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Abstract. In this work we study what we call Siegel–dissipative vector of
commuting operators (A1, . . . , Ad+1) on a Hilbert space H and we obtain
a von Neumann type inequality which involves the Drury–Arveson space
DA on the Siegel upper half-space U . The operator Ad+1 is allowed to
be unbounded and it is the infinitesimal generator of a contraction semi-
group {e−iτAd+1}τ<0. We then study the operator e−iτAd+1Aα where
Aα = Aα1

1 · · · Aαd
d for α ∈ N

d
0 and prove that can be studied by means

of model operators on a weighted L2 space. To prove our results we
obtain a Paley–Wiener type theorem for DA and we investigate some
multiplier operators on DA as well.
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1. Introduction

The Drury–Arveson space DA(Bd+1) on the unit ball of Cd+1 is a renowned
Hilbert space of holomorphic functions endowed with the inner product

〈
∑

α∈N
d+1
0

bαzα,
∑

α∈N
d+1
0

cαzα〉DA(Bd+1) :=
∑

α∈N
d+1
0

bαcα
α!
|α|! .

We refer the reader to [4, Theorem 6.1] for an exact integral representation
of such inner product. The space DA(Bd+1) is a reproducing kernel Hilbert
space with kernel K(z, w) = (1 − z ·w)−1 and may be considered the natural
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multi-dimensional version of the Hardy space on the unit disc H2(D); one of
the main reasons being that DA(Bd+1) plays the same role as H2(D) in a
multi-dimensional version of the famous von Neumann Inequality.

Theorem 1.1. (Drury [9]) Let H be a Hilbert space and consider the (d + 1)-
tuple T = (T1, . . . , Td+1) of linear operators on H satisfying
(i) TjTk − TkTj = 0 for all j, k = 1, . . . , d + 1;
(ii)

∑d+1
j=1 ‖Tjv‖2

H ≤ ‖v‖2
H for all v ∈ H.

Let p(z) = p(z1, . . . , zd+1) be a complex polynomial. Then,

‖p(T )‖B(H) ≤ ‖p‖M(DA(Bd+1))

where ‖ · ‖B(H) and ‖ · ‖M(DA(Bd+1)) denote the norm of bounded linear op-
erators on H and the multiplier operator norm on the Drury–Arveson space
on the unit ball respectively.

In the case d = 0 Drury’s result reduces to the classical von Neumann
Inequality ( [22]) and the multiplier operator norm on H2(D) takes the place
of ‖ · ‖M(DA(Bd+1)). Namely, given a Hilbert space H and T : H → H a
contraction, i.e., ‖T‖B(H) ≤ 1, the von Neumann Inequality states that, for
any polynomial p(z),

‖p(T )‖B(H) ≤ ‖p‖M(H2(D)) = ‖p‖∞.

It is possible to prove an analogous result modeled on the upper-half
plane, which is the unbounded biholomorphic realization of the unit disk D

via the Cayley transform. Let A be any bounded dissipative operator on a
Hilbert space H, that is, such that 1

i (A − A∗) ≥ 0, then

‖f(A)‖B(H) ≤ sup
Im z>0

|f(z)|

for any rational function f which is bounded on the upper half-plane, see
[23].

The main goal of this paper is to prove a version of Theorem 1.1 on an
unbounded biholomorphic realization of the unit ball Bd+1 in C

d+1, that is,
the Siegel upper-half space U ,

U =
{
(ζ, ζd+1) : Cd+1 : Im ζd+1 > 1

4 |ζ|2} . (1.1)

The biholomorphism between the ball and the Siegel half-space is given by
the multi-dimensional Cayley transform C : Bd+1 → U ,

C(ω, ωd+1) =
(

2ω

1 − ωd+1
, i

1 + ωd+1

1 − ωd+1

)
. (1.2)

The Drury–Arveson space on U , that we shall simply denote by DA, was
studied in [6] and [4], where an integral expression for the norm was also
obtained. Let ρ(ζ, ζd+1) = Im ζd+1 − 1

4 |ζ|2 and let n be an integer such that
n > d/2. Then, we define the space DA(n) as

DA(n) =
{

F ∈ Hol(U) : (i) lim
|ζ|≤R, Im ζd+1→+∞

F (ζ, ζd+1) = 0 ;

(ii)

∫

U
|ρn(ζ, ζd+1)∂

n
ζd+1

F (ζ, ζd+1)|2 ρ−d−1(ζ, ζd+1)dζdζd+1 < +∞
}

. (1.3)
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The space DA(n) does not actually depend on n, so that we simply write DA
in place of DA(n). We refer the reader to Sect. 3 for this and other properties
of the space DA.

We now describe the operator-theorical condition we shall work with.

Definition 1.2. Let H be a Hilbert space and let (A1, . . . , Ad+1) be a vector
of operators on H and let r(iAd+1) be the resolvent set of iAd+1. We say that
(A1, . . . , Ad+1) is a Siegel–dissipative vector of commuting operators if:

(i) the operators A1, . . . Ad are bounded and (0,+∞) ⊆ r(iAd+1);
(ii) the operators A1, . . . Ad commute with each other and they strongly

commute with Ad+1;
(iii) the following condition holds:1

Im〈Ad+1v, v〉H ≥ 1
4

d∑

i=1

‖Aiv‖2
H, ∀v ∈ Dom(Ad+1). (1.4)

Given two operators U and T on H, U densely defined and closed, T
bounded, we say that U and T strongly commute if UT is an extension of
TU . In other words T (H) ⊆ Dom(U) and TUv = UTv for all v ∈ Dom(U).

We point out that from the conditions above and the Lumer–Philips
Theorem (Theorem 2.5) it follows that iAd+1 is the infinitesimal generator of
a (unique) semigroup of contractions {e−iτAd+1}τ≤0 that commutes with all
the Aj ’s, see Lemma 5.1. Our von Neumann type inequality reads as follows.

