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Abstract. We consider the Dirac system on the interval [0, 1] with a
spectral parameter µ ∈ C and a complex-valued potential with entries
from Lp[0, 1], where 1 ≤ p. We study the asymptotic behavior of its
solutions in a strip |Imµ| ≤ d for µ → ∞. These results allow us to
obtain sharp asymptotic formulas for eigenvalues and eigenfunctions
of Sturm–Liouville operators associated with the aforementioned Dirac
system.
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1. Introduction

Consider a Cauchy problem

D′(x) + J(x)D(x) = AμD(x), D(0) = I, (1.1)

where x ∈ [0, 1], Aμ = iμJ0, and

J0 =
[

1 0
0 −1

]
, J(x) =

[
0 σ1(x)

σ2(x) 0

]
, I :=

[
1 0
0 1

]
, (1.2)

μ ∈ C is a spectral parameter, and σj ∈ Lp[0, 1], j = 1, 2 are complex-valued
functions where 1 ≤ p < 2. We study the asymptotic behavior of its solutions
D(x) = D(x, μ) with respect to μ from a horizontal strip

Pd := {μ ∈ C : |Im μ| ≤ d}.

and μ → ∞.
The solution of (1.1) is a matrix D with entries from the space of ab-

solutely continuous functions on [0, 1] (i.e. from the Sobolev space W 1
1 [0, 1])

satisfying (1.1) for a.e. x ∈ [0, 1]. In our case, this definition together with
the equation imply that D has entries from W 1

p [0, 1].
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This article is an addendum to the paper [8], where the problem (1.1)
was analyzed for σj ∈ L2[0, 1], j = 1, 2. In that text one can find a background
on Dirac systems and their connection with Sturm–Liouville problems.

Here, we use all advantages of the method from [8] to obtain sharp
asymptotic formulas for D and consequently for solutions of spectral problems
associated with (1.1). In the case when σj ∈ Lp[0, 1], j = 1, 2, p > 2 one can
use the results from [8] due to the obvious embedding between Lp[0, 1] spaces.
Thus, in this text we restrict our reasoning only to 1 ≤ p < 2.

We are interested in the following spectral problem:

Y ′(x) + J(x)Y (x) = AμY (x), x ∈ [0, 1], (1.3)

where Y = [y1, y2]T and

y1(0) = y2(0), y1(1) = y2(1). (1.4)

Conditions (1.4) are an example of strongly regular boundary condi-
tions. The Dirac-type systems or equation (1.3) with a general formulation
of regular or strongly regular conditions have been studied for many years
and by different methods.

The classical results can be found in [4], where G. D. Birkhoff and R.
E. Langer obtained refined asymptotic formulas for general n × n system of
the form

Ly = −iBy′ + Q(x)y = λy,

B = diag(b1, . . . , bn), y = col(y1, . . . , yn), x ∈ [0, 1], (1.5)

where Q ∈ Cm[0, 1] × C
n×n, m ≥ 1. These formulas were used to obtain

asymptotic formulas for eigenvalues and eigenfunctions of regular boundary
value problem and to prove a pointwise convergence result for spectral de-
compositions. It is worth to mention that these results were generalized by
V. S. Rykhlov in [18] for Q ∈ L1[0, 1] × C

n×n.
For 2 × 2 Dirac systems with potential matrix Q ∈ C[0, 1] × C

2×2 the
existence of a triangle transformation operator has been proved for the first
time by Gasymov and Levitan (see [9]). Application to asymptotic formulas
for solutions and eigenvalues can also be found there in chapter vii. In this
case, V. A. Marchenko proved completeness property of regular BVP for
Dirac operator in his classical monograph [16] (see exercises in §1.3).

Whereas, for Q ∈ L1[0, 1] ×C
n×n there is a series of paper [1,12,14,15]

where asymptotic formulas for solutions were obtained in a special sectors
and has been applied to establish the completeness property of regular and
non-regular boundary value problems. In 2 × 2 case more refined asymptotic
formulas were derived using transformation operators.

The Riesz basis property of the root vectors system of the Dirac operator
with strictly regular boundary conditions and summable potential matrix
Q ∈ L1[0, 1] × C

2×2 was established by A. A. Lunyov and M. M. Malamud
[11], [13] on the one hand, and A. M. Savchuk and A. A. Shkalikov in [25] on
the other hand, independently by different methods and at the same time.
In both papers basic asymptotic formula for solutions to the Dirac system



IEOT Asymptotic Behavior of Solutions of the Dirac Page 3 of 24 55

were established in the strip Pd. This result was used to prove the following
asymptotic formula

μn = μ0
n + o(1)

for the eigenvalues, which was one of the main ingredients for proving a Riesz
basis property.

Furthermore A. A. Lunyov and M. M. Malamud have recently presented
a preprint [10] where Lipschitz dependence on Q in lp-norms of the sequences
of eigenvalues and eigenfunctions of BVPs for Dirac operator was proved on
compacts and balls in Lp[0, 1] × C

2×2.
Moreover, in [25] A. M. Savchuk and A. A. Shkalikov obtained for p ≥ 1

basic asymptotic formulas for eigenvalues and for fundamental solutions of the
Dirac-type system only with the leading term and the remainders expressed
by γ and γq given by (2.21) and (2.22). They got their results by applying
Prüfer’s substitution.

The works of A. M. Savchuk and I. V. Sadovnichaya: [19], [21] and [22]
may be regarded as articles which building up on the method from [20,25]
and its application for p = 1 to problems from the fields of asymptotics
formulas and basis properties (see also [23,24]). Almost all aforementioned
works prove or use the same type of results as mentioned before since they
deal with the Riesz basis property and very detailed formulas are not needed.

In order to study inverse spectral problems S. Albeverio, R. Hryniv
and Y. Mykytyuk in [2] investigated a direct spectral problem for the Dirac
system in the form

BZ ′(x) + Q(x)Z(x) = μZ(x), x ∈ [0, 1], (1.6)

where

B =
[

0 1
−1 0

]
, Q(x) =

[
q1(x) q2(x)
q2(x) −q1(x)

]
, qj ∈ Lp[0, 1], j = 1, 2,

with p ≥ 1. They proved also short formulas for fundamental system of
solutions, where remainders were expressed in terms of Fourier coefficients of
unknown functions from Lp. Furthermore, for the operators associated with
the system (1.6) with two kinds of conditions

zj(1) = z2(0) = 0, j = 1, 2, (1.7)

they presented basic formulas for eigenvalues with the same type of remain-
ders.

More results concerning different type of problems for the Dirac system
may be found in the series of paper of P. Djakov and B. Mityagin: [5], [6] and
[7] or D. V. Puyda [17].

