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Abstract. Let B ⊆ A be an inclusion of C∗-algebras. We study the rela-
tionship between the regular ideals of B and regular ideals of A. We show
that if B ⊆ A is a regular C∗-inclusion and there is a faithful invariant
conditional expectation from A onto B, then there is an isomorphism
between the lattice of regular ideals of A and invariant regular ideals of
B. We study properties of inclusions preserved under quotients by reg-
ular ideals. This includes showing that if D ⊆ A is a Cartan inclusion
and J is a regular ideal in A, then D/(J ∩D) is a Cartan subalgebra of
A/J . We provide a description of regular ideals in the reduced crossed
product of a C∗-algebra by a discrete group.

1. Introduction

An inclusion B ⊆ A of C∗-algebras has the ideal intersection property if every
non-trivial ideal of A has non-trivial intersection with B. The ideal intersec-
tion property is useful for obtaining structural results for the inclusion. Here
are a few of the many examples.

(i) When B is a maximal abelian subalgebra of A, the ideal intersec-
tion property is a key ingredient for establishing the Cuntz–Krieger
Uniqueness theorems for graph C∗-algebras (see for example [35, The-
orem 3.13]) and for groupoids [10, Theorem 3.1]. Further work on the
ideal intersection property in groupoid C∗-algebras has been carried out
in [6] and [26].

(ii) When there is an action of T on A, and B is the fixed point algebra, the
ideal intersection property of A is used to establish the gauge-invariant
uniqueness theorems for graph algebras [22, Theorem 2.3] and Cuntz-
Pimsner algebras [23, Theorem 6.2] among others.

(iii) If G is a discrete group acting topologically freely on a locally compact
Hausdorff space X, the ideal intersection property for C(X) ⊆ C(X)�r

G is used to obtain the simplicity result of [2, Theorem 2].
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(iv) The ideal intersection property has been used to characterize inclusions
for which every pseudo-expectation is faithful [40, Theorem 3.5].

(v) More recently, Pitts [38, Theorem 5.2] used the ideal intersection prop-
erty to characterize the existence of Cartan envelopes.

The ideal intersection property holds for certain crossed products. Nec-
essary and sufficient conditions for C(X) ⊆ C(X) �r G to have the ideal in-
tersection property are given in [24]. Sierakowski [46] shows that A ⊆ A�r G
has the ideal intersection property for an exact action of discrete group G on
C∗-algebra A whose induced action on Prim(A) is essentially free. Kennedy
and Schafhauser [27] further characterize when A ⊆ A �r G has the ideal
intersection property in terms of outerness and a cohomological obstruction.

Unfortunately, the ideal intersection property does not pass, in general,
to quotients (see [41, Example 4.8] or Example 4.6 below). In the setting of
amenable groupoid C∗-algebras, that is the inclusion C0(G(0)) ⊆ C∗(G), the
ideal intersection property passes to quotients if and only if there is a cor-
respondence between the lattice of ideals of C0(G(0)) and C∗(G) [7, Corol-
lary 5.9] (for one direction see [43, Corollary 4.9]). Restricting attention to a
class of inclusions where the ideal intersection property passes to quotients
has been quite productive in the study of ideals of these algebras. For exam-
ple, Kumjian et al. [29] introduce condition (K) so they could use [43, Corol-
lary 4.9] to study the ideals for this restricted class of graph C∗-algebras.
Indeed, for algebras of row-finite directed graphs C∗(E) whose underlying
graph E satisfies condition (K), the inclusion D ⊆ C∗(E), where D is the
(abelian) algebra generated by the range projections of partial isometries cor-
responding to finite paths in E, has the property that the ideal intersection
property passes to quotients.

Rather than restricting the types of inclusions considered, the paper [9]
takes a different tack, instead limiting the types of ideals to regular ideals: a
main result of [9] shows that the ideal intersection property passes to quo-
tients of graph algebras by regular ideals.

For a commutative C∗-algebra B, regular ideals in B correspond exactly
to regular open sets in ̂B. More generally, for an arbitrary C∗-algebra B, let
B be the monotone completion of B and let Z(B) be the center of B. Hamana
shows that the lattice of regular open sets in Prim(B) is isomorphic to the
projection lattice of Z(B), which in turn is isomorphic to the lattice of all
regular ideals of B, see [20, Lemma 1.4 and Theorem 1.5]. Hamana concludes
in [20, p. 526, Remark (b)] that if I(B) is the injective envelope of B, and
A is a C∗-algebra with B ⊆ A ⊆ I(B), then the map J �→ J ∩ B gives an
isomorphism of the Boolean algebra of regular ideals of A onto the Boolean
algebra of regular ideals of B. This conclusion is similar to our Theorem 3.24
below, but we consider inclusions of the form B ⊆ A having certain regularity
properties and a faithful invariant conditional expectation of A onto B instead
of assuming that A lies between B and its injective envelope.
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One of the main results of the present paper is Theorem 4.2, which
shows that if B ⊆ A is an inclusion having a faithful invariant conditional
expectation of A onto B, then the ideal intersection property is preserved
under quotients by regular ideals. This is a far reaching generalization of the
main result in [9], as many inclusions of interest, such as reduced crossed
products by discrete groups, come equipped with a faithful invariant con-
ditional expectation. Along the way we give a detailed analysis of regular
ideals, culminating in Theorem 3.24, which shows that if B ⊆ A is a regular
inclusion with the ideal intersection property and E : A → B is a faithful
invariant conditional expectation, then J → J ∩ B is a one-to-one map from
the regular ideals of A to the regular ideals of B.

Establishing that an inclusion is a Cartan inclusion has become impor-
tant from the lens of classification. Indeed, Barlak and Li [4, Theorem 1.1]
show that when A is a separable and nuclear C∗-algebra containing the Car-
tan MASA B, then A satisfies the UCT. We show in Theorem 4.8 that quo-
tients of Cartan embeddings by regular ideals remain Cartan.

One of the interesting aspects of our work is that the key to many of our
results is the regular ideal intersection property : J ∩ B = {0} =⇒ J = {0}
for all regular ideals J in A. In Sect. 7, we show that for a very large class of
examples, the regular ideal intersection property and the ideal intersection
property are equivalent.

After we circulated an earlier version of this paper, Exel [13] proved a
generalization of Theorem 3.24 using weaker hypotheses than are assumed
here. In particular, Exel does not assume the existence of an invariant faith-
ful conditional expectation. Instead Exel assumes that B ⊆ A satisfies an
invariance axiom; see [13] for full details.

This paper is organized as follows. We begin with a short section of
preliminaries where we introduce regular ideals. In Sect. 3 we analyze the
relationship between regular ideals of B and A where B ⊆ A is a regular in-
clusion. This culminates in Theorem 3.24; this result gives settings in which
the Boolean algebras of regular ideals in A are isomorphic to the Boolean
algebra of regular and invariant ideals in B. In Sect. 4, we prove our main
theorem, Theorem 4.2, which shows that in the presence of a faithful, invari-
ant conditional expectation, the ideal intersection property is inherited by
quotients of regular ideals. We use this result to show that the Cartan prop-
erty passes to quotients by regular ideals. We then specialize to C∗-algebras
of exact groupoids in Sect. 5. In particular, Theorem 5.6 gives an explicit
description of the regular ideals of the (reduced) C∗-algebra of a twisted ex-
act groupoid G when C0(G(0)) has the ideal intersection property. Section 6
explores some applications of our work, including applications to graph C∗-
algebras and reduced crossed products by discrete groups. In Sect. 7, we give
classes of regular inclusions for which the regular ideal intersection property
implies the ideal intersection property.
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2. Preliminaries on Regular Ideals

The focus of this paper is the family of regular ideals in a C∗-algebra. We
will recall the definition from [20] after we introduce a piece of notation. Let
A be a C∗-algebra and let X ⊆ A. Denote by X⊥ the set

X⊥ = {a ∈ A : ax = xa = 0 for all x ∈ X}.

If B is a C∗-algebra such that X ⊆ B ⊆ A we will write X⊥B to denote the
set determined by the operation restricted to B:

X⊥B = X⊥ ∩ B = {b ∈ B : bx = xb = 0 for all x ∈ X}.

We can now define what it means for an ideal to be regular.

Definition 2.1. Let A be a C∗-algebra. If J ⊆ A is a subalgebra satisfying
aJ ∪ Ja ⊆ A for all a ∈ A, we will call J an algebraic ideal of A. If J ⊆ A is
a closed algebraic ideal we will call J an ideal of A.

We use the notation J � A to say that J ⊆ A is an ideal of A.

Definition 2.2. An ideal J � A is a regular ideal in A if J = J⊥⊥.

Hamana [20] gives two characterizations of the regular ideals in a C∗-
algebra A: one in terms of the topology on the primitive ideal space Prim(A),
and one in terms the monotone closure A of A. We end this section with his
characterization involving the primitive ideal space, as we require it in the
sequel.

Let X be a topological space. For an open set U ⊆ X, define

U⊥ = (X\U)◦
.

That is, U⊥ is the interior of the complement of U . Recall that an open set
U ⊆ X is regular if U = (U)

◦
, i.e. U is the interior of its closure. Equivalently,

an open set U is regular if U = U⊥⊥. The regular open sets of X form a
complete Boolean algebra with operations:

(i) U ∧ V = U ∩ V ;
(ii) U ∨ V = (U ∪ V )⊥⊥; and
(iii) ¬U = U⊥;
see, e.g. [19] or [16].

