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Abstract. We discuss the issue of maximal regularity for evolutionary
equations with non-autonomous coefficients. Here evolutionary equa-
tions are abstract partial-differential algebraic equations considered in
Hilbert spaces. The catch is to consider time-dependent partial differ-
ential equations in an exponentially weighted Hilbert space. In passing,
one establishes the time derivative as a continuously invertible, normal
operator admitting a functional calculus with the Fourier–Laplace trans-
formation providing the spectral representation. Here, the main result
is then a regularity result for well-posed evolutionary equations solely
based on an assumed parabolic-type structure of the equation and es-
timates of the commutator of the coefficients with the square root of
the time derivative. We thus simultaneously generalise available results
in the literature for non-smooth domains. Examples for equations in
divergence form, integro-differential equations, perturbations with non-
autonomous and rough coefficients as well as non-autonomous equations
of eddy current type are considered.
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1. Introduction

If one considers partial differential equations depending on time as an equa-
tion in space-time the following problem of maximal regularity arises nat-
urally. For the sake of the argument, let H be a Hilbert space modelling
space-time and let D and A be two closed, densely defined (unbounded) op-
erators, where the former contains the temporal and the latter the spatial
derivative(s). Abstractly spoken, the PDE in question then may look like as
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follows:

Du + Au = f

for some right-hand side f ∈ H. In particular, when hyperbolic type problems
are concerned (think of the transport equation or the wave equation), one
cannot expect that for any f ∈ H (usually an L2-type space) the solution u
to belong to both dom(D) and dom(A). In general one can only hope for u ∈
dom(D + A), thus deeming the above equation to be true only in some gener-
alised sense. A first example, where it is possible to show that u belongs to the
individual domains given any f ∈ H is when D = ∂t and A = −ΔD (Lapla-
cian with Dirichlet boundary conditions on some open Ω ⊆ R

n) and H =
L2(0, T ;L2(Ω)) and u is assumed to satisfy homogeneous initial conditions.
Then, the solution u indeed belongs to H1(0, T ;L2(Ω))∩L2(0, T ; dom(ΔD)),
see e.g. [10] or below. Traditionally, the method of choice to derive such a
regularity result first establishes well-posedness of the equation at hand via
bilinear forms and afterwards analysing the problem in terms of the associated
generator. Quite naturally and generalising the above situation considerably,
Lions raised the following problem (see [10, p. 68]):

Problem 1.1. Let V and H be Hilbert spaces such that V ↪→ H continuously
and densely. Let a : [0, T ] × V × V → C be such that a(t, ·, ·) is sesquilinear,
satisfying suitable boundedness, coercivity and measurability conditions thus
defining A(t) via 〈A(t)x, y〉V,V ∗ :=a(t, x, y), t ∈ [0, T ]. Let f ∈ L2(0, T ;H) be
given. Then there exists a unique solution u ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ) of

u′(t) + A(t)u(t) = f(t) u(0) = 0.

The question now is under which conditions on a, do we actually have u ∈
H1(0, T ;H)?

The latter problem indeed fits into the above abstract perspective for
D = ∂t with domain H1(0, T ;H) with Dirichlet boundary conditions at 0
and ˜A = A : dom(A) ⊆ L2(0, T ;H) → L2(0, T ;H), u �→ (t �→ A(t)u(t)) with
maximal domain. Problem 1.1 has a long history and has rather recently
gained some renewed attention. For the latest developments, we refer to the
survey article in [2], to [1] and its introduction. We recall here that Hölder
continuity for a (and particularly the Hölder exponent 1/2) with respect to
time in a suitable sense plays a crucial role, see e.g. [9,13] for a positive and
a negative result, respectively.

The available results in the literature up to this point consider explicit
Cauchy problems similar to the one in Problem 1.1. Thus, in any case, the
complexity of the problem is contained in the form a (or in the operator A).

In this article we set a different focus and try to keep the operator
containing the spatial derivatives (i.e. A) as simple as possible and move the
complexity over to the time derivative. The rationale behind this is the notion
of so-called evolutionary equations, invented in [14] and rather self-contained
discussed in [16,22]. More precisely, we consider equations of the form

(∂tM + N + A) U = F,
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where f belongs to an exponentially weighted L2-space, A is an unbounded
skew-selfadjoint operator solely acting with respect to the spatial variables
and M and N are suitable bounded linear operators in space-time. The
solution theory developed in [27,28] asserts that under suitable positive def-
initeness conditions imposed on ∂tM + N , one has that (∂tM + N + A)
is continuously invertible. In the framework of evolutionary equations, the
maximal regularity problem then reads as follows.

Problem 1.2. Given ∂tM + N satisfies the appropriate positive definiteness
conditions and A skew-selfadjoint in order that (∂tM + N + A) is continu-
ously invertible, what are the additional conditions on M and N (and the
right-hand side F ) such that

(∂tM + N + A)
−1

F = (∂tM + N + A)−1
F ?

We emphasise that even in the time-independent case Problems 1.1 and
1.2 are rather different types of questions. In fact, since A is skew-selfadjoint
in Problem 1.2, the choices M = 1 and N = 0 for F /∈ H1 with respect
to time do not lead to

(

∂t + A
)−1

F = (∂t + A)−1
F , if A is unbounded. As

it will be obvious in the next example for a solution of Problem 1.2 one is
particularly interested in cases where F belongs to spaces not as smooth as
H1.

In the autonomous case, Problem 1.2 has been addressed in [19]. The
conditions derived describe a parabolic type evolutionary equation in an ab-
stract manner. Indeed, one assume that there exists a densely defined closed
linear operator C (acting in the spatial variables only) such that

A =
(

0 −C∗

C 0

)

.

Moreover, one has that

M =
(M00 0

0 0

)

and N =
(N00 N01

N10 N11

)

with N11 satisfying an additional positive definiteness condition. The stan-
dard case of the heat equation ∂tu − ΔDu = f mentioned above is then re-
covered by putting q = − grad0 u (gradient subject to homogeneous Dirichlet
boundary conditions) and considering

(

∂t

(

1 0
0 0

)

+
(

0 0
0 1

)

+
(

0 div
grad0 0

)) (

u
q

)

=
(

f
0

)

.

Then, indeed, by the main result of [19], one has
(

∂t

(

1 0
0 0

)

+
(

0 0
0 1

)

+
(

0 div
grad0 0

))−1 (

f
0

)

=
(

∂t

(

1 0
0 0

)

+
(

0 0
0 1

)

+
(

0 div
grad0 0

))−1 (

f
0

)

leading to the maximal regularity result mentioned at the beginning for F =
(f, 0) with f ∈ L2(0, T ;L2(Ω)) only.
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Even though the class of equations treated in [19] particularly contains
integro-differential equations rendering rather different equations to enjoy
maximal regularity, the case of the heat equation with non-symmetric but
time-independent coefficients could not be treated with the methods devel-
oped there.

In this article we shall enlarge the class of coefficients M and N con-
siderably leading to the equality highlighted in Problem 1.2. In particular,
this class will involve non-symmetric conductivities in the case of the heat
equation. What is more, we shall show that the conditions might be weaker
than the conditions derived in both [3,8] if applied to divergence form prob-
lems. Since we do not consider bilinear forms as our central object of study,
we do not invoke the Kato square root property explicitly, which proved in-
strumental in the main result in [1]. In particular, our methods also apply
irrespective of the regularity of the considered underlying domains of the
exemplarily considered divergence form problems. Another key difference to
the results for non-autonomous maximal regularity available in the literature
is the possibility of the variable operator coefficient M, which allows us to
consider integro-differential equations with the same approach as classical
Cauchy problems in divergence form. Moreover, the operator coefficient N
permits the introduction of rough (in time) lower order terms. Before we
present a plan of our paper, we shortly describe the two main results and
instrumental techniques used in the present article.

Theorem 4.1, our first main result on maximal regularity of evolution-
ary equations, in rough terms can be described as follows: Well-posedness
in L2 and H1/2 together with a parabolic structure of M,N and A imply
maximal regularity in the sense of Problem 1.2 for F = (f, g) ∈ L2 × H1/2,
which in the standard heat equation case is satisfied as g = 0 anyway. For
a proof of Theorem 4.1, the framework of evolutionary equations is particu-
larly helpful since ∂t is continuously invertible and normal yielding a handy
description of H1/2 by the functional calculus for ∂t. The functional calculus
is provided with the help of the Fourier–Laplace transformation. Note that
the application of this functional calculus naturally leads to the fractional
Riemann–Liouville derivative, see also [17? ]. In applications, the conditions
on the parabolic structure and the well-posedness in L2 are rather easy to
show. The assumed positive definiteness in H1/2 leading to the respective
well-posedness result might be rather difficult to obtain, though. We empha-
sise, however, that in addition to the various positive definiteness estimates,
we only need to assume that the involved coefficient operators M and N are
bounded linear operators in H1/2 thus leaving this space invariant. In par-
ticular, no bounded commutator assumptions need to be imposed suggesting
room for improvement along the lines of the low regularity assumed for the
coefficients in [1]. We shall not follow up on this but rather assume stronger
commutator assumptions on M and N with ∂−1

t and ∂
1/2
t , respectively, con-

firming the particular role of commutator estimates for maximal regularity
already observed in [3,8]. Our second main theorem on maximal regularity
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of evolutionary equations (Theorem 5.1) imposes the same parabolic struc-
ture assumption and well-posedness-in-L2-requirement as Theorem 4.1. The
conditions on the commutators then lead to the asked for well-posedness in
H1/2 of Theorem 4.1 via a perturbation argument.

For divergence form problems, the assumptions in Theorem 5.1 are im-
plied by the fractional Sobolev (or BMO)-regularity properties imposed in
[3,8]. This provides a way of classifying the a priori not comparable condi-
tions in [3,8]. Furthermore, we recover an analogous regularity phenomenon
first observed in [8] and confirmed in [3] of the solution belonging to H1/2

-time regularity taking values in the form domain.
In the next section, we recall the framework of evolutionary equations

and highlight the main ingredients of the non-autonomous solution theory
in L2 as well as some facts of the (time) derivative established in vector-
valued exponentially weighted L2-spaces. This particularly includes the spec-
tral representation and the accompanying functional calculus. In Sect. 3, we
provide a necessary new technical result, Theorem 3.4, which contains a so-
lution theory for evolutionary equations in H1/2. Our first main result is
presented and proved in Sect. 4. The corresponding perturbation result with
the mentioned commutator assumptions is presented in Sect. 5. Also, with
a focus on operator-valued multiplication operators, we analyse the commu-
tator condition imposed in Theorem 5.1 a bit more closely. We provide a
proof of the results in [3,8] for divergence form problems with our meth-
ods in Subsection 6.1. An example for integro-differential equations being a
non-autonomous variant of some equations considered in [23] is presented
in Sect. 6.2. The last application of our abstract findings is concerned with
the (non-autonomous) eddy current approximation for Maxwell’s equations
in Sect. 6.3. We provide a small conclusion in Sect. 7.

2. The Framework

We recall the framework of evolutionary equations. For more details and the
proofs we refer to [15,22,28]. We start with the underlying Hilbert space
setting and the definition of the time derivative operator.

Definition. For ρ ≥ 0 we define the space

L2,ρ(R;H):={f :R → H ; f Bochner-measurable,
∫

R

‖f(t)‖2e−2ρt dt < ∞},

where we as usual identify functions which are equal almost everywhere. This
space is clearly a Hilbert space with respect to the inner product

〈f, g〉ρ,0:=
∫

R

〈f(t), g(t)〉He−2ρt dt (f, g ∈ L2,ρ(R;H)).

Moreover, we define the operator ∂t,ρ: dom(∂t,ρ) ⊆ L2,ρ(R;H) → L2,ρ(R;H)
as the closure of the operator

C∞
c (R;H) ⊆ L2,ρ(R;H) → L2,ρ(R;H), φ �→ φ′,
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where C∞
c (R;H) denotes the space of arbitrarily differentiable functions hav-

ing compact support attaining values in H. Finally, we define the Fourier–
Laplace transformation Lρ: L2,ρ(R;H) → L2(R;H) as the continuous exten-
sion of the mapping

C∞
c (R;H) ⊆ L2,ρ(R;H) → L2(R;H), φ �→

(

t �→ 1√
2π

∫

R

e−(it+ρ)sφ(s) ds

)

.

We collect some properties of the so introduced operators.

Proposition 2.1. Let ρ ≥ 0.

(a) The operator ∂t,ρ is normal with Re ∂t,ρ = ρ. Thus, in particular ∂−1
t,ρ ∈

L(L2,ρ(R;H)) with ‖∂−1
t,ρ ‖ ≤ 1

ρ if ρ �= 0. Moreover, for ρ �= 0

(

∂−1
t,ρ f

)

(t) =
∫ t

−∞
f(s) ds (t ∈ R, f ∈ L2,ρ(R;H)).