The main result of this paper concerning Dirac systems is

Theorem 1.1. Let 1 ≤ p ≤ 2 and 1/p + 1/q = 1. Then for every d > 0 there
exist constants Cj = Cj(d, σ1, σ2), j = 0, 1, 2 such that for all x ∈ [0, 1] and
μ ∈ Pd, the solutions of (1.1) admit the following representation

D(x, μ) = exAµ + R(x, μ), (1.8)
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where

‖R(x, μ)‖C2×2 ≤ C1(γq(μ) + γ(x, μ)) ≤ C0, x ∈ [0, 1].

Moreover,

D(x, μ) = exAµ + D0(x, μ) + R0(x, μ), (1.9)

where

D0(x, μ) :=
∫ x

0

e(x−2t)Aµ(−J(t) + J̃(x, t)) dt

and

‖R0(x, μ)‖C2×2 ≤ C2(γq(μ)γ(x, μ) + γ̃(μ)), x ∈ [0, 1],

where γ, γ0 and γ̃ are given by (2.21)-(2.23) and J̃ by (2.8).

Whereas, asymptotic representation for solutions of the spectral prob-
lem (1.3)-(1.4) are contained in the following theorem.

Theorem 1.2. The eigenvalues of the spectral problem (1.3)-(1.4) lie in a cer-
tain strip Pd and admit the representation

μn = πn + μ0,n + ρn, n ∈ Z, (1.10)

with

μ0,n =
1
2i

∫ 1

0

e−2πintσ1(t)dt − 1
2i

∫ 1

0

e2πintσ2(t)dt

− i

∫ 1

0

∫ t

0

σ1(t)σ2(ξ)e−2πinte2πinξdξdt (1.11)

and for p = 1 it holds that

|ρn| < cΓ2(πn), (1.12)

where Γ is defined in (2.24), whereas for 1 < p < 2 it is true that∑
n∈Z

|ρn|q/2 < ∞. (1.13)

The result by A. M. Savchuk and A. A. Shkalikov from [25] is equivalent
to first thesis (1.8) of Theorem 1.1. Note that the next statement (1.9) is a
significant extension of the previous result. Its version for p = 1 may be found
in Remark 2.4. The most general result is the content of Lemma 2.2.

Using our method it is also possible to obtain very detailed formulas
for eigenvalues and eigenfunctions. In case of the spectral problem associ-
ated with (1.4) the eigenvalues admit the representation (1.10)-(1.11) with
remainders satisfying (1.12) and (1.13) for p = 1 and 1 < p < 2 respectively.
In literature (for instance in [25]) for 1 < p < 2 one may find results which
state that eigenvalues are of the form πn + rn, where (rn) ∈ lq, and q is
conjugated to p. Here it is worth to underline that beside the leading term in
our asymptotic formulas there occur Fourier coefficients of known functions
and the remainder, which belongs to lq/2. Additionally, for p = 1 we extend
known formulas with |rn| < cΓ(πn) (where Γ is defined in (2.24)) into more
detailed one with the remainder satisfying |rn| < cΓ2(πn).
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In the same spirit Theorem 3.2 and Corollary 3.3 generalize significantly
the results on eigenfunctions from literature.

Our method is applicable not only to the spectral problem (1.3)-(1.4)
but it works as well for different cases of strongly regular boundary conditions.
Moreover, it may be used to deal with the class of regular boundary conditions
(in the sense of Birkhoff).

Results by S. Albeverio, R. Hryniv and Y. Mykytyuk from [2] can be
directly derived from our approach with the help of transformation Z = UY ,
where

U =
[

1 −i
−i 1

]
.

It leads to the system (1.1) with σ1 = q1 + iq2 and σ2 = q1 − iq2 with
appropriate conditions. The relation between different formulations of Dirac
systems is explained deeper in [8].

We start our presentation with the section concerning asymptotic be-
havior for solutions of Dirac system. Next, in section 3 we apply these results
to the aforementioned spectral problem. For the clarity of exposition some
technical results are placed at the end in appendix.

2. Dirac System and its Solutions

In this section we study the matrix Cauchy problem (1.1) and the behavior
of its solution in a special integral form. The idea of this approach was taken
from [16, Ch. 1, §24] and developed in [8]. We follow it here directly for similar
operators but in different function spaces.

First, we introduce necessary notation. We use throughout the text a
standard symbol Lp[0, 1], p ≥ 1 to denote the space of measurable complex
functions integrable with p-th power with the classical norm

‖f‖Lp
=

(∫ 1

0

|f(x)|pdx
)1/p

.

We write lp, p ≥ 1 for the space of complex sequences summable with p-th
power and endowed with the norm

‖(xn)‖p =
( ∑

n∈Z

|xn|p
)1/p

.

W 1
p [0, 1] is a standard Sobolev space with the derivative in Lp[0, 1].

If X is a Banach space, then M(X) stands for the Banach space of 2×2
matrices with entries from X and the norm

‖Q‖M(X) :=
2∑

k,j=1

‖Qjk‖X , Q = [Qjk]2j,k=1.

We assume throughout the text that 1 ≤ p < 2. Moreover, let q and p be
conjugate exponents and r be a number from Young’s convolution inequality
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i.e.
1
p

+
1
q

= 1 and r =
p

2 − p
. (2.1)

Let

Δ := {(x, t) ∈ R
2 : 0 ≤ t ≤ x ≤ 1} (2.2)

and

B := {f : [0, 1] × [0, 1] → C a.e. : ∀x∈[0,1] f(x, ·) ∈ C([0, 1], Lr),

suppf ⊂ Δ)}.

We equip B with the norm

‖f‖B := sup
x∈[0,1]

‖f(x, ·)‖Lr [0,x],

so that B is a Banach space. In particular, directly from the definition if
f ∈ B, then f(x, t) = 0 for 0 ≤ x < t ≤ 1. This comment allows us to
underline the property which will be used in the text i.e. for f ∈ B there it
holds that ∫ x

0

f(x, t)dt =
∫ 1

0

f(x, t)dt ∈ C[0, 1]. (2.3)

We will use the series of constants connected with functions σj , j = 1, 2
in our estimations:

a := ‖σ1‖L1 · ‖σ2‖L1 , a1 := ‖σ1‖L1 + ‖σ2‖L1 , ap := ‖σ1‖Lp
+ ‖σ2‖Lp

.

(2.4)

Moreover, let

σ0(x) := |σ1(x)| + |σ2(x)| ∈ Lp[0, 1]. (2.5)

Now we are ready to establish a first crucial property of the solutions
of (1.1). The proof of the following lemma relays on technical results related
to certain integral operators, which are placed in appendix.

Lemma 2.1. Let σ0 ∈ Lp[0, 1], 1 ≤ p < 2.

a) The unique solution D = D(x, μ) of Cauchy problem (1.1) can be rep-
resented as

D(x, μ) = exAµ +
∫ x

0

e(x−2t)Aµ [−J(t) + Q(x, t)]dt, (2.6)

where Q ∈ M(B) is the unique solution of the integral equation

Q(x, t) = J̃(x, t) −
∫ x−t

0

J(t + ξ)Q(t + ξ, ξ)dξ, (2.7)

with J̃ ∈ M(B) given by

J̃(x, t) :=
∫ x−t

0

J(t + ξ)J(ξ)dξ =
∫ x

t

J(s)J(s − t) ds, (x, t) ∈ Δ. (2.8)
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b) The following estimates hold:

‖Q‖M(B) ≤ C1, ‖D‖M(C[0,1]) ≤ C2, μ ∈ Pd (2.9)

with certain constants Cj = Cj(d, σ1, σ2), j = 1, 2.