Remark 2.3. The ideal C0(U) ⊆ C0(X) is regular if and only if U is a regular
open set in X.

Let A be a C∗-algebra and let Prim(A) be the primitive ideal space. For
R ⊆ A define

hull(R) = {P ∈ Prim(A) : R ⊆ P},

and for S ⊆ Prim(A) define

ker(S) =
⋂

P∈S

P.

Endow Prim(A) with the usual hull-kernel topology. That is, if S ⊆ Prim(A)
then the closure S is given by S = hull ker(S). The map I �→ Prim(A)\hull(I)
gives a one-to-one correspondence between ideals I � A and open subsets of
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Prim(A) [34, Theorem 5.2.7]. When this map is restricted to the regular ideals
of A, Hamana establishes the following result.

Proposition 2.4. [c.f. [20, Lemma 1.4]] Let A be a C∗-algebra. Then the col-
lection of all regular ideals in A forms a complete Boolean algebra with meet,
join and negation given by

(i) J ∧ K := J ∩ K;
(ii) J ∨ K := 〈J ∪ K〉⊥⊥;
(iii) ¬J := J⊥.

Furthermore, the map I �→ Prim(A)\hull(I) on regular ideals of a C∗-algebra
A gives a complete Boolean algebra isomorphism from the regular ideals of A
to the regular open sets of Prim(A).

3. Regular Ideals in Regular C∗-Inclusions

Definition 3.1. Let A and B be C∗-algebras such that B ⊆ A. If B contains
an approximate unit for A, we say that B ⊆ A is an inclusion of C∗-algebras.
We will sometimes use the notation (A,B) for an inclusion of C∗-algebras
(we write the larger algebra first).

Remark 3.2. The condition that B contain an approximate unit for A is
sometimes automatic. For example, when B is maximal abelian and span{n ∈
A : nBn∗ ∪ n∗Bn ⊆ B} is dense in A, [39, Theorem 2.6] shows that every
approximate unit for B is an approximate unit for A.

If B ⊆ A is an inclusion of C∗-algebras, we want to know to what extent
the regular ideals of A determine the regular ideals of B, and vice versa. In
general, one should not expect any strong relationship. However, under some
additional hypotheses, we show in Theorem 3.24 that there is an injective
map from the regular ideals of A to the invariant regular ideals of B. We will
use this map in our main results on quotients by regular ideals, Theorem 4.2
and Theorem 4.8.

We use the following notation extensively. For I ⊆ A we denote the
ideal generated by I in A by 〈I〉A. If there is no chance of confusion as to
where the ideal should lie we will simply write 〈I〉 in place of 〈I〉A.

The following elementary facts will be useful.

Lemma 3.3. If J ⊆ A is an algebraic ideal, then J⊥ � A is a regular ideal.

Lemma 3.4. Let A be a C∗-algebra. Suppose I, J ⊆ A are algebraic ideals
satisfying J⊥ ⊆ I. Then J⊥ = I or I ∩ J = {0}.

Proof. Suppose J⊥ = I. Take x ∈ I\J⊥. Since x /∈ J⊥, we have xJ = {0} or
Jx = {0}. Hence I ∩ J = {0}. �
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We now impose some natural extra hypotheses on the inclusions we
study. We first show that if there is a faithful conditional expectation from
A onto B then J ∩ B is a regular ideal of B whenever J is a regular ideal of
A.

Lemma 3.5. Let B ⊆ A be an inclusion of C∗-algebras. Suppose E : A → B
is a faithful conditional expectation. Then for any J � A we have

J⊥ ∩ B = E(J)⊥B .

Proof. Take d ∈ E(J)⊥B and a ∈ J . Then

E(d∗a∗ad) = d∗E(a∗a)d = 0.

Since E is faithful, it follows that ad = 0. Similarly da = 0. Hence d ∈ J⊥.
Suppose now that d ∈ J⊥ ∩ B and a ∈ J . Then dE(a) = E(da) = 0,

and E(a)d = E(ad) = 0. Hence d ∈ E(J)⊥B . �

Remark 3.6. While Lemma 3.5 is stated for an ideal J � A, the conclusion
holds for any subset J ⊆ A.

Proposition 3.7. Let B ⊆ A be an inclusion of C∗-algebras. Suppose E : A →
B is a faithful conditional expectation. If J � A is a regular ideal of A, then
J ∩ B is a regular ideal of B.

Proof. Let J �A be a regular ideal. Then, by regularity of J and Lemma 3.5,
we get

J ∩ B = J⊥⊥ ∩ B = E(J⊥)⊥B .

It follows now by Lemma 3.3 that J ∩ B is a regular ideal in B. �

We recall the following definitions.

Definition 3.8. Let B ⊆ A be an inclusion of C∗-algebras. An element n ∈ A
is a normalizer of B if nBn∗ ⊆ B and n∗Bn ⊆ B. We denote the set of all
normalizers of B in A by N (A,B). If

A = spanN (A,B)

then we say B is regular in A, or B ⊆ A is a regular inclusion of C∗-algebras.

Remark 3.9. We are now using the term regular in two different senses: one
refers to ideals and the other to inclusions. The context will make clear which
sense we intend. This unfortunate development is the result of historical
naming conventions. In the first sense, regular ideal, the term goes back to at
least Hamana [20], and seems to be derived from the notion of regular open
sets in topology. The second, regular inclusion, goes back to at least to both
Vershik’s and Feldman and Moore’s early work on Cartan inclusions of von
Neumann algebras, see [51] and [15].

Remark 3.10. Let B ⊆ A be an inclusion of C∗-algebras. Note that if n ∈
N (A,B), then n∗n ∈ B. This follows from the assumption that there is an
approximate unit for B that also an approximate unit for A.
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Definition 3.11. Let B ⊆ A be a regular inclusion of C∗-algebras. Let N ⊆
N (A,B) be a ∗-semigroup with dense span in A. If K � B we say that K is
an N -invariant ideal if nKn∗ ⊆ K for all n ∈ N . When N = N (A,B) we
will simply say that K is an invariant ideal.

Remark 3.12. If K = I ∩B for some ideal I in A then K is invariant: indeed,
for a normalizer n, nIn∗ ⊆ I since I is an ideal and nBn∗ ⊆ B since n is a
normalizer.

Definition 3.13. Let B ⊆ A be a regular inclusion of C∗-algebras. Let N ⊆
N (A,B) be a ∗-semigroup with dense span in A. If E : A → B is a condi-
tional expectation, we say that E is an N -invariant conditional expectation if
nE(a)n∗ = E(nan∗) for all a ∈ A and n ∈ N . When E is N (A,B)-invariant
we will simply say that E is an invariant conditional expectation.

We have introduced N -invariance for ideals and conditional expectations
because in some settings it is unclear whether a given ideal or conditional ex-
pectation is invariant under the entire ∗-semigroup of normalizers. Neverthe-
less, in many situations, there is a natural ∗-semigroup N of normalizers such
that spanN is dense in A, under which an ideal or conditional expectation is
invariant. Corollary 3.20 will show that when there is an N -invariant faithful
conditional expectation, the N -invariant ideals will necessarily be invariant.
This occurs in the crossed product setting.

Example 3.14. Let Γ be a discrete group acting via α on a C∗-algebra B and
let A = B �r Γ. Let N = {bδs : b ∈ B, s ∈ Γ}. Then N is a ∗-semigroup of
normalizers with dense span in B �r Γ. An ideal K in B is N -invariant in
the sense of Definition 3.11 if and only if αs(K) = K for all s ∈ Γ.

The map E :
∑k

i=1 bsi
δsi

�→ beδe extends to a faithful conditional expec-
tation from B �r Γ to B, [11, Proposition 4.1.9]. The conditional expectation
E is N -invariant.

Let us examine the notion of faithful, invariant conditional expectations
for some more classes of examples.

Examples 3.15. (i) Suppose A is a unital C∗-algebra and B = CI. Then
N (A,B) is the collection of all scalar multiples of unitary operators in
A, so (A,B) is a regular inclusion. Here, the collection of all conditional
expectations may be identified with the state space of A: for a state
τ on A, the map Eτ given by Eτ (a) = τ(a)I is a conditional expecta-
tion. Note that Eτ is faithful precisely when τ is a faithful; and Eτ is
invariant precisely when τ is tracial. Thus the existence of a faithful or
invariant expectation is not guaranteed. In this setting, there are many
conditional expectations, and there is no connection between faithful-
ness and invariance.

(ii) Suppose B ⊆ A is a regular inclusion with B maximal abelian in A.
(a) The existence of a conditional expectation is not automatic [37,

Example 1.2].
(b) When a conditional expectation E : A → B, exists, it is always

unique and invariant. If A is unital, uniqueness follows from [37,
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Theorem 3.5] and invariance from [37, Proposition 3.14]. When A

is not unital, consider the unitizations, B̃ ⊆ Ã. By [39, Corollary
2.4(i)], N (A,B) ⊆ N (Ã, B̃). Thus, B̃ ⊆ Ã is a regular inclusion,
and B̃ is maximal abelian in Ã. The unitization Ẽ of E (that is,
A× C � (a, λ) �→ (E(a), λ) ∈ B̃) is therefore an conditional expec-
tation which is invariant and unique. Since N (A,B) ⊆ N (Ã, B̃),
it follows that E is also invariant and unique.

