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Solving Continuous Time Leech Problems
for Rational Operator Functions

A. E. Frazho, M. A. Kaashoek and F. van Schagen

Abstract. The main continuous time Leech problems considered in this
paper are based on stable rational finite dimensional operator-valued
functions G and K. Here stable means that G and K do not have poles
in the closed right half plane including infinity, and the Leech problem
is to find a stable rational operator solution X such that

G(s)X(s) = K(s) (s ∈ C+) and sup{‖X(s)‖ : �s ≥ 0} < 1.

In the paper the solution of the Leech problem is given in the form of
a state space realization. In this realization the finite dimensional oper-
ators involved are expressed in the operators of state space realizations
of the functions G and K. The formulas are inspired by and based on
ideas originating from commutant lifting techniques. However, the proof
mainly uses the state space representations of the rational finite dimen-
sional operator-valued functions involved. The solutions to the discrete
time Leech problem on the unit circle are easier to develop and have
been solved earlier; see, for example, Frazho et al. (Indagationes Math
25:250–274 2014).
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1. Introduction

Throughout this paper U , E and Y are all finite dimensional Hilbert spaces.
Furthermore, H∞(U ,Y) is the Hardy space formed by the set of all operator
valued functions F (s) mapping U into Y that are analytic in the open right
half plane C+ = {s ∈ C : �(s) > 0} and

‖F‖∞ = sup{‖F (s)‖ : �(s) > 0} < ∞. (1.1)
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Moreover, L2
+(U) is the Hilbert space formed by the set of all Lebesgue mea-

surable functions g(t) with values in U , t ≥ 0 and such that

‖g‖2
L2

+
=

∫ ∞

0

‖g(t)‖2
Udt < ∞.

Let G in H∞(U ,Y) and K in H∞(E ,Y) be rational functions. Let TG

and TK denote the corresponding Wiener–Hopf operators,

TG : L2
+(U) → L2

+(Y) and TK : L2
+(E) → L2

+(Y).

To be precise,

(
TGu

)
(t) = D1u(t) +

∫ t

0

g◦(t − τ)u(τ)dτ (for 0 ≤ t < ∞)

(
TKv

)
(t) = D2v(t) +

∫ t

0

k◦(t − τ)v(τ)dτ (for 0 ≤ t < ∞)

G(s) = D1 +
(
Lg◦

)
(s) and K(s) = D2 +

(
Lk◦

)
(s) (for s ∈ C+). (1.2)

Here Lg◦ and Lk◦ denote the Laplace transform of the functions g◦ and k◦,
respectively, that is,

(
Lg◦

)
(s) =

∫ ∞

0

g◦(t)e−stdt (for s ∈ C+)

(
Lk◦

)
(s) =

∫ ∞

0

k◦(t)e−stdt (for s ∈ C+). (1.3)

It is emphasized that in our problems g◦ and k◦ are integrable operator valued
functions over the interval [0,∞). Following engineering notation, the time
function g(t) is denoted with a lower case, while its Laplace transform G(s)
is denoted by a capital.

A function X in H∞(E ,U) is called a solution to the Leech problem
associated with data G and K whenever

G(s)X(s) = K(s) (s ∈ C+) and ‖X‖∞ ≤ 1. (1.4)

The Leech problem is an example of a metric constrained interpolation prob-
lem, the first part of (1.4) is the interpolation condition, and the second part
is the metric constraint.

In an unpublished note from the early 1970’s (and then eventually pub-
lished) [20] Leech proved that the problem is solvable if and only if the oper-
ator TGT ∗

G − TKT ∗
K is nonnegative. Later the Leech theorem was derived as

a corollary of more general results; see, e.g., [21, page 107], [9, Sect. VIII.6],
and [1, Sect. 4.7]. But in Leech’s work and in the other results just mentioned
the problem was solved for H∞ functions in the open unit disc. In that case,
TG and TK are Toeplitz operators. Here we are working with H∞ functions
in the open right half plane.

One can use a Cayley transform to obtain a right half plane solution from
an open unit disc solution. Moreover, one can directly use the commutant lift-
ing theorem with the unilateral shift on the appropriate H2 space determined
by the multiplication operator s−1

s+1 , to arrive at state space solutions to the
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Leech problem. However, these methods usually lead to cumbersome formu-
las, that are not natural. Motivated by commutant lifting techniques in the
discrete case we will derive a special state space solution for our continuous
time Leech problem, which avoids all the complications associated with the
Cayley transform.

In what follows it is assumed that G and K are stable rational finite di-
mensional operator functions. In other words, G and K are rational operator-
valued H∞ functions. In that case, if the Leech problem associated with G
and K is solvable, one expects the problem to have a stable rational finite
dimensional operator solution as well. However, a priori this is not clear, and
the existence of rational solutions in the discrete time case was proved only
recently in [25] by reducing the problem to polynomials, in [24] by adapting
the lurking isometry method used in [2], and in [15] by using a state space
approach.

The special case of Leech’s theorem in the discrete time setting, with
E = Y and K identically equal to the identity operator IY is part of the
Toeplitz-corona theorem, which is due to Carlson [7] for Y = C, and is due
to Fuhrmann [16] for an arbitrary finite dimensional Y. The least squares
solution of the Toeplitz-corona version of the equation can be found in [13]
and a description of all solutions without any norm constraint in [14].

References [22,23] present a nice state space approach based on loss-
less systems to provide all solutions to a general or two sided continuous
time Leech problem. These papers rely mainly on state space and algebraic
techniques. Our approach is different, that is, we use operator methods to
develop a solution to the Leech problem. Inspired by the central solution for
the commutant lifting theorem, we present a solution to the Leech problem
by using the corresponding Wiener–Hopf operators; see Theorem 1.1 below.
Then we apply classical state space methods to convert this operator for-
mula to a state space solution and prove some stability results. To keep the
presentation simple, we only concentrated on one solution.

For an engineering perspective on discrete time Toeplitz-corona and
related problems with applications to signal processing we refer to [22,23,
26,27] and the references therein. See [3] for a nice state space presentation
of many classical interpolation problems in both the discrete and continuous
time. However, [3] does not treat Leech or Bezout type problems.

Now let X in H∞(E ,U) be a solution to our Leech interpolation problem
with data G and K. Since ‖TX‖ = ‖X‖∞, we see that TX is a contraction.
Because GX = K is equivalent to TGTX = TK , we have

TGT ∗
G − TKT ∗

K = TG

(
I − TXT ∗

X

)
T ∗

G ≥ 0.

In other words, TGT ∗
G − TKT ∗

K is a positive operator.
In this paper we will provide an explicit state space solution when the

operator TGT ∗
G − TKT ∗

K is strictly positive, that is, TGT ∗
G − TKT ∗

K positive
and invertible. In this case TGT ∗

G is strictly positive too.
In general, when M is a positive and invertible operator, then M is called

strictly positive, and in that case we write M 	 0. Thus TGT ∗
G − TKT ∗

K 	 0
if and only if TGT ∗

G − TKT ∗
K is strictly positive.



32 Page 4 of 37 A.E. Frazho et al. IEOT

Assume that the operator TG is onto, or equivalently, assume that TGT ∗
G

is strictly positive. In particular,

Λ := T ∗
G

(
TGT ∗

G

)−1
TK (1.5)

is a well defined operator mapping L2
+(E) into H = ker(TG)⊥ and satisfying

TGΛ = TK . It is noted that ‖Λ‖ < 1, that is, Λ is strictly contractive if and
only if TGT ∗

G −TKT ∗
K is strictly positive. Notice that Λ is strictly contractive

if and only if

1 > rspec (Λ∗Λ) = rspec

(
T ∗

K

(
TGT ∗

G

)−1
TK

)
= rspec

((
TGT ∗

G

)−1
TKT ∗

K

)

= rspec

((
TGT ∗

G

)−1/2
TKT ∗

K

(
TGT ∗

G

)−1/2
)

.

In other words, Λ is strictly contractive if and only if

I − (
TGT ∗

G

)−1/2
TKT ∗

K

(
TGT ∗

G

)−1/2

is strictly positive. Multiplying both sides by
(
TGT ∗

G

)1/2, we see that Λ is
strictly contractive if and only if TGT ∗

G − TKT ∗
K is strictly positive.

Throughout this paper we assume that Λ defined in (1.5) is strictly
contractive, or equivalently, TGT ∗

G −TKT ∗
K is assumed to be strictly positive.

In fact, we will develop a state space method involving an algebraic Riccati
equation to determine when Λ is strictly contractive. Then motivated by
the central solution for the commutant lifting theorem, we will compute a
solution X for our Leech problem with data G and K. In fact what we shall
present is an analog of Theorem IV.4.1 in [10], which uses a central solution
based on a discrete time setting. For the non-discrete time setting the null
space for the backward shift in Theorem IV.4.1 in [10] is replaced by the
Dirac delta function. An explanation of the role of the Dirac delta is given in
Sect. 14 “(Appendix 2)”. We will directly show that our solution is indeed a
solution to our Leech problem. The next theorem is our first main result for
the non-discrete case.

Theorem 1.1. Let G in H∞(U ,Y) and K in H∞(E ,Y) be two rational func-
tions. Assume that TGT ∗

G − TKT ∗
K is strictly positive, or equivalently, Λ =

T ∗
G (TGT ∗

G)−1
TK is a strict contraction. Let X be the function defined by

X(s) = U(s)V (s)−1 (1.6)

where U(s) and V (s) are the functions defined by

U(s) =
(
LΛ (I − Λ∗Λ)−1

δ
)
(s)

V (s) =
(
L (I − Λ∗Λ)−1

δ
)
(s). (1.7)

Here δ(t) is the Dirac delta function and L is the Laplace transform.
(i) Then X is a solution to our Leech problem. To be precise, X is a function

in H∞(E ,U) satisfying G(s)X(s) = K(s) and ‖X‖∞ < 1.
(ii) Moreover, V (s) is an invertible outer function, that is, both V (s) and

V (s)−1 are functions in H∞(E , E). In fact, the function

Θ(s) = V (∞)1/2V (s)−1 (1.8)
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is the outer spectral factor for the function I − X∗(−s)X(s), that is

I − X(−s)∗X(s) = Θ(−s)∗Θ(s). (1.9)

In this paper we shall derive state space formulas for X(s) and Θ(s).
Furthermore, we will directly show that X(s) is indeed a strictly contractive
solution to our Leech problem, that is, G(s)X(s) = K(s) and ‖X‖∞ < 1 and
Θ is the outer spectral factor for I − X(−s)∗X(s).

The formula for X(s) = U(s)V (s)−1 in Eq. (1.7) was motivated by
[10, Theorem IV.4.1], which is a consequent of the central solution to the
Sz.-Nagy–Foias commutant lifting theorem. It is emphasized that the setting
in [10, Theorem IV.4.1] was developed for the discrete time case, that is,
when the Hardy spaces are in the open unit disc, and the corresponding
operators are Toeplitz operators. Similar type formulas for U and V are also
presented in the band method for the discrete time Nehari problem (see [18]).
To arrive at X(s) = U(s)V (s)−1 in (1.7), we replaced the Toeplitz operators
by Wiener–Hopf operators and the kernel of the backward shift by the Dirac
delta function. This leads to the formula in (1.7) for our solution to the Leech
problem. Of course, there are several issues that arise when one makes these
adjustments to arrive at X(s) in (1.7). First and foremost is that the Dirac
delta function δ(t) is not a well defined function. Moreover, we did not present
any justification on why replacing a Toeplitz operators with Wiener–Hopf
operators and using the Laplace transform instead of a Fourier transform
should lead to a solution X(s) = U(s)V (s)−1 to our Leech problem with
data G(s) and K(s). However, we will put all of these issues to rest. First
we will use the formula X(s) = U(s)V (s)−1 in (1.7) to derive the state space
realization for X(s) in Theorem 3.2. Then, once we have these state space
formulas, we will directly verify that X(s) = U(s)V (s)−1 in Theorem 3.2 is
indeed a solution to our Leech problem. Moreover, we will also directly verify
that all the other results in Theorem 3.2 hold. This direct verification of the
solution should eliminate any doubt one may have concerning our solution
X(s) to the continuous time Leech problem. Finally, it is noted that we can
adapt Theorem IV.4.1 in [10] with the corresponding unilateral shifts on H2

of the right half plane to obtain Theorem 1.1. However, we decided to simply
give the result and verify directly that it holds on the Leech problem.