Proof. Note that the uniqueness of solutions follows from general results on
Sturm–Liouville equations (for instance [26, Thm. 1.2.1]). We look for solu-
tions of (1.1) in a special form

D(x, μ) = exAµU(x, μ), U(0, μ) = I. (2.10)

The identity

J(x)exAµ = e−xAµJ(x), a. e. x ∈ [0, 1] (2.11)

implies that U satisfies the Cauchy problem

U ′(x, μ) + e−2xAµJ(x)U(x, μ) = 0, x ∈ [0, 1], U(0, μ) = I,

which is equivalent to the integral equation

U(x, μ) = I −
∫ x

0

e−2tAµJ(t)U(t, μ)dt, x ∈ [0, 1]. (2.12)

We will seek for solutions of (2.12) of the form

U(x, μ) = I +
∫ x

0

e−2tAµQ0(x, t)dt, (2.13)

where Q0 ∈ M(B) does not depend on μ. Inserting (2.13) into (2.12), we
obtain ∫ x

0

e−2tAµQ0(x, t) dt = −
∫ x

0

e−2tAµJ(t) dt

−
∫ x

0

e−2tAµJ(t)
∫ t

0

e−2sAµQ0(t, s) ds dt.

Due to the fact that

J2
0 = I, J0J(x) + J(x)J0 = 0, a.e. x ∈ [0, 1], (2.14)

we get∫ x

0

e−2tAµJ(t)
∫ t

0

e−2sAµQ0(t, s)ds dt =
∫ x

0

e−2tAµ

∫ t

0

e2sAµJ(t)Q0(t, s)ds dt

=
∫ x

0

e−2tAµ

∫ x−t

0

J(t + ξ)Q0(t + ξ, ξ)dξdt,

thus∫ x

0

e−2tAµQ0(x, t) dt = −
∫ x

0

e−2tAµ

(
J(t)+

∫ x−t

0

J(t + ξ)Q0(t + ξ, ξ)dξ

)
dt

for all x ∈ [0, 1]. We conclude that U is a solution of (2.12) if and only if
Q0 ∈ M(B) is a solution of

Q0(x, t) = −J(t) −
∫ x−t

0

J(t + ξ)Q0(t + ξ, ξ)dξ. (2.15)



55 Page 8 of 24 �L. Rzepnicki IEOT

Next, setting

Q0(x, t) = −J(t) + Q(x, t), (x, t) ∈ Δ,

and using (2.15), we infer that Q satisfies (2.7). For Q the equation (2.7) can
be rewritten in an operator form

Q = J̃ + T̃Q, T̃ = −
[

0 Tσ1

Tσ2 0

]
,

for the operators Tσ1 and Tσ2 , defined on B by

(Tσf)(x, t) =
∫ x−t

0

σ(t + ξ)f(t + ξ, ξ)dξ =
∫ x

t

σ(s)f(s, s − t)ds, (2.16)

where σ ∈ Lp[0, 1].
Observe that

J̃(x, t) =
(

σ̃1(x, t) 0
0 σ̃2(x, t)

)
,

where

σ̃1(x, t) :=
∫ x−t

0

σ1(t + ξ)σ2(ξ)dξ, σ̃2(x, t) :=
∫ x−t

0

σ2(t + ξ)σ1(ξ)dξ.

(2.17)

According to Lemma 4.1 J̃ ∈ M(B). What is more, the operators Tσ are
linear and bounded on B due to Lemma 4.3. In particular, we have

‖T̃F‖M(B) ≤ a1‖F‖M(B), F ∈ M(B).

Next observe that

T̃ 2n =
[

Tn
12 0
0 Tn

21

]
, n ∈ N,

for bounded linear operators T12 and T21 on B given by

T12 := Tσ1Tσ2 , T21 := Tσ2Tσ1 .

Therefore by (4.4), we derive

‖T̃ 2nF‖M(B) ≤ an

n!
‖F‖M(B), F ∈ M(B),

thus we see that (2.7) has a unique solution Q ∈ M(B) of the form

Q =
∞∑

n=0

T̃nJ̃ =
∞∑

n=0

T̃ 2n(I + T̃ )J̃ , (2.18)

and moreover

‖Q‖M(B) ≤ (1 + a1)ea‖J̃‖M(B). (2.19)

Then (2.18) and (4.1) yield (2.9).
Note that from (2.3) and (2.6) we get D ∈ C[0, 1]. Adding together (2.6)

and (2.9), we obtain

‖D‖M(C[0,1]) ≤ ed
(
1 + a1 + ‖Q(x, t)‖M(B)

)
, μ ∈ Pd. (2.20)

�
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We now proceed to derivation of asymptotic formulas for D with the use
of the previous lemma. In what follows we will use different types of estimates
for remainders. For fixed σj ∈ Lp, p ≥ 1, j = 1, 2, and μ ∈ C define

γq(μ) :=
2∑

j=1

(∥∥∥
∫ x

0

e−2iμtσj(t)dt
∥∥∥

Lq

+
∥∥∥

∫ x

0

e2iμtσj(t)dt
∥∥∥

Lq

)
, (2.21)

where 1/q + 1/p = 1. We will need also

γ(x, μ) :=
2∑

j=1

(∣∣∣
∫ x

0

e−2iμtσj(t)dt
∣∣∣ +

∣∣∣
∫ x

0

e2iμtσj(t)dt
∣∣∣
)

, x ∈ [0, 1]

(2.22)

and

γ̃(μ) :=
∫ 1

0

σ0(s)γ2(s, μ) ds, (2.23)

Γ(μ) :=
2∑

j=1

(
sup

x∈[0,1]

∣∣∣
∫ x

0

e−2iμtσj(t)dt
∣∣∣ + sup

x∈[0,1]

∣∣∣
∫ x

0

e2iμtσj(t)dt
∣∣∣
)

. (2.24)

Note that Γ is nothing else than γq for p = 1 and q = ∞.
It is easy to see that if μ ∈ Pd then

γ(x, μ) ≤ 2e2da1, ‖γ(x, μ)‖Lq
≤ γq(μ), γq(μ) ≤ 2e2da1, x ∈ [0, 1],

(2.25)

and

γ̃(μ) ≤ 4a3
1e

4d, γ̃(μ) ≤ 2a1e
2d‖σ0‖Lp

γq(μ). (2.26)

In the following lemma we will need

N(x, t) := (J̃ + T̃ J̃)(x, t) ∈ B. (2.27)

Observe that the explicit form of N is

N(x, t) =
(

σ̃1(x, t) −(Tσ1 σ̃2)(x, t)
−(Tσ2 σ̃1)(x, t) σ̃2(x, t)

)
.

