1} f \stackrel{\text { denote }}{=} \frac{\partial f}{\partial x_{1}}+i \frac{\partial f}{\partial x_{2}}+j_{-1} \frac{\partial f}{\partial x_{3}}+k_{-1} \frac{\partial f}{\partial x_{4}}=0 ;
$$

and f is said to be right-hyperholomorphic on Ω, if

$$
f D_{-1} \stackrel{\text { denote }}{=} \frac{\partial f}{\partial x_{1}}+\frac{\partial f}{\partial x_{2}} i+\frac{\partial f}{\partial x_{3}} j_{-1}+\frac{\partial f}{\partial x_{4}} k_{-1}=0,
$$

in a \mathbb{H}_{-1}-variable $w=x_{1}+x_{2} i+x_{3} j_{-1}+x_{4} k_{-1}$ with $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$. We simply say that f is hyperholomorphic on Ω, if it is both left and right hyperholomorphic on Ω.

Readers can verify that we later define the (left, and right) scaledhyperholomorphic property of \mathbb{R}-differentiable functions on $\left\{\mathbb{H}_{t}\right\}_{t \in \mathbb{R}}$ similarly as above. In this section, we concentrate on the left-hyperholomorphic functions on the quaternions \mathbb{H}_{-1}.

It is well-known that

$$
D_{-1}^{\dagger} D_{-1}=\Delta_{-1},
$$

with

$$
\begin{equation*}
\Delta_{-1} \stackrel{\text { def }}{=} \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}+\frac{\partial^{2}}{\partial x_{4}^{2}} . \tag{4.1.1}
\end{equation*}
$$

Thus, hyperholomorphic functions are harmonic on \mathbb{H}_{-1}.
Proposition 4.2. A left hyperholomorphic function $f: \mathbb{H}_{-1} \rightarrow \mathbb{H}_{-1}$ on an open connected subset U of \mathbb{H}_{-1} is harmonic on U, i.e.,

$$
\begin{equation*}
\Delta_{-1} f=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}+\frac{\partial^{2} f}{\partial x_{3}^{2}}+\frac{\partial^{2} f}{\partial x_{4}^{2}}=0, \text { on } U . \tag{4.1.2}
\end{equation*}
$$

Proof. If f is left-hyperholomorphic on \mathbb{H}_{-1}, then

$$
\Delta_{-1} f=D_{-1}^{\dagger} D_{-1} f=D_{-1}^{\dagger}\left(D_{-1} f\right)=0
$$

by (4.1.1). So, the harmonicity (4.1.2) holds for f.
It is shown that every left-hyperholomorphic function f on an open subset containing 0 is expressed by the form,

$$
f(w)=f(0)+\sum_{n=1}^{3} \zeta_{n+1}(w) \mathcal{R}_{n+1} f(w)
$$

with

$$
\begin{equation*}
\zeta_{n+1}(w)=x_{n+1}-x_{1} e_{n+1}, \tag{4.1.3}
\end{equation*}
$$

and

$$
\mathcal{R}_{n+1} f(w)=\int_{0}^{1} \frac{\partial f}{\partial x_{n+1}}(t w) d t
$$

where

$$
e_{2}=i, \quad e_{3}=j_{-1}, \quad \text { and } e_{4}=k_{-1}
$$

(e.g., see [5], [6] and [8]). Note that the functions ζ_{2}, ζ_{3}, and ζ_{4} of (4.1.3) are both left and right entire hyperholomorphic (on \mathbb{H}_{-1}), called the CauchyFueter polynomials on the quaternions \mathbb{H}_{-1}. Are the above harmonicity (4.1.2)
and the expansion (4.1.3) generalized for arbitrary scales $t \in \mathbb{R}$, under a certain "scaled" hyperholomorphic property?

Independently, in [4] and [9]., the hyperholomorphic property (called the left, or right regularity there), and the harmonicity of \mathbb{R}-differentiable functions on open connected subsets of the split-quaternions \mathbb{H}_{1} is studied and characterized, under slightly different differential-operator and Laplacian settings based on [9] and [14].

4.2. Discussion and Assumption

Let \mathbb{H}_{t} be the t-scaled hypercomplexes, for a scale $t \in \mathbb{R}$.
Definition 4.3. Suppose \mathcal{T}_{t} is the semi-norm topology on $\mathbb{H}_{t}=\mathbf{X}_{t}$, the t hypercomplex \mathbb{R}-space induced by the semi-norm $\|.\|_{t}$ of (2.4.10) under (3.7). Define a set,

$$
\mathcal{F}_{t . U} \stackrel{\text { def }}{=}\left\{f: \mathbb{H}_{t} \rightarrow \mathbb{H}_{t} \mid f \text { is } \mathbb{R} \text {-differentiable on } U \in \mathcal{T}_{t}\right\},
$$

and the set $\mathcal{F}_{t} \stackrel{\text { def }}{=} \underset{U \in \mathcal{T}_{t}}{\cup} \mathcal{F}_{t, U}$.
Note that each \mathbb{R}-differentiable-function family $\mathcal{F}_{t, U}$ is understood to be

$$
\begin{equation*}
\mathcal{F}_{t, U}=\underset{k \in \Lambda}{\sqcup} \mathcal{F}_{t, U_{k}} \text {, if } U=\underset{k \in \Lambda}{\sqcup} U_{k} \in \mathcal{T}_{t} \text {, } \tag{4.2.1}
\end{equation*}
$$

where \sqcup is the disjoint union, and $\left\{U_{k}\right\}_{k \in \Lambda} \subset \mathcal{T}_{t}$ for an index set Λ, where $\left\{U_{k}\right\}_{k \in \Lambda}$ are connected in \mathcal{T}_{t}. i.e., each \mathbb{R}-differentiable-function family $\mathcal{F}_{t, U}$ for $U \in \mathcal{T}_{t}$ is the disjoint union of the collection $\left\{\mathcal{F}_{t, U_{k}}\right\}_{k \in \Lambda}$ of \mathbb{R}-differentiablefunction families on open connected subsets $\left\{U_{k}\right\}_{k \in \Lambda}$ of \mathbb{H}_{t}, as in (4.2.1). Of course, if U is both open and connected in \mathcal{T}_{t}, then the index set Λ in (4.2.1) becomes a singleton set, and hence, $\mathcal{F}_{t, U}$ becomes itself in the sense of (4.2.1). Assumption. From below, if we take a \mathbb{R}-differentiable-function family $\mathcal{F}_{t, U}$, then the open subset $U \in \mathcal{T}_{t}$ of \mathbb{H}_{t} is automatically regarded as a connected subset, for convenience.

It is not difficult to check that the \mathbb{R}-differentiable-function family $\mathcal{F}_{t, U}$ of $U \in \mathcal{I}_{t}$ forms a well-defined \mathbb{R}-vector space. Also, the \mathbb{R}-differentiablefunction family \mathcal{F}_{t} forms a \mathbb{R}-vector space in the sense that: if $r_{1}, r_{2} \in \mathbb{R}$ and $f_{1}, f_{2} \in \mathcal{F}_{t}$, and hence, if $r_{1} f_{1} \in \mathcal{F}_{t, U_{1}}$ and $r_{2} f_{2} \in \mathcal{F}_{t, U_{2}}$, for $U_{1}, U_{2} \in \mathcal{T}_{t}$, then

$$
r_{1} f_{1}+r_{2} f_{2} \in \mathcal{F}_{t, U_{1} \cap U_{2}}, \text { in } \mathcal{F}_{t} .
$$

Before proceeding our works, we discuss the difficulties to maintain similar settings of Sect. 4.1 for the cases where we replace the (-1)-scaled hypercomplexes (which is the quaternions) \mathbb{H}_{-1} to a general t-scaled hypercomplexes \mathbb{H}_{t}, for $t \in \mathbb{R} \backslash\{-1\}$. Naturally, we want to extend the results (4.1.2) and (4.1.3) of Sect. 4.1 to those on \mathbb{H}_{t}, for any scales $t \in \mathbb{R}$. However, if we use the operators,

$$
D_{t}=\frac{\partial f}{\partial x_{1}}+i \frac{\partial f}{\partial x_{2}}+j_{t} \frac{\partial f}{\partial x_{3}}+k_{t} \frac{\partial f}{\partial x_{4}},
$$

and

$$
\begin{equation*}
D_{t}^{\dagger}=\frac{\partial f}{\partial x_{1}}-\frac{\partial f}{\partial x_{2}} i-\frac{\partial f}{\partial x_{3}} j_{t}-\frac{\partial f}{\partial x_{4}} k_{t}, \tag{4.2.2}
\end{equation*}
$$

for a fixed $t \in \mathbb{R}$, then one "cannot" have

$$
D_{t}^{\dagger} D_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}+\frac{\partial^{2}}{\partial x_{4}^{2}}
$$

in general, like in Sect. 4.1, especially, where $t \neq-1$ in \mathbb{R} (e.g., see Sect. 4.3 below). In other words, one cannot have a natural Laplacian-like operator from the operators (4.2.2). So, we need new settings for studying the hyperholomorphic property, and harmonicity of $\mathcal{F}_{t, U}$ on \mathbb{H}_{t}.

Also, if a given scale t is zero, i.e., $t=0$ in \mathbb{R}, then the analysis of $\mathcal{F}_{0, U}$ on \mathbb{H}_{0}, for $U \in \mathcal{T}_{0}$, seems totally different from those on $\left\{\mathbb{H}_{t}\right\}_{t \in \mathbb{R} \backslash\{0\}}$. So, in the rest of Sect. 4 below, we first concentrate on the cases where $t \neq 0$ in \mathbb{R}. The case where $t=0$ will be considered in Sect. 5 , independently.
Assumption. In the following Sects. 4.3, 4.4 and 4.5, we assume $t \in \mathbb{R} \backslash\{0\}$.

4.3. The Scaled Regularity

As we have seen in Sect. 4.1, the (-1)-scaled differential operator D_{-1} satisfies that

$$
D_{-1}^{\dagger} D_{-1}=\Delta_{-1}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}+\frac{\partial^{2}}{\partial x_{4}^{2}}
$$

by (4.1.1), allowing us to study harmonicity independent from the imaginary \mathbb{R}-basis elements $\left\{i, j_{-1}, k_{-1}\right\}$ of \mathbb{H}_{-1}. In this section, let's construct ideas and approaches to extend the results of Sect. 4.1 to the general cases where $t \in \mathbb{R} \backslash\{0\}$. Throughout this section, we let $t \in \mathbb{R} \backslash\{0\}$ as we assumed in Sect. 4.2, and \mathbb{H}_{t}, the corresponding t-scaled hypercomplexes.