The paper consists of 14 sections including the introduction, which con-
tains the first main theorem (Theorem 1.1). Throughout, beginning in Sect.
2, the emphasis will be on Leech problems that are based on finite dimen-
sional state space realizations. In the third section the two main theorems
are presented, and the first one is proved in the fourth section. The Proof
of Theorem 1.1 and the proof of the second theorem in Sect. 3 are based on
Lemmas 5.1, 6.1 and 7.1, using formulas (5.3), (6.2), and (7.4). Furthermore,
the solution X is given by (8.2), and then Sects. 10 and 11 prove Theorem 3.2.
The Proof of Theorem 1.1 is presented in Sect. 12. The Appendices 1 and 2
in Sects. 13 and 14 respectively, present classical results that are used in the
paper. “Appendix 1” treats a Riccati equation. In “Appendix 2” the defini-
tion of the Dirac delta function δ for the specific class of operators that we



32 Page 6 of 37 A.E. Frazho et al. IEOT

need is developed. In fact, the results in Sect. 14 are a special case of the
general theory of Dirac delta functions.

For completeness assume that TGT ∗
G − TKT ∗

K is a positive operator not
necessarily strictly positive, or equivalently, ‖T ∗

Gy‖ ≥ ‖T ∗
Ky‖ for all y in

L2
+(Y). Then there exists a contraction Λ mapping L2

+(E) into H = ker(TG)⊥

such that Λ∗T ∗
G = TK , or equivalently, TGΛ = TK . By choosing the ap-

propriate unilateral shifts one can use the Sz.-Nagy–Foias commutant lifting
theorem to show that there exists a function X in H∞(E ,U) such that

Λ = PHTX and ‖X‖∞ = ‖TX‖ ≤ 1. (1.10)

In particular, X is a solution to our Leech problem. So there exists a solution
to our Leech problem if and only if TGT ∗

G − TKT ∗
K is positive. Finally, we

compute a solution to our Leech problem when TGT ∗
G − TKT ∗

K is strictly
positive. The strictly positive hypothesis is due to standard numerical issues
with solving Riccati equations.

2. The State Space Setup

Throughout this paper, we assume that G and K are stable rational matrix
functions. Given this we will establish a state space method involving a special
Riccati equation to determine when the operator TGT ∗

G − TKT ∗
K is strictly

positive, or equivalently, Λ = T ∗
G (TGT ∗

G)−1
TK is strictly contractive.

To develop a solution to our rational Leech problem with data G and
K, we use some classical state space realization theory from mathematical
systems theory (see, e.g., Chapter 1 of [8] or Chapter 4 in [4]). For our G
and K this means that the matrix function

[
G K

]
admits a state space

representation of the following form:[
G(s) K(s)

]
=

[
D1 D2

]
+ C(sI − A)−1

[
B1 B2

]
. (2.1)

As expected, I denotes the identity operator. Throughout A is a stable opera-
tor on a finite dimensional space X . By stable we mean that all the eigenvalues
for A are in the open left half plane {s ∈ C : �(s) < 0}. Moreover, B1, B2, C,
D1 and D2 operate between the appropriate spaces. Since G and K are sta-
ble rational operator valued functions, G and K have no poles in the closed
right half plane {s ∈ C : �(s) ≥ 0}. The realization (2.1) is called minimal
if there exists no realization of

[
G K

]
as in (2.1) with the dimension of the

state space X smaller than the one in the given realization. In that case, the
dimension of the state space X of A is called the McMillan degree of

[
G K

]
.

If the realization (2.1) is minimal, then the matrix A is automatically stable.
We will use the realization (2.1) of

[
G(s) K(s)

]
to obtain alternative

formulas for the functions U(s) and V (s) in (1.7). These alternative state
space formulas will be given in Eqs. (6.2) and (5.3) below.

The observability operator Wobs mapping X into L2
+(Y) is defined by(

Wobsx
)
(t) = CeAtx (x ∈ X ). (2.2)

If the realization is minimal, then the pair {C,A} is observable, and thus,
the operator Wobs is one to one. We do not require the realization (2.1) to be
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minimal. All we need is that A is stable and the pair {C,A} is observable, or
equivalently, Wobs is one to one. However, from a practical perspective, one
would almost always work with a minimal realization. This guarantees that
A is stable, makes the state space computations more efficient.

As a first step towards our main result we obtain Theorem 3.1 below,
which presents a necessary and sufficient condition for TGT ∗

G − TKT ∗
K to be

strictly positive in terms of the operators in (2.1) and related matrices. To
accomplish this we need the rational matrix function with values in Y given
by

R(s) = G(s)G̃(s) − K(s)K̃(s). (2.3)

Here G̃(s) = G(−s)∗ and K̃(s) = K(−s)∗. Note that R has no pole on the
imaginary axis {iω : −∞ < ω < ∞}.

In Sect. 13 “(Appendix 1)” we will show that R admits the following
state space representation:

R(s) = C(sI − A)−1Γ + R0 − Γ∗(sI + A∗)−1C∗. (2.4)

Here R0 on Y and Γ mapping Y into X are defined by

R0 = D1D
∗
1 − D2D

∗
2 , (2.5)

Γ = B1D
∗
1 − B2D

∗
2 + ΔC∗, (2.6)

where Δ is the unique solution of the Lyapunov equation

AΔ + ΔA∗ + B1B
∗
1 − B2B

∗
2 = 0. (2.7)

Since A is stable, this Lyapunov equation is indeed solvable. The solution is
unique and given by

Δ =
∫ ∞

0

eAt (B1B
∗
1 − B2B

∗
2) eA∗tdt. (2.8)

With our realization for R(s) we associate the following algebraic Riccati
equation:

A∗Q + QA + (C − Γ∗Q)∗R−1
0 (C − Γ∗Q) = 0. (2.9)

For the moment, let us assume that R0 is strictly positive. Then we say that
Q is a stabilizing solution to the algebraic Riccati (2.9) if Q is a strictly
positive operator solving (2.9) and the operator A0 on X defined by

A0 = A − ΓC0, and C0 = R−1
0 (C − Γ∗Q) (2.10)

is stable. If a stabilizing solution exists, then it is unique. If Q is a stabilizing
solution, then W0 is the observability mapping X into L2

+(Y) corresponding
to the pair {C0, A0} defined by(

W0x
)
(t) = C0e

A0tx (x ∈ X ). (2.11)

Finally, TR denotes the non-causal Wiener–Hopf operator determined
by R, that is,

(
TRy)(t) = R0y(t) +

∫ t

0

CeA(t−τ)Γy(τ)dτ +
∫ ∞

t

Γ∗eA∗(τ−t)C∗y(τ)dτ

(2.12)
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where y(t) is a vector in L2
+(Y).

Remark 2.1. Theorem 13.4 in Sect. 13 “(Appendix 1)” shows that TR is a
strictly positive operator on L2

+(Y) if and only if R0 	 0 and there exists a
stabilizing solution to the algebraic Riccati Eq. (2.9). In this case, the unique
stabilizing solution Q is given by Q = W ∗

obsT
−1
R Wobs.

3. Main Theorems

The first main theorem presented in this paper is Theorem 1.1 in the In-
troduction. The two other main theorems are Theorems 3.1 and 3.2 in the
present section. The proofs of these three main theorems are given in different
sections. The Proof of Theorem 1.1 is given in Sect. 12, the Proof of Theorem
3.1 is the main issue of Sect. 4, and the Proof of Theorem 3.2 is based on the
results of Sects. 5–10 and 13 “(Appendix 1)” and is completed in Sect. 11.

Theorem 3.1. Let G and K be stable rational matrix functions, and assume
that

[
G K

]
is given by the minimal realization (2.1). Let R be the function

defined in (2.4). Then the operator

TGT ∗
G − TKT ∗

K

is strictly positive if and only if the following two conditions hold.
(i) The operator TR is strictly positive, or equivalently, R0 given by (2.5) is

strictly positive and there exists a stabilizing solution Q to the algebraic
Riccati equation (2.9), that is, Q 	 0 and the operator A0 defined by
(2.10), i.e.,

A0 = A − ΓR−1
0 (C − Γ∗Q) (3.1)

is stable.
(ii) The operator Q−1 − Δ is strictly positive.
In this case, the Wiener–Hopf operator TR is strictly positive and the unique
stabilizing solution to the algebraic Riccati equation is given by

Q = W ∗
obsT

−1
R Wobs. (3.2)

The inverse of the operator TGT ∗
G − TKT ∗

K is determined by
(
TGT ∗

G − TKT ∗
K

)−1

= T−1
R + W0Δ

(
I − QΔ

)−1
W ∗

0 . (3.3)

Finally, R(s) = Φ̃(s)Φ(s) where Φ is the invertible outer function given by

Φ(s) = R
1/2
0

(
I + C0(sI − A)−1Γ

)
Φ(s)−1 =

(
I − C0(sI − A0)−1Γ

)
R

−1/2
0

C0 = R−1
0 (C − Γ∗Q) . (3.4)

Equation (3.2) and the outer spectral factorization R(s) = Φ̃(s)Φ(s)
with Φ in (3.4) is a special case of Theorem 13.4 in Sect. 13 “(Appendix 1)”.
Using Theorem 13.4, we will directly prove the following result.
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Theorem 3.2. Let G and K be stable rational matrix functions, and let
[
G K

]
be given by the minimal (stable) realization (2.1). Furthermore, assume that
TGT ∗

G − TKT ∗
K is strictly positive, or equivalently, assume that items (i) and

(ii) of Theorem 3.1 hold. Then the following holds.

(i) A solution X to the Leech problem with data G and K is given by the
following stable state space realization:

X(s) = D†
1D2 + Cx

(
sI − A

)−1(
B2 − B1D

†
1D2

)
Cx = D†

1C +
(
I − D†

1D1

)
B∗

1Q
(
I − ΔQ

)−1

A = A − B1Cx

D†
1 = D∗

1(D1D
∗
1)−1. (3.5)

The operator A is stable, and ‖X‖∞ < 1. Finally, the McMillan degree
of X is less than or equal to the McMillan degree of

[
G K

]
.

(ii) Let Θ(s) be the rational function in H∞(E , E) defined by

Θ(s) = D−1/2
v − D−1/2

v Cθ

(
sI − A)−1

(
B2 − B1D

†
1D2

)
Cθ = (D∗

2C0 + B∗
2Q)

(
I − ΔQ

)−1

Dv = I + D∗
2R−1

0 D2. (3.6)

Then Θ is an invertible outer function, that is, both Θ(s) and Θ(s)−1

are functions in H∞(E , E). Furthermore, Θ is the outer spectral factor
for I − X̃X. To be precise,

Θ̃(s)Θ(s) = I − X̃(s)X(s). (3.7)

Theorem 3.1 will be proved in the next section. The Proof of Theo-
rem 3.2 will be finished at the end of Sect. 11.

4. Proof of Theorem 3.1

Throughout the section G in H∞(U ,Y) and K in H∞(E ,Y) are rational func-
tions, and we assume that

[
G K

]
is given by the minimal stable realization

in (2.1). We first prove three lemmas. The first deals with the rational matrix
function R(s) defined by (2.3).