The very basic but crucial result uses mainly the description of some
integrals connected with the operator T̃ and its powers stated in Lemma 4.6.

Lemma 2.2. Let σj ∈ Lp, 1 ≤ p < 2 for j = 1, 2. If D(·, μ) is the solution of
(1.1) then D(·, μ) ∈ C[0, 1] and

D(x, μ) = exAµ + D(0)(x, μ) + D(1)(x, μ), (2.28)

where

D(0)(x, μ) = −
∫ x

0

e(x−2t)AµJ(t) dt +
∫ x

0

e(x−2t)AµN(x, t) dt,

and for all μ ∈ Pd and x ∈ [0, 1],

‖D(1)(x, μ)‖M(C) ≤ Cγ̃(μ), (2.29)

where C = C(d, σ1, σ2).



55 Page 10 of 24 �L. Rzepnicki IEOT

Proof. Note that by using (2.6) and (2.18) for D = D(x, μ), x ∈ [0, 1], μ ∈ Pd,
we get

D(x, μ) = exAµ −
∫ x

0

e(x−2t)AµJ(t)dt +
∫ x

0

e(x−2t)Aµ J̃(x, t)dt

+
∫ x

0

e(x−2t)Aµ(T̃ J̃)(x, t)dt + D(1)(x, μ) (2.30)

where

D(1)(x, μ) =
∫ x

0

e(x−2t)Aµ

∞∑
n=2

(T̃nJ̃)(x, t)dt.

Using (2.30) and the inequality (4.12) proved in appendix, we show that

‖D(1)(x, μ)‖M(C) ≤
∞∑

n=2

∥∥∥∥
∫ x

0

e(x−2t)Aµ(T̃nJ̃)(x, t)dt

∥∥∥∥
M(C)

≤ 3edγ̃(μ)
∞∑

n=2

e2ndan−1
1

(n − 2)!
= 3a1e

5d exp (e2da1)γ̃(μ),

for all x ∈ [0, 1] and μ ∈ Pd. �

The above lemma leads to sharp asymptotic formulas for D, which are
the main result of this section and were stated in Theorem 1.1.

Proof of Theorem 1.1. Let us start with several simple observations. First of
all, remark that clearly

C1(γq(μ) + γ(x, μ)
) ≤ C0.

Furthermore, due to inequalities (2.26), (2.29) and (4.11) we get

‖R0(x, μ)‖M(C) ≤
∥∥∥∥
∫ x

0

eiμ(x−2t)T̃ J̃(x, t) dt

∥∥∥∥
M(C)

+ ‖D(1)(x, μ)‖M(C)

≤ e3d(a2 + 1)
(
γq(μ)γ(x, μ) + γ1(μ)

)
+ Cγ̃(μ)

≤ C2(γq(μ)γ(x, μ) + γ̃(μ)
)

≤ 2C2a1e
2d(γ(x, μ) + a2γq(μ)

)
Note also that from∥∥∥∥

∫ x

0

e(x−2t)AµJ(t) dt

∥∥∥∥
M(C)

≤ edγ(x, μ), x ∈ [0, 1],

(4.9), and (4.10) it follows that∥∥∥D(0)(x, μ)
∥∥∥

M(C)
≤ edγ(x, μ) + 2e5d(1 + ap)apγq(μ), x ∈ [0, 1].

Combining all these inequalities with Lemma 2.2 and the estimates from
(2.26), we prove representations for D from Theorem 1.1. �
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Remark 2.3. Note that the explicit formula for D0 is the following

D0(x, μ) =
(

r1(x, μ) q1(x, μ)
q2(x, μ) r2(x, μ)

)
,

q1(x, μ) := −
∫ x

0

eiμ(x−2t)σ1(t) dt, q2(x, μ) := −
∫ x

0

e−iμ(x−2t)σ2(t) dt

r1(x, μ) :=
∫ x

0

eiμ(x−2t)σ̃1(x, t) dt, r2(x, μ) :=
∫ x

0

e−iμ(x−2t)σ̃2(x, t) dt

and σ̃j are given by (2.17).

Remark 2.4. If p = 1, then the remainder R0 from (1.9) satisfies

‖R0(x, μ)‖M(C) ≤ C2Γ2(μ),

where Γ is given by (2.24).

Remark 2.5. There are misprints in the paper [8] in the formulation of the
analogon of Lemma 2.1. The identities (2.14) and (2.15) from [8] should be the
same as (2.6) and (2.7) from this paper. Consequently, it implies changes of
signs in (2.28), (2.35), (2.37) and inside Remark 2.6 in [8]. Results concerning
the spectral problem remains true.

3. Spectral Problem

We consider a spectral problem

Y ′(x) + J(x)Y (x) = AμY (x), x ∈ [0, 1], (3.1)

associated with the matrix problem (1.1) where Y = [y1, y2]T and

y1(0) = y2(0), y1(1) = y2(1). (3.2)

Let c = c(x, μ) = [c1, c2]T and s = s(x, μ) = [s1, s2]T be the solutions
of (3.1) satisfying c1(0) = 1, c2(0) = 0 and s1(0) = 0, s2(0) = 1. Then due to
conditions (3.2) we find that the eigenvalues are the zeros of

Φ(λ) = c1(1, λ) + s1(1, λ) − c2(1, λ) − s2(1, λ). (3.3)

The eigenfunctions will be of the form:

Y =
(

y1

y2

)
=

(
c1(·, μn) + s1(·, μn)
c2(·, μn) + s2(·, μn)

)
(3.4)

The analysis of zeros of (3.3) will lead to the characterization of eigenvalues
stated in Theorem 1.2.

Proof. (Proof of Theorem 1.2) The standard approach is to obtain first ba-
sic formula for eigenvalues and then derive more accurate form using sharp
asymptotic results. We thus need results related to functions s and c from
(2.6). We derive that

Φ(μ) = 2i sin μ +
∫ 1

0

e(1−2t)iμ
(
Q11(1, t) + Q12(1, t) − σ1(t)

)
dt
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−
∫ 1

0

e−(1−2t)iμ
(
Q21(1, t) + Q22(1, t) − σ2(t)

)
dt. (3.5)

Via changing variables in the expression above we obtain

Φ(μ) = 2i sin(μ) + V (μ), (3.6)

where

V (μ) =
∫ 1

−1

eiμsh(s)ds (3.7)

and h is a certain function from Lp[−1, 1].
Note that the identities (3.5) and (3.6) are true not only for μ ∈ Pd but

for all μ ∈ C. It is a standard procedure (see for instance [3]) to derive using
Rouche Theorem that zeros of Φ are of the form μn = πn+ μ̃n, where (μ̃n) is
bounded. This conclusion implies that eigenvalues lie in a certain horizontal
strip of the complex plane. We may continue and investigate more precisely
the behavior of (μ̃n).