First, consider the case where we have operators D_{t} and D_{t}^{\dagger} on \mathcal{F}_{t} by

$$
D_{t}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+j_{t} \frac{\partial}{\partial x_{3}}+k_{t} \frac{\partial}{\partial x_{4}},
$$

and

$$
\begin{equation*}
D_{t}^{\dagger} \stackrel{\text { def }}{=} \frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i-\frac{\partial}{\partial x_{3}} j_{t}-\frac{\partial}{\partial x_{4}} k_{t}, \tag{4.3.1}
\end{equation*}
$$

as in Sect. 4.1. Observe that

$$
\begin{aligned}
D_{t}^{\dagger} D_{t}= & \left(\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i-\frac{\partial}{\partial x_{3}} j_{t}-\frac{\partial}{\partial x_{4}} k_{t}\right)\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+j_{t} \frac{\partial}{\partial x_{3}}+k_{t} \frac{\partial}{\partial x_{4}}\right) \\
= & \frac{\partial}{\partial x_{1}} \frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{1}} i \frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{1}} j_{t} \frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{1}} k_{t} \frac{\partial}{\partial x_{4}} \\
& -\frac{\partial}{\partial x_{2}} i \frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i^{2} \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{2}} i j_{t} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{2}} i k_{t} \frac{\partial}{\partial x_{4}} \\
& -\frac{\partial}{\partial x_{3}} j_{t} \frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{3}} j_{t} i \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{3}} j_{t}^{2} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{3}} j_{t} k_{t} \frac{\partial}{\partial x_{4}} \\
& -\frac{\partial}{\partial x_{4}} k_{t} \frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{4}} k_{t} i \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{4}} k_{t} j_{t} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{4}} k_{t}^{2} \frac{\partial}{\partial x_{4}}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}} i^{2}-\frac{\partial}{\partial x_{2}} i j_{t} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{2}} i k_{t} \frac{\partial}{\partial x_{4}} \\
& \quad-\frac{\partial}{\partial x_{3}} j_{t} i \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{3}} j_{t}^{2} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{3}} j_{t} k_{t} \frac{\partial}{\partial x_{4}} \\
& \quad-\frac{\partial}{\partial x_{4}} k_{t} i \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{4}} k_{t} j_{t} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{4}} k_{t}^{2} \frac{\partial}{\partial x_{4}} \\
& =\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\partial}{\partial x_{3}}(-t i) \frac{\partial}{\partial x_{4}}-\frac{\partial}{\partial x_{4}}(t i) \frac{\partial}{\partial x_{3}}-t \frac{\partial^{2}}{\partial x_{3}^{2}}-t \frac{\partial^{2}}{\partial x_{4}^{2}}, \tag{4.3.2}
\end{align*}
$$

by (3.5) and (3.6), i.e.,

$$
\begin{equation*}
D_{t}^{\dagger} D_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+t \frac{\partial}{\partial x_{3}} i \frac{\partial}{\partial x_{4}}-t \frac{\partial}{\partial x_{4}} i \frac{\partial}{\partial x_{3}}-t \frac{\partial^{2}}{\partial x_{3}^{2}}-t \frac{\partial^{2}}{\partial x_{4}^{2}}, \tag{4.3.3}
\end{equation*}
$$

by (4.3.2).
Proposition 4.4. If $D_{t}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+j_{t} \frac{\partial}{\partial x_{3}}+k_{t} \frac{\partial}{\partial x_{4}}$ on $\mathcal{F}_{t, U}$, for $U \in \mathcal{T}_{t}$, then

$$
\left.D_{t}^{\dagger} D_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+t \frac{\partial}{\partial x_{3}} i \frac{\partial}{\partial x_{4}}-t \frac{\partial}{\partial x_{4}} i \frac{\partial}{\partial x_{3}}-t \frac{\partial^{2}}{\partial x_{3}^{2}}-t \frac{\partial^{2}}{\partial x_{4}^{2}}, \text { on } \psi 4.3 .4\right)
$$

Proof. The proof is done by the straightforward computations (4.3.3).
Motivated by (4.3.4), we define new differential operators ∇_{t} and ∇_{t}^{\dagger} by

$$
\nabla_{t}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}-j_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{3}}-k_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{4}}
$$

and

$$
\begin{equation*}
\nabla_{t}^{\dagger}=\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i+\frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{3}} j_{t}+\frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{4}} k_{t}, \tag{4.3.5}
\end{equation*}
$$

on $\mathcal{F}_{t, U}$, for any $U \in \mathcal{T}_{t}$, where

$$
\frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{l}}=\left(\frac{\operatorname{sgn}(t)}{\sqrt{|t|}}\right) \frac{\partial}{\partial x_{l}}, \text { for } l=3,4
$$

where

$$
\operatorname{sgn}(t)=\left\{\begin{array}{cc}
1 & \text { if } t>0 \tag{4.3.6}\\
-1 & \text { if } t<0
\end{array}\right.
$$

for all $t \in \mathbb{R} \backslash\{0\}$. i.e., by (4.3.5) and (4.3.6),

$$
\nabla_{t} \stackrel{\text { def }}{=}\left\{\begin{array}{cl}
\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}-j_{t} \frac{\partial}{\sqrt{t} \partial x_{3}}-k_{t} \frac{\partial}{\sqrt{t} \partial x_{4}} & \text { if } t>0 \\
\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+j_{t} \frac{\partial}{\sqrt{|t|} \partial x_{3}}+k_{t} \frac{\partial}{\sqrt{|t|} \partial x_{4}} & \text { if } t<0
\end{array}\right.
$$

Lemma 4.5. Let ∇_{t} and ∇_{t}^{\dagger} be the operators (4.3.6) on $\mathcal{F}_{t, U}$. Then

$$
\begin{equation*}
\nabla_{t}^{\dagger} \nabla_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{3}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{4}^{2}} \tag{4.3.7}
\end{equation*}
$$

on $\mathcal{F}_{t, U}$.
Proof. Consider that,

$$
\left.\begin{array}{rl}
\nabla_{t}^{\dagger} \nabla_{t}= & \left(\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i+\frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{3}} j_{t}+\frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{4}} k_{t}\right) \\
\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}-j_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{3}}-k_{t} \frac{\operatorname{sgn}(t)}{\sqrt{|t|}} \partial x_{4}\right.
\end{array}\right) .
$$

$\operatorname{since}(\operatorname{sgn}(t))(\operatorname{sgn}(t))=1 i n\{ \pm 1\}$

$$
\begin{aligned}
& =\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial}{\partial x_{2}} i^{2} \frac{\partial}{\partial x_{2}}-\frac{1}{|t|} \frac{\partial}{\partial x_{3}} j_{t}^{2} \frac{\partial}{\partial x_{3}}-\frac{1}{|t|} \frac{\partial}{\partial x_{3}} j_{t} k_{t} \frac{\partial}{\partial x_{4}}, \\
& -\frac{1}{|t|} \frac{\partial}{\partial x_{4}} k_{t} j_{t} \frac{\partial}{\partial x_{3}}-\frac{1}{|t|} \frac{\partial}{\partial x_{4}} k_{t}^{2} \frac{\partial}{\partial x_{4}} \\
& =\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{t}{|t|} \frac{\partial^{2}}{\partial x_{3}^{2}}-\frac{1}{|t|} \frac{\partial}{\partial x_{3}}(-t i) \frac{\partial}{\partial x_{4}}-\frac{1}{|t|} \frac{\partial}{\partial x_{4}}(t i) \frac{\partial}{\partial x_{3}}-\frac{t}{|t|} \frac{\partial^{2}}{\partial x_{4}^{2}} \\
& =\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{3}^{2}}+\operatorname{sgn}(t) \frac{\partial}{\partial x_{3}}(i) \frac{\partial}{\partial x_{4}} \\
& -\operatorname{sgn}(t) \frac{\partial}{\partial x_{4}}(i) \frac{\partial}{\partial x_{3}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{4}^{2}}
\end{aligned}
$$

since $\frac{t}{|t|}=\operatorname{sgn}(t)$

$$
=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{3}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{4}^{2}}
$$

by (3.5) and (3.6), implying that

$$
\nabla_{t}^{\dagger} \nabla_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{3}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{4}^{2}}
$$

The above lemma shows that if we define a t-scaled Laplacian operator Δ_{t} on \mathcal{F}_{t} by

$$
\Delta_{t} \stackrel{\text { def }}{=} \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial}{\partial x_{3}^{2}}-\frac{\operatorname{sgn}(t) \partial}{\partial x_{4}^{2}}
$$

then we have the following factorization of Δ_{t}.
Theorem 4.6. If $\Delta_{t} \stackrel{\text { def }}{=} \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{3}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{4}^{2}}$ on \mathcal{F}_{t}, then

$$
\begin{equation*}
\Delta_{t}=\nabla_{t}^{\dagger} \nabla_{t} \tag{4.3.8}
\end{equation*}
$$

Proof. The formula (4.3.8) is shown by (4.3.7).
Note that the above factorization (4.3.8) shows that if $t<0$, then

$$
\nabla_{t}^{\dagger} \nabla_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}+\frac{\partial^{2}}{\partial x_{4}^{2}}
$$

meanwhile, if $t>0$, then

$$
\nabla_{t}^{\dagger} \nabla_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\partial^{2}}{\partial x_{3}^{2}}-\frac{\partial^{2}}{\partial x_{4}^{2}}
$$

for all $t \in \mathbb{R} \backslash\{0\}$. For example, if $t=-1$, then this formula (4.3.8) becomes

$$
\Delta_{-1}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}+\frac{\partial^{2}}{\partial x_{4}^{2}}=\nabla_{-1}^{\dagger} \nabla_{-1}
$$

as in Sect. 4.1. Meanwhile, if $t=1$, then the formula (4.3.8) goes to

$$
\Delta_{1}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\partial^{2}}{\partial x_{3}^{2}}-\frac{\partial^{2}}{\partial x_{4}^{2}}=\nabla_{1}^{\dagger} \nabla_{1},
$$

as in [4]. Thus, the factorization (4.3.8) can be re-stated as

$$
\Delta_{t}=\left\{\begin{array}{cc}
\Delta_{-1} & \text { if } t<0 \\
\Delta_{1} & \text { if } t>0
\end{array}\right.
$$

We now consider how the new differential operator ∇_{t} of (4.3.6) acts on the functions,

$$
\zeta_{2}=x_{2}-x_{1} i, \zeta_{3}=x_{3}-x_{1} j_{t}, \text { and } \zeta_{4}=x_{4}-x_{1} k_{t}
$$

Observe that

$$
\nabla_{t} \zeta_{2}=\zeta_{2} \nabla_{t}=\frac{\partial \zeta_{2}}{\partial x_{1}}+i \frac{\partial \zeta_{2}}{\partial x_{2}}-j_{t} \frac{\operatorname{sng}(t) \partial \zeta_{2}}{\sqrt{|t|} \partial x_{3}}-k_{t} \frac{\operatorname{sgn}(t) \partial \zeta_{2}}{\sqrt{|t|} \partial x_{4}}
$$

$$
\begin{align*}
= & \frac{\partial\left(x_{2}-x_{1} i\right)}{\partial x_{1}}+i \frac{\partial\left(x_{2}-x_{1} i\right)}{\partial x_{2}}-j_{t} \frac{\operatorname{sgn}(t) \partial\left(x_{2}-x_{1} i\right)}{\sqrt{|t|} \partial x_{3}} \\
& -k_{t} \frac{\operatorname{sgn}(t) \partial\left(x_{2}-x_{1} i\right)}{\sqrt{|t|} \partial x_{4}} \\
= & (-i)+(1) i-(0) j_{t}-(0) k_{t}=-i+i=0 \tag{4.3.9}\\
\nabla_{t} \zeta_{3}= & \zeta_{3} \nabla_{t}=\frac{\partial\left(x_{3}-x_{1} j_{t}\right)}{\partial x_{1}}+i \frac{\partial\left(x_{3}-x_{1} j_{t}\right)}{\partial x_{2}} \\
& -j_{t} \frac{\operatorname{sgn}(t) \partial\left(x_{3}-x_{1} j_{t}\right)}{\sqrt{|t|} \partial x_{3}}-k_{t} \frac{\operatorname{sgn}(t) \partial\left(x_{3}-x_{1} j_{t}\right)}{\sqrt{|t|} \partial x_{4}} \\
= & \left(-j_{t}\right)+(0) i-\left(\frac{\operatorname{sgn}(t)}{\sqrt{|t|}}\right) j_{t}-(0) k_{t}=\left(-1-\frac{\operatorname{sgn}(t)}{\sqrt{|t|}}\right) j_{t} \tag{4.3.10}
\end{align*}
$$

and

$$
\begin{align*}
\nabla_{t} \zeta_{4}= & \zeta_{4} \nabla_{t}=\frac{\partial\left(x_{4}-x_{1} k_{t}\right)}{\partial x_{1}}+i \frac{\partial\left(x_{4}-x_{1} k_{t}\right)}{\partial x_{2}} \\
& -j_{t} \frac{\operatorname{sgn}(t) \partial\left(x_{4}-x_{1} k_{t}\right)}{\sqrt{|t|} \partial x_{3}}-k_{t} \frac{\operatorname{sgn}(t) \partial\left(x_{4}-x_{1} k_{t}\right)}{\sqrt{|t|} \partial x_{4}} \\
= & \left(-k_{t}\right)+(0) i-(0) j_{t}-\left(\frac{\operatorname{sgn}(t)}{\sqrt{|t|}}\right) k_{t}=\left(-1-\frac{\operatorname{sgn}(t)}{\sqrt{|t|}}\right) k_{t} \tag{4.3.11}
\end{align*}
$$

Proposition 4.7. Let ∇_{t} be the differential operator (4.3.6), and let $\left\{\zeta_{l}\right\}_{l=2}^{4} \subset$ $\mathcal{F}_{t, \mathbb{H}_{t}}$ be the functions introduced as in the very above paragraph. Then

$$
\nabla_{t} \zeta_{2}=\zeta_{2} \nabla_{t}=0
$$

and

$$
\begin{equation*}
\nabla_{t} \zeta_{3}=\zeta_{3} \nabla_{t}=\rho j_{t}, \quad \nabla \zeta_{4}=\zeta_{4} \nabla_{t}=\rho k_{t}, \tag{4.3.12}
\end{equation*}
$$

where

$$
\rho=-1-\frac{\operatorname{sgn}(t)}{\sqrt{|t|}}, \quad \text { in } \quad \mathbb{R}
$$

Proof. The formula (4.3.12) is proven by (4.3.9), (4.3.10) and (4.3.11).
The formulas in (4.3.12) show how the operator ∇_{t} acts on the Fueterlike functions $\left\{\zeta_{l}\right\}_{l=2}^{4}$ in $\mathcal{F}_{t, \mathbb{H}_{t}}$.