Lemma 4.1. Let R be the L∞(Y,Y) rational matrix function defined by (2.3).
If TGT ∗

G − TKT ∗
K is strictly positive, then TR is strictly positive.

Proof. Assume that TGT ∗
G − TKT ∗

K is strictly positive. For each α ∈ C+ set
ϕα(t) = e−αt. Notice that G(s) = D1 + (Lgo)(s) where go(t) = CeAtB1. For
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y in Y, we have

(T ∗
Gyϕα) (t) = D∗

1ye−αt +
∫ ∞

t

go(τ − t)∗ye−ατdτ

= D∗
1ye−αt +

∫ ∞

t

go(τ − t)∗ye−α(τ−t)e−αtdτ

= D∗
1ye−αt + e−αt

∫ ∞

0

go(u)∗ye−αudu

=
(
D∗

1 +
(
Lg∗

o

)
(α)

)
yϕα(t) = G(α)∗yϕα(t).

In other words, for �(α) > 0:(
T ∗

Gyϕα

)
(t) = ϕα(t)G(α)∗y (when ϕα(t) = e−αt and y ∈ Y). (4.1)

Using this with the corresponding result for K, we have

T ∗
Gyϕα = ϕαG(α)∗y and T ∗

Kyϕα = ϕαK(α)∗y (when y ∈ Y). (4.2)

Notice that

‖ϕα‖2 = (ϕα, ϕα) =
∫ ∞

0

e−αte−αtdt =
1

α + α
.

Since TGT ∗
G − TKT ∗

K is strictly positive (by assumption), there exists η > 0
such that TGT ∗

G − TKT ∗
K ≥ ηI. Hence for y in Y, we have

((TGT ∗
G − TKT ∗

K)yϕα, yϕα) ≥ η(yϕα, yϕα).

This with (4.2) readily implies that

η‖y‖2

α + α
= η‖yϕα‖2 ≤ ‖T ∗

Gyϕα‖2 − ‖T ∗
Kyϕα‖2

= ‖ϕαG(α)∗y‖2 − ‖ϕαK(α)∗y‖2

= ‖ϕα‖2
L2

+

(
‖G(α)∗y‖2

U − ‖K(α)∗y‖2
E
)

=
(G(α)G(α)∗y, y) − (K(α)K(α)∗y, y)

α + α
.

In other words, we have

G(α)G(α)∗ − K(α)K(α)∗

α + α
≥ η

α + α
I (α ∈ C+).

Multiplying with α + α and taking limits α → iω on the imaginary axis,
shows

R(iω) = G(iω)G̃(iω) − K(iω)K̃(iω)

= G(iω)G(iω)∗ − K(iω)K(iω)∗ ≥ ηI, (for − ∞ < ω < ∞).

This is equivalent to TR being strictly positive. See [21, Chapter 3, Examples
and Addenda] and [21, Sect. 6.2, Theorem B]. �

Lemma 4.2. Let Wobs be defined by (2.2), and let Δ be the unique solution of
the Lyapunov Eq. (2.7). Then

TGT ∗
G − TKT ∗

K = TR − WobsΔW ∗
obs. (4.3)
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In particular, the operator TGT ∗
G −TKT ∗

K is strictly positive if and only if the
operator TR − WobsΔW ∗

obs is strictly positive.

Proof. We first recall some elementary facts concerning Hankel operators. To
this end, let

(HGw) (t) =
∫ ∞

0

go(t + τ)w(τ)dτ (t ≥ 0)

be the Hankel operator determined by G(s) = D1 +Lgo(t). In a similar way,
let HK be the corresponding Hankel operator mapping L2

+(E) into L2
+(Y)

determined by K. Let Wcon,1 mapping L2
+(U) into X and Wcon,2 mapping

L2
+(E) into X be the controllability operators defined by

Wcon,jw =
∫ ∞

0

eAtBjw(t)dt (for j = 1, 2).

Let Pj be the controllability Gramian defined by Pj = Wcon,jW
∗
con,j for

j = 1, 2. Notice that Pj is the unique solution to the Lyapunov equation

APj + PjA
∗ + BjB

∗
j = 0 (for j = 1, 2).

Hence Δ = P1 − P2. Using G(s) = D1 +
(
Lgo

)
(s) where go(t) = CeAtB1 and

the corresponding result K(s) = D2 +
(
Lko

)
(s) where ko(t) = CeAtB2, we

see that HG = WobsWcon,1 and HK = WobsWcon,2. Finally,

HGH∗
G = WobsP1W

∗
obs and HKH∗

K = WobsP2W
∗
obs. (4.4)

The Wiener–Hopf operators TGG∗ and TKK∗ are given by the following
identities:

TGG∗ = TGT ∗
G + HGH∗

G and TKK∗ = TKT ∗
K + HKH∗

K . (4.5)

Using R = GG̃ − KK̃, we have

TR = TGT ∗
G − TKT ∗

K + HGH∗
G − HKH∗

K

= TGT ∗
G − TKT ∗

K + Wobs(P1 − P2)W ∗
obs; (4.6)

see (4.4). This with Δ = P1 − P2, yields (4.3). �

Lemma 4.3. Let M and T be self-adjoint operators on a Hilbert space H, and
let T be strictly positive. Assume that M = T − WNW ∗, where N is a self-
adjoint operator on a Hilbert space X, and W is a one-to-one operator with a
closed range from X into H. Put Q = W ∗T−1W . Then Q 	 0. Furthermore
M 	 0 if and only if Q−1 − N 	 0. In this case

M−1 = T−1 + T−1WN
(
I − QN

)−1
W ∗T−1. (4.7)

Proof. Multiplying M = T − WNW ∗ on both sides by T−1/2 yields

T−1/2MT−1/2 = I − T−1/2WNW ∗T−1/2.

Let P be the orthogonal projection onto the range of T−1/2W . Then

T−1/2MT−1/2 = I − P + P − T−1/2WNW ∗T−1/2.

Notice that

P = T−1/2W
(
W ∗T−1W

)−1
W ∗T−1/2 = T−1/2WQ−1W ∗T−1/2.
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This readily implies that

T−1/2MT−1/2 = (I − P) + T−1/2W
(
Q−1 − N

)
W ∗T−1/2.

The previous equation decomposes T−1/2MT−1/2 into the orthogonal sum
of two self-adjoint operators. Therefore M is strictly positive if and only if
T−1/2MT−1/2 is strictly positive, or equivalently, Q−1−N is strictly positive.

Assume that M is strictly positive, or equivalently, Q−1 − N is strictly
positive. Then

M−1 =
(
T − WNW ∗)−1

= T−1
(
I − WNW ∗T−1

)−1

= T−1 + T−1
(
I − WNW ∗T−1

)−1
WNW ∗T−1

= T−1 + T−1WN
(
I − W ∗T−1WN

)−1
W ∗T−1

= T−1 + T−1WN
(
I − QN

)−1
W ∗T−1.

In other words, M−1 is given by the formula in (4.7). �

Proof of Theorem 3.1. Assume the operator TGT ∗
G − TKT ∗

K is strictly pos-
itive. Then Lemma 4.1 tells us that TR is strictly positive and item (i) in
Theorem 3.1 is fulfilled. Furthermore, applying Lemma 4.3 with

M = TGT ∗
G − TKT ∗

K , T = TR, W = Wobs and N = Δ,

we see that the matrix Q−1 − Δ is strictly positive, and hence item (ii) in
Theorem 3.1 is fulfilled. Furthermore, in this case the inversion formula (4.7)
yields the formula to compute the inverse of TGT ∗

G − TKT ∗
K in (3.3).

Conversely, assume items (i) and (ii) are satisfied. Item (i) gives TR 	 0.
Then again using Lemma 4.3, we see that item (ii) implies that TGT ∗

G−TKT ∗
K

is strictly positive. �

The rest of this paper is devoted to establishing the state space formulas
(3.5) for our solution X of the Leech problem and proving both Theorems
1.1 and 3.2.

5. A State Space Realization for V (s)

Our solution to the Leech problem is motivated by X(s) = U(s)V (s)−1 where
U(s) and V (s) are defined in (1.7). The operator Λ is defined by

Λ = T ∗
G

(
TGT ∗

G

)−1
TK and TGΛ = TK . (5.1)

Recall that Λ is a strict contraction if and only if TGT ∗
G − TKT ∗

K is strictly
positive. The following result provides a state space realization for V (s).

Lemma 5.1. Assume that TGT ∗
G − TKT ∗

K is strictly positive, or equivalently,
that items (i) and (ii) of Theorem 3.1 hold. Consider the function V (s) de-
fined by

V (s) =
(
L (I − Λ∗Λ)−1

δ
)
(s) (5.2)
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where δ(t) is the Dirac delta function. Then a state space realization for V (s)
is given by

V (s) = (I + D∗
2R−1

0 D2) + (D∗
2C0 + B∗

2Q)
(
sI − A0

)−1
B,

B =
(
I − ΔQ

)−1
(
B2 − B1D

†
1D2

)(
I + D∗

2R−1
0 D2

)
, (5.3)

where D†
1 = D∗

1(D1D
∗
1)−1 and Δ is the unique solution of the Lyapunov Eq.

(2.7). Because A0 is stable, V is a function in H∞(E , E).

Recall that A0 and C0 are given by (2.10) and that Q solves (2.9).
Formula (5.3) for V (s) will play a fundamental role in computing our solution
X(s) for the Leech problem.

Proof of Lemma 5.1. By assumption, the operator TGT ∗
G − TKT ∗

K is strictly
positive, or equivalently, conditions (i) and (ii) of Theorem 3.1 hold. Hence
TR is strictly positive, the unique stabilizing solution to the algebraic Riccati
Eq. (2.9) is given by Q = W ∗

obsT
−1
R Wobs and (see Remark 2.1) Q−1 − Δ is

also strictly positive. Moreover, Theorem 3.1 shows that

TGT ∗
G − TKT ∗

K = TR − WobsΔW ∗
obs.

Furthermore, the inverse is given by(
TGT ∗

G − TKT ∗
K

)−1

= T−1
R + T−1

R WobsΔ
(
I − QΔ

)−1
W ∗

obsT
−1
R .

Recall that Λ = T ∗
G

(
TGT ∗

G

)−1
TK is a strict contraction. Using this we obtain

(
I − Λ∗Λ

)−1 =
(
I − T ∗

K

(
TGT ∗

G

)−1
TK

)−1

= I +
(
I − T ∗

K

(
TGT ∗

G

)−1
TK

)−1

T ∗
K

(
TGT ∗

G

)−1
TK

= I + T ∗
K

(
I − (

TGT ∗
G

)−1
TKT ∗

K

)−1(
TGT ∗

G

)−1
TK .

In other words,
(
I − Λ∗Λ

)−1 = I + T ∗
K

(
TGT ∗

G − TKT ∗
K

)−1

TK . (5.4)

This readily implies that(
I − Λ∗Λ

)−1 = I + T ∗
K

(
T−1

R + T−1
R WobsΩW ∗

obsT
−1
R

)
TK

Ω = Δ
(
I − QΔ

)−1
.

Recall that W0 = T−1
R Wobs where (W0x) (t) = C0e

A0tx and x ∈ X ; see Part
(iii) of Theorem 13.4 in Sect. 13 “(Appendix 1)” for a discussion of W0 in
the general Riccati setting. In particular, W ∗

obsW0 = Q. Hence
(
I − Λ∗Λ

)−1 = I + T ∗
K

(
T−1

R + W0ΩW ∗
0

)
TK .