The formula for Φ gives us

sin(μ̃n) =
(−1)n+1

2i
V (πn + μ̃n). (3.8)

This expression converges to zero since the convergence of the integral in (3.7)
follows from Lebesgue–Riemann Lemma and the fact that μ̃n are bounded.
Thus μ̃n → 0 when n → ∞. Here ends the reasoning and first claim for p = 1.

For 1 < p < 2 we may continue in order to obtain more information.
Using sin x = x + O(x3), x → 0, and the fact that μ̃n → 0 we obtain

μ̃n =
(−1)n+1

2i

∫ 1

−1

eiμ̃nseiπnsh(s)ds + O(|μ̃n|3). (3.9)

Next, we recall the expansion of the exponential function

eμt = 1 + μt + O(|μ|2), μ → 0, |t| ≤ 1.

The above formula and (3.9) yield

μ̃n

(
1 − ic1,n − O(|μ̃n|)

)
= c0,n, (3.10)

where cj,n =
∫ 1

0
eiπnssjh(s)ds are Fourier coefficients of sjh(s), j = 0, 1. Since

h ∈ Lp[0, 1], then by the Hausdorff–Young theorem (cj,n) ∈ lq, j = 0, 1. Thus
c1,n → 0 and μ̃n → 0 as n → ∞. Formula (3.10) now implies that (μ̃n) ∈ lq.

Summarizing, we showed that the eigenvalues μn of our spectral problem
satisfy

μn = πn + μ̃n, (μ̃n) ∈ lq, n ∈ Z. (3.11)

This representation for 1 < p and the fact that for p = 1 the remainder
goes to zero allows us to find in both cases more accurate description of
eigenvalues. Recall we showed that eigenvalues lie in Pd for a certain d > 0,
thus we can use asymptotic formulas which are true for μ ∈ Pd. The main
tool will be the formulas for c and s from Theorem 1.1 and Remark 2.3 and
consequently for Φ.
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This way we get

Φ(μ) = 2i sin μ −
∫ 1

0

e(1−2t)iμσ1(t)dt +
∫ 1

0

e(1−2t)iμσ̃1(1, t)dt

+
∫ 1

0

e−(1−2t)iμσ2(t)dt −
∫ 1

0

e−(1−2t)iμσ̃2(1, t)dt + r(μ), (3.12)

where

|r(μ)| ≤ c(γq(μ)γ(1, μ) + γ̃(μ)) ≤ c(γ2
q (μ) + γ2(1, μ) + γ̃(μ)).

We now follow along the same lines as in the discussion about eigenval-
ues to analyze remainders. The representation (3.11) yield∫ 1

0

e±(1−2t)iμnσ(t)dt = (−1)n

∫ 1

0

e∓tiπne±(1−2t)iμ̃nσ(t)dt (3.13)

for σ ∈ Lp. Using an expansion

e±(1−2t)iμ̃n = 1 ± (1 − 2t)iμ̃n + O(|μ̃n|2), n → ∞, (3.14)

and Lemma 4.2 we establish

2iμ̃n =
∫ 1

0

e−2πintσ1(t)dt −
∫ 1

0

e2πintσ2(t)dt

+ 2
∫ 1

0

∫ t

0

σ1(t)σ2(ξ)e−2πinte2πinξdξdt + r(μn)(1 + sn + O(|μ̃n|)),
(3.15)

where sn are Fourier coefficients of some functions from L1[0, 1]. For p = 1
the last term can be estimated by Γ2(πn).

Our last aim is to prove that for (r(μn)) ∈ lq/2. In what follows we will
use a basic formula for eigenvalues (3.11), a simple inequality |eiz −1| ≤ |z|ed,
z ∈ Pd and the Hausdorff–Young inequality. We infer for σ ∈ Lp[0, 1] that
1 < p < 2

∑
n∈Z

∣∣∣
∫ x

0

e±2iμntσ(t)dt
∣∣∣q ≤ cq

∑
n∈Z

∣∣∣∣
∫ x

0

e±2πintσ(t)dt

∣∣∣∣
q

+ cq

∑
n∈Z

(∫ x

0

|e±2iμ̃nt − 1||σ(t)|dt

)q

≤ cq‖σ‖q
Lp[0,1] + c‖σ‖q

L1[0,1]

∑
n∈Z

|μ̃n|q ≤ m < ∞,

(3.16)

for any x ∈ [0, 1]. It follows from (3.16) that

sup
x∈[0,1]

∑
n∈Z

γq(x, μn) < ∞, (3.17)

Note that by (3.17)
∑
n∈Z

γq
q (μn) ≤ c

∫ 1

0

∑
n∈Z

γq(s, μn)ds < ∞.
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and

‖(γ̃(μn))‖lq/2 ≤
∫ 1

0

σ0(s)‖(γ2(s, μn))‖lq/2 ds

=
∫ 1

0

σ0(s)

( ∑
n∈Z

γq(s, μn)

)2/q

ds ≤ c‖σ0‖L1 .

Finally, we obtain ∑
n∈Z

|rn|q/2 < ∞.

Summarizing the discussion above we proved Theorem 1.2. �

Remark 3.1. Recall that according to Lemma 4.1 for every x ∈ [0, 1] functions
σ̃j(x, ·) are from Lr. If 1 < p ≤ 4

3 , then 1 < r ≤ 2 and Fourier coefficients of
σ̃j(x, ·) are from lq/2. Then the representation (1.10) with

∑
n∈Z

|ρn|q/2 < ∞

is true but with μ0,n given by

2iμ0,n =
∫ 1

0

e−2πintσ1(t)dt −
∫ 1

0

e2πintσ2(t)dt. (3.18)

Now, we can proceed to eigenfunctions. We are going to combine results
from Theorem 1.2 with Lemma 2.2 and Theorem 1.1.

Theorem 3.2. Let 1 < p < 2 and

F1(x, t) = −σ1(t) + σ̃1(x, t) − (Tσ1 σ̃2)(x, t)

F2(x, t) = −σ2(t) + σ̃2(x, t) − (Tσ2 σ̃1)(x, t).

The eigenfunctions of the spectral problem (3.1)-(3.2) admit the representa-
tion

y1(x, μn) = eiπnx(1 + iμ0,nx)

(
1 +

∫ x

0

e−2πintF1(x, t)dt

)

− 2iμ0,neiπnx

∫ x

0

e−2πinttF1(x, y)dt + r1(x, n),

y2(x, μn) = e−iπnx(1 − iμ0,nx)

(
1 +

∫ x

0

e2πintF2(x, t)dt

)

+ 2iμ0,ne−iπnx

∫ x

0

e2πinttF2(x, t)dt + r2(x, n),

where ∑
n∈Z

sup
x∈[0,1]

|rj(x, n)|q/2 < ∞,
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Proof. According to (3.4) eigenfunctions are expressed by solutions c and s
in the following way

y1(x, μn) = c1(x, μn) + s1(x, μn)

and

y2(x, μn) = c2(x, μn) + s2(x, μn).