Theorem 1.3. Let H be a Hilbert space and let (A1, . . . , Ad+1) be a Siegel–
dissipative vector of commuting operators. For any τj < 0, j = 1, . . . , d, set
Mj = e−iτjAd+1Aj and mj(ζ, ζd+1) = e−iτjζd+1ζj. Let p denote any poly-
nomial in d variables. Then we have that mj ∈ M(DA) for j = 1, . . . , d,
and

‖p
(
M1, . . . ,Md)‖B(H) ≤ ‖p(

m1, . . . ,md)‖M(DA), (1.5)
where M(DA) is the space of pointwise multipliers on the Drury–Arveson
space DA.

A few remarks are now in order. The space DA is a reproducing kernel
Hilbert space, and, with respect to the DA(n)-norm, its reproducing kernel
is

KDA((ω, ωd+1), (ζ, ζd+1)) = γd,n

(ωd+1 − ζd+1

2i
− 1

4ω · ζ
)−1

,

where γd,n = 4n

(4π)d+1Γ(2n−d)
. Hence, notice that the condition (1.4) is mod-

elled after the reproducing kernel of DA. In general, it is a well established
phenomenon that von Neumann type inequalities hold as long as one can
suitably interpret the condition K−1(A,A) ≥ 0, where K is the reproducing
kernel of a space of holomorphic functions in some domain in C

d. A precise
formulation of this result is stated and proved in [2]. There the authors use

1The multiplicative constant 1
4
in (1.4) appears because of the definition of U we use. The

presence of this constant might be unpleasant but we keep this definition to be consistent

with the definition in [4].
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the Dunford-Riesz functional calculus to define K−1(A,A). This is possible
since they are working with bounded operators with some additional assump-
tions on their spectrum. Furthermore, they assume that the multiplication
by any coordinate function is a continuous (bounded) operation. Our setting
differs in these two latter aspects. The last operator Ad+1 is allowed to be
unbounded and also the multiplication by any coordinate is an unbounded
operation in DA.

We also mention that, in the case when all the operators are bounded, a
proof of the von Neumann type inequality (1.5) could probably be obtained
by means of the Cayley transform, the classical inequality of Drury on the
unit ball and some classical results in operator theory as it was pointed out
to us by M. Hartz in a private communication. Nevertheless, in the footsteps
of Drury’s proof, we prefer to use a direct approach, without relying on
the known results on the unit ball, for two main reasons. First, we have
greater generality by allowing one operator to be unbounded. Second, and
more importantly, we develop some machinery we believe it is interesting in
its own right and has the potential to be used in the context of the theory of
shift-invariant subspaces of DA, as in the spirit of Buerling–Lax’s Theorem
[12], in the Siegel half-space setting.

In order to follow such a plan, we further investigate some operator-
theorical properties of DA. On the space N

d
0 × R− we consider the measure

dμ(α, λ) = α!
(

2
|λ|

)|α|
|λ|2d dα dλ (1.6)

with dλ denoting the Lebesgue measure on R− and dα the counting measure
on N

d
0.

Theorem 1.4. The map S : L2(Nd
0 × R−, dμ) → DA defined as

(Sϕ)(ζ, ζn+1) =
1

(2π)d+1

∫

Nd
0×R−

ζαe−iλζd+1ϕ(α, λ) |λ|d dαdλ

is a conjugate linear surjective isometry. The inverse map S −1 is explicitly
given in (3.1).

If for some ε > 0 the (d + 1)-tuple (A1, . . . , Ad, Ad+1 − iε Id) is Siegel-
dissipative, we say that (A1, . . . , Ad+1) is strongly Siegel–dissipative. In this
case, for v, v′ ∈ Dom(Ad+1) consider the inner product

〈v, v′〉Δ :=
1
2i

(〈Ad+1v, v′〉H − 〈v,Ad+1v
′〉H

) − 1
4

d∑

i=1

〈v, v′〉H

so that

‖v‖2
Δ = Im〈Ad+1v, v〉H − 1

4

d∑

i=1

‖Aiv‖2
H ≥ ε‖v‖2

H, ∀v ∈ Dom(Ad+1),
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which is a stronger condition than (1.4). If HΔ = (Dom Ad+1, ‖·‖Δ) we define

L2(Δ) := L2(Nd
0 × R−, dμ;HΔ)

=
{

g : Nd
0 × R− → Dom Ad+1 :

∑

α∈Nd
0

∫ 0

−∞
‖g(α, λ)‖2

Δ dμ(α, λ) < +∞
}

.

With our assumptions it follows that L2(Δ) is a pre-Hilbert space.
Before stating our result on d + 1-tuples of operators we also need to study
some weighted shift operators on L2(Nd

0 ×R−, dμ), which correspond to some
multiplier operators on DA (see Sect. 4). If α, γ ∈ N

d
0 we write α ≥ γ meaning

that αi ≥ γi for all i = 1, . . . , d. Then, we prove the following.

Theorem 1.5. Let γ ∈ N
d
0 and τ < 0. Then, the operator

(Sγ,τϕ)(α, λ) =

⎧
⎪⎨

⎪⎩

|λ−τ |d
|λ|d ϕ(α − γ, λ − τ) if λ < τ ∧ α ≥ γ;

0 otherwise,

extends to a bounded linear operator on L2(Nd
0 ×R−, dμ) unitarily equivalent

to the multiplier operator on DA with multiplier ζγe−iτζd+1 . Furthermore, its
adjoint is given by the formula

(S∗
γ,τϕ)(α, λ) =

|λ + τ |d−|α|−|γ|

|λ|d−|α|
(α + γ)!

α!
2|γ|ϕ(α + γ, λ + τ).

We remark that, if we call the multipliers mj , j = 1, . . . , d, that appear
in Theorem 1.3 the shift operators on DA, then the operators Sγ,τ correspond
to the operators S −1mjS . Finally, we have the following result.

Theorem 1.6. Let (A1, . . . , Ad+1) be a strongly Siegel–dissipative vector of
commuting operators and set Aα = Aα1

1 · · · Aαd

d for any multi-index α ∈ N
d
0.

Then:

(i) the map Θ : H → L2(Nd
0 × R−, dμ;HΔ) defined as

(Θv)(α, λ) =
|λ||α|−d

α!2|α|− 1
2
e−iλAd+1Aαv

is an isometric embedding, i.e.,

‖Θv‖L2(Δ) = ‖v‖H, ∀v ∈ H.