Let us compute
(
(I − Λ∗Λ)−1δ

)
(t). By employing R(s) = Φ(−s)∗Φ(s),

with Φ(s)−1 =
(
I − C0(sI − A0)−1Γ

)
R

−1/2
0 [see (3.4)], we obtain

T−1
R δ = T−1

Φ T−∗
Φ δ = T−1

Φ R
−1/2
0 δ = R−1

0 δ − W0ΓR−1
0 .
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The calculations involving the Dirac delta function δ(t) are explained in Sect.
14 “(Appendix 2)”. Using this we have

(
TGT ∗

G − TKT ∗
K

)−1

TKδ =
(
T−1

R + W0ΩW ∗
0

)
TKδ

=
(
T−1

R + W0ΩW ∗
0

)(
D2δ + WobsB2

)

= T−1
R δD2 + T−1

R WobsB2 + W0ΩW ∗
0

(
D2δ + WobsB2

)

= δR−1
0 D2 − W0ΓR−1

0 D2 + W0B2 + W0ΩC∗
0D2 + W0ΩQB2

= δR−1
0 D2 + W0

(
B2 − ΓR−1

0 D2 + ΩC∗
0D2 + ΩQB2

)

= δR−1
0 D2 + W0

(
ΩC∗

0D2 − ΓR−1
0 D2 + (I + ΩQ)B2

)

In other words,
(
TGT ∗

G − TKT ∗
K

)−1

TKδ(t) = δR−1
0 D2 + W0B

B = ΩC∗
0D2 − ΓR−1

0 D2 + (I + ΩQ)B2

Ω = Δ
(
I − QΔ

)−1
. (5.5)

Let us simplify the expression for B. To this end,

I + ΩQ = I + Δ
(
I − QΔ

)−1
Q = I + ΔQ

(
I − ΔQ

)−1 =
(
I − ΔQ

)−1
.

Using this and (5.5) gives

B =
(
ΩC∗

0 − ΓR−1
0

)
D2 +

(
I − QΔ

)−1
B2,

and
(
ΩC∗

0 − ΓR−1
0

)
D2 =

(
Δ(I − QΔ)−1(C∗ − QΓ) − Γ

)
R−1

0 D2

=
(
ΩC∗ − (I − ΔQ)−1Γ

)
R−1

0 D2

=
(
(I − ΔQ)−1ΔC∗ − (I − ΔQ)−1Γ

)
R−1

0 D2.

Thus

B =
(
(I − ΔQ)−1ΔC∗ − (I − ΔQ)−1Γ

)
R−1

0 D2 +
(
I − ΔQ

)−1
B2

= (I − ΔQ)−1
(
(ΔC∗ − Γ)R−1

0 D2 + B2

)
.

Next

(ΔC∗ − Γ)R−1
0 D2 + B2 =

(
ΔC∗ − (B1D

∗
1 − B2D

∗
2 + ΔC∗)

)
R−1

0 D2 + B2

= (B2D
∗
2 − B1D

∗
1)R−1

0 D2 + B2 = B2

(
I + D∗

2R−1
0 D2

) − B1D
∗
1R−1

0 D2.

And therefore

B = (I − ΔQ)−1
(
B2

(
I + D∗

2R−1
0 D2

) − B1D
∗
1R−1

0 D2

)
. (5.6)
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Now observe that

D∗
1R−1

0 D2

(
I + D∗

2R−1
0 D2

)−1 = D∗
1

(
I + R−1

0 D2D
∗
2

)−1
R−1

0 D2

= D∗
1

(
R0 + D2D

∗
2

)−1
D2

= D∗
1

(
D1D

∗
1

)−1
D2 = D†

1D2.

This readily implies that

D∗
1R−1

0 D2

(
I + D∗

2R−1
0 D2

)−1 = D†
1D2 (5.7)

where D†
1 = D∗

1

(
D1D

∗
1

)−1 is the Moore-Penrose inverse of D1. Using this in
(5.6), we obtain the formula for B in Eq. (5.3) of Lemma 5.1, that we have
been looking for, that is,

B =
(
I − ΔQ

)−1
(
B2 − B1D

†
1D2

)(
I + D∗

2R−1
0 D2

)
. (5.8)

Now that we have a formula for B, notice that

(T ∗
KW0B) (t) = D∗

2W0(t)B +
∫ ∞

t

B∗
2eA∗(τ−t)C∗C0e

A0τ
Bdτ.

Further notice∫ ∞

t

B∗
2eA∗(τ−t)C∗C0e

A0τ
Bdτ =

∫ ∞

t

B∗
2eA∗(τ−t)C∗C0e

A0(τ−t)eA0t
Bdτ

=
∫ ∞

0

B∗
2eA∗ξC∗C0e

A0ξeA0t
Bdξ = B∗

2W ∗
obsW0e

A0t
B = B∗

2QeA0t
B.

For the last equality consult the formulas (13.16) and (13.17) in Sect. 13.
Thus we have

(T ∗
KW0B) (t) = D∗

2W0(t)B + B∗
2QeA0t

B (t ≥ 0). (5.9)

This with (5.5) and (5.4) yields

(I − Λ∗Λ)−1δ = Iδ + T ∗
K

(
TGT ∗

G − TKT ∗
K

)−1

TKδ

= Iδ + T ∗
K

(
δR−1

0 D2 + W0B

)

=
(
I + D∗

2R−1
0 D2

)
δ +

(
D∗

2C0 + B∗
2Q

)
eA0t

B.

By taking the Laplace transform of the previous result, we arrive at the state
space realization for V (s) =

(
L(I − Λ∗Λ)−1δ

)
(s) in Eq. (5.3) of Lemma 5.1

that we have been looking for, that is,

V (s) = (I + D∗
2R−1

0 D2) + (D∗
2C0 + B∗

2Q)
(
sI − A0

)−1
B. (5.10)

This completes the Proof of Lemma 5.1. �
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6. A State Space Realization for U(s)

The following result provides a state space formula for the function U(s).

Lemma 6.1. Assume that TGT ∗
G − TKT ∗

K is strictly positive, or equivalently,
that items (i) and (ii) of Theorem 3.1 hold. Consider the function U(s) de-
fined by

U(s) =
(
LΛ (I − Λ∗Λ)−1

δ
)
(s). (6.1)

Then a state space realization for U(s) is given by

U(s) = D∗
1R−1

0 D2 + (D∗
1C0 + B∗

1Q)(sI − A0)−1
B

B =
(
I − ΔQ

)−1
(
B2 − B1D

†
1D2

)(
I + D∗

2R−1
0 D2

)
. (6.2)

Because A0 is stable, U is a function in H∞(E ,U).

Once we have established our state space realizations for U(s) and V (s),
we will directly verify that U(s)V (s)−1 is a stable rational solution to our
Leech problem, that is,

X(s) = U(s)V (s)−1 and G(s)X(s) = K(s) and ‖X‖∞ < 1. (6.3)

Proof of Lemma 6.1. By assumption TGT ∗
G − TKT ∗

K is strictly positive, or
equivalently, conditions (i) and (ii) of Theorem 3.1 hold, or equivalently, Λ is
a strict contraction. By employing (5.4), we have

Λ(I − Λ∗Λ)−1 = Λ + ΛT ∗
K

(
TGT ∗

G − TKT ∗
K

)−1

TK

= T ∗
G

(
TGT ∗

G)−1TK + T ∗
G

(
TGT ∗

G)−1TKT ∗
K

(
TGT ∗

G − TKT ∗
K

)−1

TK

= T ∗
G

(
TGT ∗

G)−1
(
I + TKT ∗

K

(
TGT ∗

G − TKT ∗
K

)−1
)
TK

= T ∗
G

(
TGT ∗

G)−1
(
TGT ∗

G − TKT ∗
K + TKT ∗

K

)(
TGT ∗

G − TKT ∗
K

)−1
TK

= T ∗
G

(
TGT ∗

G − TKT ∗
K

)−1
TK .

In other words,

Λ(I − Λ∗Λ)−1 = T ∗
G

(
TGT ∗

G − TKT ∗
K

)−1
TK . (6.4)

By consulting (5.5), we have

Λ(I − Λ∗Λ)−1δ = T ∗
G

(
TGT ∗

G − TKT ∗
K

)−1

TKδ

= T ∗
G

(
δR−1

0 D2 + W0B

)

= D∗
1R−1

0 D2δ + T ∗
GW0B. (6.5)

The last equality follows by using the properties of the Dirac delta function
in Sect. 14 “(Appendix 2)”. Replacing K with G in (5.9), we obtain

(T ∗
GW0B) (t) =

(
D∗

1C0 + B∗
1Q

)
eA0t

B. (6.6)
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By taking the Laplace transform with (6.1), we have

U(s) = D∗
1R−1

0 D2 + Cu

(
sI − A0

)−1
B

Cu = D∗
1C0 + B∗

1Q. (6.7)

Here U(s) =
(
LΛ(I − Λ∗Λ)−1δ

)
(s). This yields the state space realization

for U(s) in Eq. (6.2) above, and completes the Proof of Lemma 6.1. �

7. A State Space Realization for V (s)−1

To compute our solution X(s) = U(s)V (s)−1 to the Leech problem, we need
to take the inverse of V (s). Recall that

V (s) = Dv + Cv(sI − A0)−1
B

Dv = (I + D∗
2R−1

0 D2)
Cv = D∗

2C0 + B∗
2Q

B =
(
I − ΔQ

)−1
(
B2 − B1D

†
1D2

)
Dv

Ξ =
(
I − ΔQ

)−1
. (7.1)

Using standard state space techniques,

V (s)−1 = D−1
v − D−1

v Cv(sI − A)−1
BD−1

v . (7.2)

The “feedback operator” A is defined by

A = A0 − BD−1
v Cv = A0 − Ξ

(
B2 − B1D

†
1D2

)
Cv. (7.3)

The following result expresses V (s)−1 is a slightly different form.

Lemma 7.1. Assume that TGT ∗
G − TKT ∗

K is strictly positive, or equivalently,
that items (i) and (ii) of Theorem 3.1 hold. Consider the function V (s) in
(7.1), or equivalently, V (s) =

(
L (I − Λ∗Λ)−1

δ
)
(s). Then a state space real-

ization for V (s)−1 is given by

V (s)−1 = D−1
v − D−1

v Cv(I − ΔQ)−1
(
sI − A

)−1(
B2 − B1D

†
1D2

)
,

A = Ξ−1
AΞ = A − B1D

†
1C − B1

(
I − D†

1D1

)
B∗

1QΞ. (7.4)

Moreover, the operator A is stable. In particular, V (s) is an invertible outer
function, that is, both V (s) and its inverse V (s)−1 are functions in H∞(E , E).

Proof of (7.4). Let us derive the formula for A in (7.4). Later in Sect. 9, we
will show that A is stable. Recall that Δ is the solution to the Lyapunov
equation

AΔ + ΔA∗ + B1B
∗
1 − B2B

∗
2 = 0
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and that Q is the stabilizing solution of the Riccati Eq. (2.9); see also (13.14)
in Sect. 13. To simplify (7.4), let us compute

Ξ−1A − AΞ−1 =
(
I − ΔQ

)
A − A

(
I − ΔQ

)
= −ΔQA + AΔQ

= ΔA∗Q + ΔC∗
0R0C0 − ΔA∗Q − B1B

∗
1Q + B2B

∗
2Q

= ΔC∗
0R0C0 − B1B

∗
1Q + B2B

∗
2Q.

In other words,

Ξ−1A − AΞ−1 = ΔC∗
0R0C0 − B1B

∗
1Q + B2B

∗
2Q. (7.5)

Using this we have

Ξ−1A0 = Ξ−1A − Ξ−1ΓC0

= AΞ−1 + ΔC∗
0R0C0 − B1B

∗
1Q + B2B

∗
2Q − Ξ−1ΓC0

= AΞ−1 +
(
ΔC∗

0R0 − Γ + ΔQΓ
)
C0 − B1B

∗
1Q + B2B

∗
2Q.