(b) The operator Lρ is unitary and

Lρ∂t,ρ = (im +ρ)Lρ,

where m : dom(m) ⊆ L2(R;H) → L2(R;H) is given by (m f) (t) = tf(t)
for t ∈ R and f ∈ dom(m) with maximal domain; that is,

dom(m) = {f ∈ L2(R;H) ; (t �→ tf(t)) ∈ L2(R;H)}.

In particular σ(∂t,ρ) = {it + ρ ; t ∈ R}.
(c) As operators in L2,ρ(R;H) we have

∂∗
t,ρ = −∂t,ρ + 2ρ.

With the help of the unitary equivalence of the operators ∂t,ρ and im +ρ
we can also define derivatives of fractional order (see [17,22? ]).

Proposition 2.2. Let ρ > 0 and α ∈ R and set

∂α
t,ρ:=L∗

ρ(im +ρ)αLρ.

Then ∂α
t,ρ is densely defined and closed on L2,ρ(R;H) and if α ≤ 0, it is

bounded with ‖∂α
t,ρ‖ ≤ 1

ρα . Moreover, for α > 0 we have Re ∂α
t,ρ ≥ ρα and the

operator ∂−α
t,ρ is given by

(

∂−α
t,ρ f

)

(t) =
1

Γ(α)

∫ t

−∞
(t − s)α−1f(s) ds (t ∈ R, f ∈ L2,ρ(R;H)).

With the help of these operators, we can define the fractional Sobolev
spaces with respect to the exponentially weighted Lebesgue-measure.

Definition. Let ρ > 0 and α ≥ 0. Then we set

Hα
ρ (R;H):= dom(∂α

t,ρ)

and equip it with the norm (note that ∂α
t,ρ is injective)

‖u‖ρ,α:=‖∂α
t,ρu‖ρ,0 (u ∈ Hα

ρ (R;H)).

The following proposition is an immediate consequence of the definitions
above.
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Proposition 2.3. Let ρ > 0 and α ≥ 0. Then the following statements hold.

(a) For each 0 ≤ β ≤ α the operator ∂β
t,ρ: Hα

ρ (R;H) → Hα−β
ρ (R;H) is

unitary.
(b) The operator Lρ : Hα

ρ (R;H) → Hα(im +ρ) is unitary. Here,

Hα(im +ρ) = {u ∈ L2(R;H) ; (t �→ (it + ρ)αu(t)) ∈ L2(R;H)}
equipped with the norm ‖u‖Hα(i m +ρ):=‖(im +ρ)αu‖L2(R;H).

Remark 2.4. (a) For θ ∈]0, 1[ the space Hθ
ρ (R;H) can also be obtained by

complex interpolation. More precisely, we have

Hθ
ρ (R;H) = (L2,ρ(R;H),H1

ρ (R;H))θ (2.1)

isometrically. For the theory of interpolation spaces we refer to [4,11]. We
sketch the proof for (2.1), only. The details are provided in [25, Remark 2.4
(a)]. First, consider the unitarily transformed space Hθ(im +ρ). We show

Hθ(im +ρ) = (L2(R;H),H1(im +ρ))θ

isometrically. For the left-hand side being contained in the right-hand side,
for u ∈ Hθ(im +ρ) consider

fu: S → L2(R;H), z �→ (t �→ u(t)|it + ρ|θ−z),

where S:={z ∈ C ; Re z ∈ [0, 1]}. Then fu is well-defined, bounded, holomor-
phic in S̊, fu(iξ) ∈ L2(R;H), fu(iξ + 1) ∈ H1(im +ρ) and fu(θ) = u. Since
‖fu(iξ)‖L2(R;H) = ‖u‖Hθ(i m +ρ) = ‖fu(iξ + 1)‖H1(i m +ρ) the first inclusion
and norm estimate is shown. For the converse inclusion and inequality, let
u ∈ (L2(R;H),H1

ρ (im +ρ))θ and g : S → L2(R;H)+H1(im +ρ) continuous,
holomorphic in S̊, bounded with g(iξ) ∈ L2(R;H) and g(iξ+1) ∈ H1(im +ρ)
such that g(θ) = u. In order that u ∈ Hθ(im +ρ) we show that

Hθ
c (im +ρ) � v �→

∫

R

〈u(t), v(t)〉H |it + ρ|2θ dt

defines a bounded functional on Hθ(im +ρ), where Hθ
c (im +ρ) denotes the

elements in Hθ(im +ρ) having compact support. For this, let v ∈ Hθ
c (im +ρ)

and set fv: S → L2(R;H) as above and consider the function

F : S → C, z �→
∫

R

〈g(z)(t), fv(z)(t)〉H |it + ρ|2z dt.

Then F is well-defined, continuous, holomorphic in the interior of S and
bounded. The maximum principle and estimates on ∂S yield

∣

∣

∣

∣

∫

R

〈u(t), v(t)〉H |it + ρ|2θ dt

∣

∣

∣

∣

= |F (θ)|
≤ sup

ξ∈R

{‖g(iξ)‖L2(R;H), ‖g(iξ + 1))‖H1(i m +ρ)}‖v‖Hθ(i m +ρ).

Infimum taken over all appropriate g yields
∣

∣

∣

∣

∫

R

〈u(t), v(t)〉H |it + ρ|2θ dt

∣

∣

∣

∣

≤ ‖u‖(L2(R;H),H1(i m +ρ))θ
‖v‖Hθ(i m +ρ).
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Thus, u ∈ Hθ(im +ρ) with ‖u‖Hθ(i m +ρ) ≤ ‖u‖(L2(R;H),H1(i m +ρ))θ
. Finally,

using that Lρ: Hθ
ρ (R;H) → Hθ(im +ρ) is unitary, we obtain the assertion.

(b) Let M ∈ L(L2,ρ(R;H)) ∩ L(H1
ρ(R;H)). Then, for all θ ∈ [0, 1], by

(a), M ∈ L(Hθ
ρ (R;H)); see also [11, Theorem 2.6].

Remark 2.5. (a) For the next result, we recall that by complex interpolation
and Plancherel’s theorem, we have that the Fourier transformation extends
to be a continuous operator

F : Lp′(R;H) → Lp(R;H),

where 1
p′ + 1

p = 1 with 1 < p′ < 2 < p < ∞. This applies verbatim to F∗.
(b) Recall the following version of Hölder’s inequality: If f ∈ Lp(R) and

g ∈ Lq(R;X), X a Banach space, and 1
p + 1

q = 1
r for some p, q, r ∈ [1,∞],

then t �→ f(t)g(t) ∈ Lr(R;X) and ‖fg‖Lr
≤ ‖f‖Lp

‖g‖Lq
.

Lemma 2.6. Let ρ > 0 and α ∈]0, 1/2]. Then for each p ∈ [2, 2
1−2α [ (where

we set 2
0 :=∞) Hα

ρ (R;H) ↪→ Lp,ρ(R;H), where

Lp,ρ(R;H):={f :R → H ; f measurable,
∫

R

‖f(t)‖pe−pρt dt < ∞}

equipped with the obvious norm, denoted by ‖ · ‖Lp,ρ
.

Proof. For p = 2 there is nothing to show. Let p ∈]2, 2
1−2α [ and p′ ∈] 2

1+2α , 2[
denote the conjugate exponent to p; i.e. 1

p + 1
p′ = 1. From Remark 2.5, we

know that F∗: Lp′ → Lp is continuous. Hence, for u ∈ C∞
c (R;H) we estimate

‖u‖Lp,ρ
= ‖e−ρ·u‖Lp

= ‖F∗Lρu‖Lp
� ‖Lρu‖Lp′ .

Next, let q:= 2p′

2−p′ . Then by Hölder’s inequality

‖Lρu‖Lp′ = ‖(im +ρ)−α(im +ρ)αLρu‖Lp′

≤ ‖(im +ρ)−α‖Lq
‖(im +ρ)αLρu‖L2 .

Note that

‖(im +ρ)−α‖q =
(∫

R

1
(t2 + ρ2)− αq

2
dt

)
1
q

< ∞,

since q = 2p′

2−p′ = 2
(2/p′)−1 > 1

α and hence, the claim follows. �
The next statement contains an approximation result, which has been

employed in [19,27] for the particular case α = 0. To have a corresponding
result for the case when α > 0 (and particularly when α = 1/2), will turn
out to be useful in the next section, where we provide a well-posedness result
for evolutionary equations in H

1/2
ρ (R;H).

Lemma 2.7. Let ρ > 0 and α ≥ 0. We consider the time derivative operator
on Hα

ρ (R;H); that is,

∂t,ρ: Hα+1
ρ (R;H) ⊆ Hα

ρ (R;H) → Hα
ρ (R;H).

Then for each ε > 0 the operator 1 + ε∂t,ρ is continuously invertible on
Hα

ρ (R;H) and (1 + ε∂t,ρ)−1 → 1 strongly in Hα
ρ (R;H) as ε → 0. �
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Proof. For u ∈ Hα+1
ρ (R;H) we have that

Re〈(1 + ε∂t,ρ)u, u〉ρ,α = ‖u‖2
ρ,α + ε Re〈∂t,ρ∂

α
t,ρu, ∂α

t,ρu〉ρ,0 ≥ ‖u‖2
ρ,α.

Thus, (1 + ε∂t,ρ) is injective, posseses a closed range and its inverse (defined
on the range) is continuous with operator norm bounded by 1. Thus, to prove
the continuous invertibility, we have to show that ran(1 + ε∂t,ρ) is dense in
Hα

ρ (R;H). For doing so, we first compute the adjoint of ∂t,ρ. For elements
v, w ∈ Hα

ρ (R;H) we have that v ∈ dom(∂∗
t,ρ) with ∂∗

t,ρv = w if and only if

〈∂t,ρu, v〉ρ,α = 〈u,w〉ρ,α (u ∈ Hα+1
ρ (R;H)).

The latter is equivalent to

〈∂t,ρx, ∂α
t,ρv〉ρ,0 = 〈x, ∂α

t,ρw〉ρ,0 (x ∈ H1
ρ(R;H)),

which in turn is equivalent to ∂α
t,ρv ∈ H1

ρ(R;H) and ∂α
t,ρw = (−∂t,ρ+2ρ)∂α

t,ρv,
where we used ∂∗

t,ρ = −∂t,ρ + 2ρ in L2,ρ(R;H), see Proposition 2.1. Thus,

∂∗
t,ρ = −∂t,ρ + 2ρ,

where both operators are considered as operators on Hα
ρ (R;H). Thus,

Re〈(1 + ε∂∗
t,ρ)u, u〉ρ,α = ‖u‖2

ρ,α + εRe〈u, ∂t,ρu〉ρ,α ≥ ‖u‖2
ρ,α

for all u ∈ Hα+1
ρ (R;H) = dom(∂∗

t,ρ) and hence, 1 + ε∂∗
t,ρ is injective, which

shows the density of ran(1 + ε∂t,ρ) in Hα+1
ρ (R;H). To prove the strong con-

vergence, it suffices to show the convergence for elements in Hα+1
ρ (R;H),

since

sup
ε>0

‖(1 + ε∂t,ρ)−1‖L(Hα
ρ (R;H)) ≤ 1

by what we have shown above. For u ∈ Hα+1
ρ (R;H) we compute

‖(1 + ε∂t,ρ)−1u − u‖ρ,α = ‖(1 + ε∂t,ρ)−1(u − (u + ε∂t,ρu))‖ρ,α

≤ ε‖u‖ρ,α+1 → 0 (ε → 0).

We conclude this section, by citing the main result of [27].

Theorem 2.8. ([27, Theorem 3.4]) Let ρ > 0 and M,N ∈ L(L2,ρ(R;H)).
Moreover, assume there exists M′ ∈ L(L2,ρ(R;H)) such that

M∂t,ρ ⊆ ∂t,ρM − M′.

Let A: dom(A) ⊆ H → H be skew-selfadjoint. Furthermore, assume there
exists c > 0 such that

Re〈(∂t,ρM + N )u, u〉ρ,0 ≥ c‖u‖2
ρ,0 (u ∈ H1

ρ(R;H)).

Then the operator ∂t,ρM + N + A is closable, and its closure is continu-
ously invertible. Here, A is identified with its canonical extension to a skew-
selfadjoint operator on L2,ρ(R;H) with domain L2,ρ(R; dom(A)).
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Remark 2.9. (a) In [27, Theorem 3.4] the assumptions are slightly weaker, but
for our purposes, this version of the theorem is sufficient; for a comprehensive
discussion, see [28, Theorem 3.3.2] for the version above and [28, Theorem
3.4.6] for the corresponding variant in [27].