(ii) the diagram

L2(Nd
0 × R−, dμ;HΔ) L2(Nd

0 × R−, dμ;HΔ)

H H

S∗
γ,τ ⊗Id

Θ

e−iτAd+1Aγ

Θ
(1.7)

commutes.
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We conclude this introduction pointing out that the Drury–Arveson
space DA(Bd+1) on the unit ball of C

d+1 has drawn considerable interest
since its first appearance in the works of Drury and of Arveson [7,9]. We
mention [3,5,6,10,16] and references therein. The Drury–Arveson space on
U was studied in [6] and [4]; see also [8] for the case of more general Siegel
type domains.

The paper is organized as follows. In Sect. 2 we recall some preliminary
facts, in Sect. 3 we study the space DA and we prove Theorem 1.4. In Sect. 4
we study some multiplier operators on DA and we prove Theorem 1.5. We
conclude proving Theorem 1.6 and Theorem 1.3 in Sect. 5.

2. Preliminary Facts

In this section we first recall some basic facts on the Siegel half-space, the
Heisenberg group and the group Fourier transform. Then we also recall some
simple properties of semigroups of operators on a Hilbert space.

2.1. The Siegel Upper Half-space and the Heisenberg Group

The Siegel upper half-space is defined in (1.1) and it is biholomorphically
equivalent to the unit ball B

d+1 via the Cayley transfom (1.2). Standard
references for the facts that follow are e.g. [11,17,20]. We introduce new
coordinates on U setting Ψ(ζ, ζd+1) = (z, t, h) where

⎧
⎪⎨

⎪⎩

z = ζ

t = Re ζd+1

h = Im ζd+1 − 1
4 |ζ|2 .

Then, if U = C
d × R × (0,+∞), Ψ : U → U is a C∞-diffeomorphism and

Ψ−1 is given by

Ψ−1(z, t, h) =
(
z, t + i1

4 |z|2 + ih
)

=: (ζ, ζd+1) .

Notice that h = �(ζ, ζd+1) and Ψ(ζ, t+ i
4 |ζ|2) = (z, t, 0). In this case we write

[z, t] in place of (z, t, 0) and we also use the abuse of notation [z, t] ∈ ∂U . We
now let the points in ∂U act on U as biholomorphic maps in the following
way. For [z, t] ∈ ∂U set

Φ[z,t](ω, ωd+1) =
(
ω + z, ωd+1 + t + i1

4 |z|2 + i
2ω · z̄

)
, (2.1)

where ω · z̄ =
∑d

j=1 ωj z̄j denotes the inner product in C
d. Notice that

�
(
Φ[z,t](ω, ωd+1)

)
= �(ω, ωd+1) ,
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that is, the maps Φ[z,t] preserve the defining function �. In particular, for
(ω, ωd+1) ∈ ∂U and [w, s] = Ψ(ω, ωd+1), by (2.1) we have

Φ[z,t]

(
(ω, ωd+1)

)
= Φ[z,t]

(
Ψ−1(w, s, 0)

)
= Φ[z,t]

(
w, s + i1

4 |w|2)

=
(
w + z, s + i

4 |w|2 + t + i
4 |z|2 + i

2w · z̄
)

=
[
w + z, s + t − 1

2 Im(w · z̄)
]

=: [w, s][z, t] .

Hence, it is possible to introduce a group structure on ∂U itself.

Definition 2.1. The Heisenberg group Hd is the set C
d × R endowed with

product

[w, s][z, t] =
[
w + z, s + t − 1

2 Im(w · z̄)
]
.

The right and left Haar measures on the Heisenberg group coincide with
the Lebesgue measure on C

d ×R. In particular, the Lebesgue measure is both
left and right translation invariant.

We now recall the basic facts for the Fourier transform on the Heisenberg
group. For λ ∈ R\{0} define the Fock space

Fλ =
{

F ∈ Hol(Cd) :
( |λ|

2π

)d ∫

Cd

|F (z)|2 e− λ
2 |z|2dz < +∞

}

when λ > 0, and Fλ = F |λ| when λ < 0. The Fock space is a reproducing
kernel Hilbert space with reproducing kernel e

|λ|
2 z·w. A complete orthonormal

basis of Fλ is given by the normalized monomials {zα/‖zα‖Fλ}α∈Nd
0
, where

‖zα‖2
Fλ = α!

(
2
|λ|

)|α|
.

For [z, t] ∈ Hd, the Bargmann representation σλ[z, t] is the operator
acting on Fλ given by,

σλ[z, t]F (w) = eiλt− λ
2 w·z− λ

4 |z|2F (w + z)

if λ > 0, and, if λ < 0, as σλ[z, t] = σ−λ[z,−t], that is,

σλ[z, t]F (w) = eiλt+ λ
2 w·z+ λ

4 |z|2F (w + z̄) .

If f ∈ L1(Hd), for λ ∈ R \ {0}, σλ(f) is the operator acting on Fλ as

σλ(f)F (w) =
∫

Hd

f [z, t]σλ[z, t]F (w) dzdt .

If f ∈ L2(Hd), we have Plancherel’s formula

‖f‖2
L2(Hd) =

1
(2π)d+1

∫

R

‖σλ(f)‖2
HS|λ|d dλ ,

where ‖σλ(f)‖2
HS =

∑
α ‖σλ(f)eα‖2

Fλ is the Hilbert–Schmidt norm of σλ(f)
and eα = zα/‖zα‖Fλ . If f ∈ L1 ∩ L2(Hd) the following inversion formula
holds:

f [z, t] =
1

(2π)d+1

∫

R

tr
(
σλ(f)σλ[z, t]∗

)|λ|d dλ.
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2.2. The Drury–Arveson Space on U
In [4] a family of holomorphic function spaces on U depending on a real
parameter ν was studied and characterized by means of the group Fourier
transform on Hd. This family of spaces includes weighted Bergman spaces, the
Hardy space, weighted Dirichlet spaces and the Dirichlet space. In particular,
the Drury–Arveson space DA was identified as a particular weighted Dirichlet
space. Here we recall the results in [4] we need in the rest of the paper.