The formula (2.28) yields that

y1(x, μn) = eiμnx −
∫ x

0

e(x−2t)iμnσ1(t)dt

+
∫ x

0

e(x−2t)iμn σ̃1(x, t)dt −
∫ x

0

eiμ(x−2t)(Tσ1 σ̃2)(x, t)dt + α(x, μn),

y2(x, μn) = e−iμnx −
∫ x

0

e−(x−2t)iμnσ2(t)dt +
∫ x

0

e−(x−2t)iμn σ̃2(x, t)dt

−
∫ x

0

e−iμ(x−2t)(Tσ2 σ̃1)(x, t)dt + β(x, μn),

where

|α(x, μn)| + |β(x, μn)| ≤ cγ̃(μn).

Repeating once more all arguments used in order to derive formulas for
eigenvalues, we obtain the thesis with claimed estimates for remainders. �

It is possible to obtain shorter but less precise formulas for eigenfunc-
tions. This time we use the representation (1.9) and comments from
Lemma 4.2 to prove the following fact.

Corollary 3.3. Let 1 ≤ p < 2, then the eigenfunctions of the spectral problem
(3.1)-(3.2) admit the representation

y1(x, μn) = eiπnx
(
1 + iμ0,nx −

∫ x

0

e−2πintσ1(t)dt

+
∫ x

0

∫ s

0

σ1(s)σ2(ξ)e−2iμse2iμξdξds
)

+ r1(x, n),

y2(x, μn) = e−iπnx
(
1 − iμ0,nx −

∫ x

0

e2πintσ2(t)dt

+
∫ x

0

∫ s

0

σ1(ξ)σ2(s)e2iμse−2iμξdξds
)

+ r2(x, n), (3.19)

where for 1 < p < 2 we have

sup
x∈[0,1]

∑
n∈Z

|rj(x, n)|q/2 < ∞,

whereas for p = 1 there holds

|rj(x, n)| ≤ cΓ2(πn).



55 Page 16 of 24 �L. Rzepnicki IEOT

Acknowledgements

The author is grateful to the referee for careful reading of the paper and very
helpful comments and remarks, which improved the paper significantly. This
work was supported by NCN grant no. UMO-2017/27/B/ST1/00078.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

4. Appendix

Lemma 4.1. For every x ∈ [0, 1] and j = 1, 2 the functions σ̃j(x, ·) belong to
Lr[0, 1], where r is defined in (2.1). Furthermore, we have σ̃j ∈ B, j = 1, 2,

and J̃ ∈ M(B).

Proof. We take (x, t) ∈ Δ. Let σ̂1, σ̂2 denote the extension of σ1 and σ2 by
zero outside [0, 1]. Note that for every x ∈ [0, 1] we get

∫ x−t

0

σ1(t + ξ)σ2(ξ)dξ =
∫ ∞

−∞
σ̂1(t + ξ)σ̂2(ξ)χ(x − (t + ξ))dξ

=
∫ ∞

−∞
σ̂1(t − s)σ̂2(−s)χ(x − (t − s))ds

=
(
(σ̂1(·)χ(x − ·)) ∗ (σ̂2(−·))

)
(t).

We thus have∥∥∥
∫ x−t

0

σ1(t + ξ)σ2(ξ)dξ
∥∥∥

Lr [0,1]
≤

∥∥∥
∫ x−t

0

σ̂1(t + ξ)σ̂2(ξ)dξ
∥∥∥

Lr(R)

≤ ‖(σ̂1(·)χ(x − ·))‖Lp(R)‖σ̂2(−·)‖Lp(R)

≤ ‖σ1‖Lp[0,1]‖σ2‖Lp[0,1],

hence

‖σ̃j‖B ≤ ‖σ1‖Lp[0,1]‖σ2‖Lp[0,1], j = 1, 2. (4.1)

Clearly, a similar estimate holds for σ̃2 as well.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Therefore, if we consider ε and x such that 0 ≤ t ≤ x+ε ≤ 1, then using
again the inequality for convolutions, we obtain

∥∥∥
∫ x+ε−t

0

σ1(t + ξ)σ2(ξ)dξ −
∫ x−t

0

σ1(t + ξ)σ2(ξ)dξ
∥∥∥

Lr[0,1]

≤ ‖(σ̂1(·)
[
χ(x + ε − ·) − χ(x − ·)]‖Lp(R)‖σ̂2(−·)‖Lp(R)

≤
∫
R

|σ̂1(s)|p|χ(x + ε − s) − χ(x − s)|pds‖σ̂2‖Lp(R).

The integral in the last line converges to zero, if ε → 0, because of Lebesgue
Theorem, hence the mapping x �→ σ̃j(x, ·) ∈ Lr[0, 1] is continuous for
j = 1, 2. �

Lemma 4.2. The following identity holds∫ x

0

e−2tiμσ̃1(x, t)dt +
∫ x

0

e2tiμσ̃2(x, t)dt =
∫ x

0

e−2iμξσ1(ξ)dξ

∫ x

0

σ2(s)e2iμsds.

Moreover, we have∣∣∣
∫ x

0

e−2tiμσ̃1(x, t)dt +
∫ x

0

e2tiμσ̃2(x, t)dt
∣∣∣ ≤ cγ2(x, μ)

and ∫ x

0

e−2tiμσ̃1(x, t)dt −
∫ x

0

e2tiμσ̃2(x, t)dt

= −2
∫ x

0

∫ s

0

σ1(ξ)σ2(s)e2iμse−2iμξdξds + α(μ),

where α(μ) = O(γ2(x, μ)).

Proof. Note that∫ x

0

e−2tiμσ̃1(x, t)dt =
∫ x

0

∫ s

0

σ1(s)σ2(ξ)e−2iμse2iμξdξds

∫ x

0

e2tiμσ̃2(x, t)dt =
∫ x

0

∫ s

0

σ1(ξ)σ2(s)e2iμse−2iμξdξds.

Observe that the change of variables yields∫ x

0

e−2tiμσ̃1(x, t)dt =
∫ x

0

∫ x

ξ

σ1(ξ)σ2(s)e−2iμse2iμξdsdξ

=
∫ x

0

∫ x

s

σ1(s)σ2(ξ)e−2iμξe2iμsdξds,

thus ∫ x

0

e−2tiμσ̃1(x, t)dt +
∫ x

0

e2tiμσ̃2(x, t)dt

=
∫ x

0

∫ x

0

σ1(ξ)σ2(s)e2iμse−2iμξdξds

=
∫ x

0

e−2iμξσ1(ξ)dξ

∫ x

0

σ2(s)e2iμsds.
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This equality implies that
∣∣∣
∫ x

0

e−2tiμσ̃1(x, t)dt +
∫ x

0

e2tiμσ̃2(x, t)dt
∣∣∣ ≤ cγ2(x, μ).