Furthermore, using (2.10) (see also (13.9) in Sect. 13 “(Appendix 1)”) and
(13.4) yields the following

ΔC∗
0R0 − Γ + ΔQΓ = Δ

(
C∗ − QΓ

) − Γ + ΔQΓ = ΔC∗ − Γ

= −B1D
∗
1 + B2D

∗
2 .

Thus,

Ξ−1A0 = AΞ−1 − (
B1D

∗
1 − B2D

∗
2

)
C0 − (

B1B
∗
1 − B2B

∗
2

)
Q. (7.6)

Notice that

Ξ−1A0 = AΞ−1 − B1

(
D∗

1C0 + B∗
1Q

)
+ B2

(
D∗

2C0 + B∗
2Q

)
By applying the definitions of Cu and Cv in (6.7) and (7.1), we have

Ξ−1A0 = AΞ−1 − B1Cu + B2Cv. (7.7)

Using this we obtain from (7.3) that

Ξ−1
A = Ξ−1A0 −

(
B2 − B1D

†
1D2

)
Cv

= AΞ−1 − B1Cu + B2Cv −
(
B2 − B1D

†
1D2

)
Cv

= AΞ−1 − B1Cu + B1D
†
1D2Cv.

In other words,

Ξ−1
A = AΞ−1 − B1

(
Cu − D†

1D2Cv

)
. (7.8)

A formula for Cu − D†
1D2Cv. To simplify the formula involving A in (7.8),

we need to work on Cu − D†
1D2Cv. To this end, notice that

Cu − D†
1D2Cv = D∗

1C0 + B∗
1Q − D†

1D2

(
D∗

2C0 + B∗
2Q

)
= D∗

1

(
I − (D1D

∗
1)−1D2D

∗
2

)
C0 +

(
B∗

1 − D†
1D2B

∗
2

)
Q.
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To simplify the last expression, observe that

D∗
1

(
I − (D1D

∗
1)−1D2D

∗
2

)
C0

= D∗
1

(
I − (D1D

∗
1)−1D2D

∗
2

)
R−1

0

(
C − Γ∗Q

)
= D∗

1(D1D
∗
1)−1

(
D1D

∗
1 − D2D

∗
2

)
R−1

0

(
C − Γ∗Q

)
= D†

1

(
C − Γ∗Q

)
.

Using this in our previous formula, we have

Cu − D†
1D2Cv = D†

1

(
C − Γ∗Q

)
+

(
B∗

1 − D†
1D2B

∗
2

)
Q

= D†
1C + B∗

1Q − D†
1

(
Γ∗ + D2B

∗
2

)
Q

= D†
1C + B∗

1Q − D†
1

(
D1B

∗
1 + CΔ

)
Q

= D†
1C

(
I − ΔQ

)
+

(
I − D†

1D1

)
B∗

1Q.

In other words,

Cu − D†
1D2Cv = D†

1C
(
I − ΔQ

)
+

(
I − D†

1D1

)
B∗

1Q. (7.9)

Using Ξ =
(
I − ΔQ

)−1 in (7.8), we obtain the result that we have been
looking for, that is,

Ξ−1
A = AΞ−1 − B1D

†
1CΞ−1 − B1

(
I − D†

1D1

)
B∗

1Q. (7.10)

Multiplying by Ξ on the right, yields the following formula for A in (7.4):

A = Ξ−1
AΞ = A − B1D

†
1C − B1

(
I − D†

1D1

)
B∗

1QΞ. (7.11)

To complete the Proof of Lemma 7.1, it remains to show that A is stable.
This will be proved in Sect. 9. �

Because A is similar to A, it follows that the operator A is also stable.
In particular, V (s)−1 is a function in H∞(E , E). Using the state space formula
for V (s)−1 in (7.2), with A defined in (7.11), we arrive at the state space
formula for V (s)−1 in (7.4).

8. The State Space Realization for X(s) = U(s)V (s)−1

We are now ready to compute X(s) = U(s)V (s)−1, which will turn out to be
our solution to the Leech problem. For convenience recall that V and U are
given by

U(s) = D∗
1R−1

0 D2 + Cu

(
sI − A0

)−1
B

V (s) = Dv + Cv(sI − A0)−1
B

Cu = D∗
1C0 + B∗

1Q

Cv = D∗
2C0 + B∗

2Q

Dv = (I + D∗
2R−1

0 D2)

B =
(
I − ΔQ

)−1
(
B2 − B1D

†
1D2

)
Dv. (8.1)
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Proposition 8.1. Given the formulas for U(s) and V (s) in (8.1), and set
X(s) = U(s)V (s)−1. Then a state space realization for X is given by

X(s) = D†
1D2 + Cx

(
sI − A

)−1(
B2 − B1D

†
1D2

)
where (8.2)

Cx = D†
1C +

(
I − D†

1D1

)
B∗

1QΞ =
(
Cu − D†

1D2Cv

)
Ξ (8.3)

A = A − B1Cx. (8.4)

Finally, the operator A is stable. In particular, X(s) is a rational function
in H∞(E ,U).

This establishes the formula for X(s) in (3.5) in Theorem 3.2. In Sect.
11 we will show that ‖X‖∞ < 1.
Derivation X(s) in Proposition 8.1. To compute X(s) = U(s)V (s)−1, first
notice that

D∗
1R−1

0 D2D
−1
v = D∗

1R−1
0 D2

(
I + D∗

2R−1
0 D2

)−1

= D∗
1

(
I + R−1

0 D2D
∗
2

)−1
R−1

0 D2 = D∗
1

(
R0 + D2D

∗
2

)−1
D2

= D∗
1

(
D1D

∗
1

)−1
D2 = D†

1D2.

In other words, the constant term X∞ of X(s) is

D∗
1R−1

0 D2D
−1
v = D†

1D2. (8.5)

By employing standard state space techniques, we obtain

V (s)−1 = D−1
v − D−1

v Cv

(
sI − A)−1

BD−1
v . (8.6)

This with the definition of A = A0 − BD−1
v Cv in (7.3) yields

X(s) =
(
D∗

1R−1
0 D2 + Cu

(
sI − A0

)−1
B

)(
D−1

v − D−1
v Cv

(
sI − A

)−1
BD−1

v

)

= D†
1D2 + Cu

(
sI − A0)−1

BD−1
v − D†

1D2Cv

(
sI − A

)−1
BD−1

v

− Cu

(
sI − A0

)−1
BD−1

v Cv

(
sI − A

)−1
BD−1

v

= D†
1D2 − D†

1D2Cv

(
sI − A

)−1
BD−1

v

+ Cu

(
sI − A0

)−1
(
(sI − A) − BD−1

v Cv

)(
sI − A

)−1
BD−1

v

= D†
1D2 +

(
Cu − D†

1D2Cv

)(
sI − A

)−1
BD−1

v .

Recall that Ξ = (I − ΔQ)−1. Using this we have

X(s) = D†
1D2 +

(
Cu − D†

1D2Cv

)(
sI − A

)−1
BD−1

v

= D†
1D2 +

(
D†

1C +
(
I − D†

1D1

)
B∗

1QΞ
)
Ξ−1

(
sI − A

)−1
BD−1

v

= D†
1D2 +

(
D†

1C +
(
I − D†

1D1

)
B∗

1QΞ
)(

sI − A
)−1Ξ−1

BD−1
v ;

see (7.9) and (7.11). This yields the formula for X(s) in (8.2). In Sect. 9 we
will prove that A is stable.
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9. Proof of the Stability of A using a Lyapunov Equation

In this section, we will directly show that V −1 is analytic on the closed right
half plane. To accomplish this we will prove that A is stable. Since A is
similar to A, the operator A is also stable. This guarantees that V (s)−1 is
a function in H∞(E , E); see (8.6). Since A0 is stable, V (s) is also a function
in H∞(E , E); see (8.1). In particular, V (s) is an invertible outer function.
Because U(s) is in H∞(E ,U), the function X(s) = U(s)V (s)−1 is a function
in H∞(E ,U). In Sect. 11 we will show that ‖X‖∞ < 1.

Recall

V (s) = Dv + Cv(sI − A0)−1
B

V (s)−1 = D−1
v − D−1

v Cv(sI − A)−1
BD−1

v , (9.1)

where

A = A0 − BD−1
v Cv = A0 − Ξ

(
B2 − B1D

†
1D2

)
Cv,

B = Ξ
(
B2 − B1D

†
1D2

)
Dv,

Ξ =
(
I − ΔQ

)−1
. (9.2)

Throughout this section Q is the stabilizing solution for the algebraic Riccati
Eq. (2.9).

In order to show that A is stable, we will first establish the following
lemma.

Lemma 9.1. Let P be the strictly positive operator defined by

P = Q − QΔQ = QΞ−1. (9.3)

Then A satisfies the Lyapunov equation

A
∗
P + PA + F ∗F = 0 (9.4)

where the operator F , the strict contraction Z and the isometry E are given
by

F =

⎡
⎣(I − Z∗Z)1/2Cv

(I − EE∗)1/2Cu

ZCv − E∗Cu

⎤
⎦ , (9.5)

Z =
(
D1D

∗
1

)−1/2
D2 and E = D∗

1

(
D1D

∗
1

)−1/2
. (9.6)

Proof. Because Q−1 − Δ is strictly positive (see item (ii) in Theorem 3.1),
the operator

P = Q − QΔQ = Q
(
Q−1 − Δ

)
Q

is also strictly positive. The first step is to prove that

C∗
vCv − C∗

uCu = A∗
0(Q − QΔQ) + (Q − QΔQ)A0. (9.7)
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Using the formulas for Cu and Cv in (8.1) and the definition of Γ in (2.6) we
have that

D1Cu − D2Cv = R0C0 + D1B
∗
1Q − D2B

∗
2Q

= C − Γ∗Q + Γ∗Q − CΔQ = C(I − ΔQ) = CΞ−1.

Equation (7.7) states that

Ξ−1A0 = AΞ−1 − B1Cu + B2Cv.

Thus

(Q − QΔQ)A0 = QΞ−1A0 = QAΞ−1 − QB1Cu + QB2Cv

= QAΞ−1 − C∗
uCu + C∗

0D1Cu + C∗
vCv − C∗

0D2Cv

= QAΞ−1 + C∗
vCv − C∗

uCu + C∗
0

(
D1Cu − D2Cv

)
= QAΞ−1 + C∗

vCv − C∗
uCu + C∗

0CΞ−1.

Recall that Q = W ∗
obsW0. This identity is a consequence of the algebraic

Riccati Eq. (13.14); see the defination of W0 in (2.11), the Lyapunov Eqs.
(13.20) and (13.23) with Theorem 13.4 in Sect. 13 “(Appendix 1)”. Because
Q is self-adjoint Q = W ∗

0 Wobs. This yields the Lyapunov equation QA +
A∗

0Q + C∗
0C = 0. Using this equation, we obtain

(Q − QΔQ)A0 = QAΞ−1 + C∗
vCv − C∗

uCu − (
QA + A∗

0Q
)
Ξ−1

= C∗
vCv − C∗

uCu − A∗
0QΞ−1

= C∗
vCv − C∗

uCu − A∗
0(Q − QΔQ).

Therefore (9.7) holds.
Recall [see (9.3)] that P = Q − QΔQ = QΞ−1, and observe that

PA = P(A0 − BD−1
v Cv)

= −A∗
0P + C∗

vCv − C∗
uCu − PΞ

(
B2 − B1D

†
1D2

)
Cv

= −A∗
0P + C∗

vCv − C∗
uCu −

(
QB2 − QB1D

†
1D2

)
Cv

= −A∗
0P + C∗

vCv − C∗
uCu −

(
C∗

v − C∗
0D2 − QB1D

†
1D2

)
Cv.