Definition 2.2. We define the space L2
DA as the space of functions τ on R\{0}

such that:
(i) τ(λ) : Fλ → Fλ is aHilbert–Schmidt operator for everyλ;

(ii) τ(λ) = 0 in λ > 0;

(iii) ran(τ(λ)) ⊆ span{1};

(iv) ‖τ‖2
L2

DA
:=

1
(2π)d+1

∫ 0

−∞
‖τ(λ)‖2

HS |λ|2ddλ < +∞.

The following result holds true.

Theorem 2.3. ([4]) Let n > d
2 . Let f ∈ DA(n) defined as in (1.3). Then, there

exists τ ∈ L2
DA such that, for (ζ, ζd+1) ∈ U ,

f(ζ, ζd+1) = (f ◦ Ψ−1)(z, t, h) =
1

(2π)d+1

∫ 0

−∞
ehλ tr

(
τ(λ)σλ[z, t]∗

) |λ|ddλ ,

(2.2)
and

‖f‖2
DA(n)

=
Γ(2n − d)

22n−d
‖τ‖2

L2
DA

. (2.3)

Conversely, given τ ∈ L2
DA, let f be defined as in (2.2). Then f ∈ DA(n)

and (2.3) holds. Therefore, for each n > d
2 , the spaces DA(n) all coincide and

their norms satisfy (2.3).

Hence, we simply write DA in place of DA(n).

2.3. Semigroups of Operators

A semigroup of operators on a Hilbert space H is a one parameter family of
bounded linear operators {Tt}t≥0 on H such that:

(i) T0 = Id;
(ii) Tt+s = TtTs, ∀s, t > 0.

If in addition Tt converges to the identity operator Id in the strong operator
topology as t ↘ 0, the semigroup is called strongly continuous or C0. From
now on we will focus exclusively on C0 semigroups. The infinitesimal genera-
tor G of a C0 semigroup {Tt}t≥0 is a linear operator defined on the subspace
Dom(G) of v ∈ H such that the limit

lim
t↘0

Ttv − v

t
=: Gv

exists in the norm topology. It can be shown that G on its domain Dom(G)
is a linear densely defined closed operator [13, Section 34, Theorem 4]. In
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particular, we will be interested in the characterization of infinitesimal gen-
erators for contraction semigroups, i.e., semigroups {Tt}t≥0 such that each
Tt is a contraction, which is provided by the Lumer-Philips Theorem.

Definition 2.4. A densely define operator G on a Hilbert space H is called
dissipative if

Re 〈Gv, v〉H ≤ 0, ∀v ∈ Dom(G).

It is called maximal dissipative, if it is dissipative and its resolvent set r(G)
includes R+ = (0,+∞).

For the following renowned theorem we refer the reader, for instance,
to [13, p. 432].

Theorem 2.5. (Lumer-Philips) A densely defined operator G is the infinites-
imal generator of a (unique) semigroup of contractions if and only if it is
maximal dissipative.

The following is a very well-known lemma that we shall need in what
follows.

Lemma 2.6. Let {Tt}t≥0 be a semigroup of bounded operators on a Hilbert
space H. Suppose that:
(i) there exists δ > 0 such that sup0<t<δ ‖Tt‖B(H) < +∞;
(ii) for some dense subset D ⊆ H, Ttf → f for all f ∈ D as t ↘ 0 t

Then, {Tt}t≥0 is a strongly continuous semigroup.

We remark that we will work with semigroups that appear to have a
negative parameter τ ; this is to stay consistent with [4]. When we use this
notation we simply mean that the semigroup has the positive parameter
t = −τ .

3. Proof of Theorem 1.4

The proof of Theorem 1.4 follows at once from the next two lemmas. Recall
that the measure μ on N

d
0 × R− is defined in (1.6). Now define

ϕ(α, λ) = ‖zα‖−1
Fλ〈e0, σλ(f0)(eα)〉Fλ .

Lemma 3.1. The map Φ : DA ∩ H2 → L2(Nd
0 × R−, dμ) defined as

Φ(f)(α, λ) = ϕ(α, λ), (3.1)

extends to a conjugate linear isometry Φ : DA → L2(Nd
0×R−, dμ). Its inverse

is the map S of Theorem 1.4.

Proof. First we assume that f ∈ DA∩H2 where H2 denotes the Hardy space
on U . This intersection is dense in DA ([4, Lemma 4.2]) and every f ∈ H2

admits a boundary value function f0 ∈ L2(∂U). Moreover, for such function
f the function τ ∈ L2

DA in formula (2.2) actually coincides with the Fourier
transform of its boundary value function, that is, τ(λ) = σλ(f0) (see [4,14]).
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Let {eα}α be the orthonormal basis of normalized monomials of the
Fock space Fλ and let F =

∑
α Fαeα be a function in Fλ. Then, for every

function f ∈ DA ∩ H2, we have

σλ(f0)(F ) =
∑

α∈Nd
0

Fασλ(f0)(eα) =
∑

α∈Nd
0

Fα〈σλ(f0)(eα), e0〉Fλe0

thanks to property (iii) in Definition 2.2. Thus,

σλ(f0)(F ) = 〈F,Φλ〉Fλe0

where

Φλ =
∑

α∈Nd
0

〈σλ(f0)(eα), e0〉Fλeα

=
∑

α∈Nd
0

〈e0, σλ(f0)(eα)〉Fλeα

=
∑

α∈Nd
0

‖zα‖−1
Fλ〈e0, σλ(f0)(eα)〉Fλzα.

In particular, we deduce that ‖zα‖Fλϕ(α, λ) = 〈Φλ, eα〉Fλ . Now,

‖σλ(f0)‖2
HS =

∑

α∈Nd
0

‖σλ(f0)eα‖2
Fλ

=
∑

α∈Nd
0

|〈eα,Φλ〉Fλ |2‖e0‖2
Fλ

=
∑

α∈Nd
0

|〈eα,Φλ〉Fλ |2,

since {eα}α is an orthonormal basis in Fλ. However,

|〈eα,Φλ〉Fλ | = ‖zα‖Fλ |ϕ(α, λ)|,
so that

‖τ(λ)‖2
HS =

∑

α∈Nd
0

α!(2/|λ|)|α||ϕ(α, λ)|2.