Definition 4.8. Let ∇_{t} be the operator (4.3.6) on $\mathcal{F}_{t, U}$, for $U \in \mathcal{T}_{t}$ in \mathbb{H}_{t}, and $f \in \mathcal{F}_{t, U}$. If

$$
\nabla_{t} f=\frac{\partial f}{\partial x_{1}}+i \frac{\partial f}{\partial x_{2}}-j_{t} \frac{\operatorname{sgn}(t) \partial f}{\sqrt{|t|} \partial x_{3}}-k_{t} \frac{\operatorname{sgn}(t) \partial f}{\sqrt{|t|} \partial x_{4}}=0
$$

then f is said to be left t (-scaled)-regular on U. If

$$
f \nabla_{t}=\frac{\partial f}{\partial x_{1}}+\frac{\partial f}{\partial x_{2}} i-\frac{\operatorname{sgn}(t) \partial f}{\sqrt{|t|} \partial x_{3}} j_{t}-\frac{\operatorname{sgn}(t) \partial f}{\sqrt{|t|} \partial x_{4}} k_{t}=0
$$

then f is said to be right t (-scaled)-regular on U. If $f \in \mathcal{F}_{t, U}$ is both left and right t-regular, then it is said to be t (-scaled)-regular.

A function $f \in \mathcal{F}_{t, U}$ is called a t (-scaled)-harmonic function, if

$$
\Delta_{t} f=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2} f}{\partial x_{3}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2} f}{\partial x_{4}^{2}}=0
$$

where

$$
\Delta_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{3}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{4}^{2}}
$$

is in the sense of (4.3.8).
By (4.3.12), one can realize that $\zeta_{2}=x_{2}-x_{1} i$ is t-regular, but, $\zeta_{3}=$ $x_{3}-x_{1} j_{t}$ and $\zeta_{4}=x_{4}-x_{1} k_{t}$ are neither left nor right t-regular, in general, especially, if $t \neq-1$ in $\mathbb{R} \backslash\{0\}$. As in Sect. 4.1, we concentrate on the left t-regular functions. We finish this section with the following theorem.

Theorem 4.9. Let $f \in \mathcal{F}_{t, U}$, for $U \in \mathcal{T}_{t}$ in \mathbb{H}_{t}. If
f is left t-regular,
then
f is t-harmonic on U.
Proof. Suppose f is left t-regular in $\mathcal{F}_{t, U}$, i.e., $\nabla_{t} f=0$. Then $\Delta_{t} f=0$, because

$$
\Delta_{t} f=\nabla_{t}^{\dagger}\left(\nabla_{t} f\right)=\nabla_{t}^{\dagger}(0)=0
$$

implying that it is t-harmonic on U.

4.4. Certain t-Regular Functions on \mathbb{H}_{t}

Throughout this section, we automatically assume that a given scale t is non-zero, i.e., $t \in \mathbb{R} \backslash\{0\}$. Let ∇_{t} and ∇_{t}^{\dagger} be the operators (4.3.6),

$$
\nabla_{t}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}-j_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{3}}-k_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{4}}
$$

and

$$
\nabla_{t}^{\dagger}=\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i+\frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{3}} j_{t}+\frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{4}} k_{t}
$$

on $\mathcal{F}_{t, U}$, for any $U \in \mathcal{T}_{t}$ in the t-scaled hypercomplexes \mathbb{H}_{t}, and let

$$
\Delta_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{3}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{4}^{2}}
$$

on $\mathcal{F}_{t, U}$, satisfying

$$
\Delta_{t}=\nabla_{t}^{\dagger} \nabla_{t}, \quad \text { on } \quad \mathcal{F}_{t, U}
$$

by (4.3.8), where $i=\sqrt{-1}=i_{s} \in \mathbb{H}_{s}$, for all $s \in \mathbb{R}$. Motivated by (4.3.12) and (4.3.13), define entire \mathbb{R}-differentiable functions $\left\{\eta_{l}\right\}_{l=2}^{4}$ on \mathbb{H}_{t} by

$$
\eta_{2}(w)=x_{2}-x_{1} i
$$

and

$$
\begin{equation*}
\eta_{3}(w)=x_{3}+\frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} j_{k}, \quad \eta_{4}(w)=x_{4}+\frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} k_{t}, \tag{4.4.1}
\end{equation*}
$$

in a \mathbb{H}_{t}-variable $w=x_{1}+x_{2} i+x_{3} j_{t}+x_{4} k_{t}$, with $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$.
Observe first that

$$
\eta_{2}=x_{2}-x_{1} i \text { in } \mathcal{F}_{t, \mathbb{H}_{t}},
$$

is t-regular in $\mathcal{F}_{t, \mathbb{H}_{t}}$, i.e.,

$$
\begin{equation*}
\eta_{2} \nabla_{t}=0=\nabla_{t} \eta_{2}, \quad \text { on } \mathbb{H}_{t} \tag{4.4.2}
\end{equation*}
$$

by (4.3.12), since η_{2} is identical to the function ζ_{2} introduced in Sect. 4.3.
Lemma 4.10. If $\eta_{2}=x_{2}-x_{1} i \in \mathcal{F}_{1, \mathbb{H}_{t}}$ is in the sense of (4.4.1), then

$$
\begin{equation*}
\eta_{2} \text { is a } t \text {-harmonic } t \text {-regular function on } \mathbb{H}_{t} . \tag{4.4.3}
\end{equation*}
$$

Proof. The function η_{2} is t-regular on \mathbb{H}_{t} by (4.4.2). Therefore, by (4.3.13), it is t-harmonic on \mathbb{H}_{t}, too.

Let's denote the quantity $\sqrt{|t|}$ by ρ and $\operatorname{sgn}(t)$ by $s_{t} \in\{ \pm\}$, and let $\eta_{3}=x_{3}+\frac{s_{t} x_{1}}{\rho} j_{t} \in \mathcal{F}_{t, \mathbb{H}_{t}}$ be in the sense of (4.4.1). Observe that

$$
\begin{aligned}
\nabla_{t} \eta_{3}= & \frac{\partial\left(x_{3}+\frac{s_{t} x_{1}}{\rho} j_{t}\right)}{\partial x_{1}}+i \frac{\partial\left(x_{3}+\frac{s_{t} x_{1}}{\rho} j_{t}\right)}{\partial x_{2}} \\
& -j_{t} \frac{s_{t} \partial\left(x_{3}+\frac{s x_{t 1}}{\rho} j_{t}\right)}{\rho \partial x_{3}}-k_{t} \frac{s_{t} \partial\left(x_{3}+\frac{s_{t} x_{1}}{\rho} j_{t}\right)}{\rho \partial x_{4}} \\
= & \left(\frac{s_{t}}{\rho} j_{t}\right)+i(0)-j_{t}\left(\frac{s_{t}}{\rho}\right)-k_{t}(0)=\frac{s_{t}}{\rho} j_{t}-\frac{s_{t}}{\rho} j_{t}=0
\end{aligned}
$$

and

$$
\begin{align*}
\eta_{3} \nabla_{t}= & \frac{\partial\left(x_{3}+\frac{s_{t} x_{1}}{\rho} j_{t}\right)}{\partial x_{1}}+\frac{\partial\left(x_{3}+\frac{s_{t} x_{1}}{\rho} j_{t}\right)}{\partial x_{2}} i-\frac{s_{t} \partial\left(x_{3}+\frac{s_{t} x_{1}}{\rho} j_{t}\right)}{\rho \partial x_{3}} j_{t} \\
& -\frac{s_{t} \partial\left(x_{3}+\frac{s_{t} x_{1}}{\rho} j_{t}\right)}{\rho \partial x_{4}} k_{t} \\
= & \left(\frac{s_{t}}{\rho} j_{t}\right)+(0) i-\left(\frac{s_{t}}{\rho}\right) j_{t}-(0) k_{t}=\frac{s_{t}}{\rho} j_{t}-\frac{s_{t}}{\rho} j_{t}=0 \tag{4.4.4}
\end{align*}
$$

also, if $\eta_{4}=x_{4}+s_{t} \rho x_{1} k_{t} \in \mathcal{F}_{1, \mathbb{H}_{t}}$ is in the sense of (4.4.1), then

$$
\begin{aligned}
\nabla_{t} \eta_{4}= & \frac{\partial\left(x_{4}+\frac{s_{t} x_{1}}{\rho} k_{t}\right)}{\partial x_{1}}+i \frac{\partial\left(x_{4}+\frac{s_{t} x_{1}}{\rho} k_{t}\right)}{\partial x_{2}} \\
& -j_{t} \frac{s_{t} \partial\left(x_{4}+\frac{s_{t} x_{1}}{\rho} k_{t}\right)}{\rho \partial x_{3}}-k_{t} \frac{s_{t} \partial\left(x_{4}+\frac{s_{t} x_{1}}{\rho} k_{t}\right)}{\rho \partial x_{4}} \\
= & \left(\frac{s_{t}}{\rho} k_{t}\right)+i(0)-j_{t}(0)-k_{t}\left(\frac{s_{t}}{\rho}\right)=\frac{s_{t}}{\rho} k_{t}-\frac{s_{t}}{\rho} k_{t}=0,
\end{aligned}
$$

and

$$
\begin{align*}
\eta_{4} \nabla_{t}= & \frac{\partial\left(x_{4}+\frac{s_{t} x_{1}}{\rho} k_{t}\right)}{\partial x_{1}}+\frac{\partial\left(x_{4}+\frac{s_{t} x_{1}}{\rho} k_{t}\right)}{\partial x_{2}} i \\
& -\frac{s_{t} \partial\left(x_{4}+\frac{x_{1}}{\rho} k_{t}\right)}{\rho \partial x_{3}} j_{t}-\frac{s_{t} \partial\left(x_{4}+\frac{x_{1}}{\rho} k_{t}\right)}{\rho \partial x_{4}} k_{t} \\
= & \left(\frac{s_{t}}{\rho} k_{t}\right)+(0) i-(0) j_{t}-\left(\frac{s_{t}}{\rho}\right) k_{t}=\frac{s_{t}}{\rho} k_{t}-\frac{s_{t}}{\rho} k_{t}=0 \tag{4.4.5}
\end{align*}
$$

Lemma 4.11. If $\eta_{3}=x_{3}+\frac{\operatorname{sng}(t) x_{1}}{\sqrt{|t|}} j_{t}$, and $\eta_{4}=x_{4}+\frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} k_{t}$ are in the sense of (4.4.1) in $\mathcal{F}_{1, \mathbb{H}_{t}}$, then

$$
\begin{equation*}
\eta_{3} \text { and } \eta_{4} \text { are } t \text {-harmonic } t \text {-regular on } \mathbb{H}_{t} \text {. } \tag{4.4.6}
\end{equation*}
$$

Proof. The functions $\eta_{3}, \eta_{4} \in \mathcal{F}_{1, \mathbb{H}_{t}}$ are both left and right t-regular on \mathbb{H}_{t}, by (4.4.4) and (4.4.5). Therefore, the functions η_{3} and η_{4} are t-harmonic on \mathbb{H}_{t}, too, by (4.3.13).