For the last equality in this calculation, we used the formula for Cv in (8.1).
So we have

PA = −A∗
0P − C∗

uCu +
(
C∗

0D2 + QB1D
†
1D2

)
Cv. (9.8)

By taking the adjoint we see that

A
∗
P = −PA0 − C∗

uCu + C∗
v

(
C∗

0D2 + QB1D
†
1D2

)∗
. (9.9)

Note that (9.7) gives

0 = PA0 + A∗
0P − C∗

vCv + C∗
uCu. (9.10)
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Adding the equalities (9.8), (9.9) and (9.10) yields

A
∗
P + PA = −C∗

vCv − C∗
uCu +

(
C∗

0D2 + QB1D
†
1D2

)
Cv+

+ C∗
v

(
C∗

0D2 + QB1D
†
1D2

)∗
.

Now observe that, using the formula for Cu in (8.1) with D1D
†
1 = I,

C∗
0D2 + QB1D

†
1D2 = C∗

0D2 + (C∗
u − C∗

0D1)D
†
1D2 = C∗

uD†
1D2.

This yields the Lyapunov equation that we have been looking for, that is,

A
∗
P + PA + C∗

vCv + C∗
uCu = C∗

uD†
1D2Cv + C∗

v

(
D†

1D2

)∗
Cu. (9.11)

Next we will transform (9.11) into (9.4). Recall that D1D
∗
1 − D2D

∗
2 =

R0 	 0. Thus

I − (
D1D

∗
1

)−1/2
D2D

∗
2

(
D1D

∗
1

)−1/2 	 0.

In other words, Z =
(
D1D

∗
1

)−1/2
D2 is a strict contraction, that is, ‖Z‖ < 1.

The operator E given by

E = D∗
1

(
D1D

∗
1

)−1/2

is an isometry. Using, D†
1D2 = EZ, we see that D†

1D2 is a strict contraction.
Notice that

C∗
vCv + C∗

uCu − C∗
uEZCv − CvZ∗E∗Cu

= C∗
v (I − Z∗Z)Cv + C∗

u(I − EE∗)Cu

+ C∗
vZ∗ZCv + C∗

uEE∗Cu − C∗
uEZCv − CvZ∗E∗Cu

= C∗
v (I − Z∗Z)Cv + C∗

u(I − EE∗)Cu

+
(
ZCv − E∗Cu

)∗(
ZCv − E∗Cu

)
.

So we can rewrite the Lyapunov Eq. (9.11) as

A
∗
P + PA + C∗

v (I − Z∗Z)Cv + C∗
u(I − EE∗)Cu

+
(
ZCv − E∗Cu

)∗(
ZCv − E∗Cu

)
= 0, (9.12)

which can be rewritten as (9.4). �

Proposition 9.2. The operator A in (9.2) is stable.

Proof. Recall that A satisfies the Lyapunov equation

A
∗
P + PA + F ∗F = 0, (9.13)

where P and F are given by (9.3) and (9.5), respectively. Assume that λ is
an eigenvalue for A with eigenvector x, that is, Ax = λx. Using this in the
Lyapunov Eq. (9.13), we have

0 = (A∗
Px, x) + (PAx, x) + (F ∗Fx, x) = (λ + λ)(Px, x) + ‖Fx‖2.

Notice that P = Q
(
Q−1 − Δ

)
Q is strictly positive. Hence (Px, x) > 0 and

2�(λ) = − ‖Fx‖2

(Px, x)
.
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We will prove that �(λ) is nonzero. Assume that �(λ) = 0, then we have
that Fx = 0. So in particular (I − Z∗Z)1/2Cvx = 0. Because Z is strictly
contractive, (I −Z∗Z)1/2 is invertible, and thus Cvx = 0. Using this with the
definition of A, we see that

λx = Ax =
(
A0 − BD−1

v Cv

)
x = A0x.

Thus λ is an eigenvalue for the stable operator A0. But this means that
�(λ) < 0, which contradicts the assumption that �(λ) = 0.

We conclude that �(λ) < 0 and therefore λ is a stable eigenvalue for A.
This proves that the operator A is stable. �

Finally, since A is similar to A, the operator A is also stable.

10. A Direct Proof of G(s)X(s) = K(s)

So far we have derived a state space formula for X(s); see (3.5) in Theo-
rem 3.2. Because A is stable and A is similar to A, the operator A is stable
and X(s) is a rational function in H∞(E ,U). In this section, we will directly
prove that G(s)X(s) = K(s). For convenience recall that

X(s) = D†
1D2 + Cx

(
sI − A

)−1(
B2 − B1D

†
1D2

)
Cx = D†

1C +
(
I − D†

1D1

)
B∗

1QΞ
A = A − B1Cx

Ξ =
(
I − ΔQ

)−1 and D†
1 = D∗

1

(
D1D

∗
1

)−1
. (10.1)

Let S = (sI − A)−1 and Υ = (sI − A)−1. Then using D1Cx = C with
B1Cx = A − A, we obtain

GX =
(
D1 + CSB1

)(
D†

1D2 + CxΥ
(
B2 − B1D

†
1D2

))

= D2 + CSB1D
†
1D2 + CΥ

(
B2 − B1D

†
1D2

)
+ CSB1CxΥ

(
B2 − B1D

†
1D2

)
=D2 + CSB1D

†
1D2 + CΥ

(
B2 − B1D

†
1D2

)
+ CS

(
A − A

)
Υ

(
B2 − B1D

†
1D2

)
.

In other words,

GX = D2 + CSB2 − CS
(
B2 − B1D

†
1D2

)
+ CΥ

(
B2 − B1D

†
1D2

)

+ CS
(
A − A

)
Υ

(
B2 − B1D

†
1D2

)
.

Using K = D2 + CSB2 with B3 = B2 − B1D
†
1D2, we have

GX = K − CSB3 + CΥB3 + CS
(
A − A

)
ΥB3

= K − CSB3 + CΥB3 + CS
(
Υ−1 − S−1

)
ΥB3

= K − CSB3 + CΥB3 + CSB3 − CΥB3 = K.
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Therefore we have

G(s)X(s) = K(s).

So to show that X(s) is indeed a solution to our Leech problem, it remains
to show that ‖X‖∞ ≤ 1. In fact, we will show in the next section that
‖X‖∞ < 1.

11. The Outer Spectral Factor for I − X̃(s)X(s)

In this section, we will show that Θ(s) = D
1/2
v V (s)−1 is the invertible outer

spectral factor for I − X̃(s)X(s), that is, Θ̃Θ = I − X̃X. (Recall that for an
operator valued H∞ function we defined F̃ (s) = F (−s)∗.) The state space
representations of U , V , and X are given by

U(s) = D∗
1R−1

0 D2 + Cu

(
sI − A0

)−1
B

V (s) = Dv + Cv(sI − A0)−1
B

X(s) = D†
1D2 + Cx

(
sI − A

)−1(
B2 − B1D

†
1D2

)
(11.1)

where

A = A − B1Cx,

Cu = D∗
1C0 + B∗

1Q, Cv = D∗
2C0 + B∗

2Q,

Cx =
(
Cu − D†

1D2Cv

)
Ξ, where Ξ =

(
I − ΔQ

)−1
,

Dv = (I + D∗
2R−1

0 D2),

B = Ξ
(
B2 − B1D

†
1D2

)
Dv. (11.2)

Because V (s) is an invertible outer function, Θ(s) is also an invertible outer
function, that is, both Θ(s) and Θ(s)−1 are functions in H∞(E , E). This sets
the stage for the following result.

Proposition 11.1. Assume that TGT ∗
G − TKT ∗

K is strictly positive, or equiv-
alently, that items (i) and (ii) of Theorem 3.1 hold. Consider the function
V (s) in (11.1) and set Θ(s) = D

1/2
v V (s)−1. Then Θ admits a state space

realization of the form

Θ(s) = D−1/2
v − D−1/2

v CvΞ
(
sI − A)−1

(
B2 − B1D

†
1D2

)
CvΞ = (D∗

2C0 + B∗
2Q)Ξ. (11.3)

Furthermore, Θ(s) is the invertible outer spectral factor satisfying

Θ̃(s)Θ(s) = I − X̃(s)X(s). (11.4)

In particular, because Θ(s) is an invertible outer function,

‖X‖∞ < 1. (11.5)

Proof. The state space realization for Θ(s) = D
1/2
v V (s)−1 follows from the

state space realization for V (s)−1 in (7.4).
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To prove that (11.4) holds, set

Ψ(s) = (sI − A0)−1 and Ψ̃(s) = −(sI + A∗
0)

−1 = Ψ(−s)∗

B = BD−1
v = Ξ

(
B2 − B1D

†
1D2

)
.

Using this notation, the state space formula for U(s) and V (s) in (11.1) and
DuD−1

v = Dx = D†
1D2, we see that

V D−1
v = I + CvΨB, and UD−1

v = D†
1D2 + CuΨB. (11.6)

We claim that

D−1
v = D−1

v V (−s)∗V (s)D−1
v − D−1

v U(−s)∗U(s)D−1
v . (11.7)

To verify this, notice that the formulas for V (s) and U(s) in (11.6) yield

D
−1
v Ṽ V D

−1
v − D

−1
v ŨUD

−1
v

=
(
I + B

∗
Ψ̃C

∗
v

)(
I + CvΨB

) − (
D

∗
2D

†∗
1 + B

∗
Ψ̃C

∗
u

)(
D

†
1D2 + CuΨB

)

= I−D
∗
2 (D1D

∗
1 )

−1
D2+B

∗
Ψ̃

(
C

∗
v − C

∗
uD

†
1D2

)
+

(
Cv−D

∗
2D

†∗
1 Cu

)
ΨB+B

∗
Ψ̃

(
C

∗
vCv−C

∗
uCu

)
ΨB

= D
−1
v + B

∗
Ψ̃

(
C

∗
v − C

∗
uD

†
1D2

)
+

(
Cv − D

∗
2D

†∗
1 Cu

)
ΨB + B

∗
Ψ̃

(
C

∗
vCv − C

∗
uCu

)
ΨB. (11.8)

The last equality follows from

D−1
v = I − D∗

2(D1D
∗
1)−1D2. (11.9)

To prove this equality, observe that

D−1
v = (I + D∗

2R−1
0 D2)−1 = I − D∗

2R−1
0 D2(I + D∗

2R−1
0 D2)−1

= I − D∗
2(I + R−1

0 D2D
∗
2)−1R−1

0 D2

= I − D∗
2(R0 + D2D

∗
2)−1D2 = I − D∗

2(D1D
∗
1)−1D2.

This yields (11.9).
To complete the proof, it remains to show that the right hand side of

(11.8) is equal to D−1
v , or equivalently,

0 = B∗Ψ̃
(
C∗

v − C∗
uD†

1D2

)
+

(
Cv − D∗

2D†∗
1 Cu

)
ΨB + B∗Ψ̃

(
C∗

vCv − C∗
uCu

)
ΨB.

By consulting the Lyapunov Eq. in (9.7), we obtain

B∗Ψ̃
(
C∗

vCv − C∗
uCu

)
ΨB = B∗Ψ̃

(
A∗

0(Q − QΔQ) + (Q − QΔQ)A0

)
ΨB

= B∗Ψ̃
(

− Ψ̃−1(Q − QΔQ) − (Q − QΔQ)Ψ−1
)
ΨB

= −B∗(Q − QΔQ)ΨB − B∗Ψ̃(Q − QΔQ)B.

Since Q − QΔQ = QΞ−1, we have

B∗Ψ̃
(
C∗

vCv − C∗
uCu

)
ΨB = −B∗Ξ−∗QΨB − B∗Ψ̃QΞ−1B.