In conclusion,

‖f‖2
DA = cd

∫ 0

−∞

∑

α∈Nd
0

α!(2/|λ|)|α||ϕ(α, λ)|2|λ|2d dλ

= cd

∫

Nd
0×R−

|ϕ(α, λ)|2 dμ(α, λ).

(3.2)

�

Lemma 3.2. Let f ∈ DA. Then, with the notation above and setting ζ =
(ζ1, . . . , ζd), we have

f(ζ, ζd+1) =
1

(2π)d+1

∫

Nd
0×R−

ζαe−iλζd+1ϕ(α, λ) |λ|d dαdλ. (3.3)
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Proof. If (ζ, ζd+1) = Ψ−1(z, t, h) we know from Theorem 2.3 that there exists
τ ∈ L2

DA such that

(f ◦ Ψ−1)(z, t, h) =
1

(2π)d+1

∫ 0

−∞
ehλ tr

(
τ(λ)σλ[z, t]∗

) |λ|ddλ .

Using the fact that τ(λ) is a rank one operator such that rank{τ(λ)} ⊆
span{e0} for every λ we get

tr(τ(λ)σλ[z, t]∗) = tr(σλ[z, t]∗τ(λ))

=
∑

α∈Nd
0

〈τ(λ)eα, σλ[z, t]eα〉

=
∑

α∈Nd
0

〈τ(λ)eα, P0σλ[z, t]eα〉

where P0 denotes the orthogonal projection onto the subspace generated by
e0. Moreover, it holds (see also (26) in [4])

P0σλ[z, t]eα =
(

1√
α!

( |λ|
2

)|α|/2( |λ|
2π

)d

eiλt+ λ
4 |z|2 z̄α

)
e0.

Thus,

tr(τ(λ)σλ[z, t]∗) =
∑

α∈Nd
0

〈τ(λ)eα, P0σλ[z, t]eα〉

=
∑

α∈Nd
0

〈eα,Φλ〉〈e0, P0σλ[z, t]eα〉

=
∑

α∈Nd
0

〈eα,Φλ〉〈P0σλ[z, t]eα, e0〉

=
∑

α∈Nd
0

1√
α!

( |λ|
2

)|α|/2

e−iλt+ λ
4 |z|2zα〈eα,Φλ〉

=
∑

α∈Nd
0

1√
α!

( |λ|
2

)|α|/2

‖zα‖ϕ(α, λ)e−iλt+ λ
4 |z|2zα.

=
∑

α∈Nd
0

ϕ(α, λ)e−iλt+ λ
4 |z|2zα,
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where the series converges absolutely since φ ∈ L2(Nd
0 × R−, dμ). Hence by

(2.2),

f(ζ, ζd+1) = (f ◦ Ψ−1)(z, t, h)

=
1

(2π)d+1

∫ 0

−∞
ehλ

∑

α∈Nd
0

ϕ(α, λ)e−iλt+ λ
4 |z|2zα |λ|ddλ

=
1

(2π)d+1

∫

Nd
0×R−

zαe−iλ(t−i( |z|2
4 +h))ϕ(α, λ) |λ|d dαdλ

=
1

(2π)d+1

∫

Nd
0×R−

ζαe−iλζd+1ϕ(α, λ) |λ|d dαdλ

as we wished to show. �

4. Pointwise Multipliers on the Drury–Arveson Space

In this section we explicitly study some multiplier operators on DA and we
prove Theorem 1.5. Recall that given a function m the associated
multiplier operator is the operator f �→ mf . The problem of characterizing
the multiplier algebra of a given reproducing kernel Hilbert function space is
a classical problem. In the case of the Drury–Arveson space on the unit ball
DA(Bd+1) this problem turned out to be very challenging; a first important
result is due to J. Ortega and J. Fäbrega [15]. Their result reads as follows.
Let n ∈ N0 be such that 2n > d and for f in Hol(Bd+1) define the measure

dνf (w) = |Rnf(w)|2(1 − |w|2)2n−d−1 dν(w),

where R is the radial derivative, dν is the normalized Lebesgue measure
on B

d+1 and w ∈ B
d+1. Then, f is a DA(Bd+1)-multiplier if and only if

f ∈ H∞(Bd+1) and dνf is a Carleson measure for DA(Bd+1). A few years
later N. Arcozzi, R. Rochberg and E. Sawyer in [5] completely characterized
the Carleson measures of DA(Bd+1); see also [18,19,21]. Hence, the multiplier
algebra of the Drury–Arveson space on the unit ball is completely character-
ized. Nonetheless, there is still interest in finding an easier characterization
and we refer the reader, for instance, to [10].

From [5,15] we can also deduce an indirect characterization of the mul-
tiplier algebra for DA on the Siegel half-space. Indeed, let C be the multi-
dimensional Cayley transform defined in (1.2). Then, up to an irrelevant
multiplicative constant,

KU
DA

(C(z, zd+1),C(w,wd+1)
)

= (1 − zd+1)KB
d+1

DA

(
(z, zd+1), (w,wd+1)

)
(1 − wd+1)

where KU
DA and KB

d+1

DA denote the reproducing kernel of DA and DA(Bd+1)
respectively, and (z, zd+1), (w,wd+1) ∈ B

d+1. From the abstract theory of
reproducing kernel Hilbert spaces (see, for instance, [1, Chapter 2.6]) we
deduce that

f �→ (1 − zd+1)−1(f ◦ C)
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is a surjective isometry from DA onto DA(Bd+1) and that m is a multiplier
for DA if and only if (m ◦ C) is a multiplier for DA(Bd+1).

For our goal we need to study the multiplier operators associated to the
functions ζγ = ζγ1

1 · · · ζγd

d , e−iτζd+1 for τ < 0 and ζγe−iτζd+1 . However, we do
not rely on the multiplier characterization on the unit ball since it is easier
to study them directly. The proof of the following lemma is standard and we
omit it.

Lemma 4.1. The set

D =
{
f ∈ L2(Nd

0 × R−, dμ) : supp f is compact and f(α, ·) ∈ C∞
c ∀α ∈ N

d
0

}
.

is dense in L2(Nd
0 × R−, dμ).