(b) Theorem 2.8 provides a unified solution theory for a broad class of
non-autonomous problems. Due to the flexibility of the choice of the opera-
tors M and N , which act in space-time, the problem class comprises many
different types of differential equations, like delay equations, fractional differ-
ential equations, integro-differential equations and coupled problems thereof
(see e.g. [18,22] for some survey in the autonomous case and [20,24,28] for
some non-autonomous and/or nonlinear examples).

3. The Solution Theory in H1/2
ρ (R;H)

In this section, we have a closer look at the solution theory for evolutionary
equations in H

1/2
ρ (R;H); that is, we prove an analogous statement to Theo-

rem 2.8, but now the equation is considered as an equation on H
1/2
ρ (R;H).

The basic setting is the following. Let M,N ,M′ ∈ L(L2,ρ(R;H)) with the
following properties:

Re〈(∂t,ρM + N ) φ, φ〉ρ,1/2 ≥ c〈φ, φ〉ρ,1/2

for all φ ∈ H
3/2
ρ (R;H) some ρ > 0 and c > 0. Moreover, we assume that

M∂t,ρ ⊆ ∂t,ρM − M′

and N|
H

1/2
ρ (R;H)

,M′|
H

1/2
ρ (R;H)

∈ L(H1/2
ρ (R;H)).

We discuss operators on H
1/2
ρ (R;H) in more detail next. For this we

recall the notation of the commutator of two operators S and T on some
Hilbert space H,

[S, T ]:=ST − TS, with dom([S, T ]) = dom(ST ) ∩ dom(TS).

In the case that [S, T ] is densely defined in H and extends to a bounded
linear operator on H, we omit the closure bar and just write [S, T ] ∈ L(H).
Consequently, we also use [S, T ] to denote the (then continuous operator)
[S, T ].

Lemma 3.1. (a) Let C ∈ L(L2,ρ(R;H)). Then C|
H

1/2
ρ

∈ L(H1/2
ρ (R;H)) if

and only if ∂
1/2
t,ρ C∂

−1/2
t,ρ ∈ L(L2,ρ(R;H)) in either case, we have

‖C|
H

1/2
ρ

‖
L(H

1/2
ρ (R;H))

= ‖∂
1/2
t,ρ C|

H
1/2
ρ

∂
−1/2
t,ρ ‖L(L2,ρ(R;H)).

Either of the alternative conditions is satisfied if [C, ∂
1/2
t,ρ ] ∈ L(L2,ρ(R;H)).

Moreover, in this case we have

‖C|
H

1/2
ρ

‖
L(H

1/2
ρ (R;H))

≤ ‖C‖L(L2,ρ(R;H)) +
1√
ρ
‖[C, ∂

1/2
t,ρ ]‖L(L2,ρ(R;H)).

(b) [N , (1 + ε∂t,ρ)−1] → 0 strongly in L(H1/2
ρ (R;H)) as ε → 0+.
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(c)
[

∂t,ρM, (1 + ε∂t,ρ)−1
] ∈ L(H1/2

ρ (R;H)) and
[

∂t,ρM, (1 + ε∂t,ρ)−1
] →

0 strongly in L(H1/2
ρ (R;H)) as ε → 0+.

Proof. (a) Let φ ∈ C∞
c (R;H). Assume that ∂

1/2
t,ρ C∂

−1/2
t,ρ ∈ L(L2,ρ(R;H)).

Then we compute

‖Cφ‖ρ, 12
= ‖∂

1/2
t,ρ C∂

−1/2
t,ρ ∂

1/2
t,ρ φ‖ρ,0 ≤ ‖∂1/2

t,ρ C∂
−1/2
t,ρ ‖L(L2,ρ(R;H))‖φ‖ρ, 12

.

If, on the other hand, C|
H

1/2
ρ

∈ L(H1/2
ρ (R;H)). Then ∂

1/2
t,ρ C|

H
1/2
ρ

∂
−1/2
t,ρ ∈

L(L2,ρ(R;H)) since ∂
−1/2
t,ρ ∈ L(L2,ρ(R;H),H1/2

ρ (R;H)) and ∂
1/2
t,ρ ∈

L(H1/2
ρ (R;H), L2,ρ(R;H)) are unitary. Assume now that [C, ∂

1/2
t,ρ ] ∈

L(L2,ρ(R;H)). Then

∂
1/2
t,ρ C∂

−1/2
t,ρ = [∂1/2

t,ρ , C]∂−1/2
t,ρ + C ∈ L(L2,ρ(R;H))

and, using Proposition 2.2, we get

‖C|
H

1/2
ρ

‖
L(H

1/2
ρ (R;H))

= ‖∂
1/2
t,ρ C|

H
1/2
ρ

∂
−1/2
t,ρ ‖L(L2,ρ(R;H))

≤ ‖C‖L(L2,ρ(R;H) + ‖[C, ∂
1/2
t,ρ ]∂−1/2

t,ρ ‖L(L2,ρ(R;H))

≤ ‖C‖L(L2,ρ(R;H) +
1√
ρ
‖[C, ∂

1/2
t,ρ ]‖L(L2,ρ(R;H)).

(b) Let ε > 0. By (a) together with the proved inequality, it suffices to show
that ∂

1/2
t,ρ [N , (1+ε∂t,ρ)−1]∂−1/2

t,ρ → 0 strongly in L(L2,ρ(R;H)). For this,
we compute

∂
1/2
t,ρ [N , (1 + ε∂t,ρ)−1]∂−1/2

t,ρ

= ∂
1/2
t,ρ N (1 + ε∂t,ρ)−1∂

−1/2
t,ρ − ∂

1/2
t,ρ (1 + ε∂t,ρ)−1N∂

−1/2
t,ρ

=
[

∂
1/2
t,ρ N∂

−1/2
t,ρ , (1 + ε∂t,ρ)−1

]

,

the latter tends to 0 since ∂
1/2
t,ρ N∂

−1/2
t,ρ ∈ L(L2,ρ(R;H)), by part (a) and

(1 + ε∂t,ρ)−1 → 1 strongly as ε → 0 by Lemma 2.7.
(c) Let ε > 0. Then we compute using M′ = [∂t,ρ,M]

[

∂t,ρM, (1 + ε∂t,ρ)−1
]

=
(

∂t,ρM(1 + ε∂t,ρ)−1 − (1 + ε∂t,ρ)−1∂t,ρM
)

= ∂t,ρ

(M(1 + ε∂t,ρ)−1 − (1 + ε∂t,ρ)−1M)

= ∂t,ρ(1 + ε∂t,ρ)−1 ((1 + ε∂t,ρ)M − M(1 + ε∂t,ρ)) (1 + ε∂t,ρ)−1

= ε∂t,ρ(1 + ε∂t,ρ)−1M′(1 + ε∂t,ρ)−1.

Hence, we deduce

∂
1/2
t,ρ

[

∂t,ρM, (1 + ε∂t,ρ)−1
]

∂
−1/2
t,ρ

= ε∂t,ρ(1 + ε∂t,ρ)−1∂
1/2
t,ρ M′∂−1/2

t,ρ (1 + ε∂t,ρ)−1 ∈ L(L2,ρ(R;H))
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and thus,
[

∂t,ρM, (1 + ε∂t,ρ)−1
] ∈ L(H1/2

ρ (R;H)) by (a). Moreover, by
Lemma 2.7

∂
1/2
t,ρ

[

∂t,ρM, (1 + ε∂t,ρ)−1
]

∂
−1/2
t,ρ

= ε∂t,ρ(1 + ε∂t,ρ)−1∂
1/2
t,ρ M′∂−1/2

t,ρ (1 + ε∂t,ρ)−1

= (1 − (1 + ε∂t,ρ)−1)∂1/2
t,ρ M′∂−1/2

t,ρ (1 + ε∂t,ρ)−1 → 0 (ε → 0)

strongly in L(L2,ρ(R;H)), which yields the asserted convergence again
by part (a). �

Proposition 3.2. We have ∂t,ρM[H3/2
ρ (R;H)] ⊆ H

1/2
ρ (R;H).

Proof. Let φ ∈ dom(∂3/2
t,ρ ). Then ∂t,ρMφ = M′φ + M∂t,ρφ. Since M′ ∈

L(H1/2
ρ (R;H)), we obtain M′φ ∈ H

1/2
ρ (R;H). Furthermore, since M ∈

L(L2,ρ(R;H))∩L(H1
ρ (R;H)), we deduce M ∈ L(H1/2

ρ (R;H)) by complex in-

terpolation (see Remark 2.4 (b)). Hence, we also have M∂t,ρφ ∈ H
1/2
ρ (R;H),

which shows the assertion. �

Lemma 3.3. For ε > 0 we set Rε:=(1 + ε∂t,ρ)−1. Let u ∈ dom(∂t,ρM) ⊆
H

1/2
ρ (R;H). Then for each ε > 0 and k ∈ N we have Rk

εu ∈ dom(∂t,ρM)
and

∂t,ρMRk
εu → ∂t,ρMu (ε → 0+).

In particular H
k+1/2
ρ (R;H) is a core for ∂t,ρM for each k ∈ N.

Proof. The proof follows by induction on k. For k = 0 there is nothing to
show. Assume now that the assertion holds for k−1. Then we compute, using
Lemma 3.1 (c) and Lemma 2.7 �
∂t,ρMRk

εu = [∂t,ρM, Rε]Rk−1
ε u + Rε∂t,ρMRk−1

ε u → ∂t,ρMu (ε → 0+).
Theorem 3.4. The operator ∂t,ρM + N + A considered as an operator on
H

1/2
ρ (R;H) is closable and its closure is continuously invertible.

Proof. Recall that all operators are now considered as operators acting on
H

1/2
ρ (R;H). Since ∂t,ρM+N is strictly positive definite in the Hilbert space

H
1/2
ρ (R;H) with domain H

3/2
ρ (R;H) and A is skew-selfadjoint, we derive that

∂t,ρM+N+A is strictly positive definite in the Hilbert space H
1/2
ρ (R;H) with

domain H
3/2
ρ (R; dom(A)). By Lemma 3.3 this positive definiteness extends

to all elements in dom(∂t,ρM + N + A) and thus, ∂t,ρM + N + A is one-
to-one and has a continuous inverse defined on the range of ∂t,ρM + N +
A. Since H

3/2
ρ (R; dom(A)) is dense in H

1/2
ρ (R;H), the latter implies that

∂t,ρM + N + A is closable (see e.g. [28, Proposition 2.3.14] or [5, Theorem
4.2.5]). Moreover, it is a standard argument to show that ∂t,ρM + N + A
is continuously invertible on its range, which is closed. Hence, for showing
that ∂t,ρM + N + A is onto, it suffices to compute the adjoint and confirm
that this adjoint is one-to-one, which in turn would imply the density of the
range of ∂t,ρM + N + A. For doing so, let ε > 0, u ∈ dom (∂t,ρM + N + A)
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and f ∈ dom
(

(∂t,ρM + N + A)∗). We put fε:=(1 + ε∂∗
t,ρ)

−1f ∈ dom(∂3/2
t,ρ ).

Then we compute

〈(∂t,ρM + N + A) u, fε〉ρ,1/2 = 〈(1 + ε∂t,ρ)−1 (∂t,ρM + N + A) u, f〉ρ,1/2

= 〈(∂t,ρM + N + A) (1 + ε∂t,ρ)−1u−
− [

∂t,ρM, (1 + ε∂t,ρ)−1
]

u − [N , (1 + ε∂t,ρ)−1
]

u, f〉ρ,1/2.

Thus, invoking Lemma 3.1 (c), we obtain that fε ∈ dom (∂t,ρM + N + A)∗

and

(∂t,ρM + N + A)∗
fε

= (1 + ε∂∗
t,ρ)

−1 (∂t,ρM + N + A)∗
f − [

∂t,ρM, (1 + ε∂t,ρ)−1
]∗

f

− [N , (1 + ε∂t,ρ)−1
]∗

f.

Since
[

∂t,ρM, (1 + ε∂t,ρ)−1
]∗

f +
[N , (1 + ε∂t,ρ)−1

]∗
f → 0 weakly in

H
1/2
ρ (R;H) as ε → 0+ by Lemma 3.1 (b) and (c), we infer that

H3/2
ρ (R;H) ∩ dom ((∂t,ρM + N + A)∗)

is a core for (∂t,ρM + N + A)∗ (recall fε → f in H
1/2
ρ (R;H) by Lemma 2.7).