(c) It is possible to construct a discrete dynamical system (Γ,X, α)
with Γ acting freely on a compact Hausdorff space X where the
full and reduced crossed products of C(X) by Γ differ; in this case,
C(X) is maximal abelian in the full crossed product C(X) �f

Γ, yet the conditional expectation onto C(X) is not faithful, [14,
Theorem 3.1 and Remark 3.2].

Definition 3.16. Let B ⊆ A be an inclusion of C∗-algebras. We say that B
has the ideal intersection property in A if whenever J �A is a non-zero ideal,
J ∩ B = {0}. We say that B has the regular ideal intersection property in A
if whenever J � A is a non-zero regular ideal, J ∩ B = {0}. We will also say
that the inclusion (A,B) has the ideal intersection property or the regular
ideal intersection property.

Other authors use different terminology for the ideal intersection prop-
erty. For example, an inclusion with the ideal intersection property is called
C∗-essential in [40] and is said to detect ideals in [32]. To the best of our
knowledge, the regular ideal intersection property has not appeared else-
where.

Remark 3.17. It is clear that if B has the ideal intersection property in A
then it has the regular ideal intersection property. We will show in Sect. 7 that
for a large class of examples the regular ideal intersection property implies
the ideal intersection property. Example 7.1 gives an example of a regular
inclusion B ⊆ A with the regular ideal intersection property but not the
ideal intersection property.

Notation 3.18. Let B ⊆ A be a regular inclusion of C∗-algebras with a faithful
conditional expectation E : A → B. If K � B is an ideal, denote by JK the
set

JK = {a ∈ A : E(a∗a) ∈ K}.

Our aim in the remainder of this section is to prove Theorem 3.24,
which shows that when the regular inclusion (A,B) has the regular ideal
intersection property and E is faithful and invariant, then K �→ JK defines a
bijection between invariant regular ideals of B and regular ideals of A. The
following gives a monomorphism of the invariant regular ideals of B into the
regular ideals of A.

Proposition 3.19. Let B ⊆ A be a regular inclusion of C∗-algebras, let N be
a ∗-semigroup of normalizers with dense span in A, and let E : A → B be a
faithful N -invariant conditional expectation. The following statements hold.
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(i) If K � B is an N -invariant ideal, then JK is an ideal in A such that

JK ∩ B = K ⊆ E(JK).

(ii) If K � B is an invariant regular ideal, then JK is a regular ideal satis-
fying

JK ∩ B = K = E(JK) and J⊥
K = JK⊥B .

Proof. (i) Let K � B be an N -invariant ideal. Take a ∈ JK and b ∈ A. Then
a∗b∗ba ≤ ‖b‖2a∗a and hence

E((ba)∗ba) = E(a∗b∗ba) ≤ ‖b‖2E(a∗a) ∈ K

since conditional expectations are (completely) positive maps. As ideals in
C∗-algebras are hereditary it follows that E((ab)∗(ab)) ∈ K and hence ab ∈
JK . Thus JK is a left-ideal of A. Now take any a ∈ JK and any n ∈ N .
Then E((an)∗(an)) = E(n∗a∗an) = n∗E(a∗a)n ∈ K, as E is an N -invariant
conditional expectation and K is an N -invariant ideal. Hence an ∈ JK . As
the span of N is dense in A, it follows that JK is also a right ideal. That
JK ∩ B = K ⊆ E(JK) follows from the definition, so (i) holds.

(ii) Now suppose that K � B is an N -invariant regular ideal. Note that
E(JK) is an algebraic ideal in B since JK is an ideal in A. Let us show
K = E(JK).

If K = E(JK) then, by Lemma 3.4, E(JK) ∩ K⊥B = {0}. Hence there
is an 0 = a ∈ JK such that E(a) ∈ K⊥B . Thus

K � E(a∗a) ≥ E(a)∗E(a) ∈ K⊥B .

Since K is hereditary, E(a)∗E(a) ∈ K ∩ K⊥B and hence E(a) = 0, contrary
to choice of a. Thus E(JK) = K.

It remains to show that JK is a regular ideal. Let JK⊥ := {a ∈ A :
E(a∗a) ∈ K⊥B}. It suffices to show that JK = J⊥

K⊥ . Take any a ∈ JK and
b ∈ JK⊥ . Since JK is a right ideal and JK⊥ is a left ideal, E((ab)∗ab) ∈
K ∩ K⊥B = {0}. Since E is faithful it follows that ab = 0. Similarly, ba = 0.
Hence JK ⊆ J⊥

K⊥ .
Now take any a ∈ J⊥

K⊥ and b ∈ K⊥B ⊆ JK⊥ . Then E(a)b = E(ab) = 0.
Thus E(J⊥

K⊥) ⊆ (K⊥B )⊥B = K; that is, J⊥
K⊥ ⊆ JK . Combining the two

inclusions we get JK = J⊥
K⊥ and hence JK is a regular ideal. �

Let B ⊆ A be a regular inclusion of C∗-algebras, let N be a ∗-semigroup
of normalizers with dense span in A. The following corollary shows that, in
the presence of an N -invariant faithful conditional expectation E : A → B,
the N -invariant ideals of B and the N (A,B)-invariant ideals of B coincide.

Corollary 3.20. Let B ⊆ A be a regular inclusion of C∗-algebras, let N be a
∗-semigroup of normalizers with dense span in A, and let E : A → B be a
faithful N -invariant conditional expectation. An ideal K � B is N -invariant
if and only if it is invariant.

Proof. Any invariant ideal of B is N -invariant. Suppose that K � B is N -
invariant. By Proposition 3.19 (i), K = JK ∩B. Hence K is an invariant ideal
by Remark 3.12. �
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We now return to our study of regular ideals.

Corollary 3.21. Let B ⊆ A be a regular inclusion of C∗-algebras, N be a
∗-semigroup of normalizers with dense span in A, and let E : A → B be a
faithful N -invariant conditional expectation. Further suppose that B has the
regular ideal intersection property in A. If K�B is an invariant regular ideal,
then 〈K〉⊥⊥

A = JK .

Proof. Since 〈K〉⊥⊥
A � A is the smallest regular ideal containing K, Proposi-

tion 3.19(ii) gives 〈K〉⊥⊥
A ⊆ JK . Let L := JK ∩ 〈K〉⊥

A and let b ∈ L ∩ B. By
Proposition 3.19, JK ∩ B = K, so b ∈ K. But bK = 0 because b ∈ 〈K〉⊥

A.
Thus b = 0, so L ∩ B = {0}. By Proposition 2.4, L is a regular ideal in
A. Since (A,B) has the regular ideal intersection property, we conclude that
L = {0}, that is, 〈K〉⊥⊥

A = JK . �

Proposition 3.22. Let B ⊆ A be a regular inclusion, where B has the regular
ideal intersection property in A. Let E : A → B be a faithful conditional
expectation. If J � A is a regular ideal, then J ∩ B = E(J).

Proof. Let I1 = J ∩ B and I2 = E(J). Then I1 is an ideal of B, I2 is an
algebraic ideal of B, and I1 ⊆ I2. The ideal I1 = {0} since B has the regular
ideal intersection property in A; the algebraic ideal I2 = {0} since E is a
faithful conditional expectation. Further, I1 is an invariant ideal, and it is a
regular ideal by Proposition 3.7.

Assume I1 = I2. Let I3 = I2 ∩ I⊥B
1 . Then I3 is an algebraic ideal.

Further, I3 = {0} by Lemma 3.4. We show

〈I3〉A ⊆ (〈I1〉A)⊥. (3.23)

First notice that since B is regular in A, for any algebraic ideal I ⊆ B, 〈I〉A

is the closed linear span of {n1bn2 : b ∈ I, ni normalizers}.
So let b ∈ I3, c ∈ I1 and {ni}4

i=1 ⊆ N (A,B). Using the facts that
n∗

4n4 ∈ B, I1 � B is invariant and I3 ⊆ I⊥B
1 , we obtain

((n1bn2)(n3cn4))((n1bn2)(n3cn4))∗ = n1b(n2n3cn4n
∗
4c

∗n∗
3n

∗
2)b

∗n∗
1 = 0,

so (n1bn2)(n3cn4) = 0. Similarly, (n3cn4)(n1bn2) = 0. So

n1bn2 ∈ span{ncm : n,m ∈ N (A,B), c ∈ I1}⊥ = (〈I1〉A)⊥.

The inclusion (3.23) follows.
Since I3 ⊆ I2 = E(J) there exists a ∈ J such that 0 = E(a) ∈ I3. Then

0 = E(a)a∗ ∈ 〈I3〉A ∩J , showing 〈I3〉A ∩J = {0}. By (3.23), the regular ideal
L := J ∩ 〈I1〉⊥

A = {0}.

Note that 〈I1〉⊥
A ∩ B ⊆ I⊥B

1 . As J ∩ B = I1 it follows that L ∩ B = {0}.
This contradicts the regular ideal intersection property. Thus J ∩ B = E(J).

Combining Proposition 3.19 and Proposition 3.22 we get the following
theorem.

Theorem 3.24. Let B ⊆ A be a regular inclusion of C∗-algebras satisfying the
regular ideal intersection property, and let N be a ∗-semigroup of normaliz-
ers with dense span in A. Further assume there is an N -invariant faithful
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conditional expectation E : A → B. The invariant regular ideals of B form
a Boolean algebra. The map J �→ J ∩ B, with inverse given by K �→ JK ,
is a Boolean algebra isomorphism between the regular ideals of A and the
invariant regular ideals of B.