We now study the multiplier operator associated to the monomial ζγ , γ ∈
N

d
0. Although this operator is unbounded on DA, as it is easily seen, it is

closed and densely defined.

Lemma 4.2. Let γ ∈ N
d
0. Then, the multiplier operator mγ associated to the

function ζγ = ζγ1
1 · · · ζγd

d is a closed densely defined operator on DA.

Proof. Let us consider Dγ = {f ∈ DA : ζγf ∈ DA} as domain of our
multiplier operator. Let {fn}n ⊆ Dγ be a sequence such that fn → f in DA
and ζγfn → g ∈ DA. Since DA is a reproducing kernel Hilbert space we
also have that fn → f and ζγfn → g uniformly on compact sets. Hence,
ζγfn → ζγf uniformly on compact sets as well and ζγf = g. In particular
both f and ζγf are in DA so that f belongs to the domain Dγ . Thus, our
operator is closed.

To prove that Dγ is dense we exploit the previous Lemma 4.1. Let ϕ ∈ D
and define f ∈ DA by (3.3). Then,

ζγf(ζ, ζd+1) =
1

(2πi)d+1

∫

Nd
0×R−

ζα+γe−iλζd+1ϕ(α, λ) |λ|d dαdλ

=
1

(2π)d+1

∫

supp ϕ

ζαe−iλζd+1ϕ(α − γ, λ) |λ|dχ{α≥γ}(α) dαdλ

where χ{α≥γ}(α) is the characteristic function of the set {α ∈ N
d
0 : αi ≥

γi, i = 1, . . . , d}. Recall that suppϕ is a compact subset of N
d
0 × R− and

assume that (α, λ) ∈ suppϕ implies |α| < N for some positive integer N and
λ ∈ I where I is a compact subset of R−. From (3.2) we have

‖ζγf‖2
DA = cd

∫

I

∑

|α−γ|<N

|ϕ(α − γ, λ)|2 α!
( 2
|λ|

)|α||λ|2dχ{α≥γ}(α) dαdλ

= cd

∫

I

∑

|α|<N

|ϕ(α, λ)|2 (α + γ)!
α!

( 2
|λ|

)|γ|
dμ(α, λ)

≤ cd(ϕ)
∫

I

∑

|α|<N

|ϕ(α, λ)|2 dμ(α, λ)

= cd(ϕ)‖f‖2
DA
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where cd(ϕ) is a constant depending on the compact support of ϕ (and on
the dimension d). The density of Dγ in DA now follows from the density of
D in L2(Nd

0 × R−, dμ) and Theorem 1.4. �

We now investigate the other multiplier operators we are interested in
and see that they are actually bounded on the Drury–Arveson space.

Lemma 4.3. The pointiwise multiplier operators associated to the functions
{e−iτζd+1}τ<0 form a strongly continuous semigroup of contractions on DA
with corresponding infinitesimal generator the multiplier operator correspond-
ing to the function iζd+1.

Proof. From the inversion formula (3.3) we have

e−iτζd+1f(ζ, ζd+1) =
1

(2πi)d+1

∫

Nd
0×R−

ζαe−i(λ+τ)ζd+1ϕ(α, λ) |λ|d dαdλ

=
1

(2πi)d+1

∫

Nd
0×R−

ζαe−iλζd+1ϕ(α, λ − τ)
∣∣λ − τ

λ

∣∣dχ(−∞,τ)(λ) |λ|d dαdλ

where χ(−∞,τ) is the characteristic function of the interval (−∞, τ). Thus,
by (3.2) we get

‖e−iτζd+1f‖2
DA =

∫

Nd
0×R−

|ϕ(α, λ − τ)|2∣∣λ − τ

λ

∣∣2d
χ(−∞,τ)(λ) dμ(α, λ)

=
∫

Nd
0×R−

|ϕ(α, λ)|2∣∣ λ

λ + τ

∣∣|α|
dμ(α, λ)

≤
∫

Nd
0×R−

|ϕ(α, λ)|2 dμ(α, λ)

= ‖f‖2
DA.

Hence, we conclude that e−iτζd+1 is a contractive multiplier. The semigroup
property is automatically satisfied. Since e−iτζd+1f converges in norm to f for
all f ∈ D and the semigroup has uniformly bounded seminorm, it is strongly
continuous by Lemma 2.6. Then, by definition, the infinitesimal generator is
given by

lim
τ→0−

(e−iτζd+1 − 1)f
−τ

= iζd+1f

and the proof is concluded. �

Lemma 4.4. Let (γ, τ) ∈ N
d
0 ×R−, τ < 0. Then, the multiplier operator asso-

ciated to the muliplier ζγe−iτζd+1 extends to a bounded operator on DA.

Proof. Let D be as in Lemma 4.1 and let f ∈ D. We have

ζγe−iτζd+1f(ζ, ζd+1) =
1

(2πi)d+1

∫

Nd
0×R−

ζα+γe−i(λ+τ)ζd+1ϕ(α, λ) |λ|d dαdλ

=
1

(2πi)d+1

∫

Nd
0×R−

ζαe−iλζd+1ϕ(α − γ, λ − τ) |λ − τ |dχ(−∞,τ)(λ)χ{α≥γ}(α) dαdλ

=
1

(2πi)d+1

∫

Nd
0×R−

ζαe−iλζd+1ϕ(α − γ, λ − τ)
∣∣λ − τ

λ

∣∣dχ(−∞,τ)(λ)χ{α≥γ}(α)|λ|ddαdλ
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where χ{α≥γ}(α) is the characteristic function of the set {α ∈ N
d
0 : αi ≥

γi, i = 1, . . . , d}. Hence, setting mγ,τ (ζ, ζd+1) = ζγe−iτζd+1 ,

‖mγ,τf‖2
DA

=
∫

Nd
0×R−

|ϕ(α − γ, λ − τ)|2 ∣∣1 − τ

λ

∣∣2d
χ(−∞,τ)(λ)χ{α≥γ}(α) dμ(α, λ)

=
∫

Nd
0×R−

|ϕ(α, λ)|22|γ| |λ||α|

|λ + τ ||α+γ|
(α + γ)!