What is more, then∫ x

0

e−2tiμσ̃1(x, t)dt −
∫ x

0

e2tiμσ̃2(x, t)dt

=
∫ x

0

e−2iμξσ1(ξ)dξ

∫ x

0

σ2(s)e2iμsds

− 2
∫ x

0

∫ s

0

σ1(ξ)σ2(s)e2iμse−2iμξdξds,

thus ∫ x

0

e−2tiμσ̃1(x, t)dt −
∫ x

0

e2tiμσ̃2(x, t)dt

= −2
∫ x

0

∫ s

0

σ1(ξ)σ2(s)e2iμse−2iμξdξds

+ α(μ),

where α(μ) = O(γ2(x, μ)). �

Lemma 4.3. The linear operator Tσ

(Tσf)(x, t) =
∫ x−t

0

σ(t + ξ)f(t + ξ, ξ)dξ =
∫ x

t

σ(s)f(s, s − t)ds, (4.2)

where σ ∈ Lp[0, 1], is bounded in B.

Proof. Note that
( ∫ x

0

|(Tσf)(x, t)|rdt
)1/r

=
( ∫ x

0

∣∣∣
∫ x

0

χ(s − t)σ(s)f(s, s − t)ds
∣∣∣rdt

)1/r

≤
∫ x

0

|σ(s)|
( ∫ s

0

|f(s, s − t)|rdt
)1/r

ds

≤
∫ x

0

|σ(s)|
( ∫ s

0

|f(s, τ)|rdτ
)1/r

ds

≤
∫ x

0

|σ(s)|ds sup
s∈[0,1]

( ∫ s

0

|f(s, τ)|rdτ
)1/r

≤ ‖σ‖L1‖f‖B . (4.3)

For the proof of continuity we take ε and x such that 0 ≤ t ≤ x+ ε ≤ 1.
Then
∥∥∥(Tσf)(x + ε, ·) − (Tσf)(x, ·)

∥∥∥
Lr[0,1]

≤
(∫ x

0

∣∣∣
∫ x+ε

x

σ(s)f(s, s − t)ds
∣∣∣rdt

)1/r

+
( ∫ x+ε

x

∣∣∣
∫ x+ε

t

σ(s)f(s, s − t)ds
∣∣∣rdt

)1/r

.
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First integral can be estimated as follows
(∫ x

0

∣∣∣
∫ x+ε

x

σ(s)f(s, s − t)ds
∣∣∣rdt

)1/r

≤
∫ x+ε

x

|σ(s)|
( ∫ x

0

|f(s, s − t)|rdt
)1/r

ds

≤
∫ x+ε

x

|σ(s)|
( ∫ s

0

|f(s, τ)|rdτ
)1/r

ds

≤‖f‖B

∫ x+ε

x

|σ(s)|ds

and this expression goes to zero whenever ε does.
Second integral can be treated in an analogous way, hence the proof is

completed. �

Lemma 4.4. The operators Tkj , k, j = 1, 2, k �= j satisfy the following esti-
mate

‖Tn
kjf‖B ≤ an

n!
‖f‖B , f ∈ B, n ∈ N, k, j = 1, 2, k �= j. (4.4)

Proof. Consider the operator T12. Note that directly from the third line of
(4.3) we get
(∫ x

0

|(T12f)(x, t)|rdt
)1/r

≤
∫ x

0

|σ1(s)|
( ∫ s

0

|(Tσ2f)(s, τ)|rdτ
)1/r

ds

≤
∫ x

0

|σ1(s)|
∫ s

0

|σ2(τ)|
( ∫ τ

0

|f(τ, ξ)|rdξ
)1/r

dτds

≤ ‖f‖B

∫ x

0

|σ(s)|
∫ s

0

|σ2(τ)|ds. (4.5)

Define η ∈ C[0, 1] by

η(x) :=
∫ x

0

|σ1(s)|
(∫ s

0

|σ2(τ)| dτ

)
ds, x ∈ [0, 1].

This function is increasing and bounded by a = ‖σ1‖L1‖σ2‖L1 . It suffices to
prove that for all (x, t) ∈ Δ and n = 1, 2, . . . ,

( ∫ x

0

|(Tn
12f)(x, t)|rdt

)1/r

≤ ‖f‖B

n!
ηn(x), f ∈ B. (4.6)

For n = 1 the estimate (4.6) was shown above. Arguing by induction, suppose
that (4.6) holds for some n ∈ N. Then, for (x, t) ∈ Δ and f ∈ B, by (4.5) we
have ( ∫ x

0

|(Tn+1
12 f)(x, t)|rdt

)1/r

≤
∫ x

0

|σ1(s)|
∫ s

0

|σ2(τ)|
( ∫ τ

0

|(Tn
12f)(τ, ξ)|rdξ

)1/r

dτds

≤ ‖f‖B

n!

∫ x

0

|σ1(s)|
∫ s

0

|σ2(τ)|ηn(τ) dτ ds

≤ ‖f‖B

n!

∫ x

0

|σ1(s)|
∫ s

0

|σ2(τ)| dτ ηn(s) ds
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=
‖f‖B

n!

∫ x

0

ηn(s) dη(s) =
‖f‖B

(n + 1)!
ηn+1(x).

Therefore (4.6) is true and then after taking supremum over x ∈ [0, 1] we get
(4.4). �

Next proposition we state below without a proof, since it can be found
in [8, Prop. 6.1].

Proposition 4.5. If σj ∈ Lp[0, 1], 1 ≤ p < 2 and F ∈ M(B), then∫ x

0

e−2iμt(T̃F )(x, t)dt = −
∫ x

0

e−2iμsJ(s)
∫ s

0

e2iμξF (s, ξ)dξds. (4.7)

Moreover,∫ x

0

e−2iμt(T̃ J̃)(x, t) dt

= −
∫ x

0

e2iμy

(∫ x

y

J(z)e−2iμz dz

∫ y

0

JT (τ)e−2iμτdτ

)
JT (y)dy.