Proof. Recall that by Corollary 3.20, an ideal K � B is invariant if and only
if it is N -invariant. Let K1,K2 � B be invariant regular ideals. Note that
K1∩K2 is an invariant ideal, so Proposition 2.4 shows K1∧K2 = K1∩K2 is an
invariant regular ideal. For a regular invariant ideal K � B, Proposition 3.19
shows JK � A is a regular ideal and K⊥B = J⊥

K ∩ B. But J⊥
K ∩ B is an

invariant ideal of B, whence ¬K = K⊥B is also a regular invariant ideal in
B. As K1 ∨ K2 = ¬((¬K1) ∧ (¬K2)), we conclude that the invariant regular
ideals of B form a Boolean algebra.

The result now follows from Proposition 3.19 and Proposition 3.22. �

Remark 3.25. Combining Proposition 2.4 with Theorem 3.24 shows that in
the setting of a regular inclusion with the regular ideal intersection property
and a faithful, invariant conditional expectation, the invariant regular ideals
in B and the regular open sets in Prim(A) are isomorphic Boolean algebras.

4. Quotients by Regular Ideals

With the results from Sect. 3, we have all the tools we need to prove our
main results about quotienting by regular ideals. We first note that regular
inclusions are preserved by quotients.

Remark 4.1. Let (A,B) be a regular inclusion and let J � A be any ideal of
A. Then (A/J,B/(J ∩ B)) is a regular inclusion. Indeed, if (uλ) is a net in
B which is an approximate unit for A, then (uλ + J) is a net in B/(B ∩ J)
which is an approximate unit for A/J , so (A/J,B/(J ∩ B)) is an inclusion.
Since {n + J : n ∈ N (A,B)} has dense span in A/J , the inclusion is regular.

Theorem 4.2. Suppose (A,B) is a regular inclusion with the ideal intersection
property. Let N be a ∗-semigroup of normalizers with dense span in A and
suppose there is an N -invariant faithful conditional expectation E : A → B.
Let J�A be a regular ideal. Then B/(J∩B) has the ideal intersection property
in A/J .

Proof. For notational purposes, use q for the quotient mapping of A onto
A/J , let Ȧ := A/J , and Ḃ := B/(B ∩ J).

Let I � Ȧ satisfy I ∩ Ḃ = {0} and put L := q−1(I) � A. Note that L
contains J . Our task is to show J = L. Arguing by contradiction, suppose
J = L. Since J is a regular ideal, Lemma 3.4 shows L∩J⊥ is a non-zero ideal
of A. Define

K := L ∩ B

and note that K = J ∩ B. Indeed, J ∩ B ⊆ L ∩ B because J ⊆ L, and the
reverse inclusion follows from I ∩ Ḃ = {0}.
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By Proposition 3.7, K is a non-zero regular ideal in B. By Proposi-
tion 3.19 and Theorem 3.24, J⊥∩B = K⊥B . Hence (L∩J⊥)∩B = K∩K⊥B =
{0}. This contradicts the ideal intersection property. Thus L = J , and I is
the zero ideal in A/J . �

Remark 4.3. In this remark, we discuss how Theorem 4.2 can be used to give
an alternate proof of [9, Theorem 3.5].

Let E = {E0, E1, r, s} be a directed graph. We assume that E is row-
finite with no sources, that is 0 < r−1(v) < ∞ for all v ∈ E0. A sequence
of edges e1e2 · · · en is a path in E, if for all i, r(ei) = s(ei−1); we say it is
a return path if r(e1) = s(en). We say E satisfies condition (L) if for every
return path e1e2 · · · en there exists an i such that r−1(r(ei))\{ei} = ∅.

A set of mutually orthogonal projections {Pv}v∈E0 and a set of partial
isometries {Se}e∈E is a Cuntz–Krieger E-family if

Ps(e) = S∗
eSe =

∑

r(f)=s(e)

SfS∗
f .

The C∗-algebra of E, C∗(E), is the unique C∗-algebra generated by a uni-
versal Cuntz–Krieger E-family, {pv, se} (for details see [41]). The C∗-algebra
C∗(E) comes equipped with a gauge action. More precisely, for each t ∈ T

the map

γt(se) = tse and γt(pv) = pv

for e ∈ E1 and v ∈ E0, uniquely defines an automorphism on C∗(E) so that
the map t �→ γt is strongly continuous.

Let DE be the C∗-subalgebra of C∗(E) generated by

{(se1
se2

· · · sen
)(se1

se2
· · · sen

)∗ : n ∈ N, ei ∈ E1}.

A consequence of the Cuntz–Krieger Uniqueness theorem [28, Theorem 3.7] is
that DE ⊆ C∗(E) has the ideal intersection property if and only if E satisfies
condition (L).

Now if J is an ideal in C∗(E), then by [5, Theorem 4.1], J is gener-
ated by a set of vertex projections {pv : v ∈ H ⊆ E0} if and only if J is
gauge-invariant and in this case there exists a directed graph E/J such that
C∗(E/J) ∼= C∗(E)/J .

Let E be a a directed graph satisfying condition (L). Suppose J is a
gauge-invariant regular ideal. By Theorem 4.2,

DE/(J ∩ DE) ⊆ C∗(E)/J ∼= C∗(E/J)

has the ideal intersection property and thus E/J satisfies condition (L). Thus
[9, Theorem 3.5] follows from Theorem 4.2.
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In [9, Proposition 3.7] we go on to show that all regular ideals in C∗(E)
are gauge-invariant when the graph E has condition (L). The analogous re-
sult for higher-rank graph C∗-algebras is proved in [45, Proposition 6.7]. We
generalize these results in Theorem 5.6 below (see Sect. 6.1 for details on the
relationship to graph algebras).

Theorem 4.2 has implications for quotients of Cartan inclusions by reg-
ular ideals, and to this we now turn our attention. Let us first recall the
notion of a Cartan inclusion from [44].

Definition 4.4. Let D ⊆ A be a regular inclusion of C∗-algebras. We say that
D is a Cartan subalgebra, or D is Cartan in A if

(i) there is a faithful conditional expectation E : A → D;
(ii) D is maximal abelian in A.

We will also say that (A,D) is a Cartan inclusion when these conditions
hold.

Remark 4.5. Recall that if D is a Cartan subalgebra of A, then the inclusion
D ⊆ A has the ideal intersection property. This well-known fact can be found
in several places, e.g. [36, Corollary 3.2] and [37, Theorem 6.1].

Thus for a Cartan inclusion (A,D), Theorem 4.2 implies that if J � A
is a regular ideal, then D/(J ∩ D) ⊆ A/J has the ideal intersection property
too. It is therefore natural to ask if this quotient inclusion is also Cartan. We
prove this in Theorem 4.8 below. The following example shows that this does
not hold for arbitrary ideals. Another example for graph algebras is described
in [5, Remark 4.5].

Example 4.6. Suppose Z acts on the closed disk D by irrational rotation and

P := D\{(0, 0)}.

Then n · x = x for all x ∈ P. Notice that P is dense in D so C(D) is Cartan
in C(D) � Z ( see [44, Example 6.1]).

On the other hand, P is an open invariant subset of D and so by [42,
Proposition II.4.6] we have that C0(P) � Z is an ideal in C(D) � Z. Moreover
the quotient C(D) � Z/(C0(P) � Z) is isomorphic to C∗(Z) ∼= C(T) and
C(D)/C0(P) ∼= C. As C is not maximal abelian in C(T) we have C(D)/C0(P)
is not Cartan in C(D) � Z/(C0(P) � Z). Thus Cartan inclusions are not
necessarily preserved by quotients. Notice that (P)

◦
= D and so P is not

regular in D. Hence, by Proposition 3.7, we have C0(P) � Z is not a regular
ideal in C(D) � Z.

Before proving Theorem 4.8 which shows the quotient of a Cartan inclu-
sion by a regular ideal is again a Cartan inclusion, we show that Theorem 4.2
guarantees the existence of a faithful conditional expectation in the quotient.

Lemma 4.7. Let (A,B) be a regular inclusion with the ideal intersection prop-
erty, let N be a ∗-semigroup of normalizers with dense span in A, and suppose
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E : A → B is a faithful N -invariant conditional expectation. If J � A is a
regular ideal, then the map

EA/J : A/J → B/(B ∩ J) given by

a + J �→ E(a) + (J ∩ B)

is a well-defined faithful conditional expectation.

Proof. Let K := J ∩ B. For a1, a2 ∈ A, if a1 + J = a2 + J , then a1 −
a2 ∈ J , whence E(a1 − a2) ∈ E(J). By Proposition 3.22, E(J) = K. Thus
E(a1) + K = E(a2) + K. Therefore, EA/J is well-defined, and an argument
using [50, Theorem 1] (adjoining a unit if necessary) shows it is a conditional
expectation.

It remains to show that EA/J is faithful. Let

L := {x ∈ A/J : EA/J(x∗x) = 0}.

We shall show that L is an ideal in A/J . That L is a left ideal follows as in the
proof of Proposition 3.19. To show L is a right ideal, we use the N -invariance
of E: for a + J ∈ L and n ∈ N ,

EA/J([(a + J)(n + J)]∗(a + J)(n + J)) = E(n∗a∗an) + K

= nE(a∗a)n + K

= 0.