By the above two lemmas, one obtains the following result.
Theorem 4.12. The functions $\left\{\eta_{l}\right\}_{l=2}^{4}$ of (4.4.1) are t-harmonic t-regular functions on \mathbb{H}_{t}.

Proof. The proof is done by (4.4.3) and (4.4.6).
The following corollary is an immediate consequence of the above theorem.

Corollary 4.13. Let $f=s_{1} \eta_{2}+s_{2} \eta_{3}+s_{3} \eta_{4} \in \mathcal{F}_{t, \mathbb{H}_{t}}$ be a \mathbb{R}-linear combination of the t-regular functions $\left\{\eta_{l}\right\}_{l=2}^{4}$ of (4.4.1), where $s_{1}, s_{2}, s_{3} \in \mathbb{R}$. Then f is t-harmonic t-regular on \mathbb{H}_{t}.

Proof. Let $f=\sum_{n=1}^{3} s_{n} \eta_{n+1} \in \mathcal{F}_{1, \mathbb{H}_{t}}$ be a \mathbb{R}-linear combination of $\left\{\eta_{l}\right\}_{l=2}^{4}$, for $s_{1}, s_{2}, s_{3} \in \mathbb{R}$. Then

$$
\nabla_{t} f=\sum_{n=1}^{3} s_{n}\left(\nabla_{t} \eta_{n+1}\right)=0
$$

and

$$
f \nabla_{t}=\sum_{n=1}^{3} s_{n}\left(\eta_{n+1} \nabla_{t}\right)=0
$$

by (4.4.2), (4.4.4) and (4.4.5). Therefore, this function f is t-regular on \mathbb{H}_{t}. So, by (4.3.13), this function f is t-harmonic on \mathbb{H}_{t}, too.

4.5. Left \boldsymbol{t}-Regular Functions of $\mathcal{F}_{\boldsymbol{t}}$

In this section, we consider left t-regular functions in \mathcal{F}_{t} more in detail. As in Sects. 4.3 and 4.4, throughout this section, we assume that $t \in \mathbb{R} \backslash\{0\}$. Recall that the functions,

$$
\eta_{2}(w)=x_{2}-x_{1} i,
$$

and

$$
\eta_{3}(w)=x_{3}+\frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} j_{t}, \quad \eta(w)=x_{4}+\frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} k_{t},
$$

of (4.4.1) in a \mathbb{H}_{t}-variable $w=x_{1}+x_{2} i+x_{3} j_{t}+x_{4} k_{t}$, with $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$, are t-harmonic t-regular functions on \mathbb{H}_{t}. We first study t-regular functions induced by $\left\{\eta_{l}\right\}_{l=2}^{4}$. To do that we define a new operation (\times) on the t-scaled hypercomplexes \mathbb{H}_{t}.

Definition 4.14. Let $h_{1}, \ldots, h_{N} \in \mathbb{H}_{t}$, for $N \in \mathbb{N}$. Then the symmetrized product of h_{1}, \ldots, h_{N} is defined by a new hypercomplex number,

$$
\begin{equation*}
\underset{n=1}{\stackrel{N}{\times} h_{n}} \stackrel{\text { denote }}{=} h_{1} \times \ldots \times h_{N} \stackrel{\text { def }}{=} \frac{1}{N!} \sum_{\sigma \in S_{N}} h_{\sigma(1)} \cdot t h_{\sigma(2)} \cdot t \cdots{ }_{t} h_{\sigma(N)}, \tag{4.5.1}
\end{equation*}
$$

where S_{N} is the symmetric (or, permutation) group over $\{1, \ldots, N\}$, where $(\cdot t)$ is the t-scaled multiplication (2.1.1) on \mathbb{H}_{t}.

Notation. From below, if there are no confusions, we denote the operation $(\cdot t)$ simply by (\cdot) for convenience. i.e., the above definition (4.5.1) can be re-written to be

$$
\begin{equation*}
\underset{n=1}{\times} h_{n}=\frac{1}{N!} \sum_{\sigma \in S_{N}} h_{\sigma(1)} h_{\sigma(2)} \ldots h_{\sigma(N)}, \tag{4.5.2}
\end{equation*}
$$

for $h_{1}, \ldots, h_{N} \in \mathbb{H}_{t}$, for $t \in \mathbb{R} \backslash\{0\}$.
Remark. The above symmetrized product (\times) of (4.5.1) is well-defined for "all" $t \in \mathbb{R}$, including the case where $t=0$. As we assumed, we restrict our interests to the cases where $t \neq 0$ in \mathbb{R} in this section, but we emphasize that the above symmetrized product of (4.5.1) is also well-defined where $t=0$ (See Sect. 5 below).

Remark that, actually, the above definition (4.5.1) of the symmetrized product implies the following case. If we consider

$$
h^{(n)} \stackrel{\text { denote }}{=} \underbrace{h \times h \times \ldots \times h}_{n \text {-times }} \text {, for } n \in \mathbb{N} \text {, }
$$

then, all permutations σ of S_{n} induce exactly same element, so,

$$
h^{(n)}=\frac{1}{n!} \sum_{\sigma \in S_{n}}\left(h_{\sigma(1)} \ldots h_{\sigma(n)}\right), \text { with } h_{\sigma(j)}=h, \forall j,
$$

in \mathbb{H}_{t}, implying that

$$
\begin{equation*}
h^{(n)}=\frac{1}{n!} \sum_{\sigma \in S_{n}} h_{\sigma(1)} \ldots h_{\sigma(n)}=\frac{1}{n!}\left(n!h^{n}\right)=h^{n} \tag{4.5.3}
\end{equation*}
$$

where $h^{n}=\underbrace{h h \ldots \ldots h}_{n \text {-times }} \stackrel{\text { denote }}{=} \underbrace{h \cdot_{t} h \cdot_{t} \ldots \cdot_{t} h}_{n \text {-times }}$, for all $n \in \mathbb{N}$, by (4.5.2). So, if we consider "mutually distinct" h_{1} and h_{2} in \mathbb{H}_{t}, and

$$
h_{1}^{(n)} \times h_{2} \quad \text { in } \mathbb{H}_{t}
$$

then

$$
h_{1}^{(n)} \times h_{2}=\underbrace{h_{1} \times \ldots \times h_{1}}_{n \text {-times }} \times h_{2},
$$

satisfying

$$
h_{1}^{(n)} \times h_{2}=\frac{1}{(n+1)!} \sum_{\sigma \in S_{n+1}}\left(\left(h_{1}\right)_{\sigma(1)} \ldots\left(h_{1}\right)_{\sigma(n)}\right)\left(h_{2}\right)_{\sigma(n+1)},
$$

and hence,

$$
h_{1}^{(n)} \times h_{2}=\frac{n!}{(n+1)!} \sum_{\sigma \in S_{n+1}}\left(h_{1}^{n}\right)\left(h_{2}\right)_{\sigma(n+1)},
$$

by (4.5.3). More generally, if $h_{1}, \ldots, h_{N} \in \mathbb{H}_{t}$ are "mutually distinct," and $n_{1}, \ldots, n_{N} \in \mathbb{N}$, then

$$
\begin{equation*}
\underset{j=1}{\times} h_{j}^{\left(n_{j}\right)}=\frac{\prod_{j=1}^{N}\left(n_{j}!\right)}{\left(\sum_{j=1}^{N} n_{j}\right)!}\left(\sum_{\sigma \in S_{\sum_{j=1}^{N} n_{j}}^{N}} h_{\sigma(1) \cdots h}^{\sigma\left(\sum_{j=1}^{N} n_{j}\right)}\right) \tag{4.5.4}
\end{equation*}
$$

by (4.5.3), where $h_{\sigma(j)} \in\left\{h_{1}, \ldots, h_{N}\right\}$, for all $j \in\left\{1, \ldots, \sum_{j=1}^{n} n_{j}\right\}$.
Proposition 4.15. Let h_{1}, \ldots, h_{N} be mutually distinct elements of the t-scaled hypercomplexes \mathbb{H}_{t}, for $N \in \mathbb{N} \backslash\{1\}$, and let $n_{1}, \ldots, n_{N} \in \mathbb{N}$. If

$$
n \stackrel{\text { denote }}{=} \sum_{j=1}^{N} n_{j}=n_{1}+\ldots+n_{N} \in \mathbb{N},
$$

then

$$
\underset{j=1}{\times} h^{\left(n_{j}\right)}=\frac{\prod_{j=1}^{N}\left(n_{j}!\right)}{n!}\left(\sum_{\sigma \in S_{n}} h_{\sigma(1)} h_{\sigma(2)} \ldots h_{\sigma(n)}\right),
$$

with

$$
\begin{equation*}
h_{j}^{(k)}=\underbrace{h_{j} \times h_{j} \times \ldots \times h_{j}}_{k-\text { times }}=h_{j}^{k}, \forall j=1, \ldots, N \tag{4.5.5}
\end{equation*}
$$

for all $k \in\{1, \ldots, n\}$, where $h_{\sigma(j)} \in\left\{h_{1}, \ldots, h_{N}\right\}$, for all $j=1, \ldots, n$.
Proof. The refined computation (4.5.5) of the definition (4.5.1) is obtained by (4.5.4).

Let $f_{1}, \ldots, f_{N}: \mathbb{H}_{t} \rightarrow \mathbb{H}_{t}$ be functions for $N \in \mathbb{N}$. Then, similar to (4.5.1) (expressed by (4.5.2)), one can define a symmetrized-product function of them by

$$
\stackrel{N}{\times=1} \times f_{n}=\frac{1}{N!} \sum_{\sigma \in S_{N}} f_{\sigma(1)} f_{\sigma(2)} \ldots f_{\sigma(N)},
$$

where

$$
\begin{equation*}
\left(f_{\sigma(1)} f_{\sigma(2)} \ldots f_{\sigma(N)}\right)(h)=f_{\sigma(1)}(h) \cdot t \ldots \cdot t f_{\sigma(N)}(h), \tag{4.5.6}
\end{equation*}
$$

simply denoted by

$$
\left(f_{\sigma(1)} f_{\sigma(2)} \ldots f_{\sigma(N)}\right)(h)=f_{\sigma(1)}(h) \ldots f_{\sigma(N)}(h),
$$

as in (4.5.2), for all $\sigma \in S_{N}$ and $h \in \mathbb{H}_{t}$. Also, similar to (4.5.3), one write

$$
f_{j}^{(n)}=\underbrace{f_{j} \times f_{j} \times \ldots \times f_{j}}_{n \text {-times }}=f_{j}^{n}, \quad \forall n \in \mathbb{N},
$$

in terms of (4.5.6). Then, for any $h \in \mathbb{H}_{t}$, the image $\left(\underset{n=1}{\stackrel{N}{\times} f_{n}^{\left(n_{j}\right)}}\right)(h)$ is expressed similar to (4.5.5), if we replace $h_{\sigma(j)}$ to $f_{\sigma(j)}(h)$ in (4.5.5). Without loss of generality, let's axiomatize that

$$
f^{(0)}=1 \text {, the constant 1-function on } \mathbb{H}_{t},
$$

for all functions $f: \mathbb{H}_{t} \rightarrow \mathbb{H}_{t}$.
Definition 4.16. Let $\mathbf{n} \stackrel{\text { denote }}{=}\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N}_{0}^{3}$ be a triple of numbers in $\mathbb{N}_{0}=$ $\mathbb{N} \cup\{0\}$, and let $\left\{\eta_{l}\right\}_{l=2}^{4}$ be the t-harmonic t-regular functions (4.4.1). Define a function $\eta^{\mathbf{n}}$ by

$$
\eta^{\mathbf{n}} \stackrel{\text { def }}{=} \frac{1}{\mathbf{n}!}\left(\eta_{2}^{\left(n_{1}\right)} \times \eta_{3}^{\left(n_{2}\right)} \times \eta_{4}^{\left(n_{3}\right)}\right)
$$

where

$$
\begin{equation*}
\mathbf{n}!=\left(n_{1}!\right)\left(n_{2}!\right)\left(n_{3}!\right) \in \mathbb{N} \tag{4.5.7}
\end{equation*}
$$

and

$$
\eta_{l+1}^{\left(n_{l}\right)}=\underbrace{\eta_{l+1} \times \eta_{l+1} \times \ldots \times \eta_{l+1}}_{n_{l} \text {-times }}=\eta_{l+1}^{n_{l}}, \quad \forall l=1,2,3 .
$$