Next, we show H
3/2
ρ (R;H)∩dom ((∂t,ρM + N + A)∗) ⊆ H

1/2
ρ (R; dom(A)):

Let f ∈ H
3/2
ρ (R;H) ∩ dom ((∂t,ρM + N + A)∗) and ψ ∈ H

3/2
ρ (R; dom(A)).

Then ψ ∈ dom(∂t,ρM) by Proposition 3.2 and

〈Aψ, f〉ρ,1/2 = 〈(∂t,ρM + N + A)ψ, f〉ρ,1/2 − 〈(∂t,ρM + N )ψ, f〉ρ,1/2

= 〈ψ, (∂t,ρM + N + A)∗f〉ρ,1/2 − 〈ψ, (M∗∂∗
t,ρ + N ∗)f〉ρ,1/2,

where we used M ∈ L(H1/2
ρ (R;H)), (Remark 2.4 (b)). As H

3/2
ρ (R; dom(A))

is dense in H
1/2
ρ (R; dom(A)), H

3/2
ρ (R; dom(A)) is a core for A. Thus, f ∈

H
1/2
ρ (R; dom(A)) with

−Af = A∗f = (∂t,ρM + N + A)∗f − (M∗∂∗
t,ρ + N ∗)f.

Hence, for f ∈ H
3/2
ρ (R;H) ∩ dom ((∂t,ρM + N + A)∗) we compute

Re〈(∂t,ρM + N + A)∗
f, f〉ρ, 12

= Re〈M∗∂∗
t,ρf + N ∗f − Af, f〉ρ, 12

= Re〈f, (∂t,ρM + N ) f〉ρ, 12
≥ c〈f, f〉ρ, 12

and since the set H
3/2
ρ (R;H)∩dom ((∂t,ρM + N + A)∗) is a core for (∂t,ρM+

N + A)∗, the latter implies that (∂t,ρM + N + A)∗ is one-to-one. �

Corollary 3.5. For k ≥ 1, (∂t,ρM + N + A) [Hk+1/2
ρ (R; dom(A))] is dense in

H
1/2
ρ (R;H).

Proof. Let f ∈ H
1/2
ρ (R;H) and set u:=

(

∂t,ρM + N + A
)−1

f ∈ H
1/2
ρ (R;H).

Such a u exists by Theorem 3.4. Hence, we find a sequence (un)n∈N in
dom(∂t,ρM)∩dom(A) with un → u and (∂t,ρM + N + A) un → f as n → ∞

in H
1/2
ρ (R;H). We now define vn,ε:=(1+ε∂t,ρ)−kun ∈ H

k+1/2
ρ (R; dom(A))

for n ∈ N. By Lemma 2.7, Avn,ε → Aun as well as N vn,ε → Nun as ε → 0



30 Page 14 of 37 S. Trostorff, M. Waurick IEOT

and thus, it suffices to show ∂t,ρMvn,ε → ∂t,ρMun as ε → 0. This, however,
follows from Lemma 3.3 and thus, the assertion follows. �

Corollary 3.6. Let H = H0⊕H1 for each Hilbert spaces H0 and H1. Then for
k ≥ 1, (∂t,ρM + N + A) [Hk+1/2

ρ (R; dom(A))] is dense in the space L2,ρ(R;H0)⊕
H

1/2
ρ (R;H1).

Proof. By Corollary 3.5, (∂t,ρM + N + A) [Hk+1/2
ρ (R; dom(A))] is dense in

H
1/2
ρ (R;H). This space continuously and densely embeds into L2,ρ(R;H0) ⊕

H
1/2
ρ (R;H1). �

4. Maximal Regularity for Evolutionary Equations

In the following we provide our main result: a criterion for maximal regularity
for evolutionary equations. In a nutshell this criterion reads:

Well − posedness in both L2,ρ(R;H) and H1/2
ρ (R;H) together with a

parabolic − like structure implies maximal regularity.

Throughout, let H0 and H1 be two complex Hilbert spaces and set
H:=H0 ⊕ H1. Moreover, let C: dom(C) ⊆ H0 → H1 densely defined closed
and linear and set

A =
(

0 −C∗

C 0

)

(4.1)

(which easily can be verified to be skew-selfadjoint in H). Finally, we assume
that M and N have the form

M =
(M00 0

0 0

)

(4.2)

as well as

N =
(N00 N01

N10 N11

)

(4.3)

with appropriate linear operators in L(L2,ρ(R;Hj), L2,ρ(R;Hi)), i, j ∈ {0, 1}.

Theorem 4.1. Let A,M and N be as in (4.1)–(4.3) and assume there is M′ ∈
L(L2,ρ(R;H)) with

M∂t,ρ ⊆ ∂t,ρM − M′. (4.4)

Assume, in addition, that

M′,N ∈ L(H1/2
ρ (R;H)).

We shall assume the positive definiteness conditions

Re〈M00φ, φ〉ρ,0 ≥ c〈φ, φ〉ρ,0, (4.5)
Re〈(∂t,ρM + N ) φ, φ〉ρ,0 ≥ c〈φ, φ〉ρ,0, (4.6)

and

Re〈(∂t,ρM + N ) φ, φ〉ρ, 12
≥ c〈φ, φ〉ρ, 12

(4.7)
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for some c > 0 and all φ ∈ H
3/2
ρ (R;H). Let Sρ:=

(

∂t,ρM + N + A
)−1 ∈

L(L2,ρ(R;H)) ∩ L(H1/2
ρ (R;H)) (cp. Theorems 2.8 and 3.4). Then

Sρ[L2,ρ(R;H0) × H1/2
ρ (R;H1)]

⊆ (

H1
ρ(R;H0) ∩ Hρ(R; dom(C))

) × L2,ρ(R; dom(C∗));

that is, for f ∈ L2,ρ(R;H0) and g ∈ H
1/2
ρ (R;H1) and (u, v) ∈ L2,ρ(R;H)

satisfying

(∂t,ρM + N + A)
(

u
v

)

=
(

f
g

)

,

we have u ∈ H1
ρ(R;H0) ∩ Hρ(R; dom(C)), v ∈ L2,ρ(R; dom(C∗)).

Remark 4.2. As we shall see in the examples section, the above nutshell de-
scription of the Theorem 4.1 is visible as follows:

• Well-posedness in L2,ρ(R;H) is guaranteed by assumption (4.6); see
Theorem 2.8.

• Well-posedness in H
1/2
ρ (R;H) is guaranteed by assumption (4.7); see

Theorem 3.4.
• The parabolic-like structure is visible in the block matrix structure (4.1),

(4.2) and the positive definiteness condition (4.5).

Remark 4.3. (a) As in [3,8], we recover the same additional regularity u ∈
H

1/2
ρ (R; dom(C)). In fact, as the proof of Theorem 4.1 will show an estimate

for ‖Cu‖ρ, 12
is key for obtaining the main result.

(b) Note that u ∈ H
1/2
ρ (R; dom(C)) also has a consequence on the time-

regularity of v. Indeed, taking (f, g) as right-hand sides as in Theorem 4.1,
we see that (u, v) satisfies

∂t,ρM00u + N00u + N01v − C∗v = f

N10u + N11v + Cu = g.

Multiplying the second line by N −1
11 , we get v = N −1

11 (g − Cu − N11u) . Next,
since u ∈ H1

ρ(R;H0) ⊆ H
1/2
ρ (R;H0), Cu, g ∈ H

1/2
ρ (R;H1) and both N01 and

N −1
11 leave H

1/2
ρ -regular mappings invariant (see also Lemma 4.6 below), we

infer v ∈ H
1/2
ρ (R;H1). We summarise all the regularity results in the next

statement.

Corollary 4.4. Under the assumptions of Theorem 4.1, let f ∈ L2,ρ(R;H0),
g ∈ H

1/2
ρ (R;H1) and (u, v) ∈ L2,ρ(R;H) satisfying

(∂t,ρM + N + A)
(

u
v

)

=
(

f
g

)

.

Then u ∈ H1
ρ(R;H0)∩H

1/2
ρ (R; dom(C)), v ∈ L2,ρ(R; dom(C∗))∩H

1/2
ρ (R;H1).

Remark 4.5. (a) Note that the regularity statement in the latter result is
also accompanied with the corresponding continuity statement; that is, there
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exists a constant κ ≥ 0 such that for all f ∈ L2,ρ(R;H0), g ∈ H
1/2
ρ (R;H1)

with Sρ(f, g) = (u, v) we have

‖u‖ρ,1 + ‖Cu‖ρ, 12
+ ‖C∗v‖ρ,0 + ‖v‖ρ, 12

≤ κ
(

‖f‖ρ,0 + ‖g‖ρ, 12

)

.

Moreover, note that, as a consequence, the closure bar in the formulation of
the evolutionary equation can be omitted so that, indeed,

(∂t,ρM + N + A)
−1

(

f
g

)

= (∂t,ρM + N + A)−1

(

f
g

)

,

addressing Problem 1.2.
(b) We note here that Corollary 4.4 is in fact a result on maximal

regularity for the special case of g = 0 and if the evolutionary equation
is viewed as a ‘scalar’ equation in the following sense. Assume g = 0 and
f ∈ L2,ρ(R;H0), then as in Remark 4.3(b), we have seen that then

∂t,ρM00u + N00u + N01v − C∗v = f

N10u + N11v + Cu = 0.

Rearranging the second equality, we infer v = −N −1
11 (Cu+N10u) ∈ dom(C∗)

and thus the first equation reads

∂t,ρM00u + N00u − N01N −1
11 (Cu + N10u) + C∗N −1

11 (C + N10)u = f.

By (4.5) and (4.4), it is not difficult to see that dom(∂t,ρM00) = dom(∂t,ρ)
and so u really admits the maximal regularity hoped for when f ∈ L2,ρ(R;H).

In order to prove our main theorem, we need some prerequisites.

Lemma 4.6. Assume the conditions imposed on M and N in Theorem 4.1.
Then N −1

11 ∈ L(L2,ρ(R;H1)) ∩ L(H1/2
ρ (R;H1)). Moreover,

Re〈N −1
11 φ1, φ1〉ρ,1/2 ≥ c

‖N11‖2

L(H
1/2
ρ (R;H1))

〈φ1, φ1〉ρ,1/2 (φ1 ∈ H1/2
ρ (R;H1)).

Proof. The conditions in (4.6) and (4.7) applied for φ = (0, φ1) with φ1 ∈
H

3/2
ρ (R;H1) implies for α ∈ {0, 1

2}, Re〈N11φ1, φ1〉ρ,α ≥ c〈φ1, φ1〉ρ,α. By den-
sity, this extends to all φ1 ∈ Hα

ρ (R;H1). Since N11 ∈ L(L2,ρ(R;H1)) ∩
L(H1/2

ρ (R;H1)), we deduce the first statement. A standard argument also
reveals that (see [22, Proposition 6.2.3 (b)]) �

Re〈N −1
11 φ1, φ1〉ρ,α ≥ c

‖N11‖2
L(Hα

ρ (R;H1))

〈φ1, φ1〉ρ,α.

Lemma 4.7. Assume the conditions imposed on M and N in Theorem 4.1.
Then, for all φ0 ∈ H1

ρ(R;H0),

Re〈∂t,ρM00φ0, |∂t,ρ|φ0〉ρ,0 ≥
(

c − ‖N00‖L(H
1/2
ρ (R;H0))

)

‖φ0‖2
ρ,1/2.
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Proof. We apply the condition (4.7) to φ = (φ0, 0) ∈ H
3/2
ρ (R;H) and obtain

Re〈∂t,ρM00φ0 + N00φ0, φ0〉ρ,1/2 ≥ c‖φ0‖2
ρ,1/2.

Rearranging terms, we obtain

Re〈∂t,ρM00φ0, |∂t,ρ|φ0〉ρ,0 = Re〈∂t,ρM00φ0, φ0〉ρ,1/2

≥ c‖φ0‖2
1/2 − Re〈N00φ0, φ0〉ρ,1/2

≥
(

c − ‖N00‖L(H
1/2
ρ (R;H))

)

‖φ0‖2
ρ,1/2.

Since H
3/2
ρ (R;H0) is dense in H1

ρ(R;H0) the assertion follows. �
Lemma 4.8. Let P :R → R be a polyomial of degree k ∈ N; that is, P (x) =
∑k

i=0 aix
i for some ai ∈ R with ak �= 0. Let x0 ∈ R≥0 with x�

0 ≤ P (x0) for
some � > k. Then

x0 ≤ max

⎧

⎨

⎩

k
∑

i=0

|ai|,
(

k
∑

i=0

|ai|
)

1
�

⎫

⎬

⎭

.