This gives (a+J)(n+J) ∈ L. Therefore for any y ∈ spanN , (a+J)(y+J) ∈ L.
Since spanN is dense in A by assumption, L is a right ideal.

By definition, L ∩ (B/K) = {0}, and an application of Theorem 4.2
shows L = {0}. Thus EA/J is a faithful conditional expectation. �

Here is the promised result concerning quotients of Cartan inclusions
by regular ideals.

Theorem 4.8. If D is a Cartan subalgebra of a C∗-algebra A and J � A is a
regular ideal, then D/(J ∩ D) is a Cartan subalgebra of A/J .

Proof. Let K = D ∩ J . Remark 4.1 shows (A/J,D/(D ∩ J)) is a regular
inclusion.

Since (A,D) is a Cartan inclusion, it has the ideal intersection property
(see Remark 4.5). Further, by Example 3.15(ii)(b) the faithful conditional
expectation E : A → D is invariant. We can thus apply Lemma 4.7 to see
that there is a faithful conditional expectation EA/J : A/J → D/K.

It remains to show that D/K is a maximal abelian subalgebra of A/J .
To this end, take a ∈ A such that ad − da ∈ J for all d ∈ D. To complete the
proof, we will show

a + J = E(a) + J. (4.9)

Note that J⊥ ∩ D = K⊥D by Proposition 3.19(ii). If e ∈ J⊥ ∩ D then
ae − ea ∈ J⊥ ∩ J . Thus ae − ea = 0. This shows that

ae = ea for all e ∈ K⊥D .
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Next we show ea commutes with D. For d ∈ D and e ∈ K⊥D , the facts
that ad − da ∈ J , D is abelian, and ae = ea yield,

0 = e(ad − da) = (ea)d − d(ea).

Hence ea commutes with D.
As D is maximal abelian in A we have ea = ae ∈ D, whence ae =

E(ae) = E(a)e. These considerations are independent of the choice of e ∈
K⊥D , so

(a − E(a))e = 0 for all e ∈ K⊥D .

Let n1 and n2 be normalizers of D and take e ∈ K⊥D . Then

((a − E(a))n1en2)((a − E(a))n1en2)∗ = (a − E(a))n1en2n
∗
2e

∗n∗
1(a − E(a))∗

= 0,

since n1en2n
∗
2e

∗n∗
1 ∈ K⊥B . Thus (a − E(a))n1en2 = 0. Therefore

a − E(a) ∈ 〈K⊥B 〉⊥.

However, 〈K⊥B 〉⊥ = J by Proposition 3.19. Hence a + J = E(a) + J ,
establishing (4.9). �

Remark 4.10. The converse of Theorem 4.8 does not hold: it is possible to
find a Cartan inclusion (A,D) and a non-regular ideal J�A so that D/(J∩D)
is Cartan in A/J , see e.g. [9, Example 3.9].

5. C∗-algebras of Twisted Étale Groupoids

We now specialize our study to the C∗-algebras of twisted, Hausdorff, étale
groupoids. As a consequence of exactness we will get an explicit description
of the regular ideals of such C∗-algebras.

To begin our discussion, we recall a few facts and some notation con-
cerning C∗-algebras from twists. We refer the reader to [8, Section 2] for
details.

For a groupoid G we will use G(0) to denote its unit space. We identify
G(0) with the objects in G and use r, s : G → G(0) to denote the range and
source maps.

For each subset Δ ⊆ G(0) there is a subgroupoid

GΔ := {γ ∈ G : r(γ), s(γ) ∈ Δ}.

When GΔ = {γ ∈ G : s(γ) ∈ Δ}, that is, s(γ) ∈ Δ ⇒ r(γ) ∈ Δ, Δ is said to
be an invariant subset of G(0); we will also refer to such as set as invariant.

We assume groupoids are endowed with a locally compact Hausdorff
topology in which composition and inversion are continuous. An open set
B ⊆ G is a bisection if r|B and s|B are homeomorphisms onto their images.
We say G is étale if it has a basis consisting of bisections. A twist is a central
extension of a groupoid G

G(0) × T
ι→ Σ

q
� G.
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We usually suppress writing the maps ι and q and simply denote a twist by
Σ → G or (Σ;G). The map q restricts to a homeomorphism between the unit
spaces Σ(0) and G(0). We will thus identify Σ(0) with G(0) without mention of
q. A well-known construction produces the reduced C∗-algebra, C∗

r (Σ;G) of
(Σ;G); it is the completion of a convolution algebra using the reduced norm.
Details may be found in a number of sources; see for example, [44], [47] or
[8]. If Σ = G × T we drop Σ from the notation and refer to this algebra as
C∗

r (G).
If H is an open subgroupoid of G, the twist Σ → G determines a central

extension

H(0) × T → q−1(H) � H

and C∗
r (q−1(H);H) embeds in C∗

r (Σ;G) [8, Lemma 2.7]. We will use this
embedding in the following instances.

(i) If U is an invariant open subset of G(0), then GU is open in G and
q−1(GU ) = ΣU . The C∗-algebra C∗

r (ΣU ;GU ) embeds in C∗
r (Σ;G) as a

closed ideal. In fact, C∗
r (ΣU ;GU ) = 〈C0(U)〉C∗

r (Σ;G) by [8, Lemma 2.7].
(ii) Since G is étale and Hausdorff, the unit space G(0) is clopen in G.

Further, C∗
r (q−1(G(0));G(0)) embeds in C∗

r (Σ;G). As

C∗
r (q−1(G(0));G(0)) ∼= C0(G(0)),

we identify C0(G(0)) with C∗
r (q−1(G(0));G(0)). In this sense, we regard

C0(G(0)) as a subalgebra of C∗
r (Σ;G); furthermore, (C∗

r (Σ;G), C0(G(0)))
is a regular inclusion.

In the last instance, there exists a canonical conditional expectation E :
C∗

r (Σ;G) → C0(G(0)). This conditional expectation is invariant for the ∗-
semigroup Nbi of normalizers that are supported on bisections. By Corol-
lary 3.20 an ideal C0(U) in C0(G(0)) is invariant in the sense of Definition 3.11
if and only if it is Nbi-invariant. Moreover, C0(U) is an invariant ideal of
C0(G(0)) if and only if U is an invariant open set.

Suppose U is an open invariant set in G(0) and F = G(0) \ U . Since F
is a closed invariant subset, GF is a groupoid with unit space F . Further,
q−1(GF ) = ΣF . We thus get a twist,

F × T → ΣF � GF .

It is not difficult to show that the restriction map, Cc(Σ;G) � g �→ g|F ∈
Cc(ΣF ;GF ), extends to a ∗-homomorphism,

ϕ : C∗
r (Σ;G) → C∗(ΣF ;GF ). (5.1)

Thus, with θ : C0(G(0)) → C0(F ) denoting the quotient map θ(f) = f |F , we
obtain the commutative diagram (where the vertical maps are the conditional
expectations described above),

C∗
r (ΣU ;GU ) ��

EU

��

C∗
r (Σ;G)

E
��

ϕ
�� �� C∗

r (ΣF ;GF )

EF

��

C0(U) �� C0(G(0)) θ �� �� C0(F ).

(5.2)
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While the bottom row is exact in the middle, it is possible that the top row
is not exact [43, Appendix by Skandalis].

Definition 5.3. If the top row of (5.2) is also exact in the middle, we say that
G is inner exact at U . When G is inner exact for every open invariant set
U ⊆ G(0), we say G is inner exact, or more simply, exact.

By [33, Theorem 3.5], inner exactness is a property of G and is indepen-
dent of the twist over G. Our next goal is to obtain a description of certain
regular ideals in the reduced C∗-algebra of a twist over an exact groupoid,
see Theorem 5.6 below.

Let U ⊆ G(0) be an invariant open set. Set

JU := {x ∈ C∗
r (Σ;G) : E(x∗x) ∈ C0(U)}.

(This is simplified notation for the ideal JC0(U) defined in Notation 3.18.)

Proposition 5.4. Suppose Σ → G is a twist, U ⊆ G(0) is an invariant open
set, and ϕ is defined as in (5.1). Then ker ϕ = JU .

Proof. Suppose x ∈ ker ϕ. Then θ(E(x∗x)) = EF (ϕ(x∗x)) = 0 so E(x∗x) ∈
ker θ. Since the bottom row of (5.2) is exact, E(x∗x) ∈ C0(U). Thus, ker ϕ ⊆
JU .

Now suppose x ∈ JU . Then EF (ϕ(x∗x)) = θ(E(x∗x)) = 0, so faithful-
ness of EF gives ϕ(x) = 0. Hence x ∈ ker ϕ, and so ker ϕ = JU as desired. �

This new description of JU as the kernel of a quotient map allows us to
strengthen Corollary 3.21 for twisted groupoid C∗-algebras. In the groupoid
setting, Corollary 3.21 says that if C0(G(0)) has the regular ideal intersection
property in C∗

r (Σ;G), and U ⊆ G(0) is an open regular invariant set, then
C∗

r (ΣU ;GU )⊥⊥ = JU . We now show that for reduced C∗-algebras of twists
we can drop the regular ideal intersection property.

Proposition 5.5. Let Σ → G be a twist. Let U ⊆ G(0) be a regular invariant
open set and F = G(0) \ U . Let ϕ : C∗

r (Σ;G) → C∗
r (ΣF ;GF ) be the ∗-

homomorphism that extends restriction. Then ker ϕ is a regular ideal and
C∗

r (ΣU ;GU )⊥⊥ = ker ϕ.