Moreover, we also have

B∗Ψ̃
(
C∗

v − C∗
uD†

1D2

) − B∗Ψ̃QΞ−1B = B∗Ψ̃
(
C∗

v − C∗
uD†

1D2 − QΞ−1B
)
.
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Now observe that

C∗
v − C∗

uD†
1D2 − QΞ−1B

= C∗
0D2 + QB2 − C∗

0D1D
†
1D2 − QB1D

†
1D2 − QΞ−1Ξ

(
B2 − B1D

†
1D2

)
= C∗

0D2 + QB2 − C∗
0D2 − QB2 = 0.

Therefore

B∗Ψ̃
(
C∗

v − C∗
uD†

1D2

) − B∗Ψ̃QΞ−1B = 0.

Likewise its adjoint
(
Cv − D∗

2D†∗
1 Cu

)
ΨB − B∗Ξ−∗QΨB = 0.

This with (11.8) shows that

D−1
v = D−1

v V (−s)∗V (s)D−1
v − D−1

v U(−s)∗U(s)D−1
v .

Recall that X(s) = U(s)V (s)−1. By applying Dv to both sides, we see that

Dv = V (−s)∗V (s) − V (−s)∗X(−s)∗X(s)V (s).

By taking the appropriate inverse, we arrive at

I − X(−s)∗X(s) = Θ(−s)∗Θ(s) (where Θ(s) = D1/2
v V (s)−1).

Therefore Θ is the outer spectral factor for I −X(−s)∗X(s). Finally, because
Θ is an invertible outer function, we also have ‖X‖∞ < 1. This completes
the Proof of Proposition 11.1. �

Since Proposition 11.1 is proved, we have also finished the Proof of
Theorem 3.2.

12. Proof of Theorem 1.1

The Proof of Theorem 1.1 concerns rational functions G in H∞(U ,Y) and
K in H∞(E ,Y), which have the additional property that TGT ∗

G − TKT ∗
K is

strictly positive. Furthermore, X is a function in H∞(E ,U) defined by (1.6)
where U(s) and V (s) are the functions defined by (1.7). Moreover, the rational
functions G and K admit a minimal stable realization (2.1). Given these data
we have to prove items (i) and (ii).

According to Lemma 6.1 the function U(s) has a realization (6.2) and
according to Lemma 5.1 the function V (s) has a realization (5.3). Thus it
follows from Proposition 8.1 that X(s) = U(s)V (s)−1 has a realization (8.2)
and X(s) is analytic on C+. Moreover, by Sect. 10, we have GX = K.
Proposition 11.1 gives that ‖X‖∞ < 1 and completes the proof that X is
indeed a solution of the Leech problem for G and K. Thus item (i) is proved.
Finally, Proposition 11.1 also shows us that formula (1.9) holds true with Θ
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given by (1.8). This tells us that item (ii) of the theorem is proved. Thus
items (i) and (ii) are proved, and hence Theorem 1.1 is proved. �
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13. Appendix 1: A Riccati Equation

In this section we bring together results from the existing literature on the
algebraic Riccati equation and factorizations and extend these results for our
use. The literature on algebraic Riccati equations is well established, and can
be found in many places. We will quote results from [5,17,19]. The literature
on stochastic realization theory is also quite useful; see for instance [6,11,12].
Recall that, see (2.3),

R(s) = G(s)G̃(s) − K(s)K̃(s), (13.1)

where G(s) and K(s) are given by (2.1), that is

G(s) = D1 + C(sI − A)−1B1 and K(s) = D2 + C(sI − A)−1B2. (13.2)

Moreover, A is stable and {C,A} is observable.

Lemma 13.1. Assume that G and K are given by (13.2) and R is determined
by (13.1). Then a state space formula for R(s) is given by

R(s) = C(sI − A)−1Γ + R0 − Γ∗(sI + A∗)−1C∗. (13.3)

Here Γ mapping Y into X is defined by

Γ = B1D
∗
1 − B2D

∗
2 + ΔC∗ and R0 = D1D

∗
1 − D2D

∗
2 , (13.4)

and Δ is the unique solution of the Lyapunov equation

AΔ + ΔA∗ + B1B
∗
1 − B2B

∗
2 = 0. (13.5)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof. It is noted that Δ = P1 −P2 where P1 and P2 are the unique solutions
of the Lyapunov equations

AP1 + P1A
∗ + B1B

∗
1 = 0 and AP2 + P2A

∗ + B2B
∗
2 = 0. (13.6)

Since A is stable, the Eq. (13.6) are solvable and the solutions are unique. To
see where the state space formula of R comes from notice that (13.6) gives

B1B
∗
1 = (sI − A)P1 − P1(sI + A∗).

Thus

(sI − A)−1B1B
∗
1(sI + A∗)−1 = P1(sI + A∗)−1 − (sI − A)−1P1.

This gives that

G(s)G̃(s) =
(
D1 + C(sI − A)−1B1

)(
D∗

1 − B∗
1(sI − A∗)−1C∗

)

= D1D
∗
1 + C(sI − A)−1B1D

∗
1 − D1B

∗
1(sI + A∗)−1C∗

− C(sI − A)−1B1B
∗
1(sI + A∗)−1C∗

= D1D
∗
1 + C(sI − A)−1B1D

∗
1 − D1B

∗
1(sI + A∗)−1C∗

+ C(sI − A)−1P1C
∗ − CP1(sI + A∗)−1C∗,

and therefore

G(s)G̃(s) = D1D
∗
1 + C(sI − A)−1

(
B1D

∗
1 + P1C

∗
)

−
(
CP1 + D1B

∗
1

)
(sI + A∗)−1C∗.

A similar calculation shows that

K(s)K̃(s) = D2D
∗
2 + C(sI − A)−1

(
B2D

∗
2 + P2C

∗
)

−
(
CP2 + D2B

∗
2

)
(sI + A∗)−1C∗.

Combining this with the definition of R in (13.1) and the definitions (13.4)
of Γ and R0, we arrive at (13.3). �

The first result that we quote is [5, Theorem 14.8]. We present this theorem
with the notation in [5, Theorem 14.8] replaced by the corresponding notation
of the current paper. To be precise: the replacing is, with in each case the
identifier in [5, Theorem 14.8] mentioned first

J 
→ I, C 
→ R
−1/2
0 C, B 
→ ΓR

−1/2
0

X 
→ Q, W (s) 
→ R
−1/2
0 R(s)R−1/2

0 , L(s) 
→ R
−1/2
0 Φ(s).

Finally, recall that an operator T on X is strictly positive, denoted by T 	 0,
if T is positive and its inverse exists and is also a positive operator.

Theorem 13.2. Let the rational function R be given by (13.3) and assume
that R0 	 0. Then R

−1/2
0 R(s)R−1/2

0 admits a left spectral factorization with
respect to the imaginary axis,

R
−1/2
0 R(s)R−1/2

0 = R
−1/2
0 Φ(−s )∗ Φ(s)R−1/2

0 , s ∈ C, (13.7)
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if and only if the algebraic Riccati equation

A∗Q + QA − QΓR−1
0 C − C∗R−1

0 Γ∗Q + QΓR−1
0 Γ∗Q + C∗R−1

0 C = 0 (13.8)

has a stabilizing solution. In that case the unique spectral factor Φ(s) is given
by

Φ(s) = R
1/2
0

(
I + R−1

0 (C − Γ∗Q)(sI − A)−1Γ
)
.

Finally, both Φ and Φ−1 are rational functions in H∞(Y,Y).

Here stabilizing solution means that Q 	 0 and A0 is stable, where

A0 = A − ΓC0 and C0 = R−1
0 (C − Γ∗Q) . (13.9)

Clearly, R
−1/2
0 on both sides of (13.7) can be eliminated. We inserted R

−1/2
0

in (13.7) to match the hypothesis in [5, Theorem 14.8]. Notice that the Riccati
Eq. (13.8) can be rewritten as

A∗Q + QA + (C − Γ∗Q)∗R−1
0 (C − Γ∗Q) = 0. (13.10)

or, using (13.9), as

A∗Q + QA + C∗
0R0C0 = 0. (13.11)

We do not prove the above theorem, but we will verify that Φ̃(s)Φ(s) = R(s).
To this end first notice that (13.11) is equivalent to

− C∗
0R0C0 = (sI + A∗)Q − Q(sI − A). (13.12)

Next observe that

Φ̃(s)Φ(s) =
(
I − Γ∗(sI + A∗)−1C∗

0

)
R0

(
I + C0(sI − A)−1Γ

)
= R0 − Γ∗(sI + A∗)−1C∗

0R0 + R0C0(sI − A)−1Γ

− Γ∗(sI + A∗)−1C∗
0R0C0(sI − A)−1Γ

Using (13.12) we get

Φ̃(s)Φ(s) = R0 − Γ∗(sI + A∗)−1C∗
0R0 + R0C0(sI − A)−1Γ

+ Γ∗(sI + A∗)−1
(
(sI + A∗)Q − Q(sI − A)

)
(sI − A)−1Γ

= R0 − Γ∗(sI + A∗)−1
(
C∗

0R0 + QΓ
)

+
(
Γ∗Q + R0C0

)
(sI − A)−1Γ

= R0 − Γ∗(sI + A∗)−1C∗ + C(sI − A)−1Γ = R(s).

In other words, R(s) = Φ̃(s)Φ(s).
Notice the similarity of this computation with the Proof of Lemma 13.1. We
mention that Theorem 13.2 also is a special case of [19, Theorem 19.3.1].
Next we quote [17, Theorem XIII.3.1], which is on canonical Wiener–Hopf
factorizations. A rational matrix function R by definition has a canonical
(left) Wiener–Hopf factorization with respect to the imaginary axis in the
complex plane if

R(s) = R−(s)R+(s), (s ∈ C)
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where R+ ( R− ) has all its poles and zeros on the open left (right) half plane
and both are invertible at ∞. Notice that a (left) spectral factorization is a
special case of a canonical (left) Wiener–Hopf factorization.
We rephrase [17, Theorem XIII.3.1] in terms of the current paper as follows.

Theorem 13.3. Let TR be a Wiener–Hopf operator with rational symbol R.
Then TR is invertible if and only if

(i) det R(s) �= 0 for all s ∈ iR and
(ii) R(s) admits a canonical (left) Wiener–Hopf factorization relative to the

imaginary axis.

The following theorem provides the main result of this section and is used
on several places in this paper. It shows when TR is strictly positive for any
rational function R(s) given by a state space realization (13.3).

Theorem 13.4. Let R(s) be any rational function given by the state space
realization

R(s) = C(sI − A)−1Γ + R0 − Γ∗(sI + A∗)−1C∗ (13.13)

where {C,A} is observable, A is stable and Γ is an operator from Y into X .
Then the following statements are equivalent
(a) TR is strictly positive operator on L2

+(Y).
(b) R0 	 0 and there exists a stabilizing solution to the algebraic Riccati

equation

A∗Q + QA + (C − Γ∗Q)∗R−1
0 (C − Γ∗Q) = 0. (13.14)

Here stabilizing solution means that Q 	 0 and A0, given by (13.9), is
stable.

(c) The function R(s) admits an invertible outer spectral factorization of
the form R(s) = Φ̃(s)Φ(s), where Φ is the invertible outer function. By
invertible outer we mean that both Φ(s) and Φ(s)−1 are functions in
H∞(Y,Y).