α!
dμ(α, λ).

Therefore,

‖mγ,τ‖2
M(DA) ≤ sup

α∈Nd
0 ,λ<0

2|γ| |λ||α|

|λ + τ ||α+γ|
(α + γ)!

α!
.

In order to calculate this supremum we first maximize over λ. For sym-
metry we can consider λ > 0 and τ > 0. We find that when |α| �= 0 the
maximum is achieved for λ = |α|

|γ| τ, whereas for α = 0 the expression is
decreasing in λ and therefore the maximum is achieved at λ = 0.

Substituting the value for λ in the expression above we find

2|γ| |α||α|τ |α|

|γ||α|
1

τ |α+γ|( |α|
|γ| + 1

)|α+γ|
(α + γ)!

α!
=

=
(2
τ

)|γ|(1 +
|γ|
|α|

)−|α| (α + γ)!
α!

( |α|
|γ| + 1

)−|γ|
.

Note that the first factor is constant, the second is decreasing in |α| and
tends to e−|γ| as |α| → +∞. For the last term notice that

(α + γ)!
α!

( |α|
|γ| + 1

)−|γ|
=

d∏

i=1

(αi + γi)!

αi!
(

|α|
|γ| + 1

)γi

≤
d∏

i=1

(|α| + γi)!

|α|!
(

|α|
|γ| + 1

)γi

≤ γ!
d∏

i=1

( |α| + 1
|α|
|γ| + 1

)γi

≤ γ!|γ||γ|.

This proves that the multiplier operator associated to mγ,α is bounded
with norm less than

max
{

γ!
(2
τ

)|γ|
, γ!

(2
τ

)|γ| |γ|!√
2π|γ|

}
,

where we used Stirling’s asymptotic. �

We now prove Theorem 1.5
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Proof. The proof of the unitary equivalence of the two operators follows es-
sentially from the computation in Lemma 4.4. For the computation of the
adjoint operator, if 〈·, ·〉 denotes the inner product in L2(Nd

0 × R−, dμ), we
have

〈S∗
γ,τϕ,ψ〉 = 〈ϕ, Sγ,τψ〉

=
∫

{α≥γ}

∫

{λ<τ}
ϕ(α, λ)

|λ − τ |d
|λ|d ψ(α − γ, λ − τ) dμ(α, λ)

=
∫

Nd
0×R−

|λ + τ |d−|α|−|γ|

|λ|d−|α|
(α + γ)!

α!
2|γ|ϕ(α + γ, λ + τ)ψ(α, λ) dμ(α, λ)

and the conclusion follows. �

5. The von Neumann Type Inequality

In this section we prove our main results Theorem 1.6 and Theorem 1.3. We
first prove a couple of lemmas.

Lemma 5.1. Let T be a bounded operator on a Hilbert space H and let U be a
densely defined closed operator. Assume that U is the infinitesimal generator
of a (unique) C0 semigroup {eτU}τ>0 and assume that T and U strongly
commute. Then, T and eτU commute for all τ > 0.

Proof. Consider some λ0 ∈ r(T ), the resolvent set of the operator T . Then
an algebraic computation shows that the bounded operators

Zτ := (T − λ0 Id)−1eτU (T − λ0 Id)

form a C0-semigroup. For v ∈ Dom(U), since T and U strongly commute,
Th − λ0v ∈ Dom(U) and

lim
τ↘0

Zτv − v

τ
= (T − λ0 Id)−1 lim

τ↘0

eτU (T − λ0 Id)v − (T − λ0 Id)v
τ

= (T − λ0 Id)−1U(Tv − λ0v) = Uv.

By the uniqueness of the infinitesimal generator we conclude that Zτ = eτU .
In other words,

eτUT = TeτU

for all τ > 0, as we wished to show. �

Proof of Theorem 1.6. Set A = (A1 · · · Ad), let v ∈ H and notice that, since
for 1 ≤ i ≤ d the operators Ai strongly commute with Ad+1, by [13, Section
34, Theorem 4(i)] we can infer that e−iτAd+1Aαv ∈ Dom Ad+1. Therefore,
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the map Θ is well-defined. Furthermore,

‖Θv‖2
L2(Δ) =

∫

Nd
0×R−

‖Θv(α, λ)‖2
Δdμ(α, λ)

=
∫

Nd
0×R−

‖e−iλAd+1Aαv‖2
Δ

|λ||α|

2|α|−1α!
dαdλ

=
∫

Nd
0×R−

Im〈Ad+1e
−iλAd+1Aαv, e−iλAd+1Aαv〉H

|λ||α|

2|α|−1α!
dαdλ

−
∫

Nd
0×R−

d∑

i=1

〈Aα+eie−iλAd+1v,Aα+eie−iλAd+1v〉H
|λ||α|

2|α|+1α!
dαdλ.

Now we observe that for v ∈ Dom Ad+1 we have

∂λ‖e−iλAd+1v‖2
H = 〈−iAd+1e

−iλAd+1v, e−iλAd+1v〉H

+ 〈e−iλAd+1v,−iAd+1e
−iλAd+1v〉H

= 2 Im〈Ad+1e
−iλAd+1v, e−iλAd+1v〉H.

From the fact that (A1, . . . , Ad+1) is strongly Siegel–dissipative we deduce
that iAd+1 +ε Id is maximal dissipative. In this case the Lumer–Philips The-
orem guarantees that iAd+1+ε Id generates a contraction semigroup; in other
words, for any v ∈ H, τ < 0,

e−τε‖e−iτAd+1v‖H ≤ ‖v‖H.