Proof. By Proposition 5.4, ker ϕ = JU . Since U is regular and invariant,
Proposition 3.19 shows that ker ϕ is regular. Since C∗

r (ΣU ;GU ) ⊆ ker ϕ, we
obtain C∗

r (ΣU ;GU )⊥⊥ ⊆ ker ϕ.
Aiming at a contradiction, assume C∗

r (ΣU ;GU )⊥⊥ = ker ϕ. Then, by
Lemma 3.4,

ker ϕ ∩ C∗
r (ΣU ;GU )⊥ = {0}.

Fix a non-zero positive element a ∈ ker ϕ ∩ C∗
r (ΣU ;GU )⊥. For e ∈ C0(U),

ea = 0 because a ∈ C∗
r (ΣU ;GU )⊥. On the other hand, if f ∈ C0(U⊥), then

fE(a) ∈ C0(U⊥) ⊆ C0(F ), so

fE(a) = θ(fE(a)) = θ(E(fa)) = EF (ϕ(f)ϕ(a)) = 0.
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Thus for any h ∈ C0(U ∪ U⊥)

hE(a) = 0.

But U ∪ U⊥ is dense in G(0), so E(a) = 0. Faithfulness of E gives a = 0,
contrary to hypothesis. Thus kerϕ = C∗

r (ΣU ;GU )⊥⊥, as desired. �

Let Σ → G be a twist and assume that G is exact. We now show that
if (C∗

r (Σ;G), C0(G(0))) has the ideal intersection property then the regular
ideals of C∗

r (Σ;G) have an explicit description in terms of the dynamics of
G.

Theorem 5.6. Let Σ → G be a twist. Suppose that G is exact and U ⊆ G(0) is
a regular invariant open set. Then C∗

r (ΣU ;GU ) is a regular ideal in C∗
r (Σ;G).

If, in addition, C0(G(0)) has the regular ideal intersection property in
C∗

r (Σ;G), every regular ideal of C∗
r (Σ;G) is of this form.

Proof. Since G is exact, ker ϕ = C∗
r (ΣU ;GU ) = JU . By Proposition 5.5,

C∗
r (ΣU ;GU ) is a regular ideal in C∗

r (Σ;G).
Theorem 3.24 shows that in the presence of the regular ideal intersection

property, all regular ideals are of the form C∗
r (ΣU ;GU ). �

The following corollary to (non-twisted) groupoid C∗-algebras is a spe-
cial case of Theorem 5.6. We record it, however, as many of the examples
which motivated this study are in this setting.

Corollary 5.7. Let G be an exact locally compact Hausdorff étale groupoid. If
U ⊆ G(0) is a regular open invariant set, then C∗

r (GU ) is a regular ideal in
C∗

r (G).
If C0(G(0)) has the ideal intersection property inside C∗

r (G) then all
regular ideals of C∗

r (G) are of this form.

In Sect. 6.1, we discuss how Corollary 5.7 applies to graph C∗-algebras.
More generally, Proposition 6.3 gives an application of Theorem 5.6 for Car-
tan inclusions in nuclear C∗-algebras. In Theorem 6.5, a result analogous to
Theorem 5.6 and Corollary 5.7 for reduced crossed products of discrete group
actions on (not necessarily abelian) C∗-algebras is given. If a discrete group
Γ acts on a locally compact Hausdorff space X, then the reduced crossed
product C0(X) �r Γ is both an example of a reduced groupoid C∗-algebra
and a reduced crossed-product C∗-algebra. Corollary 6.6 gives an application
of both Corollary 5.7 and Theorem 6.5 in this setting.

Remark 5.8. A careful reader will note that we did not need that G was exact
for Theorem 5.6 or Corollary 5.7, only that Diagram (5.2) is exact for regular
open sets U ⊆ G(0).

Our aim in the remainder of this section is to present Example 5.13.
This is an example of a groupoid G that is not inner exact but which is inner
exact at all open regular invariant sets U ⊆ G(0).
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Definition 5.9. Let Γ be a discrete group. A sequence of subgroups (Kn) is
an approximating sequence for Γ if

(i) each Kn is a normal, finite index subgroup of Γ;
(ii) Kn ⊇ Kn+1 for all n; and
(iii)

⋂

n Kn = {e}.

Given a discrete group Γ with an approximating sequence (Kn) one can
construct what is known as a HLS groupoid. These groupoids were introduced
(and named for) Higson, Lafforgue and Skandalis [21]. Higson, Lafforgue and
Skandalis use HLS groupoids to give a counter-example to the groupoid ver-
sion of the Baum-Connes conjecture. In so doing, they give an example of
a HLS groupoid which is not exact. We give now the definition of a HLS
groupoid, as presented by Willett [52].

Definition 5.10. Let Γ be a discrete group with an approximating sequence
(Kn). For each n let Γn = Γ/Kn, and let πn : Γ → Γn be the quotient map.
Let Γ∞ = Γ and π∞ be the identity map on Γ. Let N

∗ = N ∪ {∞} be the
one-point compatification of N and let G be the disjoint union of {n} × Γn

for all n ∈ N
∗. That is,

G =
⊔

n∈N∗
{n} × Γn.

Equip G with the topology generated by the sets

(i) {(n, g)} for n ∈ N and g ∈ Γn; and
(ii) for each γ ∈ Γ and N ∈ N, {(n, πn(γ)) : n ∈ N ∪ {∞}, n ≥ N}.

With this topology, {(n, πn(e)) : n ∈ N
∗} is a clopen set in G, and with its

relative topology, it is homeomorphic to N
∗. We identify {(n, πn(e)) : n ∈ N

∗}
with N

∗.
Endow G with a partial product

(n, g1)(m, g2) =

{

(n, g1g2) if n = m

undefined when n = m.

The inverse operation is given by (n, g)−1 = (n, g−1). With these operations,
G becomes a Hausdorff étale topological groupoid and is called the HLS
groupoid associated to Γ and (Kn). The unit space of G is N

∗.

We will need the following proposition for Example 5.13.

Proposition 5.11. Let Γ be a discrete group with an approximating sequence
(Kn) and let G be the associated HLS groupoid. Assume that C∗

r (G) = C∗(G).
Then

C∗
r (GU ) → C∗

r (G) → C∗
r (GN∗\U )

is exact for all regular open sets U ⊆ N
∗.
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Proof. This result hinges on two claims.

Claim 1. If U ⊆ N, then C∗
r (GU ) = C∗(GU ).

To prove this claim note that if U is finite then the groupoid GU is
finite, and the result is clear. If U is infinite, then the result follows from [52,
Lemma 2.6]. Thus Claim 1 is proved.

Claim 2. If U ⊆ N
∗ with ∞ ∈ U and U ∩N infinite, then C∗

r (GU ) = C∗(GU ).

To prove this claim, note that GU is the HLS groupoid associated to
Γ and the approximating sequence (Kn)n∈U∩N. By assumption C∗

r (G) =
C∗(G), so it follows from [52, Lemma 2.7] that we also have C∗

r (GU ) =
C∗(GU ). Thus the second claim holds.

Now, let U ⊆ N
∗ be a regular open set. Then U must take one of the

following forms:

(i) U ⊆ N and U is finite;
(ii) ∞ ∈ U and N

∗\U is finite;
(iii) U ⊆ N and both U and N\U are infinite.

In all cases, Claim 1 and Claim 2 show that we have the commutative
diagram

C∗(GU ) −−−−→ C∗(G) −−−−→ C∗(GN∗\U )
∥

∥

∥

∥

∥

∥

∥

∥

∥

C∗
r (GU ) −−−−→ C∗

r (G) −−−−→ C∗
r (GN∗\U ).

(5.12)

As the top line of (5.12) is exact, the bottom line is also exact. �

Example 5.13. Let F2 be the free group over two generators. Let (Kn) be the
approximating sequence for F2 given in [52, Lemma 2.8], and let G be the
associated groupoid. By [1, Proposition 3.5] G is not exact, since F2 is not
amenable. However, by [52, Lemma 2.7 and Lemma 2.8], C∗

r (G) = C∗(G).
Hence, by Proposition 5.11 the failure of exactness for G does not happen for
open regular invariant sets U ⊆ G(0).

6. Applications

In this section, we give a number of applications.

6.1. Directed Graphs

Let E be a directed graph. In Remark 4.3, we showed that if J is a gauge-
invariant regular ideal in C∗(E), then the graph E/J satisfies condition (L)
if E does. In this subsection we use Corollary 5.7 to show that if E satisfies
condition (L) then all regular ideals in C∗(E) are gauge-invariant recovering
[9, Proposition 3.7].
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To see this, we use the groupoid G constructed from E in [29] which,
among other things, has C∗(E) ∼= C∗

r (G) with the isomorphism sending each
vertex projection pv to a characteristic function on a compact open subset
of G(0). Further, the groupoid G is amenable [29, Corollary 5.5], and so G is
exact, see e.g. [43, Remark 4.5].

Since the gauge-invariant ideals of C∗(E) are precisely the ideals gener-
ated by their vertex projections [5, Theorem 4.1], the gauge-invariant ideals
are ideals of the form C∗

r (GU ) for open invariant sets U ⊆ G(0). As noted in
Example 4.3, DE has the intersection property in C∗(E) if and only if E sat-
isfies condition (L). Thus Corollary 5.7 generalizes [9, Proposition 3.7]. Sim-
ilarly, for higher-rank graph C∗-algebras, Corollary 5.7 recovers [45, Propo-
sition 6.7].