Proof. Consider the polynomial Q(x):=x� − P (x). Then Q(x0) ≤ 0 and
Q(x) → ∞ as x → ∞. Thus, there exists some x1 ≥ x0 with Q(x1) = 0.
We estimate x�

1 = P (x1) =
∑k

i=0 aix
i
1 ≤ ∑k

i=0 |ai|xi
1. We consider the cases

x1 ≤ 1 and x1 > 1 separately. Assume first that x1 ≤ 1. Then x�
1 ≤ ∑k

i=0 |ai|
and hence, x0 ≤ x1 ≤

(

∑k
i=0 |ai|

)
1
�

. In the case that x1 > 1 we can estimate

x�
1 ≤ ∑k

i=0 |ai|xi
1 ≤ x�−1

1

∑k
i=0 |ai|, which yields x0 ≤ x1 ≤ ∑k

i=0 |ai|. �
Proof of Theorem 4.1. First, let (f, g) ∈ (∂t,ρM + N + A)[H2

ρ(R; dom(A))]
and (u, v):=Sρ(f, g). Hence, by the uniqueness of the solution in L2,ρ(R;H),
we obtain (u, v) ∈ H2

ρ(R; dom(A)). Then we can read off the equations line
by line and obtain

∂t,ρM00u + N00u + N01v − C∗v = f,

N10u + N11v + Cu = g.

Since N01 and N11 are bounded linear operators mapping H
1/2
ρ into

H
1/2
ρ , we deduce that the second line particularily implies g ∈ H

1/2
ρ (R;H1).

We estimate using (4.5)

c‖u‖2
ρ,1 ≤ Re〈M00∂t,ρu, ∂t,ρu〉ρ,0

= Re〈∂t,ρM00u − M′
00u, ∂t,ρu〉ρ,0

≤ Re〈∂t,ρM00u, ∂t,ρu〉ρ,0 + ‖M′
00‖L(L2,ρ(R;H0))‖u‖ρ,0‖u‖ρ,1,

where M′
00 = [∂t,ρ,M00], which is bounded in L(L2,ρ(R;H0)) by (4.2) and

(4.4). Moreover,

Re〈∂t,ρM00u, ∂t,ρu〉ρ,0

= Re〈f − N00u − N01v + C∗v, ∂t,ρu〉ρ,0

≤ (‖f‖ρ,0 + ‖N00‖L(L2,ρ(R;H0))‖u‖ρ,0 + ‖N01‖L(L2,ρ(R;H0))‖v‖ρ,0)‖u‖ρ,1

+ Re〈C∗v, ∂t,ρu〉ρ,0.
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The last term can further be estimated by (using Lemma 4.6 and Lemma 3.1)

Re〈C∗v, ∂t,ρu〉ρ,0 = Re〈v, ∂t,ρCu〉ρ,0

= Re〈N −1
11 (g − Cu − N10u), ∂t,ρCu〉ρ,0

= Re〈(∂∗
t,ρ

)1/2 N −1
11 (g − Cu − N10u), ∂1/2

t,ρ Cu〉ρ,0

= Re〈(∂∗
t,ρ

)1/2
∂

−1/2
t,ρ ∂

1/2
t,ρ N −1

11 ∂
−1/2
t,ρ ∂

1/2
t,ρ (g − Cu − N10u), ∂1/2

t,ρ Cu〉ρ,0

�
(‖g‖ρ,1/2 + ‖u‖ρ,1/2 + ‖Cu‖ρ,1/2

) ‖Cu‖ρ,1/2,

where � means an estimate including constants depending on the operators
N and M and the positive definiteness constant c > 0; we also used

‖ (

∂∗
t,ρ

)1/2
∂

−1/2
t,ρ ‖L(L2,ρ(R;H)) ≤ 1,

which is immediately verified with the help of the Fourier–Laplace transfor-
mation, see Proposition 2.2. Thus, summarising we have shown

‖u‖2
ρ,1 � (‖u‖ρ,0 + ‖f‖ρ,0 + ‖v‖ρ,0) ‖u‖ρ,1

+
(‖g‖ρ,1/2 + ‖u‖ρ,1/2 + ‖Cu‖ρ,1/2

) ‖Cu‖ρ,1/2.

Using (u, v) = Sρ(f, g) we obtain ‖(u, v)‖ρ,0 � ‖(f, g)‖ρ,0 � ‖(f, g)‖ρ,(0,1/2),

where the last norm means that we take the L2,ρ norm of f and the H
1/2
ρ

norm of g. Hence, we can estimate further

‖u‖2
ρ,1 � ‖(f, g)‖ρ,(0,1/2)(‖u‖ρ,1 + ‖Cu‖ρ,1/2)

+‖u‖ρ,1/2‖Cu‖ρ,1/2 + ‖Cu‖2
ρ,1/2. (4.8)

Next, we estimate the norm ‖Cu‖ρ,1/2. First, we compute using the positive
definiteness estimate for N −1

11 in H
1/2
ρ (R;H1) from Lemma 4.6

‖Cu‖2
1/2 � Re〈N −1

11 Cu,Cu〉ρ,1/2 = Re〈∂1/2
t,ρ N −1

11 Cu, ∂
1/2
t,ρ Cu〉ρ,0

= Re〈∂1/2
t,ρ N −1

11 g − ∂
1/2
t,ρ N −1

11 N10u − ∂
1/2
t,ρ v, ∂

1/2
t,ρ Cu〉ρ,0

= Re〈∂1/2
t,ρ N −1

11 ∂
−1/2
t,ρ ∂

1/2
t,ρ g − ∂

1/2
t,ρ N −1

11 N10∂
−1/2
t,ρ ∂

1/2
t,ρ u, ∂

1/2
t,ρ Cu〉ρ,0

− Re〈∂1/2
t,ρ v, ∂

1/2
t,ρ Cu〉ρ,0

� (‖g‖ρ,1/2 + ‖u‖ρ,1/2)‖Cu‖ρ,1/2 − Re〈∂1/2
t,ρ v, ∂

1/2
t,ρ Cu〉ρ,0.

Moreover, we compute using Lemma 4.7

− Re〈∂1/2
t,ρ v, ∂

1/2
t,ρ Cu〉ρ,0 = Re〈−∂

1/2
t,ρ C∗v, ∂

1/2
t,ρ u〉ρ,0

= Re〈f − ∂t,ρM00u − N00u − N01v, |∂t,ρ|u〉ρ,0

� (‖f‖ρ,0 + ‖u‖ρ,0 + ‖v‖ρ,0) ‖u‖ρ,1 − Re〈∂t,ρM00u, |∂t,ρ|u〉ρ,0

� (‖f‖ρ,0 + ‖u‖ρ,0 + ‖v‖ρ,0) ‖u‖ρ,1 + ‖u‖2
ρ,1/2.

Summarising, we obtain

‖Cu‖2
ρ,1/2 � (‖g‖ρ,1/2 + ‖u‖ρ,1/2)‖Cu‖ρ,1/2

+ (‖f‖ρ,0 + ‖u‖ρ,0 + ‖v‖ρ,0) ‖u‖ρ,1 + ‖u‖2
ρ,1/2

� (‖(f, g)‖ρ,(0,1/2) + ‖u‖ρ,1/2)‖Cu‖ρ,1/2 + ‖(f, g)‖ρ,(0,1/2)‖u‖ρ,1 + ‖u‖2
ρ,1/2,
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which is a quadratic inequality in ‖Cu‖ρ,1/2 ≥ 0 and yields

‖Cu‖ρ,1/2 � ‖(f, g)‖ρ,(0,1/2) + ‖u‖ρ,1/2 +
√

‖(f, g)‖ρ,(0,1/2)‖u‖ρ,1 + ‖u‖2
ρ,1/2

� ‖(f, g)‖ρ,(0,1/2) + ‖u‖ρ,1/2 +
√

‖(f, g)‖0,1/2

√

‖u‖ρ,1.(4.9)

Next, from ‖u‖2
ρ,1/2 = 〈∂1/2

t,ρ u, ∂
1/2
t,ρ u〉ρ,0 = 〈|∂t,ρ|u, u〉ρ,0, we deduce ‖u‖2

ρ,1/2 ≤
‖u‖ρ,1‖u‖ρ,0 � ‖u‖ρ,1‖(f, g)‖ρ,(0,1/2). This inequality, (4.8), and (4.9) yield

‖u‖2
ρ,1 � ‖(f, g)‖ρ,(0,1/2)‖u‖ρ,1

+ ‖(f, g)‖ρ,(0,1/2)

·
(

‖(f, g)‖ρ,(0,1/2) + ‖u‖ρ,1/2 +
√

‖(f, g)‖ρ,(0,1/2)

√

‖u‖ρ,1

)

+

+ ‖u‖ρ,1/2

(

‖(f, g)‖ρ,(0,1/2) + ‖u‖ρ,1/2 +
√

‖(f, g)‖ρ,(0,1/2)

√

‖u‖ρ,1

)

+ ‖(f, g)‖2
ρ,(0,1/2) + ‖u‖2

ρ,1/2 + ‖(f, g)‖ρ,(0,1/2)‖u‖ρ,1

� ‖(f, g)‖ρ,(0,1/2)‖u‖ρ,1 + ‖(f, g)‖3/2
ρ,(0,1/2)‖u‖1/2

ρ,1 + ‖(f, g)‖2
ρ,(0,1/2).

Lemma 4.8 applied to x0 = ‖u‖1/2
ρ,1 leads to ‖u‖ρ,1 ≤ F (‖(f, g)‖ρ,(0,1/2)),

where F :R≥0 → R≥0 is continuous with F (0) = 0. This proves that

Sρ : (∂t,ρM + N + A)[H2
ρ(R; dom(A))] ⊆ L2,ρ(R;H0) × H1/2

ρ (R;H1)

→ H1
ρ(R;H0) × L2,ρ(R;H1)

is continuous at 0 and hence, bounded. Since (∂t,ρM+N+A)[H2
ρ (R; dom(A))]

is dense in L2,ρ(R;H0) × H
1/2
ρ (R;H1) by Corollary 3.6, the first regularity

statement holds. The additional regularity Cu ∈ H
1/2
ρ then follows from

estimate (4.9). �

5. Applications

5.1. Maximal Regularity and Bounded Commutators

In this section, we will apply our main result Theorem 4.1 to prove maximal
regularity for a broad class of evolutionary equations. Note that the second
main theorem of the present manuscript is concerned with the case, where
well-posedness in H

1/2
ρ is obtained by a bounded commutator assumption

involving N and by restricting M to the case commuting with ∂−1
t,ρ . It turns

out that this situation is closer to the applications as we shall outline below.
As above, we assume that H0 and H1 are two complex Hilbert spaces

and we set H:=H0 ⊕ H1. Moreover, A =
(

0 −C∗

C 0

)

for some densely

defined closed linear operator C: dom(C) ⊆ H0 → H1 and M and N have

the form M =
(M00 0

0 0

)

as well as N =
(N00 N01

N10 N11

)

with appropriate

linear operators in L(L2,ρ(R;Hj), L2,ρ(R;Hi)), i, j ∈ {0, 1}.
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Theorem 5.1. Let A,M and N be as in (4.1)–(4.3). Assume, in addition,
that ∂−1

t,ρ M = M∂−1
t,ρ . Moreover, we assume that there is c > 0 such that

Re〈M00φ0, φ0〉ρ,0 ≥ c〈φ0, φ0〉ρ,0 (φ ∈ L2,ρ(R;H0))

and

Re〈(∂t,ρM + N ) φ, φ〉ρ,0 ≥ c〈φ, φ〉ρ,0,

for all φ ∈ H
3/2
ρ (R;H). Finally, we assume that there is 0 ≤ c̃ < c and

d > 0 such that

‖[∂1/2
t,ρ ,N ]φ‖ρ,0 ≤ c̃‖φ‖ρ,1/2 + d‖φ‖ρ,0 (φ ∈ H1/2

ρ (R;H)).

Then

Sρ[L2,ρ(R;H0) × H1/2
ρ (R;H1)]

⊆
(

H1
ρ(R;H0) ∩ H1/2

ρ (R; dom(C))
)

×
(

L2,ρ(R; dom(C∗)) ∩ H1/2
ρ (R;H1)

)

,

where Sρ:=
(

∂t,ρM + N + A
)−1 ∈ L(L2,ρ(R;H)).

Remark 5.2. The condition ∂−1
t,ρ M = M∂−1

t,ρ implies ∂
−1/2
t,ρ M = M∂

−1/2
t,ρ . In-

deed, to start off with, the fact that M commutes with ∂−1
t,ρ yields M∂t,ρ ⊆

∂t,ρM. Hence, M (∂t,ρ − 2ρ) ⊆ (∂t,ρ − 2ρ) M and, thus, by Proposition 2.1
(c), we infer − (

∂∗
t,ρ

)−1 M = (∂t,ρ − 2ρ)−1 M ⊆ M (∂t,ρ − 2ρ)−1 = −M (

∂∗
t,ρ

)−1
.