For an arbitrary $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N}_{0}^{3}$, let $\eta^{\mathbf{n}}: \mathbb{H}_{t} \rightarrow \mathbb{H}_{t}$ be a function (4.5.7). By the very construction, this function $\eta^{\mathbf{n}}$ is contained in $\mathcal{F}_{1, \mathbb{H}_{t}}$. Observe that, if we let

$$
e_{2}=-i, e_{3}=\frac{\operatorname{sgn}(t)}{\sqrt{|t|}} j_{t}, \text { and } e_{4}=\frac{\operatorname{sgn}(t)}{\sqrt{|t|}} k_{t}
$$

making

$$
\eta_{l}=x_{l}+x_{1} e_{l}, \quad \forall l=2,3,4
$$

then

$$
(\mathbf{n}!) \nabla_{t} \eta^{\mathbf{n}}=(\mathbf{n}!) \nabla_{t}\left(\frac{1}{\mathbf{n}!}\left(\eta_{2}^{\times n_{1}} \times \eta_{3}^{\times n_{2}} \times \eta_{4}^{\times n_{3}}\right)\right)
$$

$$
\begin{align*}
= & \sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} \eta_{\sigma(1)} \ldots \eta_{\sigma(k-1)} e_{l} \eta_{\sigma(k+1)} \ldots \times \eta_{\sigma(N)} \\
& -\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} e_{l} \eta_{\sigma(1)} \ldots \times \eta_{\sigma(k-1)} \eta_{\sigma(k+1)} \ldots \eta_{\sigma(N)}, \tag{4.5.8}
\end{align*}
$$

where

$$
N=n_{1}+n_{2}+n_{3} \text { in } \mathbb{N} .
$$

Now, note that

$$
\begin{align*}
0= & \sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} x_{l} \eta_{\sigma(1)} \ldots \eta_{\sigma(k-1)} \eta_{\sigma(k+1)} \ldots \times \eta_{\sigma(N)} \\
& \quad-\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} \eta_{\sigma(1)} \ldots \times \eta_{\sigma(k-1)} x_{l} \eta_{\sigma(k+1)} \ldots \eta_{\sigma(N)} \tag{4.5.9}
\end{align*}
$$

by the formula (7) in the page 99 of [8]. Let's multiply x_{1} to the formula (4.5.8). Then

$$
\begin{aligned}
& x_{1}(\mathbf{n}!) \nabla_{t} \eta^{\mathbf{n}}=x_{1}(n!) \nabla_{t} \eta^{\mathbf{n}}+0 \\
&= x_{1}\left(\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} \eta_{\sigma(1)} \ldots \eta_{\sigma(k-1)} e_{l} \eta_{\sigma(k+1)} \ldots \times \eta_{\sigma(N)}\right. \\
&\left.-\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} e_{l} \eta_{\sigma(1)} \ldots \times \eta_{\sigma(k-1)} \eta_{\sigma(k+1)} \ldots \eta_{\sigma(N)}\right)+0
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} \eta_{\sigma(1)} \ldots \eta_{\sigma(k-1)}\left(x_{1} e_{l}\right) \eta_{\sigma(k+1)} \ldots \times \eta_{\sigma(N)} \tag{4.5.8}\\
& \quad-\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l}\left(x_{1} e_{l}\right) \eta_{\sigma(1)} \ldots \times \eta_{\sigma(k-1)} \eta_{\sigma(k+1)} \ldots \eta_{\sigma(N)} \\
& \quad+\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} x_{l} \eta_{\sigma(1)} \ldots \eta_{\sigma(k-1)} \eta_{\sigma(k+1)} \ldots \times \eta_{\sigma(N)} \\
& \quad-\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} \eta_{\sigma(1)} \ldots \times \eta_{\sigma(k-1)} x_{l} \eta_{\sigma(k+1)} \ldots \eta_{\sigma(N)}
\end{align*}
$$

by (4.5.9)

$$
=\left(\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} \eta_{\sigma(1)} \ldots \eta_{\sigma(k-1)}\left(x_{1} e_{l}\right) \eta_{\sigma(k+1)} \ldots \times \eta_{\sigma(N)}\right.
$$

$$
\begin{align*}
&\left.+\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} x_{l} \eta_{\sigma(1)} \ldots \eta_{\sigma(k-1)} \eta_{\sigma(k+1)} \ldots \times \eta_{\sigma(N)}\right) \\
&+\left(-\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l}\left(x_{1} e_{l}\right) \eta_{\sigma(1)} \ldots \times \eta_{\sigma(k-1)} \eta_{\sigma(k+1)} \ldots \eta_{\sigma(N)}\right. \\
&\left.-\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} \eta_{\sigma(1)} \ldots \times \eta_{\sigma(k-1)} x_{l} \eta_{\sigma(k+1)} \ldots \eta_{\sigma(N)}\right) \\
&= \sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} \eta_{\sigma(1)} \ldots \eta_{\sigma(k-1)} \eta_{l} \eta_{\sigma(k+1)} \ldots \times \eta_{\sigma(N)} \\
& \quad-\sum_{\sigma \in S_{N}} \sum_{l=2}^{4} \sum_{k \in\{1, \ldots, N\}, \sigma(k)=l} \eta_{l} \eta_{\sigma(1)} \ldots \eta_{\sigma(k-1)} \eta_{\sigma(k+1)} \ldots \times \eta_{\sigma(N)} \\
&=0, \tag{4.5.10}
\end{align*}
$$

under the sum over S_{N}.
Lemma 4.17. For any $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N}_{0}^{3}$, the function $\eta^{\mathbf{n}}$ of (4.5.7) is t-regular on \mathbb{H}_{t}, i.e.,

$$
\begin{equation*}
\nabla_{t} \eta^{\mathbf{n}}=0=\eta^{\mathbf{n}} \nabla_{t} \tag{4.5.11}
\end{equation*}
$$

Proof. The first equality of the formula (4.5.11) is obtained by (4.5.10). The second equality is obtained similarly by (4.5.10), by the definition of the symetrized product (4.5.2) and (4.5.7), with help of the t-regularity (4.4.3) of $\left\{\eta_{l}\right\}_{l=2}^{4}$.

By the above lemma, we obtain the following result.
Theorem 4.18. Let $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N}_{0}^{3}$, and let $\eta^{\mathbf{n}} \in \mathcal{F}_{t, \mathbb{H}_{t}}$ be the function (4.5.7). Then it is a t-harmonic t-regular function, i.e.,

$$
\begin{equation*}
\eta^{\mathbf{n}} \nabla_{t}=\nabla_{t} \eta^{\mathbf{n}}=0, \text { and } \Delta_{t} \eta^{\mathbf{n}}=0, \text { on } \mathbb{H}_{t} . \tag{4.5.12}
\end{equation*}
$$

Proof. The t-regularity of $\eta^{\mathbf{n}}$ on \mathbb{H}_{t} is shown by (4.5.11), for all $\mathbf{n} \in \mathbb{N}_{0}^{3}$. Thus, by (4.3.13), the functions $\left\{\eta^{\mathbf{n}}\right\}_{\mathbf{n} \in \mathbb{N}_{0}^{3}}$ are t-harmonic on \mathbb{H}_{t}. Therefore, the relation (4.5.12) holds.

By the above theorem, all functions $\left\{\eta^{\mathbf{n}}: \mathbf{n} \in \mathbb{N}_{0}^{3}\right\}$ are t-harmonic t regular functions on \mathbb{H}_{t}.

Now, recall the complete semi-norm $\|\cdot\|_{t}$ of (2.4.10) on the t-scaled hypercomplexes \mathbb{H}_{t},

$$
\|h\|_{t}=\sqrt{\left|\langle h, h\rangle_{t}\right|}=\sqrt{\left|\tau\left(h h^{\dagger}\right)\right|}=\sqrt{\left.\left||a|^{2}-t\right| b\right|^{2} \mid}
$$

for all $h=a+b j_{t} \in \mathbb{H}_{t}$, regarded as $(a, b) \in \mathbb{H}_{t}$ with $a, b \in \mathbb{C}$ (in the sense of Sect. 2) satisfying (2.4.11) and (2.4.12). i.e., if $t<0$, then it is a complete
norm on \mathbb{H}_{t}, while if $t>0$, then it is a complete semi-norm on \mathbb{H}_{t}. If we understand,

$$
\eta_{2}=x_{2}-x_{1} i, \eta_{3}=x_{3}+\frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} j_{t}, \eta_{4}=x_{4}+\frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} k_{t}
$$

as their images of \mathbb{H}_{t}, then they are regarded as

$$
\eta_{2}=\left(x_{2}-x_{1} i, 0\right), \eta_{3}=\left(x_{3}, \frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}}\right)
$$

and

$$
\eta_{4}=\left(x_{4}, \frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} i\right)
$$

in "the t-scaled hypercomplex ring \mathbb{H}_{t} in the sense of Sect. 2." So, one can compute their norms on \mathbb{H}_{t},

$$
\begin{aligned}
& \left\|\eta_{2}\right\|_{t}=\sqrt{\left.\left|\left|x_{2}-x_{1} i\right|^{2}-t\right| 0\right|^{2} \mid}=\sqrt{\left|x_{2}^{2}+\left(-x_{1}\right)^{2}\right|}=\sqrt{x_{1}^{2}+x_{2}^{2}} \\
& \left\|\eta_{3}\right\|_{t}=\sqrt{\left.\left.\left|\left|x_{3}\right|^{2}-t\right| \frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}}\right|^{2} \right\rvert\,}=\sqrt{\left|x_{3}^{2}-\operatorname{sgn}(t) x_{1}^{2}\right|}
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|\eta_{4}\right\|_{t}=\sqrt{\left.\left.\left|\left|x_{4}\right|^{2}-t\right| \frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} i\right|^{2} \right\rvert\,}=\sqrt{\left|x_{4}^{2}-\operatorname{sgn}(t) x_{1}^{2}\right|} \tag{4.5.13}
\end{equation*}
$$

Lemma 4.19. Let $\eta^{\mathbf{n}} \in \mathcal{F}_{t, \mathbb{H}_{t}}$ be a function (4.5.7) for $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N}_{0}^{3}$. Then

$$
\begin{equation*}
\left\|\eta^{\mathbf{n}}\right\|_{t} \leq\left(\sqrt{x_{2}^{2}+x_{1}^{2}}\right)^{n_{1}}\left(\sqrt{\left|x_{3}^{2}-\operatorname{sgn}(t) x_{1}^{2}\right|}\right)^{n_{2}}\left(\sqrt{\left|x_{4}^{2}-\operatorname{sgn}(t) x_{1}^{2}\right|}\right)^{n_{3}} \tag{4.5.14}
\end{equation*}
$$