In [17] analogous results to the graph C∗-algebra results of [9] are shown
in the purely algebraic setting of Leavitt path algebras. In a Leavitt path
algebra the correct analogy of a gauge-invariant ideal is a Z-graded ideal. It
is shown in [17, Corollary 3.4] that all regular ideals in a Leavitt path algebra
are graded, even when the graph does not satisfy condition (L). For graph
C∗-algebras, however, condition (L) is needed. Indeed, if E is the graph of
one vertex and one edge, then C∗(E) = C(T). Here any open regular subset
of T gives a regular ideal. None of these, other than {0} and C(T), are gauge-
invariant.

6.2. Transformation Groups

Let Γ be a discrete group acting by homeomorphisms on a compact Hausdorff
space X. The action of Γ on X is topologically free if the interior of Xt :=
{x ∈ X : t · x = x} is empty for all non-identity elements t ∈ Γ. The ideal
intersection property for (C(X) �r Γ, C(X)) is closely related to topological
freeness. In fact, when the action of Γ on X is topologically free, S. Kawamura
and J. Tomiyama show in [25, Theorem 4.1] that (C(X) �r Γ, C(X)) has the
ideal intersection property, and the converse holds when Γ is amenable. We
do not know whether the ideal intersection property for (C(X)�r Γ, C(X)) is
equivalent to topological freeness of the action of Γ on X for discrete groups
Γ if the hypothesis of amenability on Γ is dropped. However, some relaxation
of the amenability hypothesis is possible; see the equivalence of statements
(iv) and (v) of [40, Theorem 4.6].

Recall that a closed set F ⊆ X is regular if it is the closure of its interior;
it is easy to see that a closed set F is regular if and only if X \ F is a regular
open set. We now observe that the restriction of a topologically free action
to an invariant regular closed set is again topologically free.

Proposition 6.1. Let Γ be a discrete group acting topologically freely on a
compact Hausdorff space X. If Y ⊆ X is a regular and closed Γ-invariant
set, then the restricted action of Γ to Y is also topologically free.

Proof. Let Y be an invariant regular closed set. We need to show that the
interior of Ys as a subset of Y , (Ys)

◦Y , is empty for all e = s ∈ Γ. Suppose
s ∈ Γ and (Ys)

◦Y = ∅. This means there exists an open set U ⊆ X such that
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U ∩Y ⊆ Ys with U ∩Y nonempty. Since Y is a regular closed set, U ∩Y ◦ = ∅.
Thus,

∅ = U ∩ Y ◦ ⊆ U ∩ Y ⊆ Ys ⊆ Xs.

This shows the interior of Xs is non-empty. Since Γ acts topologically freely
on X, we conclude s = e. �

Remark 6.2. Proposition 6.1 can be used to construct an alternate proof of
Theorem 4.2 for inclusions C(X) ⊆ C(X) �r Γ.

Compare Proposition 6.1 to Example 4.6. In Example 4.6 X = D, and
F := X\P is a single point. The action of Γ = Z on this point is (necessarily)
trivial, and thus not topologically free. In this case, however, F is not a
regular closed set.

6.3. Cartan Embeddings

We used Theorem 4.2 to show that the quotient of a Cartan inclusion by a
regular ideal is again a Cartan inclusion, see Theorem 4.8. We have already
discussed in Sect. 6.1 that Theorem 5.6 recovers [9, Proposition 6.7]. Recall
that condition (L) in [9, Proposition 6.7] is precisely the condition that the
subalgebra DE is a Cartan subalgebra of the graph algebra C∗(E).

Suppose (A,D) is a Cartan inclusion and let K � D be an invariant
regular ideal. If L � A satisfies L ∩ B = K = E(L), then 〈K〉A ⊆ L ⊆ JK .
This leads to the obvious question: does 〈K〉A = JK? Equivalently, is 〈K〉A a
regular ideal of A? In the graph algebra setting, [9, Proposition 6.7] precisely
says that we always have 〈K〉A = JK for invariant regular ideals K. We
generalize this to more general Cartan inclusions now, using Theorem 5.6.

Proposition 6.3. Let (A,D) be a Cartan inclusion with A nuclear. The map
J �→ J ∩ D is a bijection between the regular ideals of A and the invariant
regular ideals of D. The inverse map is given by K �→ 〈K〉A.

Proof. By [44] (see also [30, Corollary 7.6]), there is a twist Σ → G, with
G Hausdorff, étale, and effective so that A is isomorphic to C∗

r (Σ;G) via an
isomorphism which carries D to C0(G(0)). By [49, Theorem 5.4] G is amenable
if and only if A is nuclear. Further, when G is amenable, G is exact, see, e.g.
[43, Remark 4.11].

Recall from Remark 4.5 that (A,D) has the ideal intersection property.
Thus by applying Theorem 3.24 and Theorem 5.6, we obtain the result. �

6.4. Crossed Products of C∗-Algebras

So far, the applications in this section have dealt with inclusions B ⊆ A where
B is abelian. Here we sketch how our arguments can be applied to reduced
crossed products of possibly nonabelian C∗-algebras by discrete exact groups
to obtain an analogue of Theorem 5.6.

Let Γ be a discrete group acting by automorphisms on a C∗-algebra A.
Let A �r Γ denote the reduced crossed product and let EA : A �r Γ → A be
the usual faithful conditional expectation [11, Proposition 4.1.9]. Recall from
Example 3.14, that EA is invariant under N = {aδs : s ∈ Γ}. Note that, an
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ideal of A is N -invariant if and only if it is invariant under the action of Γ. By
Corollary 3.20 it then follows that an ideal in A is invariant under the action
of Γ if and only if it is an invariant ideal in the sense of Definition 3.11.

If K�A is a Γ-invariant ideal we get the following commutative diagram.

K �r Γ ��

EK

��

A �r Γ
ϕ
�� ��

EA

��

A/K �r Γ

EA/K

��

K �� A
θ �� �� A/K

(6.4)

The bottom line of (6.4) will always be exact. However, it is possible that the
top line may not be exact. As with algebras associated with groupoids (see
Definition 5.3), if the top line of (6.4) is exact for all invariant ideals K � A
we say that the action of Γ on A is exact. In particular, this will happen if
Γ is exact. See [46] for a study of exact actions and the ideal structure of
A �r Γ.

Theorem 6.5. Let Γ be a discrete group that acts by an exact action on a
C∗-algebra A. If K �A is an invariant regular ideal, then K �r Γ is a regular
ideal in A �r Γ.

If in addition A ⊆ A �r Γ has the ideal intersection property, every
regular ideal in A �r Γ has this form.

Proof. Let K be an invariant regular ideal in A. Since the action of Γ is
exact we get that ker ϕ = K �r Γ. Arguing as in Proposition 5.5 one shows
K �r Γ = ker ϕ is a regular ideal, giving the first statement.

Additionally, assume that A ⊆ A �r Γ has the ideal intersection prop-
erty, and let JK be as in Notation 3.18. Arguing as in Proposition 5.4 we
obtain JK = ker ϕ. Now Theorem 3.24 gives that all regular ideals are of this
form. �

Let Γ be a discrete group acting by homeomorphisms on a compact
space X. The reduced crossed-product C(X)�rΓ is isomorphic to the reduced
groupoid C∗-algebra C∗

r (Γ × X), where Γ × X is the transformation group.
Thus, crossed products of abelian C∗-algebras are special cases of groupoid
C∗-algebras. We have the following corollary which is a special case of both
Theorem 6.5 and Corollary 5.7.

Corollary 6.6. Let Γ be an exact discrete group acting on a compact Hausdorff
space X by homeomorphisms. If U ⊆ X is an open regular Γ-invariant subset,
then C0(U) �r Γ is a regular ideal in C0(X) �r Γ.

If the action of Γ on X is topologically free, then all regular ideals of
C0(X) �r Γ are of this form.

Proof. The groupoid Γ × X is exact since the group Γ is exact. This follows
immediately on comparing Definition 5.3 with Definition 1.5 of [46]. If the
action of Γ is topologically free, [25, Theorem 4.1] shows C(X) has the ideal
intersection property in C(X) � Γ. Thus, the result follows by Corollary 5.7
or Theorem 6.5. �
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Remark 6.7. We compare Theorem 6.5 to results of Sierakowski [46]. The
inclusion A ⊆ A�rΓ has the residual intersection property if A/J ⊆ A/J�rΓ
has the ideal intersection property for every invariant ideal J � A. In [46,
Theorem 1.3] it is shown that all ideals of A �r Γ are of the form J �r Γ
for an invariant ideal J � A if and only if the action of Γ is exact on A and
A ⊆ A �r Γ has the residual intersection property. Theorem 6.5 shows that
the ideal intersection property suffices for regular ideals; the residual ideal
intersection property is only needed for non-regular ideals.

The question of when A ⊆ A�r Γ has the ideal intersection property has
been studied by several authors. The ideal intersection property is determined
by the action of Γ on some injective objects. However, instead of topological
freeness, one must instead look to see if the action is properly outer. See [55,
Section 2.3] or [27, Definition 2.8] for definitions of properly outer actions. Let
I(A) be the injective envelope of A and let IΓ(A) be the Γ-injective envelope
of A. We summarize some of the results of Zarikian [55] and Kennedy and
Schafhauser [27].