Since (∂∗
t,ρ)

−1M is defined everywhere, this inclusion is an equality. Next,
by the approximation theorem of Weierstraß, polynomials in z and z∗ as
continuous functions on C(V ) are dense in C(V ) endowed with the sup-
norm, where V :=BC(1/(2ρ), 1/(2ρ)). Hence, we find a sequence of polynomi-
als (z �→ pn(z, z∗))n in z and z∗ such that pn → (z �→ √

z) uniformly on V as
n → ∞. In consequence, using the Fourier–Laplace transformation, we obtain
that pn

(

∂−1
t,ρ ,

(

∂∗
t,ρ

)−1
)

→ ∂
−1/2
t,ρ in L(L2,ρ(R;H)). Thus, we infer using the

commutator properties of M shown above

∂
−1/2
t,ρ M = lim

n→∞ pn(∂−1
t,ρ , (∂∗

t,ρ)
−1)M = lim

n→∞ Mpn(∂−1
t,ρ , (∂∗

t,ρ)
−1) = M∂

−1/2
t,ρ .

Proof of Theorem5.1. Let f ∈ L2,ρ(R;H0) and g ∈ H
1/2
ρ (R;H1). Moreover,

let (u, v) = Sρ(f, g) ∈ L2,ρ(R;H). We choose 0 < ε < c− c̃ and δ ≥ d2

4ε
√

ρ and

consider the operator ˜N :=N + δ∂
−1/2
t,ρ . It is clear that

(

∂t,ρM + ˜N + A
)

(

u
v

)

=
(

f
g

)

+ δ∂
−1/2
t,ρ

(

u
v

)

∈ L2,ρ(R;H0) × H1/2
ρ (R;H)

and hence, to show the claim, it suffices to prove that the operators M and
˜N satisfy the assumptions of Theorem 4.1. We first note that M′ = 0 and
that (4.5) holds by assumption and (4.6) follows from the inequality assumed
for ∂t,ρM+N and the fact that Re ∂

−1/2
t,ρ ≥ 0. Thus, it remains to show (4.7).
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For doing so, let φ ∈ H
3/2
ρ (R;H). Since M commutes with ∂−1

t,ρ , it follows

that it also commutes with ∂
−1/2
t,ρ (see Remark 5.2) and thus

∂
3/2
t,ρ Mφ = ∂

3/2
t,ρ M∂

−1/2
t,ρ ∂

1/2
t,ρ φ = ∂t,ρM∂

1/2
t,ρ φ.

Hence, we can compute

Re〈
(

∂t,ρM + ˜N
)

φ, φ〉ρ,1/2 = Re〈∂3/2
t,ρ Mφ + ∂

1/2
t,ρ

˜Nφ, ∂
1/2
t,ρ φ〉ρ,0

= Re〈∂t,ρM∂
1/2
t,ρ φ + ∂

1/2
t,ρ Nφ, ∂

1/2
t,ρ φ〉ρ,0 + δ Re〈φ, ∂

1/2
t,ρ φ〉ρ,0

≥ Re〈(∂t,ρM + N )∂1/2
t,ρ φ, ∂

1/2
t,ρ φ〉ρ,0 + Re〈[∂1/2

t,ρ ,N ]φ, ∂
1/2
t,ρ φ〉ρ,0 +

√
ρδ‖φ‖2

ρ,0

≥ c‖φ‖2
ρ,1/2 − ‖[∂t,ρ,N ]φ‖ρ,0‖φ‖ρ,1/2 +

√
ρδ‖φ‖2

ρ,0

≥ (c − c̃) ‖φ‖2
ρ,1/2 − d‖φ‖ρ,0‖φ‖ρ,1/2 +

√
ρδ‖φ‖2

ρ,0

≥ (c − c̃ − ε)‖φ‖2
ρ,1/2 + (

√
ρδ − d2

4ε
)‖φ‖2

ρ,0 ≥ (c − c̃ − ε)‖φ‖2
ρ,1/2,

which shows (4.7). �

If the coefficient operators, M and N , act in a ‘physically meaningful
manner’; that is, if they are causal (see definition below), then the latter result
(as well as the other main result Theorem 4.1) also imply a maximal regularity
result locally in time. For this we need a closer look into the well-posedness
result Theorem 2.8, which in turn prerequisites the following notion. We
define

Sc(R;H):= lin{f : R → H; f simple function with compact support}.

Definition 5.3. Let K0,K1 be Hilbert spaces, ρ0 ∈ R, and

C : Sc(R;K0) →
⋂

ρ≥ρ0

L2,ρ(R;K1)

linear. Then we call C evolutionary (at ρ0), if, for all ρ ≥ ρ0, C admits a
continuous extension Cρ ∈ L(L2,ρ(R;K0), L2,ρ(R;K1)) satisfying

sup
ρ≥ρ0

‖Cρ‖L(L2,ρ(R;K0),L2,ρ(R;K1)) < ∞.

We gather two results important for evolutionary mappings of the type dis-
cussed in the latter definition. For the intricacies of the interplay of causality
and closure of operators, we refer to [26].

Proposition 5.4. ([28, Remark 2.1.5] or [22, Lemma 4.2.5 (a)]) Let K0,K1 be
Hilbert spaces, ρ0 ∈ R, and C : Sc(R;K0) → ⋂

ρ≥ρ0
L2,ρ(R;K1) linear and C

evolutionary at ρ0. Then Cρ is causal for all ρ ≥ ρ0; that is, for all t ∈ R and
f ∈ L2,ρ(R;K0) we have

spt f ⊆ [t,∞) ⇒ spt Cρf ⊆ [t,∞).

Theorem 5.5. ([28, Theorem 3.4.6] or [27, Theorem 3.4]) In addition to the
assumptions in Theorem 2.8, assume that M,M′ and N are evolutionary.
Then

Sρ =
(

∂t,ρMρ + Nρ + A
)−1 ∈ L(L2,ρ(R;H))
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is causal.

Having presented the remaining technical ingredients for the localisa-
tion on bounded time-intervals, we can present the local maximal regularity
statement next.

Corollary 5.6. In addition to the assumptions in Theorem 5.1, assume that
M and N are evolutionary. Let T ∈]0,∞[. Then there exists κ ≥ 0 such
that for all f ∈ L2,ρ(R;H0) and g ∈ H

1/2
ρ (R;H1) with spt f, spt g ⊆ [0, T [,

(u, v) = Sρ(f, g) are supported in [0,∞) only and satisfy

‖u‖H1[0,T ) + ‖Cu‖H1/2[0,T ) + ‖C∗v‖L2[0,T ) + ‖v‖H1/2[0,T )

≤ κ
(‖f‖L2[0,T ) + ‖g‖H1/2[0,T )

)

.

Proof. Firstly, observe that H
1/2
ρ (R;H) � u �→ u|[0,T ) ∈ H1/2([0, T );H)

continuously, by complex interpolation, see also Remark 2.4. Next, let φ ∈
C∞

c (R) with 0 ≤ φ ≤ 1 and

φ(t) =

⎧

⎪

⎨

⎪

⎩

0, t ≤ −T/2,

1 0 ≤ t ≤ T,

0 t ≥ 3T/2;
define ĥ:=φ(·)

⎧

⎪

⎨

⎪

⎩

h(−·), on ] − ∞, 0],
h(·), on ]0, T [,
h(T − ·) on [T,∞[.

for h ∈ L2(]0, T [;H). Then it is not difficult to see that E : h �→ ĥ is con-
tinuous as a mapping from L2(]0, T [;H) to L2(R;H) and as a mapping from
H1(]0, T [;H) to H1

ρ(R;H). Thus, by interpolation, we infer continuity as a

mapping from H1/2(]0, T [;H) to H
1/2
ρ (R;H). Thus, there exists κ ≥ 0 such

that for all g ∈ H
1/2
ρ (R;H) with spt g ⊆ [0, T [ we have ‖g‖ρ, 12

≤ κ‖g‖H1/2[0,T [.

This estimate together with Theorem 5.1 then implies the assertion. �

Remark 5.7. Note that a prototype of evolutionary operators are operators
defined as multiplication by a function, see also [28, Example 2.1.1]. This
prototype will be discussed next.

5.2. Commutators for Multiplication Operators

In this subsection we inspect the conditions on the operator N assumed
in Theorem 5.1 for the concrete case of N being a multiplication operator.
More precisely, we assume the following: Let N :R → L(H) be a strongly
measurable bounded mapping. Then N induces an evolutionary operator

N : Sc(R;H) →
⋂

ρ≥0

L2,ρ(R;H), f �→ (t �→ N(t)f(t))

with ‖Nρ‖L(L2,ρ(R;H)) = ‖N‖∞ for all ρ ≥ 0. Note that all continuous exten-
sions Nρ, ρ ≥ 0, act as multiplication by N . We provide a formula for ∂

1/2
t,ρ φ

for regular φ first.

Lemma 5.8. Let ρ > 0 and φ ∈ H1
ρ(R;H). Then

(

∂
1/2
t,ρ φ

)

(t) =
1

2Γ(1/2)

∫ t

−∞
(t − s)−3/2(φ(t) − φ(s)) ds (t ∈ R a.e.).
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Proof. We have ∂
1/2
t,ρ φ = ∂

−1/2
t,ρ ∂t,ρφ = ∂

−1/2
t,ρ φ′ (see also Proposition 2.2) and

thus, by Proposition 2.2
(

∂
1/2
t,ρ φ

)

(t) =
1

Γ(1/2)

∫ t

−∞
(t − s)−1/2φ′(s) ds

=
1

Γ(1/2)

∫ ∞

0

s−1/2φ′(t − s) ds =
1

2Γ(1/2)

∫ ∞

0

∫ ∞

s

r−3/2 dr φ′(t − s) ds

=
1

2Γ(1/2)

∫ ∞

0

r−3/2

∫ r

0

φ′(t − s) dsdr

=
1

2Γ(1/2)

∫ ∞

0

r−3/2(φ(t) − φ(t − r)) dr

=
1

2Γ(1/2)

∫ t

−∞
(t − s)−3/2(φ(t) − φ(s)) ds (t ∈ R a.e.).

�

Using this expression, we can prove our first result on commutators with
the fractional derivative.

Proposition 5.9. Let ρ0 > 0 and assume that [Nρ0 , ∂
1/2
t,ρ0

] is bounded as an

operator on L2,ρ0(R;H). Then for each ρ ≥ ρ0 we have Nρ[H
1/2
ρ (R;H)] ⊆

H
1/2
ρ (R;H) and

‖[Nρ, ∂
1/2
t,ρ ]‖L(L2,ρ(R;H)) ≤ ‖[Nρ0 , ∂

1/2
t,ρ0

]‖L(L2,ρ0 (R;H)) + 2‖N‖∞ (
√

ρ − √
ρ0) .

Proof. Let ρ ≥ ρ0. To start off with, we prove the following statement:

φ ∈ H1/2
ρ (R;H) ⇔ e(ρ0−ρ)·φ ∈ H1/2

ρ0
(R;H).

For this, let φ ∈ H
1/2
ρ (R;H); that is, (im +ρ)

1
2 Lρφ ∈ L2(R;H). Note that

Lρ0e
(ρ0−ρ)·φ = Lρφ and hence, it suffices to show that

(im +ρ0)
1
2 Lρφ ∈ L2(R;H).

The latter however is clear, since
(

t �→ (it + ρ0)1/2(it + ρ)−1/2
) ∈ L∞(R;H).

Since this argument is completely symmetric in ρ and ρ0, the asserted equiv-
alence holds.
If now φ ∈ H

1/2
ρ (R;H), we infer that

e(ρ0−ρ)·Nρφ = Nρ0e
(ρ0−ρ)·φ ∈ H1/2

ρ0
(R;H)

and thus, Nρ[H
1/2
ρ (R;H)] ⊆ H

1/2
ρ (R;H). To compute the norm of [Nρ, ∂

1/2
t,ρ ],

let φ ∈ C∞
c (R;H). Then we estimate

‖[Nρ, ∂
1/2
t,ρ ]φ‖ρ,0 = ‖e(ρ0−ρ)·

(

Nρ∂
1/2
t,ρ − ∂

1/2
t,ρ Nρ

)

φ‖ρ0,0

= ‖Nρ0e
(ρ0−ρ)·∂1/2

t,ρ φ − e(ρ0−ρ)·∂1/2
t,ρ Nρφ‖ρ0,0

≤ ‖[Nρ0 , ∂
1/2
t,ρ0

]e(ρ0−ρ)·φ‖ρ0,0 + ‖Nρ0

(

e(ρ0−ρ)·∂1/2
t,ρ − ∂

1/2
t,ρ0

e(ρ0−ρ)·
)

φ‖ρ0,0+

+ ‖
(

e(ρ0−ρ)·∂1/2
t,ρ − ∂

1/2
t,ρ0

e(ρ0−ρ)·
)

Nρφ‖ρ0,0.