Proof. By (4.5.7), for any $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N}_{0}^{3}$,

$$
\begin{aligned}
\left\|\eta^{\mathbf{n}}\right\|_{t} & =\left\|\frac{1}{\mathbf{n}!}\left(\eta_{2}^{\left(n_{1}\right)} \times \eta_{3}^{\left(n_{2}\right)} \times \eta_{4}^{\left(n_{3}\right)}\right)\right\|_{t} \\
& =\left\|\frac{1}{\left(n_{1}!\right)\left(n_{2}!\right)\left(n_{3}!\right)}\left(\frac{\left(n_{1}!\right)\left(n_{2}!\right)\left(n_{3}!\right)}{n!} \sum_{\sigma \in S_{n}} h_{\sigma(1)} h_{\sigma(2)} \ldots h_{\sigma(n)}\right)\right\|_{t}
\end{aligned}
$$

where $h_{\sigma(l)} \in\left\{\eta_{2}, \eta_{3}, \eta_{4}\right\}$, for all $\sigma \in S_{n}$, with $n=n_{1}+n_{2}+n_{3} \in \mathbb{N}$

$$
=\left\|\eta_{2}^{n_{1}} \eta_{3}^{n_{2}} \eta_{4}^{n_{3}}\right\|_{t} \leq\left\|\eta_{2}\right\|_{t}^{n_{1}}\left\|\eta_{3}\right\|_{t}^{n_{2}}\left\|\eta_{4}\right\|_{t}^{n_{3}}
$$

by (4.5.5)

$$
=\left(\sqrt{x_{2}^{2}+x_{1}^{2}}\right)^{n_{1}}\left(\sqrt{\left|x_{3}^{2}-\operatorname{sgn}(t) x_{1}^{2}\right|}\right)^{n_{2}}\left(\sqrt{\left|x_{4}^{2}-\operatorname{sgn}(t) x_{1}^{2}\right|}\right)^{n_{3}}
$$

by (4.5.13). Therefore, the inequality (4.5.14) holds.

The above lemma shows that, for any arbitrarily fixed $\mathbf{n} \in \mathbb{N}_{0}^{3}$, the corresponding function $\eta^{\mathbf{n}}$ is bounded by (4.5.14).

Theorem 4.20. Let $t \neq 0$ in \mathbb{R}, and $f \in \mathcal{F}_{t, U}, a \mathbb{R}$-differentiable function, where $U \in \mathcal{T}_{t}$ containing $0=0+0 i+0 j_{t}+0 k_{t} \in \mathbb{H}_{t}$. If f is \mathbb{R}-analytic on U, then

$$
f \text { is left } t \text {-regular on } U \text {, }
$$

if and only if

$$
\begin{equation*}
f=f(0)+\sum_{\mathbf{n} \in \mathbb{N}^{3}} \eta^{\mathbf{n}} f_{\mathbf{n}} \tag{4.5.15}
\end{equation*}
$$

with

$$
f_{\mathbf{n}}=\frac{1}{\mathbf{n}!} \frac{\partial^{n_{1}+n_{2}+n_{3}} f}{\partial x_{2}^{n_{1}} \partial x_{3}^{n_{2}} \partial x_{4}^{n_{3}}}(0), \forall \mathbf{n} \in \mathbb{N}^{3} .
$$

Proof. Clearly, if $f=f(0)+\sum_{\mathbf{n} \in \mathbb{N}^{3}} \eta^{\mathbf{n}} f_{\mathbf{n}}$, then it is left t-regular, by the t regularity (4.5.12) of $\left\{\eta^{\mathbf{n}}: \mathbf{n} \in \mathbb{N}_{0}^{3}\right\}$.

Suppose f is left t-regular in $\mathcal{F}_{t, U}$, satisfying $\nabla_{t} f=0$. Then

$$
f(w)-f(0)=\sum_{n=2}^{4}\left(\eta_{n}(w)\right)\left(\left(R_{n} f\right)(w)\right),
$$

where

$$
\begin{equation*}
\left(R_{n} f\right)(w)=\int_{0}^{1} \frac{\partial f(t w)}{\partial x_{n}} d t, \forall n=2,3,4 \tag{4.5.16}
\end{equation*}
$$

in a \mathbb{H}_{t}-variable $w=x_{1}+x_{2} i+x_{3} j_{t}+x_{4} k_{t}$, with $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$. Indeed,

$$
\frac{d f(t w)}{d t}=x_{1} \frac{\partial f(t w)}{\partial x_{1}}+\sum_{l=2}^{4} x_{l} \frac{\partial f(t w)}{\partial x_{l}}
$$

identical to

$$
\frac{d f(t w)}{d t}=x_{1}\left(-i \frac{\partial}{\partial x_{2}}+j_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{3}}+k_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{4}}\right) f(t w)+\sum_{l=2}^{4} x_{l} \frac{\partial f(t w)}{\partial x_{l}}
$$

implying that

$$
\frac{d f(t w)}{d t}=\sum_{l=2}^{4} \eta_{l}(w) \frac{\partial f(t w)}{\partial x_{l}}
$$

Thus, by iterating (4.5.16), one can get that

$$
f=f(0)+\sum_{\mathbf{n} \in \mathbb{N}^{3}} \eta^{\mathbf{n}} f_{\mathbf{n}}
$$

where

$$
f_{\mathbf{n}}=\frac{1}{\mathbf{n}!} \frac{\partial^{n_{1}+n_{2}+n_{3}} f}{\partial x_{2}^{n_{1}} \partial x_{3}^{n_{2}} \partial x_{4}^{n_{3}}}(0), \forall \mathbf{n} \in \mathbb{N}^{3} .
$$

Note that, such an iteration can be done by the assumption that f is \mathbb{R} analytic on U, by the boundedness condition (4.5.14). Therefore, the characterization (4.5.15) holds true.

Remark that, if a given scale t is negative, i.e., $t<0$ in \mathbb{R}, then the \mathbb{R}-regularity automatically implies the \mathbb{R}-analyticity by (4.3.5), (4.3.6) and (4.5.14). So, if $t<0$, then the above theorem holds without the \mathbb{R}-analyticity assumption for $f \in \mathcal{F}_{t, U}$.

5. 0-Regular Functions on \mathbb{H}_{0}

In Sect. 4 , we studied the t-regularity and the t-hamonicity of \mathbb{R}-differentiable functions of $\mathcal{F}_{t, U}$, for $U \in \mathcal{I}_{t}$ in the t-scaled hypercomplexes \mathbb{H}_{t}, where a given scale is nonzero, i.e., $t \in \mathbb{R} \backslash\{0\}$. To do that, we defined the operators ∇_{t} and ∇_{t}^{\dagger} on \mathcal{F}_{t} by

$$
\nabla_{t}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}-j_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{3}}-k_{t} \frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{4}}
$$

and

$$
\begin{equation*}
\nabla_{t}^{\dagger}=\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i+\frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{3}} j_{t}+\frac{\operatorname{sgn}(t) \partial}{\sqrt{|t|} \partial x_{4}} k_{t}, \tag{5.1}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\Delta_{t}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{3}^{2}}-\frac{\operatorname{sgn}(t) \partial^{2}}{\partial x_{4}^{2}}=\nabla_{t}^{\dagger} \nabla_{t}, \tag{5.2}
\end{equation*}
$$

in a \mathbb{H}_{t}-variable $w=x_{1}+x_{2} i+x_{3} j_{t}+x_{4} k_{t}$, with $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$, where $i=\sqrt{-1}=i_{0}$ in \mathbb{H}_{0}. We showed in Sect. 4 that the functions,

$$
\begin{equation*}
\eta_{2}(w)=x_{2}-x_{1} i, \eta_{3}(w)=x_{3}+\frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} j_{t}, \eta_{4}+\frac{\operatorname{sgn}(t) x_{1}}{\sqrt{|t|}} \tag{5.3}
\end{equation*}
$$

are t-harmonic t-regular in $\mathcal{F}_{t, \mathbb{H}_{t}}$, furthermore, all functions of $\mathcal{F}_{t, \mathbb{H}_{t}}$ formed by

$$
\begin{equation*}
\eta^{\mathbf{n}}=\frac{1}{\mathbf{n}!}\left(\eta_{2}^{\left(n_{1}\right)} \times \eta_{3}^{\left(n_{2}\right)} \times \eta_{4}^{\left(n_{3}\right)}\right), \text { with } \mathbf{n}!=\prod_{l=1}^{3}\left(n_{l}!\right) \tag{5.4}
\end{equation*}
$$

are t-harmonic t-regular in $\mathcal{F}_{t, \mathbb{H}_{t}}$, for all $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N}_{0}^{3}$, characterizing the left t-regularity (4.5.13) on \mathcal{F}_{t}, whenever $t \neq 0$ in \mathbb{R}.

In this section, we consider the case where the given scale t is zero in \mathbb{R}, i.e., we study 0 -regularity on \mathcal{F}_{0} acting on the 0 -scaled hypercomplexes \mathbb{H}_{0}. Recall that if

$$
h=a+b i+c j_{0}+d k_{0} \in \mathbb{H}_{0}, \text { with } a, b, c, d \in \mathbb{R},
$$

then

$$
h=(a+b i)+(c+d i) j_{0}=z_{1}+z_{2} j_{0}
$$

with

$$
z_{1}=a+b i, \text { and } z_{2}=c+d i, \text { in } \mathbb{C},
$$

realized to be

$$
\left[\left(z_{1}, z_{2}\right)\right]_{0}=\left(\begin{array}{cc}
z_{1} & 0 \cdot z_{2} \\
\overline{z_{2}} & \overline{z_{1}}
\end{array}\right)=\binom{z_{1}}{\frac{z_{2}}{z_{1}}}, \text { in } \mathcal{H}_{2}^{0}
$$

where

$$
\mathbb{H}_{0}=\operatorname{span}_{\mathbb{R}}\left\{1, i, j_{0}, k_{0}\right\}
$$

So, the \mathbb{R}-basis elements $\left\{i, j_{0}, k_{0}\right\}$ of \mathbb{H}_{0} satisfy

$$
\begin{equation*}
i^{2}=-1, \quad j_{0}^{2}=0=k_{0}^{2}, \tag{5.5}
\end{equation*}
$$

and the commuting diagrams,
saying that

$$
i j_{0}=k_{0}, j_{0} k_{0}=-0 i=0, k_{0} i=j_{0},
$$

and

$$
\begin{equation*}
j_{0} i=-k_{0}, i k_{0}=-j_{0}, k_{0} j_{0}=0 i=0 \tag{5.6}
\end{equation*}
$$

by (3.4), (3.5) and (3.6).
Define first the operators ∇_{0} and ∇_{0}^{\dagger} by

$$
\nabla_{0}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+j_{0} \frac{\partial}{\partial x_{3}}+k_{0} \frac{\partial}{\partial x_{4}},
$$

and

$$
\begin{equation*}
\nabla_{0}^{\dagger}=\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i-\frac{\partial}{\partial x_{3}} j_{0}-\frac{\partial}{\partial x_{4}} k_{0} \tag{5.7}
\end{equation*}
$$

on $\mathcal{F}_{0, U}$, for any $U \in \mathcal{I}_{t}$ in \mathbb{H}_{0}, similar to the differential operators of (5.1), in a \mathbb{H}_{0}-variable $x_{1}+x_{2} i+x_{3} j_{0}+x_{4} k_{0}$, with $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$. Observe that