Theorem 6.8. [cf. [55] and [27]] Let Γ be a discrete group acting on a C∗-
algebra A. Then the following are equivalent:

(i) A ⊆ A �r Γ has the ideal intersection property;
(ii) I(A) ⊆ I(A) �r Γ has the ideal intersection property;
(iii) IΓ(A) ⊆ IΓ(A) �r Γ has the ideal intersection property.
In particular, this will happen if the action of Γ on I(A) is properly outer.

Proof. The equivalence of (i), (ii) and (iii) is [27, Theorem 5.5]. For the second
part see [55, Theorem 6.4] or [27, Theorem 6.4]. �

7. Settings Where the Regular Ideal Intersection Property
and the Ideal Intersection Property Coincide

For most of our theorems we require the seemingly weaker regular ideal inter-
section property instead of ideal intersection property. The main purpose of
this section is to describe some classes of inclusions for which the ideal inter-
section property and regular ideal intersection property coincide. As noted
in the introduction, the ideal intersection property has become an impor-
tant tool for obtaining structural results about inclusions, and it seems to us
that the equivalence of the ideal intersection property and the regular ideal
intersection property is also an interesting structural result in its own right.

We first give an example of an inclusion with the regular ideal intersec-
tion property but without the ideal intersection property.

Example 7.1. Let H be a separable Hilbert space. Let B ⊆ B(H) be any
unital, non-zero C∗-algebra having trivial intersection with the compact op-
erators, K(H). The only ideals in B(H) are {0}, K(H), and B(H). Of these,
{0} and B(H) are regular ideals in B(H), while K(H) is not a regular ideal.
As B(H)∩B = B = {0}, the inclusion (B(H), B) has the regular ideal inter-
section property, but it does not have the ideal intersection property because
K(H) ∩ B = {0}.
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We can choose B above so that B is abelian and the inclusion is regu-
lar. For a straightforward example, the inclusion (B(H), B) will be regular
when B = CI since unitaries normalize B and every T ∈ B(H) is a linear
combination of four unitary operators.

We recall that a topological space is called semiregular if it has a basis
of regular open sets.

Proposition 7.2. Let B ⊆ A be an inclusion of C∗-algebras. Assume that
Prim(A) with the hull kernel topology is semiregular. Then B ⊆ A has the
ideal intersection property if and only if it has the regular ideal intersection
property.

Proof. Since the ideal intersection property implies the regular ideal intersec-
tion property, it suffices to show that for B ⊆ A the regular ideal intersection
property implies the ideal intersection property.

Assume B ⊆ A has the regular ideal intersection property and let
I � A be a non-trivial ideal. Then Prim(A)\hull(I) is an open subset of
Prim(A). By the semiregularity of Prim(A) there is a regular open set U ⊆
Prim(A)\hull(I). By Proposition 2.4, the ideal J = ker(Prim(A)\U) is a
regular ideal A, and by [34, Theorem 5.4.7 (3)] J ⊆ I. By the regular ideal
intersection property J ∩ B = {0}, and hence I ∩ B = {0}. Hence B ⊆ A has
the ideal intersection property. �

Corollary 7.3. Let B ⊆ A be an inclusion of C∗-algebras. Assume that Prim(A)
with the hull kernel topology is Hausdorff. Then B ⊆ A has the ideal inter-
section property if and only if it has the regular ideal intersection property.

In particular, if A is abelian, then B ⊆ A has the ideal intersection
property if and only if it has the regular ideal intersection property.

Proof. The primitive ideal space Prim(A) is always locally compact. Thus if
Prim(A) is Hausdorff then Prim(A) is semiregular. This follows since locally
compact Hausdorff spaces are regular, and regular spaces are semiregular, see
[48, pg. 16]. �

Remark 7.4. By combining Corollary 7.3 with [40, Corollary 3.21] we obtain
several checkable characterizations of unital inclusions B ⊆ A with A abelian
having the regular ideal intersection property or equivalently, the ideal inter-
section property.

Remark 7.5. We can apply Corollary 7.3 to show that regular ideal intersec-
tion property and ideal intersection property are equivalent for inclusions in
a variety of crossed products that are known to have Hausdorff spectrum. For
example, Williams characterizes when the crossed product of a transforma-
tion group (Γ,X, α) with Γ second countable and abelian has Hausdorff spec-
trum [54]. If the stability subgroups of (Γ,X, α) are all subgroups of a fixed
abelian group, Williams characterizes when the crossed product is continu-
ous trace (and so by definition has Hausdorff spectrum) [53, Theorem 5.1].
Echterhoff uses Williams’ result to give conditions that guarantee crossed
products are continuous trace for transformation groups (Γ,X, α) with Γ a
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Lie group [12, Corollary 3] or Γ is a discrete group [12, Theorem 3]. More-
over, Archbold and an Huef [3, Theorem 3.9] characterize when the crossed
product has continuous trace when the action of Γ on Prim(A) is free.1

We state one application using a theorem of Green [18].

Corollary 7.6. Let Γ be a locally compact group with with a free, proper ac-
tion on a locally compact Hausdorff space X. Let B ⊆ C0(X) � Γ be a C∗-
subalgebra. Then B ⊆ C0(X) � Γ has the ideal intersection property if and
only if it has the regular ideal intersection property.

Proof. Note that the reduced crossed product C(X)�r Γ and the full crossed
product C(X) � Γ coincide since the action of Γ is free and proper. The
quotient space X/G is Hausdorff and Prim(C(X) � Γ) ∼= X/G by [18, Theo-
rem 14]. The result thus follows from Corollary 7.3. �

The following application of Corollary 7.3 gives a wide variety of exam-
ples where the regular ideal intersection property is equivalent to the ideal
intersection property.

Theorem 7.7. Let (A,B) be a regular inclusion with B abelian and assume
that Bc, the relative commutant of B in A, is abelian. If (A,Bc) is a Cartan
inclusion, then (A,B) has the ideal intersection property if and only if (A,B)
has the regular ideal intersection property.

Remark 7.8. Suppose (A,B) is a regular inclusion with both B and Bc

abelian. We wish to observe that Bc ⊆ A is a regular inclusion of C∗-algebras.
An easy argument using the partial automorphism θn of [39, Corollary 2.3]
shows N (A,B) ⊆ N (A,Bc). Therefore, Bc is regular in A. Because B con-
tains an approximate unit for A, so does Bc, whence (A,Bc) is a regular
inclusion. Thus, in the setting of Theorem 7.7, (A,Bc) is a Cartan inclusion
if and only if there is a faithful conditional expectation of A onto Bc.

Proof of Theorem 7.7. To show that the regular ideal intersection property
implies the ideal intersection property, we establish the contrapositive. So
assume B ⊆ A does not have the ideal intersection property and let {0} =
J � A be such that J ∩ B = {0}. By hypothesis, Bc ⊆ A has the ideal
intersection property. Thus J ∩ Bc = {0}. Thus the inclusion B ⊆ Bc does
not have the ideal intersection property. By Corollary 7.3, B ⊆ Bc does not
have the regular ideal intersection property.

Therefore, we may find a non-trivial regular ideal K � Bc such that
K ∩ B = {0}. By Theorem 3.24, there is a regular ideal JK � A such that
JK ∩Bc = K. Hence JK ∩B = K ∩B = {0}. That is, JK �A is a non-trivial
regular ideal with trivial intersection with B. Hence B ⊆ A does not have
the regular ideal intersection property. �

We can readily apply Theorem 7.7 to graph C∗-algebras.

1We would like to thank the anonymous referee for pointing out the above applications.
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Corollary 7.9. Let E be a row-finite graph. Let DE be the abelain subalgebra
of the graph C∗-algebra C∗(E) described in Remark 4.3. The following are
equivalent:

(i) E satisfies condition (L);
(ii) DE has the ideal intersection property in C∗(E); and
(iii) DE has the regular ideal intersection property in C∗(E).

Proof. The commutant of DE in C∗(E) is a Cartan subalgebra of C∗(E) by
[35, Theorem 3.6 and Theorem 3.7]. Thus the result follows from Theorem 7.7
and the Cuntz–Krieger Uniqueness theorem [28, Theorem 3.7]. �

Our final corollary states that the regular ideal intersection property
and the ideal intersection property coincide for many groupoid C∗-algebras
of interest, not just graph C∗-algebras.

Corollary 7.10. Suppose G is an étale groupoid and let G′ be the isotropy of
G. Assume that G′ is abelian and the interior of G′ is closed in G. Then
C0(G(0)) ⊆ C∗

r (G) has the ideal intersection property if and only if it has the
regular ideal intersection property.

Proof. Let (G′)◦ be the interior of the isotropy of G. By [10, Corollary 4.5],
C∗((G′)◦) is Cartan in C∗

r (G). Let C0(G(0))c be the relative commutant of
C0(G(0)) inside C∗

r (G). The result will follow from Theorem 7.7 once we
show,

C0(G(0))c = C∗
r ((G′)◦). (7.11)

Now Proposition II.4.7 (i) in [42] shows first that C∗
r ((G′)◦) ⊆ C0(G(0))c and

second that for any b ∈ C0(G(0))c we must have b supported in G′. But then
the open support of b must be contained in (G′)◦ and since (G′)◦ is closed
we get b ∈ C∗

r ((G′)◦), that is C0(G(0))c = C∗
r ((G′)◦) as desired. �
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