(4.8)

Lemma 4.6. If μ ∈ Pd, and x ∈ [0, 1], then the following inequalities hold∥∥∥∥
∫ x

0

e−2tAµ J̃(x, t) dt

∥∥∥∥
M(C)

≤ 2e2dap γq(μ), (4.9)

∥∥∥∥
∫ x

0

e−2tAµ(T̃ J̃)(x, t) dt

∥∥∥∥
M(C)

≤ 2e4da2
pγq(μ), (4.10)

∥∥∥∥
∫ x

0

e−2tAµ(T̃ J̃)(x, t) dt

∥∥∥∥
M(C)

≤ 2(ap + 1)e2d
(
γq(μ)γ(x, μ) + γ̃(μ)

)
,

(4.11)∥∥∥∥
∫ x

0

e−2tAµ(T̃nJ̃)(x, t) dt

∥∥∥∥
M(C)

≤ 3e2nd an−1
1

(n − 2)!
γ̃(μ), n ≥ 2. (4.12)

Proof. Note that∥∥∥∥
∫ x

0

e−2iμtJ̃(x, t)dt

∥∥∥∥
M(C)

=
∥∥∥∥
∫ x

0

J(s)e−2iμs

∫ s

0

J(ξ)e2iμξdξds

∥∥∥∥
M(C)

=
∣∣∣∣
∫ x

0

e−2iμsσ1(s)
∫ s

0

e2iμξσ2(ξ)dξds

∣∣∣∣
+

∣∣∣∣
∫ x

0

e−2iμsσ2(s)
∫ s

0

e2iμξσ1(ξ)dξds

∣∣∣∣
≤ e2d

{
‖σ1‖Lp

∥∥∥
∫ s

0

e2iμξσ2(ξ)dξ
∥∥∥

Lq

+ ‖σ2‖Lp

∥∥∥
∫ s

0

e2iμξσ1(ξ)dξ
∥∥∥

Lq

}

≤ e2d max{‖σ1‖Lp
, ‖σ2‖Lp

} γq(μ), x ∈ [0, 1].
(4.13)
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We thus proved the estimate (4.9).
Next, by (4.7), if μ ∈ Pd, x ∈ [0, 1] and F ∈ M(B), then∥∥∥∥

∫ x

0

e−2iμt(T̃F )(x, t)dt

∥∥∥∥
M(C)

≤ e2d

∫ x

0

∥∥∥∥J(s)
∫ s

0

e2iμξF (s, ξ)dξ

∥∥∥∥
M(C)

ds,

(4.14)

and ∥∥∥∥
∫ x

0

e−2iμt(T̃F )(x, t)dt

∥∥∥∥
M(C)

≤ e2da1

∥∥∥∥
∫ s

0

e2iμξF (s, ξ)dξ

∥∥∥∥
M(C)

. (4.15)

We use (4.15) and (4.13) to obtain that∥∥∥∥
∫ x

0

e−2iμt(T̃ J̃)(x, t) dt

∥∥∥∥
M(C)

≤ e2da1

∥∥∥∥
∫ s

0

e2iμξJ̃(s, ξ) dξ

∥∥∥∥
M(C)

≤ e4da2
pγq(μ),

thus, the estimate (4.10) holds.
Due to the estimate∣∣∣∣

∫ x

0

σ0(s)γ(y, μ) dy

∣∣∣∣ ≤ ‖σ0‖Lp
‖γ(y, μ)‖Lq

≤ a2γq(μ),

the inequality (4.11) holds if∥∥∥∥∥
∫ x

0

e−2iμt(T̃ J̃)(x, t) dt

∥∥∥∥∥
M(C)

≤ e2d

(
γ̃(μ) + γ(x, μ)

∫ x

0

σ0(y)γ(y, μ) dy

)
.

(4.16)

Whereas, using (4.8), (4.9), we have∥∥∥∥∥
∫ x

0

e−2iμt(T̃ J̃)(x, t) dt

∥∥∥∥∥
M(C)

≤ e2d

∫ x

0

∥∥∥∥
∫ x

y

e−2iμzJ(z)dz

∫ y

0

e−2iμτJT (τ) dτJT (y)
∥∥∥∥

M(C)

dy

≤ e2d

∫ x

0

σ0(y)
∥∥∥∥
∫ x

y

e−2iμzJ(z)dz

∥∥∥∥
M(C)

∥∥∥∥
∫ y

0

e−2iμτJ(τ) dτ

∥∥∥∥
M(C)

dy

≤ e2d

∫ x

0

σ0(y)
∥∥∥∥
∫ y

0

e−2iμτJ(τ) dτ

∥∥∥∥
2

M(C)

dy

+ e2d

∥∥∥∥
∫ x

0

e−2iμzJ(z)dz

∥∥∥∥
M(C)

∫ x

0

σ0(y)
∥∥∥∥
∫ y

0

e−2iμτJ(τ) dτ

∥∥∥∥
M(C)

dy

≤ e2dγ̃(μ) + e2dγ(x, μ)
∫ x

0

σ0(y)γ(y, μ) dy,

and (4.16) follows.
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The estimate (4.12) will be showed, if we prove that for all n ≥ 2 and
any x ∈ [0, 1],

∥∥∥∥
∫ x

0

e−2iμt(T̃nJ̃)(x, t) dt

∥∥∥∥
M(C)

≤ 3
2

e2nd

(n − 2)!

(∫ x

0

σ0(s) ds

)n−2

a1γ̃(μ).

(4.17)

We proceed by induction. Using (4.14) for F = T̃ J̃ and (4.16), we note that
∥∥∥

∫ x

0

e−2iμt(T̃ 2J̃)(x, t) dt
∥∥∥

M(C)

≤ e2d

∫ x

0

σ0(s)
∥∥∥∥
∫ s

0

e2iμξ(T̃ J̃)(s, ξ)dξ

∥∥∥∥
M(C)

ds

≤ e4d

∫ x

0

σ0(s)
(

γ(s, μ)
∫ s

0

σ0(y)γ(y, μ) dy + γ̃(μ)
)

ds

≤ e4d

∫ x

0

σ0(s)γ(s, μ)
∫ s

0

σ0(y)γ(y, μ) dy ds + e4da1γ̃(μ)

≤ e4d

(∫ x

0
σ0(s)γ(s, μ) ds

)2

2
+ e4da1γ̃(μ).

Since σ0 is nonnegative we may now apply Cauchy–Bunyakovsky–Schwarz
inequality to obtain

( ∫ x

0

σ0(s)γ(s, μ)ds
)2

≤
∫ x

0

σ0(s)ds

∫ x

0

σ0(s)γ2(s, μ)ds ≤ a1γ̃(μ).

Therefore, we proved
∥∥∥

∫ x

0

e−2iμt(T̃ 2J̃)(x, t) dt
∥∥∥

M(C)
≤ 3

2
e4da1γ̃(μ),

hence (4.17) holds for n = 2.
Suppose that (4.17) holds for some n ≥ 2. We use (4.14) to derive

∥∥∥
∫ x

0

e−2iμt(T̃n+1J̃)(x, t) dt
∥∥∥

M(C)

≤ e2d

∫ x

0

σ0(s)
∥∥∥∥
∫ s

0

e2iμξ(T̃nJ̃)(s, ξ)dξ

∥∥∥∥
M(C)

ds

≤ 3
2

e2(n+1)d

(n − 2)!
a1γ̃(μ)

∫ x

0

σ0(s)
(∫ s

0

σ0(τ) dτ

)n−2

ds

=
3
2

e2(n+1)d

(n − 1)!
a1γ̃(μ)

(∫ x

0

σ0(τ) dτ

)n−1

, x ∈ [0, 1],

thus (4.17) holds also for n + 1, and the proof of (4.17) is completed. �
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