$$
\begin{aligned}
\nabla_{0}^{\dagger} \nabla_{0}= & \left(\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i-\frac{\partial}{\partial x_{3}} j_{0}-\frac{\partial}{\partial x_{4}} k_{0}\right)\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+j_{0} \frac{\partial}{\partial x_{3}}+k_{0} \frac{\partial}{\partial x_{4}}\right) \\
= & \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial}{\partial x_{1}} i \frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{1}} j_{0} \frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{1}} k_{0} \frac{\partial}{\partial x_{4}} \\
& -\frac{\partial}{\partial x_{2}} i \frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i^{2} \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{2}} i j_{0} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{2}} i k_{0} \frac{\partial}{\partial x_{4}} \\
& -\frac{\partial}{\partial x_{3}} j_{0} \frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{3}} j_{0} i \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{3}} j_{0}^{2} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{3}} j_{0} k_{0} \frac{\partial}{\partial x_{4}} \\
& -\frac{\partial}{\partial x_{4}} k_{0} \frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{4}} k_{0} i \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{4}} k_{0} j_{0} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{4}} k_{0}^{2} \frac{\partial}{\partial x_{4}} \\
= & \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\partial}{\partial x_{2}} i j_{0} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{2}} i k_{0} \frac{\partial}{\partial x_{4}} \\
& -\frac{\partial}{\partial x_{3}} j_{0} i \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{3}} j_{0}^{2} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{3}} j_{0} k_{0} \frac{\partial}{\partial x_{4}} \\
& -\frac{\partial}{\partial x_{4}} k_{0} i \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{4}} k_{0} j_{0} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{4}} k_{0}^{2} \frac{\partial}{\partial x_{4}}
\end{aligned}
$$

$$
\begin{align*}
&= \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\partial}{\partial x_{3}} j_{0}^{2} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{3}} j_{0} k_{0} \frac{\partial}{\partial x_{4}} \\
& \quad-\frac{\partial}{\partial x_{4}} k_{0} j_{0} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{4}} k_{0}^{2} \frac{\partial}{\partial x_{4}} \\
&= \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}-\frac{\partial}{\partial x_{3}}(0) \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{3}}(-0 i) \frac{\partial}{\partial x_{4}} \\
&-\frac{\partial}{\partial x_{4}}(0 i) \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{4}}(0) \frac{\partial}{\partial x_{4}} \\
&= \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}, \tag{5.8}
\end{align*}
$$

by (5.5) and (5.6).
Theorem 5.1. Let ∇_{0} be the operator (5.7) on \mathcal{F}_{0}. Then

$$
\begin{equation*}
\nabla_{0}^{\dagger} \nabla_{0}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}} \tag{5.9}
\end{equation*}
$$

Proof. The formula (5.9) is obtained by the computation (5.8).
One can recognize that the formula (5.9) is similar to the formula (5.2). However, we do not have x_{l}-depending double-partial-derivatives, for $l=3,4$, in (5.9). It shows that, in the 0 -scaled case, the Laplacian on $\mathcal{F}_{0, U}$ for an open connected subset $U \subseteq \mathbb{H}_{0}$ is depending only on the first, and the second \mathbb{R} variables x_{1} and x_{2}. More generally, for any $u_{3}, u_{4} \in \mathbb{R} \backslash\{0\}$, if we define operators $D_{u_{3}, u_{4}}$ and $D_{u_{3}, u_{4}}^{\dagger}$ by

$$
D_{u_{3}, u_{4}}=\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+j_{0} \frac{u_{3} \partial}{\partial x_{3}}+k_{0} \frac{u_{4} \partial}{\partial x_{4}}
$$

and

$$
\begin{equation*}
D_{u_{3}, u_{4}}^{\dagger}=\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}} i-\frac{u_{3} \partial}{\partial x_{3}} j_{0}-\frac{u_{4} \partial}{\partial x_{4}} k_{0} \tag{5.10}
\end{equation*}
$$

as in (5.1), then, for any dilations (5.10) of ∇_{0} and ∇_{0}^{\dagger}, one has

$$
\begin{equation*}
D_{u_{3}, u_{4}}^{\dagger} D_{u_{3}, u_{4}}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}} \tag{5.11}
\end{equation*}
$$

similar to (5.8), by (5.5) and (5.6). It shows that, indeed, the Laplacian Δ_{0} on \mathcal{F}_{0} can be well-defined to be

$$
\Delta_{0}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}
$$

by (5.11).
Definition 5.2. Define an operator Δ_{0} on $\mathcal{F}_{0, U}$, for any open connected subsets U of the 0 -scaled hypercomplexes \mathbb{H}_{0}, by

$$
\begin{equation*}
\Delta_{0} \stackrel{\text { def }}{=} \frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right)+0 \cdot\left(\frac{\partial^{2}}{\partial x_{3}^{2}}+\frac{\partial^{2}}{\partial x_{4}^{2}}\right) . \tag{5.12}
\end{equation*}
$$

A function $f \in \mathcal{F}_{0, U}$ is said to be left 0 (-scaled)-regular on U, if

$$
\nabla_{0} f=\frac{\partial f}{\partial x_{1}}+i \frac{\partial f}{\partial x_{2}}+j_{0} \frac{\partial f}{\partial x_{3}}+k_{0} \frac{\partial f}{\partial x_{4}}=0,
$$

and it is said to be right 0 (-scaled)-regular on U, if

$$
f \nabla_{0}=\frac{\partial f}{\partial x_{1}}+\frac{\partial f}{\partial x_{2}} i+\frac{\partial f}{\partial x_{3}} j_{0}+\frac{\partial f}{\partial x_{4}} k_{0}=0 .
$$

If $f \in \mathcal{F}_{0, U}$ is both left and right 0-regular, then f is called a 0-regular function on U. Also, a function $f \in \mathcal{F}_{0, U}$ is said to be 0 (-scaled)-harmonic on U, if

$$
\Delta_{0} f=0
$$

where Δ_{0} is in the sense of (5.12).
By definition, we have the following result.
Theorem 5.3. Let $f \in \mathcal{F}_{0, U}$, for an open connected subset U of \mathbb{H}_{0}. Then

$$
\begin{equation*}
\text { fisleft } 0-\text { regular } \Longrightarrow f \text { is } 0-\text { harmonic on } U \text {. } \tag{5.13}
\end{equation*}
$$

Proof. By (5.9), one has $\Delta_{0}=\nabla_{0}^{\dagger} \nabla_{0}$, on $\mathcal{F}_{0, U}$. So, if f is left 0 -regular on U, then

$$
\Delta_{0} f=\nabla_{0}^{\dagger}\left(\nabla_{0} f\right)=\nabla_{0}^{\dagger}(0)=0
$$

and hence, it is 0 -harmonic on U.
Similar to (5.3), we let

$$
\eta_{2}(w)=x_{2}-x_{1} i,
$$

and

$$
\begin{equation*}
\eta_{3}(w)=x_{3}-x_{1} j_{0}, \text { and } \eta_{4}(w)=x_{4}-x_{1} k_{0}, \tag{5.14}
\end{equation*}
$$

in a \mathbb{H}_{0}-variable $w=x_{1}+x_{2} i+x_{3} j_{0}+x_{4} k_{0}$, with $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$. Then these functions $\left\{\eta_{l}\right\}_{l=2}^{4}$ are contained in $\mathcal{F}_{0, \mathbb{H}_{t}}$.
Lemma 5.4. Let $\left\{\eta_{l}\right\}_{l=2}^{4}$ be in the sense of (5.14). Then they are not only 0 -regular, but also, 0 -harmonic on the 0 -scaled hypercomplexes \mathbb{H}_{0}, i.e.,

$$
\begin{equation*}
\left\{\eta_{l}\right\}_{l=2}^{4} \text { are } 0-\text { harmonic } 0-\text { regular functions on } \mathbb{H}_{0} \text {. } \tag{5.15}
\end{equation*}
$$

Proof. If $\eta_{2}=x_{2}-x_{1} i \in \mathcal{F}_{0, \mathbb{H}_{0}}$, then

$$
\begin{aligned}
\nabla_{0} \eta_{2} & =\eta_{2} \nabla_{0}=\frac{\partial\left(x_{2}-x_{1} i\right)}{\partial x_{1}}+i \frac{\partial\left(x_{2}-x_{1} i\right)}{\partial x_{2}}+j_{0} \frac{\partial\left(x_{2}-x_{1} i\right)}{\partial x_{3}}+k_{0} \frac{\partial\left(x_{2}-x_{1} i\right)}{\partial x_{4}} \\
& =(-i)+i(1)+j_{0}(0)+k_{0}(0)=-i+i=0 ;
\end{aligned}
$$

and if $\eta_{3}=x_{3}-x_{1} j_{0} \in \mathcal{F}_{0, \mathbb{H}_{0}}$, then

$$
\begin{aligned}
\nabla_{0} \eta_{3}= & \eta_{3} \nabla_{0}=\frac{\partial\left(x_{3}-x_{1} j_{0}\right)}{\partial x_{1}}+i \frac{\partial\left(x_{3}-x_{1} j_{0}\right)}{\partial x_{2}} \\
& +j_{0} \frac{\partial\left(x_{3}-x_{1} j_{0}\right)}{\partial x_{3}}+k_{0} \frac{\partial\left(x_{3}-x_{1} j_{0}\right)}{\partial x_{4}} \\
= & \left(-j_{0}\right)+i(0)+j_{0}(1)+k_{0}(0)=-j_{0}+j_{0}=0
\end{aligned}
$$

and if $\eta_{4}=x_{4}-x_{1} k_{0} \in \mathcal{F}_{0, \mathbb{H}_{0}}$, then

$$
\begin{aligned}
\nabla_{0} \eta_{3}= & \eta_{3} \nabla_{0}=\frac{\partial\left(x_{4}-x_{1} k_{0}\right)}{\partial x_{1}}+i \frac{\partial\left(x_{4}-x_{1} k_{0}\right)}{\partial x_{2}} \\
& +j_{0} \frac{\partial\left(x_{4}-x_{1} k_{0}\right)}{\partial x_{3}}+k_{0} \frac{\partial\left(x_{4}-x_{1} k_{0}\right)}{\partial x_{4}} \\
= & \left(-k_{0}\right)+i(0)+j_{0}(0)+k_{0}(1)=-k_{0}+k_{0}=0 .
\end{aligned}
$$

Therefore, the functions $\left\{\eta_{l}\right\}_{l=2}^{4}$ of (5.14) are 0-regular on \mathbb{H}_{0}. Therefore, these 0 -regular functions $\left\{\eta_{l}\right\}_{l=2}^{4=2}$ are 0 -harmonic by (5.13).

By (5.15), we consider the symmetrized product $\eta^{\mathbf{n}}$, for $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right) \in$ \mathbb{N}_{0}^{3}, defined by

$$
\begin{equation*}
\eta^{\mathbf{n}}=\frac{1}{\mathbf{n}!}\left(\eta_{2}^{\left(n_{1}\right)} \times \eta_{3}^{\left(n_{2}\right)} \times \eta_{4}^{\left(n_{3}\right)}\right) \in \mathcal{F}_{0, \mathbb{H}_{0}}, \tag{5.16}
\end{equation*}
$$

like (5.4), as in Sect. 4.5, where (\times) is the symmetrized product (4.5.1), expressed to be (4.5.2).

Theorem 5.5. The symmetrized products $\eta^{\mathbf{n}} \in \mathcal{F}_{0, \mathbb{H}_{0}}$ of (5.16) are 0 -harmonic 0 -regular functions on \mathbb{H}_{0}, for all $\mathbf{n} \in \mathbb{N}_{0}^{3}$, i.e.,

$$
\begin{equation*}
\eta^{\mathbf{n}} \text { are } 0 \text { - harmonic } 0 \text { - regular functions on } \mathbb{H}_{0}, \forall \mathbf{n} \in \mathbb{N}_{0}^{3} . \tag{5.17}
\end{equation*}
$$

Proof. The proof of the 0-regularity of $\eta^{\mathbf{n}}$ are similar to that of (4.5.11). In particular, if we let

$$
e_{1}=-i, e_{2}=-j_{0}, \text { and } e_{3}=-k_{0},
$$

and if we replace ∇_{t} to ∇_{0}, then the formula (4.5.8) is obtained similarly, and hence, the computation (4.5.10) holds by (4.5.9). i.e.,

$$
x_{1} \mathbf{n}!\nabla_{0} \eta^{\mathbf{n}}=0, \Longrightarrow \nabla_{0} \eta^{\mathbf{n}}=0 .
$$

So, the symmetrized products $\eta^{\mathbf{n}}$ are 0 -regular, for $\mathbf{n} \in \mathbb{N}_{0}^{3}$. By the 0 regularity, $\eta^{\mathbf{n}}$ are 0 -harmonic on \mathbb{H}_{0}, too, by (5.13). Therefore, the relation (5.17) holds.