Therefore, ‖e−iτAd+1v‖H decays exponentially and we can integrate by parts
as follows,

‖Θv‖2
L2(Δ) =

∑

α∈Nd
0

∫ 0

−∞
∂λ‖e−iλAd+1Aαv‖2

H
|λ||α|

2|α|α!
dλ

−
∑

α∈Nd
0

∫ 0

−∞

d∑

i=1

‖Aα+eie−iλAd+1v‖2
H

|λ||α|

2|α|+1α!
dλ

= ‖v‖2
H +

∑

α∈Nd
0\{0}

∫ 0

−∞
∂λ‖e−iλAd+12− |α|

2 Aαv‖2
H

|λ||α|

α!
dλ

−
d∑

i=1

∑

α∈Nd
0

∫ 0

−∞
‖e−iλAd+12− |α|+1

2 Aα+eiv‖2
H

|λ||α|

α!
dλ

= ‖v‖2
H +

∑

α∈Nd
0\{0}

∫ 0

−∞
‖e−iλAd+12− |α|

2 Aαv‖2
H

|α||λ||α|−1

α!
dλ

−
∑

α∈Nd
0

∫ 0

−∞

d∑

i=1

‖e−iλAd+12− |α|+1
2 Aα+eiv‖2

H
|λ||α|

α!
dλ

= ‖v‖2
H.
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To see why the two sums cancel each other out, notice that

‖e−iλAd+12− |α|+1
2 Aα+eiv‖2

H
|λ||α|

α!

= ‖e−iλAd+12− |α+ei|
2 Aα+eiv‖2

H
(αi + 1)|λ||α+ei|−1

(α + ei)!

and use the combinatorial identity

d∑

i=1

∑

α∈Nd
0

cα+ei
(αi + 1) =

d∑

i=1

∑

β : βi≥1

cββi =
∑

β∈Nd
0\{0}

cβ

∑

i : βi≥1

βi =
∑

β∈Nd
0\{0}

cβ |β|.

We now lift the operator S∗
γ,τ to the space L2(Δ) by tensoring with the

identity. Explicitly, for g : Nd
0 → HΔ,

[S∗
γ,τ ⊗ Id]g(α, τ) =

|λ + τ |d−|α|−|γ|

|λ|d−|α|
(α + γ)!

α!
2|γ|g(α + γ, λ + τ).

We now show that the operator Θ is an intertwining operator for the
couple S∗

γ,τ ⊗ Id and e−iτAd+1Aγ where A = (A1, . . . , Ad). For, we have

Θ(e−iτAd+1Aγv)(α, λ) =
|λ||α|−d

α!2|α|− 1
2
e−i(τ+λ)Ad+1Aα+γv,

whereas, on the other hand,

([S∗
γ,τ ⊗ Id]Θv)(α, λ) =

|λ + τ |d−|α|−|γ|

|λ|d−|α|
(α + γ)!

α!
2|γ|Θv(α + γ, λ + τ)

=
|λ + τ |d−|α|−|γ|

|λ|d−|α|
(α + γ)!

α!
2|γ| |λ + τ ||α|+|γ|−d

(α + γ)!2|α|+|γ|− 1
2
e−i(τ+λ)Ad+1Aα+γv

=
|λ||α|−d

α!2|α|− 1
2
e−i(τ+λ)Ad+1Aα+γv

= Θ(e−iτAd+1Aγv)(α, λ).

In conclusion, the diagram (1.7) commutes and (ii) is proved. �

Finally, we prove our von Neumann type inequality.

Proof of Theorem 1.3. First suppose that the tuple (A1, . . . Ad+1) is strongly
Siegel-dissipative. Let p(z) =

∑
|γ|≤N cγzγ be a polynomial in z = (z1, . . . , zd).

Let (τ1, . . . , τd) ∈ R
d
− be fixed and let Mj be the operator on H given by

Mj = e−iτjAd+1Aj , j = 1, . . . , d. Then,

p(M1, . . . ,Md) =
∑

|γ|≤N

cγe−i
(∑d

j=1 γjτj

)
Ad+1Aγ =:

∑

|γ|≤N

cγe−iτγAd+1Aγ ,
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so that

Θp(M1, . . . ,Md) =
∑

|γ|≤N

cγΘe−iτγAd+1Aγ

=
∑

|γ|≤N

cγ [S∗
γ,τγ

⊗ Id]Θ

=
([ ∑

|γ|≤N

cγS∗
γ,τγ

]
⊗ Id

)
Θ.

Letting mj be the multiplier on DA given by mj(ζ, ζd+1) = ζje
−iτjζd+1 ,

j = 1, . . . , d, we have
∥∥p(M1, . . . ,Md)(v)

∥∥
H =

∥∥Θp(M1, . . . ,Md)(v)
∥∥

L2(Δ)

=
∥∥
([ ∑

|γ|≤N

cγS∗
γ,τγ

]
⊗ Id

)
Θ(v)

∥∥
L2(Δ)

≤
∥∥∥
[ ∑

|γ|≤N

cγS∗
γ,τγ

]
⊗ Id

∥∥∥
B(L2(Δ))

‖Θ(v)‖L2(Δ)

=
∥∥∥

∑

|γ|≤N

cγS∗
γ,τγ

∥∥∥
B(L2(N0×R−,dμ))

‖v‖H,

so that
∥∥p(M1, . . . ,Md)

∥∥
B(H)

≤
∥∥∥

∑

|γ|≤N

cγS∗
γ,τγ

∥∥∥
B(L2(N0×R−,dμ))

=
∥∥∥

∑

|γ|≤N

cγSγ,τγ

∥∥∥
B(L2(N0×R−,dμ))

=
∥∥∥

∑

|γ|≤N

cγζγe−iτγζd+1

∥∥∥
M(DA)

=
∥∥p(m1, . . . ,md)

∥∥
M(DA)

.

In the general case let (A1, . . . Ad+1) be Siegel-dissipative. Then, if we
replace Ad+1 by Ad+1 + iε Id we get a strongly Siegel-dissipative tuple of
operators. Applying the von Neumann type inequality we have

‖p(eετ1M1, . . . , e
ετkMd)‖B(H) ≤ ‖p(m1, . . . ,md)‖M(DA),

However, the right hand side of the inequality does not depend on ε and the
left hand side converges in the operator norm as ε → 0+. In fact, it suffices
to prove the convergence for each term of the polynomial separately; we have

‖e−iτAd+1eτε − e−iτAd+1‖ = ‖e−iτAd+1‖(1 − eτε) ≤ (1 − eτε)
τ↗0−→ 0.

Therefore, we can pass to the limit and obtain the desired inequality. �
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