30 Page 24 of 37 S. Trostorff, M. Waurick IEOT

Hence, we need to estimate the norm of the operator e(ρ0−ρ)·∂1/2
t,ρ −∂

1/2
t,ρ0

e(ρ0−ρ)·.
For this, let ψ ∈ C∞

c (R;H) and compute, using Lemma 5.8

(e(ρ0−ρ)·∂1/2
t,ρ ψ − ∂

1/2
t,ρ0

e(ρ0−ρ)·ψ)(t)

= e(ρ0−ρ)t 1
2Γ(1/2)

∫ t

−∞
(t − s)−3/2(ψ(t) − ψ(s)) ds−

− 1
2Γ(1/2)

∫ t

−∞
(t − s)−3/2(e(ρ0−ρ)tψ(t) − e(ρ0−ρ)sψ(s)) ds

=
1

2Γ(1/2)

∫ t

−∞
(t − s)−3/2

(

e(ρ0−ρ)s − e(ρ0−ρ)t
)

ψ(s) ds

=
1

2Γ(1/2)

∫ t

−∞
(t − s)−3/2

(

1 − e(ρ0−ρ)(t−s)
)

e(ρ0−ρ)sψ(s) ds

= (kρ0−ρ ∗ e(ρ0−ρ)·ψ)(t),

where kμ(t):= 1
2Γ(1/2)χR≥0(t)t

−3/2(1 − eμt) for t, μ ∈ R. Note that for μ =
(ρ0 − ρ) ≤ 0 the function kρ0−ρ is positive and hence, using the convolution
theorem, we obtain

‖kρ0−ρ ∗ ‖L(L2,ρ0 (R;H)) =
∫

R

kρ0−ρ(t)e−ρ0t dt.

We compute using the integral representation of the Γ-function
∫

R

kρ0−ρ(t)e−ρ0t dt =
1

2Γ(1/2)

∫ ∞

0

t−3/2(1 − e(ρ0−ρ)t)e−ρ0t dt

=
1

Γ(1/2)

∫ ∞

0

t−1/2
(−ρ0e−ρ0t + ρe−ρt

)

dt =
√

ρ − √
ρ0

and thus,

‖(e(ρ0−ρ)·∂1/2
t,ρ − ∂

1/2
t,ρ0

e(ρ0−ρ)·)φ‖ρ0,0 ≤ (
√

ρ − √
ρ0) ‖e(ρ0−ρ)·φ‖ρ0,0

= (
√

ρ − √
ρ0) ‖φ‖ρ,0. (5.1)

Summarising, we obtain the estimate

‖[Nρ, ∂
1/2
t,ρ ]φ‖ρ,0 ≤

(

‖[Nρ0 , ∂
1/2
t,ρ0

]‖L(L2,ρ0 (R;H)) + 2‖N‖∞ (
√

ρ − √
ρ0)

)

‖φ‖ρ,0,

which shows the claim. �

The next proposition is devoted to the limit case ρ0 = 0, which is the
case usually treated in the literature.

Proposition 5.10. Assume that [N0, ∂
1/2
t,0 ] is bounded as an operator on

L2(R;H). Then for each ρ ≥ 0 we have N [H1/2
ρ (R;H)] ⊆ H

1/2
ρ (R;H) and

‖[Nρ, ∂
1/2
t,ρ ]‖L(L2,ρ(R;H)) ≤ ‖[N0, ∂

1/2
t,0 ]‖L(L2(R;H)) + 2‖N‖∞

√
ρ.

Proof. Similar to the proof of Proposition 5.9, at first we show

φ ∈ H1/2
ρ (R;H) ⇐⇒ e−ρ·φ ∈ H1/2(R;H).
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For this, let φ ∈ H
1/2
ρ (R;H). Then (im +ρ)1/2Lρφ = (im +ρ)1/2Fe−ρ·φ ∈

L2(R;H). The latter implies (im)1/2Fe−ρ·φ ∈ L2(R;H) and hence, e−ρ·φ ∈
H1/2(R;H). If, on the other hand, e−ρ·φ ∈ H1/2(R;H), then φ ∈ L2,ρ(R;H)
and (im)1/2Lρφ = (im)1/2Fe−ρ·φ ∈ L2(R;H) and hence,

∫

R

‖(it + ρ)1/2 (Lρφ) (t)‖2
H dt

=
∫

[−1,1]

‖(it + ρ)1/2 (Lρφ) (t)‖2
H dt +

∫

|t|>1

‖(it + ρ)1/2 (Lρφ) (t)‖2
H dt

≤ (1 + ρ2)1/2‖φ‖2
L2,ρ(R;H) + (1 + ρ2)1/2

∫

R

‖(it)1/2 (Lρφ) (t)‖2
H dt < ∞

and thus, φ ∈ H
1/2
ρ (R;H).

By the same argumentation as in the proof of Proposition 5.9 we infer
N [H1/2

ρ (R;H)] ⊆ H
1/2
ρ (R;H). Following the lines of the proof of Proposi-

tion 5.9, we need to find an estimate for ‖
(

e−ρ·∂1/2
t,ρ − ∂

1/2
t,0 e−ρ·

)

φ‖0,0, for
φ ∈ C∞

c (R;H). The main problem in proving such an estimate is that we do
not have an explicit integral representation for ∂

1/2
t,0 thus far. However, we

have

∂
1/2
t,0 ψ = F∗(im)1/2Fψ = lim

ρ0→0
F∗(im +ρ0)1/2Fψ

= lim
ρ0→0

e−ρ0·L∗
ρ0

(im +ρ0)1/2Lρ0e
ρ0·ψ = lim

ρ0→0
e−ρ0·∂1/2

t,ρ0
eρ0·ψ

with convergence in L2(R;H) for each ψ ∈ H1/2(R;H), where we have used
dominated convergence in the second line. Thus, for φ ∈ C∞

c (R;H) we have
that

‖
(

e−ρ·∂1/2
t,ρ − ∂

1/2
t,0 e−ρ·

)

φ‖0,0 = lim
ρ0→0

‖
(

e−ρ·∂1/2
t,ρ − e−ρ0·∂1/2

t,ρ0
e(ρ0−ρ)·

)

φ‖0,0

= lim
ρ0→0

‖
(

e(ρ0−ρ)·∂1/2
t,ρ − ∂

1/2
t,ρ0

e(ρ0−ρ)·
)

φ‖ρ0,0

≤ lim
ρ0→0

(
√

ρ − √
ρ0) ‖φ‖ρ,0 =

√
ρ‖φ‖ρ,0,

where we have used (5.1). Following the lines of the proof of Proposition 5.9
the assertion follows. �
Remark 5.11. Note that Theorem 5.1 in combination with Proposition 5.9 or
Proposition 5.10 yields maximal regularity of the corresponding evolutionary
equation, if N has a bounded commutator for some ρ ≥ 0. In particular, this
covers the case treated in [3] (see also Sect. 6.1 below).

Our next goal is to prove the following proposition.

Proposition 5.12. Assume that

C:=
∫

R

∫

R

‖N(t) − N(s)‖2

|t − s|2+δ
dt ds < ∞ (5.2)

for some δ > 0. Then

∀ε > 0∃c > 0 ∀φ ∈ H1/2
ρ (R;H): ‖[∂1/2

t,ρ ,Nρ]φ‖ρ,0 ≤ ε‖φ‖ρ,1/2 + c‖φ‖ρ,0.
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Remark 5.13. Assumption (5.2) is the main assumption imposed in [8, Corol-
lary 1.1].

In order to prove Proposition 5.12, we want to apply Lemma 5.8 to
derive an integral expression for the commutator. Since Lemma 5.8 just holds
for functions in H1

ρ(R;H), we need to regularise N .

Lemma 5.14. For ε > 0 we define

Nε(t):=
1
ε

∫ t+ε

t

N(s) ds (t ∈ R),

where the integral is defined in the strong sense. We denote the associated
multiplication operator by Nε. Then the following statements hold:
(a) For each ε > 0 we have ‖Nε‖∞ ≤ ‖N‖∞ and Nε,ρ[H1

ρ(R;H)] ⊆ H1
ρ(R;H),

(b) Nε,ρ → Nρ strongly in L2,ρ(R;H) as ε → 0,
(c) If there exist c1, c2 ≥ 0 such that ‖[∂1/2

t,ρ ,Nε,ρ]φ‖ρ,0 ≤ c1‖φ‖ρ,1/2 +

c2‖φ‖ρ,0 for all φ ∈ H
1/2
ρ (R;H) and ε > 0, then Nρ[H

1/2
ρ (R;H)] ⊆

H
1/2
ρ (R;H) with ‖[∂1/2

t,ρ ,Nρ]φ‖ρ,0 ≤ c1‖φ‖ρ,1/2 + c2‖φ‖ρ,0 for all φ ∈
H

1/2
ρ (R;H).

Proof. (a) Let ε > 0. The estimate ‖Nε‖∞ ≤ ‖N‖∞ is obvious. Let u ∈
H1

ρ(R;H). In order to show Nε,ρu ∈ H1
ρ(R;H), let φ ∈ C∞

c (R). Then we
compute

∫

R

(Nε,ρu) (t)φ′(t) dt =
1
ε

∫

R

∫ t+ε

t

N(s)u(t)φ′(t) dsdt

=
1
ε

∫

R

∫ ε

0

N(s + t)u(t)φ′(t) dsdt =
1
ε

∫ ε

0

∫

R

N(s + t)u(t)φ′(t) dt ds

=
1
ε

∫ ε

0

∫

R

N(r)u(r − s)φ′(r − s) dr ds

=
1
ε

∫

R

N(r)
∫ ε

0

u(r − s)φ′(r − s) dsdr

= −1
ε

∫

R

N(r)
∫ ε

0

∂t,ρu(r − s)φ(r − s) dsdr

− 1
ε

∫

R

N(r) (u(r − ε)φ(r − ε) − u(r)φ(r)) dr

= −
∫

R

(Nε,ρ∂t,ρu) (t)φ(t) dt − 1
ε

∫

R

(N(t + ε) − N(t))u(t)φ(t) dt.

Since (t �→ (Nε,ρ∂t,ρu) (t) + (N(t + ε) − N(t)) u(t)) ∈ L2,ρ(R;H), the claim
follows from [22, Proposition 4.1.1].

(b) Let ψ ∈ L2,ρ(R) and x ∈ H. Then

Nε(t)xψ(t) − N(t)xψ(t) =
1
ε

∫ t+ε

t

(N(s) − N(t))xds ψ(t) → 0 (ε → 0)

for almost every t ∈ R by Lebesgue’s differentiation theorem. Moreover,

‖Nε(t)xψ(t) − N(t)xψ(t)‖H ≤ 2‖N‖∞‖ψ(t)x‖H



IEOT Maximal Regularity for Non-autonomous Evolutionary Equations Page 27 of 37 30

and thus, Nε(ψx) → N (ψx) in L2,ρ(R;H) by dominated convergence. Since

‖Nε,ρ‖L(L2,ρ(R;H)) = ‖Nε‖∞ ≤ ‖N‖∞

for each ε > 0, the strong convergence follows, since lin{ψx ; ψ ∈ L2,ρ(R), x ∈
H} lies dense in L2,ρ(R;H).

(c) For φ ∈ H
1/2
ρ (R;H) we estimate

‖∂
1/2
t,ρ Nε,ρφ‖ρ,0 ≤ ‖Nε,ρ∂

1/2
t,ρ φ‖ρ,0 + c1‖φ‖ρ,1/2 + c2‖φ‖ρ,0

≤ (‖N‖∞ + c1)‖φ‖ρ,1/2 + c2‖φ‖ρ,0.

Hence, the family (Nε,ρφ)ε>0 is bounded in H
1/2
ρ (R;H) and thus, w.l.o.g. it

converges weakly in H
1/2
ρ (R;H) as ε → 0. Since Nε,ρφ → Nρφ in L2,ρ(R;H)

as ε → 0 by (b), we derive that Nρφ ∈ H
1/2
ρ (R;H) and ∂

1/2
t,ρ Nε,ρφ ⇀ ∂

1/2
t,ρ Nρφ

in L2,ρ(R;H). Hence,

‖[∂1/2
t,ρ ,Nρ]φ‖ρ,0 ≤ lim

ε→0
‖[∂1/2

t,ρ ,Nε,ρ]φ‖ρ,0 ≤ c1‖φ‖ρ,1/2 + c2‖φ‖ρ,0.