The above theorem shows that all symmetrized products $\eta^{\mathbf{n}}$ of (5.16) are 0 -harmonic 0 -regular functions on \mathbb{H}_{0} by (5.17).

Now, consider that if $\left\{\eta_{2}, \eta_{3}, \eta_{4}\right\} \subset \mathcal{F}_{0, \mathbb{H}_{0}}$ are the 0-harmonic 0-regular functions (5.14), then they are understood to be their images,

$$
\eta_{2}=\left(x_{2}-x_{1} i, 0\right), \eta_{3}=\left(x_{3},-x_{1}\right), \eta_{4}=\left(x_{4},-x_{1} i\right),
$$

as elements of the 0 -scaled hypercomplex ring \mathbb{H}_{0}, having their norms,

$$
\begin{aligned}
& \left\|\eta_{2}\right\|_{0}=\sqrt{\left.\left|\left|x_{2}-x_{1} i\right|^{2}-0\right| 0\right|^{2} \mid}=\sqrt{x_{2}^{2}+\left(-x_{1}\right)^{2}}=\sqrt{x_{2}^{2}+x_{1}^{2}}, \\
& \left\|\eta_{3}\right\|_{0}=\sqrt{\left|\left|x_{3}\right|^{2}-0\right|-\left.x_{1}\right|^{2} \mid}=\sqrt{\left|x_{3}^{2}\right|}=\left|x_{3}\right|
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|\eta_{4}\right\|_{0}=\sqrt{\left|\left|x_{4}\right|^{2}-0\right|-\left.x_{1} i\right|^{2} \mid}=\sqrt{\left|x_{4}^{2}\right|}=\left|x_{4}\right| . \tag{5.18}
\end{equation*}
$$

Lemma 5.6. Let $\eta^{\mathbf{n}} \in \mathcal{F}_{0, \mathbb{H}_{t}}$ be a function (5.16) for $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N}_{0}^{3}$. Then

$$
\begin{equation*}
\left\|\eta^{\mathbf{n}}\right\|_{0} \leq\left({\sqrt{x_{1}^{2}+x_{2}^{2}}}^{n_{1}}\right)\left(\left|x_{3}\right|^{n_{2}}\right)\left(\left|x_{4}\right|^{n_{3}}\right) \tag{5.19}
\end{equation*}
$$

Proof. By (5.16), for any $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N}_{0}^{3}$,

$$
\begin{aligned}
& \left\|\eta^{\mathbf{n}}\right\|_{0}=\left\|\frac{1}{\mathbf{n}!}\left(\eta_{2}^{\left(n_{1}\right)} \times \eta_{3}^{\left(n_{2}\right)} \times \eta_{4}^{\left(n_{3}\right)}\right)\right\|_{0} \\
& =\left\|\frac{1}{\left(n_{1}!\right)\left(n_{2}!\right)\left(n_{3}!\right)}\left(\frac{\left(n_{1}!\right)\left(n_{2}!\right)\left(n_{3}!\right)}{n!} \sum_{\sigma \in S_{n}} h_{\sigma(1)} h_{\sigma(2)} \ldots h_{\sigma(n)}\right)\right\|_{0}
\end{aligned}
$$

where $h_{\sigma(l)} \in\left\{\eta_{2}, \eta_{3}, \eta_{4}\right\}$, for all $\sigma \in S_{n}$, with $n=n_{1}+n_{2}+n_{3} \in \mathbb{N}$

$$
=\left\|\eta_{2}^{n_{1}} \eta_{3}^{n_{2}} \eta_{4}^{n_{3}}\right\|_{0} \leq\left\|\eta_{2}\right\|_{0}^{n_{1}}\left\|\eta_{3}\right\|_{0}^{n_{2}}\left\|\eta_{4}\right\|_{0}^{n_{3}}
$$

by (4.5.5)

$$
={\sqrt{x_{1}^{2}+x_{2}^{2}}}^{n_{1}}\left|x_{3}\right|^{n_{2}}\left|x_{4}\right|^{n_{3}},
$$

by (5.18). Therefore, the boundedness condition (5.19) holds.
The above lemma shows that, for any arbitrarily fixed $\mathbf{n} \in \mathbb{N}_{0}^{3}$, the corresponding function $\eta^{\mathbf{n}}$ is bounded by (5.19).

Theorem 5.7. Let $f \in \mathcal{F}_{0, U}$ be a \mathbb{R}-differentiable function, where U is an open connected subset of \mathbb{H}_{0} containing $0 \in \mathbb{H}_{0}$. If f is \mathbb{R}-analytic at $0 \in U$, then

$$
f \text { is left } 0 \text {-regular on } U \text {, }
$$

if and only if

$$
\begin{equation*}
f=f(0)+\sum_{\mathbf{n} \in \mathbb{N}^{3}} \eta^{\mathbf{n}} f_{\mathbf{n}} \tag{5.20}
\end{equation*}
$$

with

$$
f_{\mathbf{n}}=\frac{1}{\mathbf{n}!} \frac{\partial^{n_{1}+n_{2}+n_{3}} f}{\partial x_{2}^{n_{1}} \partial x_{3}^{n_{2}} \partial x_{4}^{n_{3}}}(0), \forall \mathbf{n} \in \mathbb{N}^{3} .
$$

Proof. If $f=f(0)+\sum_{\mathbf{n} \in \mathbb{N}^{3}} \eta^{\mathbf{n}} f_{\mathbf{n}}$, then it is left 0-regular, by the 0-harmonic-0-regularity (5.17) of $\left\{\eta^{\mathbf{n}}: \mathbf{n} \in \mathbb{N}_{0}^{3}\right\}$.

Suppose f is left 0-regular in $\mathcal{F}_{0, U}$, satisfying $\nabla_{0} f=0$. Then

$$
f(w)-f(0)=\sum_{n=2}^{4}\left(\eta_{n}(w)\right)\left(\left(R_{n} f\right)(w)\right),
$$

where

$$
\begin{equation*}
\left(R_{n} f\right)(w)=\int_{0}^{1} \frac{\partial f(t w)}{\partial x_{n}} d t, \forall n=2,3,4, \tag{5.21}
\end{equation*}
$$

in the \mathbb{H}_{t}-variable $w=x_{1}+x_{2} i+x_{3} j_{t}+x_{4} k_{t}$, with $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$. By iterating (5.21) under the \mathbb{R}-analyticity assumption, one can get the function in (5.20), by (5.19).

Acknowledgements

The first-named author, Daniel Alpay, thanks the Foster G. and Mary McGaw Professorship in Mathematical Sciences, which supported this research.

Funding Open access funding provided by SCELC, Statewide California Electronic Library Consortium No other funds, grants, or other support were received during the preparation of this manuscript.

Data Availibility The authors confirm that no data known is used in the manuscript.

Declarations

Competing Interests We declare that we have no competing interests.
Ethical approval This submitted paper is original, not published, or submitted elsewhere in any form or language, partially, or fully.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Alpay, D., Cho, I.: Operators Induced by Certain Hypercomplex Systems. Opuscula Math. 43(3), 275-333 (2023)
[2] Alpay, D., Cho, I.: Dynamical Systems of Operators Induced by Scaled Hypercomplex Rings. Adv. Appl. Clifford Alg. 33, 33 (2023). https://doi.org/10. 1007/s00006-023-01272-0
[3] Alpay, D., Cho, I.: On Scaled Hyperbolic Numbers Induced by Scaled Hypercomplex Rings, Pure Appl. Funct. Anal. (2023) To appear
[4] Alpay, D., Luna-Elizarraras, M.E., Shapiro, M., Struppa, D.C.: Gleason's Problem, Rational Functions and Spaces of Left-regular Functions: The SplitQuaternioin Settings. Israel J. Math. 226, 319-349 (2018)
[5] Alpay, D., Paiva, I.L., Struppa, D.C.: A General Setting for Functions of Fueter Variables: Differentiability, Rational Functions, Fock Module and Related Topics. Israel J. Math. 236, 207-246 (2020)
[6] Alpay, D., Shapiro, M.: Problème de Gleason et Interpolation pour let Fonctions hyper-analytiques. C. R. Math. Acad. Sci. Paris, 335 (2022)
[7] Curtis, M.L.: Matrix Groups, ISBN: 0-387-90462-X. Published by SpringerVerlag, NY (1979)
[8] Delanghe, R.: On Regular-Analytic Functions with Values in a Clifford Algebra. Math. Ann. 425, 91-111 (1970)
[9] Frenkel, I., Libine, M.: Split Quaternionic Analysis and Separation of the Series for $S L(2, \mathbb{R})$ and $S L(2, \mathbb{C}) / S L(2, \mathbb{R})$. Adv. Math. 228, 678-763 (2011)
[10] Halmos, P.R.: Book, Linear Algebra Problem., ISBN: 978-0-88385-322-1,: Published by Math. Assoc, Amer (1995)
[11] Halmos, P. R.: Hilbert Space Problem Book, ISBN: 978-038-790685-0, (1982) Published by Springer-Verlag (NY)
[12] Kravchenko, V.: Applied Quaternionic Analysis, ISBN: 3-88538-228-8, (2003) Published by Heldemann Verlag
[13] Kobayashi, M.: Hyperbolic Hopfield Neural Networks with Directional Multistate Activation Function. Neurocomputing 275, 2217-2226 (2018)
[14] Libine, M.: An Invitation to Split Quaternionic Analysis, in Hypercomplex Analysis and Applications, Trends in Math., Birkhauser / Springer, Basel AG, Basel, 161-180 (2011)
[15] Rodman, L.: Topics in Quaternion Linear Algebra, ISBN:978-0-691-16185-3,: Published by Prinston Univ. Press, NJ (2014)
[16] Rozenfeld, B. A.: The History of non-Eucledean Geometry: Evolution of the Concept of a Geometric Spaces, ISBN: 978-038-796458-4, (1988) Published by Springer
[17] R. Speicher, Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory, Amer. Math. Soc., Memoire, ISBN:978-0-8218-0693-7: Published by Amer. Math, Soc (1998)
[18] Sudbery, A., Analysis, Quaternionic: Published by Math. Cambridge Philosop. Soc, Proc (1998). https://doi.org/10.1017/s0305004100053638
[19] Vince, J. A.: Geometric Algebra for Computer Graphics, ISBN: 978-1-84628-996-5, (2008) Published by Springer
[20] Voiculescu, D.V., Dykema, K.J., Nica, A.: Variables, Free Random, ISBN:978-0-8218-1140-5,: Published by Amer. Math, Soc (1992)
[21] Voight, J.: Quaternion Algebra, Available on http://math.dartmouth.edu/ ~jvoight/quat-book.pdf, (2019) Dept. of Math., Dartmouth Univ

Daniel Alpay (\boxtimes)
Schmid College of Science and Technology
Chapman University
One University Drive
Orange, CA,92866
USA.
e-mail: alpay@chapman.edu

Ilwoo Cho
Department of Mathematics and Statistics
St. Ambrose Univ.
421 Ambrose Hall, 518 W. Locust St.
Davenport, Iowa,52803,
USA.
e-mail: choilwoo@sau.edu

Received: June 5, 2023.
Revised: January 11, 2024.
Accepted: January 12, 2024.