Given the above, the following statements hold.
(i) The spectral factor Φ and its inverse are given by

Φ(s) = R
1/2
0

(
I + C0(sI − A)−1Γ

)
Φ(s)−1 =

(
I − C0(sI − A0)−1Γ

)
R

−1/2
0 . (13.15)

(ii) The stabilizing solution Q to the algebraic Riccati Eq. (13.14) is unique,
and given by

Q = W ∗
obsT

−1
R Wobs. (13.16)

(iii) The operator W0 = T−1
R Wobs mapping X into L2

+(Y) is determined by

T−1
R Wobsx = W0x = C0e

A0tx (x ∈ X ). (13.17)

In particular, the pair {C0, A0} is observable.
(iv) The following holds

R(s)C0(sI − A0)−1 = C(sI − A)−1 − Γ∗(sI + A∗)−1Q. (13.18)
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Proof. The proof of this theorem is split into 6 parts.
Part 1. We prove that statement (c) implies statement (a). We have R = Φ̃Φ
and thus TR = TΦ̃TΦ, with TΦ invertible. Since TΦ̃ = T ∗

Φ, we have that
TR = T ∗

ΦTΦ and T−1
R = T−1

Φ

(
T−1

Φ

)∗
. We conclude that TR 	 0.

Part 2. Let us show that statement (a) implies statement (c). From Theorem
13.3 we conclude that since TR is invertible, the function R has a canonical
Wiener–Hopf factorization, R = R−R+. Without loss of generality we may
assume that R±(∞) = R

1/2
0 . Then R+ and R− are uniquely determined.

Since TR is strictly positive, we have that TR = T ∗
R = T ∗

R+
T ∗

R− and thus

R(s) = R̃+(s)R̃−(s). The uniqueness of the factorization yields that R− =
R̃+. Put Φ = R+ and we conclude that the factorization

R(s) = Φ̃(s)Φ(s) = Φ(−s̄)∗Φ(s)

is a spectral factorization of R.
Part 3. In this part we show that the statements (b) and (c) are equivalent. We
apply Theorem 13.2. Note that if we have the spectral factorization R = Φ̃Φ,
then R0 	 0. But then we also have (13.7) and conclude that (13.8) has a
stabilizing solution. Therefore (13.14) has a stabilizing solution.
Conversely, according to Theorem 13.2, statement (b) implies (c).
Part 4. We have established the equivalence of the statements (a), (b) and
(c) and note that statement (i) immediately follows from Theorem 13.2.
Part 5. Let us establish the identity in (13.18) in statement (iv). To accom-
plish this we employ the realization for R(s) in (13.3). Using ΓC0 = A − A0,
a standard calculation shows that

C(sI − A)−1ΓC0(sI − A0)−1 = C(sI − A)−1(A − A0)(sI − A0)−1

= C(sI − A)−1(A − sI + sI − A0)(sI − A0)−1

= C(sI − A)−1 − C(sI − A0)−1. (13.19)

As before, let Q be the stabilizing solution of the algebraic Riccati Eq. (13.14).
Recall that the operator A0 is stable and TR is strictly positive. Using C0

and A0 in (13.9), the Riccati Eq. (13.14) can be rewritten as

A∗Q + QA0 + C∗C0 = 0. (13.20)

Using the Lyapunov Eq. (13.20), we have

− Γ∗(sI + A∗)−1C∗C0(sI − A0)−1

= Γ∗(sI + A∗)−1
(
A∗Q + QA0

)
(sI − A0)−1

= Γ∗(sI + A∗)−1
(
(sI + A∗)Q − Q(sI − A0)

)
(sI − A0)−1

= Γ∗Q(sI − A0)−1 − Γ∗(sI + A∗)−1Q

= C(sI − A0)−1 − R0C0(sI − A0)−1 − Γ∗(sI + A∗)−1Q.

The last equality follows from Γ∗Q = C − R0C0; see (13.9). In other words,(
R0 − Γ∗(sI + A∗)−1C∗)C0(sI − A0)−1 = C(sI − A0)−1 − Γ∗(sI + A∗)−1Q.

Recall (13.3) that

R(s) = C(sI − A)−1Γ + R0 − Γ∗(sI + A∗)−1C∗.
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This with the preceding identity and (13.19) yields the result that we have
been looking for, that is,

R(s)C0(sI − A0)−1 = C(sI − A)−1 − Γ∗(sI + A∗)−1Q.

This proves (13.18) and statement (iv).
Part 6. The observability operator for the pair {C0, A0} is the operator W0

mapping X into L2
+(Y) defined by

W0x = C0e
A0tx (for x ∈ X ); (13.21)

(see also the identity (3.19) in [13]).
Recall that (13.18) has been proved. Note that C(sI−A)−1 is a stable rational
operator valued function, while Γ∗(sI +A∗)−1Q is a rational function, which
is analytic on the open left half plane {s ∈ C : �(s) < 0}. and has the value
zero at infinity. Moreover,(

LWobs

)
(s) = C(sI − A)−1 and

(
LW0

)
(s) = C0(sI − A0)−1.(13.22)

This with (13.18) implies that TRW0x is equal to Wobsx for each x ∈ X .
Since TR is invertible, we also have W0 = T−1

R Wobs. Throughout we assumed
that {C,A} is observable, or equivalently, Wobs is one to one. Therefore W0 =
T−1

R Wobs is also one to one. The Lyapunov equation in (13.20) implies that

Q =
∫ ∞

0

eA∗tCC0e
A0tdt = W ∗

obsW0.

In other words,

Q = W ∗
obsW0. (13.23)

By employing W0 = T−1
R Wobs, we see that Q = W ∗

obsT
−1
R Wobs. This proves

statements (ii) and (iii). �

14. Appendix 2: The Dirac Delta Function δ

In this section we introduce a simple form of the Dirac delta for a specific
class of operators. The continuity properties of these operators allow for an
elementary definition of the Dirac delta.
Let F(U ,Y) be the Hilbert space formed by the set of all linear operators
mapping U into Y under the Frobenius or trace norm, that is, if M is in
F(U ,Y), then ‖M‖2

F = trace(M∗M). Moreover, L2
+(F(U ,Y)) is the Hilbert

space formed by the set of all square integrable Lebesgue measurable func-
tions over the interval [0,∞) with values in F(U ,Y).
Consider the state space systems {A1, B1, C1,D} and {A2, B2, C2,D}, where
for j = 1, 2 the operator Aj is a stable operator on Xj , and Bj maps U into
Xj , while Cj maps Xj into Y and D maps U into Y. The state spaces Xj ,
input space U and output space Y are all finite dimensional complex vector
spaces of possibly different dimension of the form C

�. Let

F (s) = D + C1(sI − A1)−1B1 + C2(sI + A2)−1B2. (14.1)
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We define the corresponding kernel function k(t) by

k(t) =
{

C1e
A1tB1, t ≥ 0,

C2e
−A2tB2, t < 0.

The corresponding Wiener–Hopf operator TF mapping L2
+(F(U ,U)) into the

space L2
+(F(U ,Y)) is given by

(TF h) (t) = Dh(t) +
∫ ∞

0

k(t − τ)h(τ)dτ (for 0 ≤ t < ∞), (14.2)

where h ∈ L2
+(F(U ,U)). Let MU,Y be the linear space consisting of all

Wiener–Hopf operators of the form (14.2). Now fix an operator valued func-
tion h in the space L2

+(F(U ,U)). Then h defines a linear transformation Lh

from MU,Y into the space L2
+(F(U ,Y)) by Lh(TF ) = TF h.

If in (14.1) we have D = 0, then the Dirac delta function Lδ is formally
defined by

Lδ(TF )(t) = k(t) = C1e
A1tB1 (for 0 ≤ t < ∞).

Thus we defined the transformation Lδ mapping MU,Y into L2
+(F(U ,Y)).

The next step is to extend the definition of δ to the case when D is not equal
to 0. We extend L2

+(F(U ,Y)) to a direct sum
(
F(U ,Y)

) ⊕
L2

+(F(U ,Y)). (14.3)

If h is in L2
+(F(U ,U)), then TF h is in the second component L2

+(F(U ,Y)) of
the previous space. For F (s) given by (14.1), we define the linear map LδTF

by
(
LδTF

)
(t) = D

⊕
C1e

A1tB1 ∈ (
F(U ,Y)

) ⊕
L2

+(F(U ,Y)).

We denote this as(
TF δ

)
(t) = Dδ(t) + C1e

A1tB1 (t ≥ 0). (14.4)

Note that the sum is formal here and that the δ(t) in Dδ(t) emphasizes this.
Finally, it is noted that formally, the Laplace transform of δ(t) equals one,
that is,

(
Lδ

)
(s) = 1.

Let F (s) = D +C1(sI −A1)−1B1, with the operator A1 a stable operator on
X1, and B1 maps U into X1, while C1 maps X1 into Y and D maps U into
Y. Then

(T ∗
F h)(t) = D∗h(t) +

∫ ∞

t

B∗
1e−A∗

1(t−τ)C∗
1h(τ)dτ, t ≥ 0,

and the kernel function k∗ for this operator T ∗
F therefore is given by

k∗(t) =
{

0, t ≥ 0
B∗

1e−A∗
1tC∗

1 , t < 0
.

We conclude from that (T ∗
F δ)(t) = D∗δ(t) because k∗(t) = 0 for t ≥ 0.

The Dirac delta function viewed as a limit For the classical approach to
the Dirac delta function, for any a > 0, let ξa be the function defined by
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ξa(t) = ae−at for t ≥ 0 and zero otherwise. Another way to define the Dirac
delta function is by

δ(t) = lim
a→∞ ξa(t) (for a > 0).

Notice that δ(t) = 0 for all t > 0 and is undefined at t = 0. As before, let
F (s) = D + C(sI − A)−1B and let us formally define

(
TF δ

)
(t) = lim

a→∞

[
Dξa(t) +

∫ t

0

CeA(t−τ)Bξa(τ)dτ

]
. (14.5)

Then, using this we have
(
TF δ

)
(t) = D lim

a→∞ ξa(t) + lim
a→∞

∫ t

0

CeA(t−τ)Bae−aτdτ

= Dδ(t) + CeAt lim
a→∞

∫ t

0

ae−(aI+A)τdτB

= Dδ(t) + CeAt lim
a→∞

[
−a(aI + A)−1e−(aI+A)τ

]t

0
B

= Dδ(t) + CeAt lim
a→∞ a(aI + A)−1

(
I − e−ate−At

)
B

= Dδ(t) + CeAtB.

So formally we have(
TF δ

)
(t) = Dδ(t) + CeAtB (when F (s) = D + C(sI − A)−1B). (14.6)

Finally, it is well know and easy to establish that the Laplace transform of
δ(t) equals one, that is,

(Lδ
)
(s) = 1. (This follows from the fact that

(Lξa

)
(s)

converges to 1 for fixed s.)
We will also check the expression for

(
T ∗

F δ
)
(t). In fact, we already defined

that (
T ∗

F δ
)
(t) = D∗δ(t) (when F (s) = D + C(sI − A)−1B). (14.7)

To formally verify this, observe that
(
T ∗

F δ
)
(t) = lim

a→∞ D∗ξa(t) + lim
a→∞

∫ ∞

t

B∗eA(τ−t)C∗ξa(τ)dτ

= D∗δ(t) + B∗ lim
a→∞

∫ ∞

t

eA∗(τ−t)ae−a(τ−t)dτe−atC∗

= D∗δ(t) + B∗ lim
a→∞

∫ ∞

0

eA∗vae−avdve−atC∗

= D∗δ(t) + B∗
[

lim
a→∞ a(aI − A∗)−1e−at

]
C∗

= D∗δ(t).

This yields
(
T ∗

F δ
)
(t) = D∗δ(t) in (14.7).

Finally let Fj(s) = Dj +C(sI −Aj)−1Bj for j = 1, 2. Then it is easy to verify
that the following holds assuming all the spaces are compatible:

• TF2TF1h = TF2(TF1h) when h is in L2
+(F(U1,U1)).

• (TF2TF1)(δ) = TF2(TF1δ) .
• If F1(s) = D1, then TF2TF1δ(t) = D2D1δ(t) + D2C2e

A2tB2D1.
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• For convenience we will denote D1δ also as δD1. So D2D1δ, D2δD1

and δD2D1 all are notations for the same element in the first component
of a direct sum as (14.3).
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