Proof of Proposition 5.12. For the proof, we follow the rationale presented
in [8, Lemma 5.3].Therefore, we rather sketch the arguments here and refer
to [25, proof of Proposition 5.12] for the details. We first prove this assertion
for the case N [H1

ρ(R;H)] ⊆ H1
ρ(R;H). Let φ ∈ H1

ρ(R;H). Then we get by
Lemma 5.8

[∂1/2
t,ρ ,Nρ]φ(t) =

1
2Γ(1/2)

∫ t

−∞
(t − s)−3/2(N(t) − N(s))φ(s) ds (t ∈ R).

Let now 0 < ε ≤ 1. Then

‖[∂1/2
t,ρ ,Nρ]φ‖ρ,0

=
1

2Γ(1/2)

(

∫

R

∥

∥

∥

∥

∫ t

−∞
(t − s)−3/2(N(t) − N(s))φ(s) ds

∥

∥

∥

∥

2

H

e−2ρt dt

)
1
2

≤ 1
2Γ(1/2)

(

∫

R

∥

∥

∥

∥

∫ t

t−ε

(t − s)−3/2(N(t) − N(s))φ(s) ds

∥

∥

∥

∥

2

H

e−2ρt dt

)
1
2

+

+
1

2Γ(1/2)

(

∫

R

∥

∥

∥

∥

∫ t−ε

−∞
(t − s)−3/2(N(t) − N(s))φ(s) ds

∥

∥

∥

∥

2

H

e−2ρt dt

)
1
2

.

Using Young’s inequality as in [8, Lemma 5.3], the second integral can be
estimated by

2‖N‖∞c‖φ‖ρ,0, where c:=
∫ ∞

ε

s−3/2e−ρs ds ≤ ε−3/2 1
ρ
.



30 Page 28 of 37 S. Trostorff, M. Waurick IEOT

For estimating the first integral, let α ∈]1 − δ, 1[. Then

(

∫

R

∥

∥

∥

∥

∫ t

t−ε

(t − s)−3/2(N(t) − N(s))φ(s) ds

∥

∥

∥

∥

2

H

e−2ρt dt

)
1
2

≤

(

1
1−αε1−α

)
1
2

(∫

R

∫ t

t−ε

(t − s)−3+α‖N(t) − N(s)‖2
L(H)‖φ(s)‖2

H ds e−2ρt dt

)

1
2

.

Similarly to [8, Lemma 5.3] choose p′ ∈]2, 2 2+δ
3−α ] and p ∈]2,∞[ such that

1
p + 1

p′ = 1
2 . Then Hölder’s inequality (see Remark 2.5(b)) yields

(∫

R

∫ t

t−ε

(t − s)−3+α‖N(t) − N(s)‖2
L(H)‖φ(s)‖2

H ds e−2ρt dt

)

1
2

≤ ε
1
p

(∫

R

∫ t

t−ε

(t − s)
(−3+α)

2 p′‖N(t) − N(s)‖p′

L(H) dsdt

)

1
p′

‖φ‖ρ,p.

Since, t−s ≤ ε ≤ 1 for s ∈ [t−ε, t], (−3+α)
2 p′ ≥ −(2+δ) and ‖N(t)−N(s)‖p′ ≤

‖N(t) − N(s)‖2 (2‖N‖∞)p′−2, we obtain

(∫

R

∫ t

t−ε

(t − s)
(−3+α)

2 p′‖N(t) − N(s)‖p′

L(H) dsdt

)

1
p′

≤ (2‖N‖∞)1− 2
p′ C

1
p′ .

Hence,

‖[∂1/2
t,ρ ,N ]φ‖ρ,0 ≤ 1

2Γ(1/2)

(

1
1 − α

ε1−α

)
1
2

ε
1
p (2‖N‖∞)1− 2

p′ C
1
p′ ‖φ‖ρ,p

+
1

2Γ(1/2)
2‖N‖∞ε−3/2 1

ρ
‖φ‖ρ,0.

Under the assumption that N leaves H1
ρ(R;H) invariant, the assertion follows

from Lemma 2.6 and the fact that H1
ρ(R;H) is dense in H

1/2
ρ (R;H).

If N does not leave H1
ρ(R;H) invariant, replace it by Nε as defined in

Lemma 5.14. For each ε > 0 we thus obtain

‖[∂1/2
t,ρ ,Nε,ρ]φ‖ρ,0 ≤

(

1
1 − α

ε1−α

)
1
2

ε
1
p (2‖Nε‖∞)1− 2

p′ C
1
p′
ε ‖φ‖ρ,p

+2‖Nε‖∞ε−3/2 1
ρ
‖φ‖ρ,0,
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where

Cε:=
∫

R

∫

R

‖Nε(t) − Nε(s)‖2
L(H)

|t − s|2+δ
dt ds

=
∫

R

∫

R

1
ε2 ‖ ∫ ε

0
N(r + t) dr − ∫ ε

0
N(r + s) dr‖2

L(H)

(t − s)2+δ
dsdt

≤
∫

R

∫

R

1
ε2

ε
∫ ε

0
‖N(r + t) − N(r + s)‖2

L(H) dr

(t − s)2+δ
dsdt

=
1
ε

∫ ε

0

∫

R

∫

R

‖N(r + t) − N(r + s)‖2
L(H)

(t − s)2+δ
dsdt dr = C.

Since furthermore ‖Nε‖∞ ≤ ‖N‖∞ by Lemma 5.14 (a), we can apply
Lemma 5.14 (c) and thus, the claim follows. �

6. Examples

6.1. Divergence Form Equations

In order to treat a first standard example, we consider heat type equations in
this section and analyse the relationship to available results in the literature.
For this, we need to introduce the following operators.

Definition 6.1. Let Ω ⊆ R
n be open. We define

grad(0) : H1
(0)(Ω) ⊆ L2(Ω) → L2(Ω)n, φ �→ ∇φ,

div(0) : H(0)(div,Ω) ⊆ L2(Ω)n → L2(Ω), ψ �→ ∇ · ψ,

where H1(Ω) is the standard Sobolev space of weakly differentiable L2(Ω)
functions, H1

0 (Ω) the closure of C∞
c (Ω) in H1(Ω). Similarly, H(div,Ω) is

the space of L2(Ω)-vector fields with distributional divergence in L2(Ω) and
H0(div,Ω) is the closure of C∞

c (Ω)n in H(div,Ω).

It is not difficult to see that div∗
0 = − grad and grad∗

0 = −div, see [22,
Chapter 6].

Next, we rephrase a sufficient condition from [3], yielding boundedness
of [N0, ∂

1/2
t,0 ]. The result itself is a combination of the techniques used in [3],

the BMO-characterisation by Strichartz and the commutator estimate by
Murray [12].

Theorem 6.2. Let H = L2(Ω)n for some open Ω ⊆ R
n, N : R × Ω → C

n×n

measurable and bounded. Assume there exists C ≥ 0 such that we have for
a.e. x ∈ Ω and for all intervals I ⊆ R,

1
�(I)

∫

I

∫

I

‖N(t, x) − N(s, x)‖2
Cn×n

|t − s|2 dsdt ≤ C. (6.1)

Then [N0, ∂
1/2
t,0 ] is bounded as an operator in L2(R;H).

Proof. A direct computation shows that Nε defined in Lemma 5.14 satisfies
the same condition imposed on N in the present theorem (with the same C).
Thus, using Lemma 5.14 it suffices to treat the case of Lipschitz continuous
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N . In this case, the arguments in [3, Corollary 7] show that both [N0, |∂t,0|1/2]
and (using [12]) [N0, sgn(−i∂t,0) |∂t,0|1/2] are bounded. Since

∂
1/2
t,0 = χ[0,∞)(−i∂t,0)∂

1/2
t,0 + χ(−∞,0)(−i∂t,0)∂

1/2
t,0

=
1
2
eiπ/4

(

|∂t,0|1/2 + sgn(−i∂t,0) |∂t,0|1/2
)

+
1
2
e−iπ/4

(

|∂t,0|1/2 − sgn(−i∂t,0) |∂t,0|1/2
)

and due to linearity of the commutator in the second argument, we infer the
assertion. �

Remark 6.3. Assume N is given as in Theorem 6.2. Moreover, assume that
˜N : (t, x) �→ N(t, x)−1 is well-defined and bounded. Then ˜N satisfies the
same integral condition (6.1) as N does. Indeed, we compute for a non-empty
interval I ⊆ R

1
�(I)

∫

I

∫

I

‖ ˜N(t, x) − ˜N(s, x)‖2
Cn×n

|t − s|2 dsdt

=
1

�(I)

∫

I

∫

I

‖N(t, x)−1 − N(s, x)−1‖2
Cn×n

|t − s|2 dsdt

=
1

�(I)

∫

I

∫

I

‖N(t, x)−1 (N(s, x) − N(t, x)) N(s, x)−1‖2
Cn×n

|t − s|2 dsdt

≤ ‖ ˜N‖4
∞

1
�(I)

∫

I

∫

I

‖ (N(s, x) − N(t, x)) ‖2
Cn×n

|t − s|2 dsdt ≤ ‖ ˜N‖4
∞C.

At first we provide a proof of the main theorem in [3] with the present
tools.

Theorem 6.4. ([3, Theorem 2]) Let Ω ⊆ R
n be open, N : R×Ω → C

n×n mea-
surable and bounded, satisfying (6.1). Furthermore assume that there exists
c > 0 such that for a.e. (t, x) ∈ R × Ω:

Re〈ξ,N(t, x)ξ〉Cn ≥ c‖ξ‖2
Cn .

Let C : dom(C) ⊆ L2(Ω) → L2(Ω)n be densely defined and closed such
that grad0 ⊆ C ⊆ grad, ρ > 0 and let f ∈ L2,ρ(R;L2(Ω)). Then the (unique)
solution u ∈ L2,ρ(R;L2(Ω)) of

∂t,ρu + C∗NρCu = f

admits maximal regularity, that is,

u ∈ H1
ρ(R;L2(Ω)) ∩ H1/2

ρ (R; dom(C)) ∩ L2,ρ(R; dom(C∗NρC)).

Moreover, the solution mapping f �→ u is continuous as an operator from
L2,ρ(R;L2(Ω)) into H1

ρ(R;L2(Ω))∩H
1/2
ρ (R; dom(C))∩L2,ρ(R; dom(C∗NρC)).

Proof. In order to put ourselves into the framework of evolutionary equations,
we introduce the variable q:= − NρCu and consider

(

∂t,ρ

(

1 0
0 0

)

+
(

0 0
0 N −1

ρ

)

+
(

0 −C∗

C 0

))(

u
q

)

=
(

f
0

)

. (6.2)
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The latter equation is equivalent to

∂t,ρu + C∗NρCu = f and q = −NρCu.

For a more detailed rationale on this we refer to [22, Chapter 6]. It is not diffi-
cult to see that (6.2) satisfies the well-posedness condition yielding unique ex-
istence of (u, q) ∈ L2,ρ(R;L2(Ω)1+n) , see e.g. [14,22]. Next, Theorem 6.2 and

Remark 6.3 yield
[

N −1
0 , ∂

1/2
t,0

]

∈ L(L2(R;L2(Ω)n)). Thus, Proposition 5.10

implies
[

N −1
ρ , ∂

1/2
t,0

]

∈ L(L2,ρ(R;L2(Ω)n)). Hence, Theorem 5.1 applies with
c̃ = 0 to (6.2), which implies the assertion. �

Remark 6.5. (a) Using the extension result in [3, Lemma 11] and Corol-
lary 5.6, we obtain the corresponding local-in-time result in [3, Theorem
2].

(b) The assumption of C to be sandwiched inbetween grad0 and grad is
the same assumption as in [3] asking for either Dirichlet, Neumann or
mixed boundary conditions.

Next we provide our perspective on a main implication of the work in
[8] for homogeneous initial values.

Theorem 6.6. ([8, Corollary 1.1]) Let Ω ⊆ R
n be open, N : R → L(L2(Ω)n)

strongly measurable and bounded, satisfying (5.2). Furthermore assume that
there exists c > 0 such that for a.e. t ∈ R:

Re〈ξ,N(t)ξ〉L2(Ω)n ≥ c‖ξ‖2
L2(Ω)n .

Let C : dom(C) ⊆ L2(Ω) → L2(Ω)n be densely defined and closed such
that grad0 ⊆ C ⊆ grad, ρ > 0 and let f ∈ L2,ρ(R;L2(Ω)). Then the (unique)
solution u ∈ L2,ρ(R;L2(Ω)) of

∂t,ρu + C∗NρCu = f

admits maximal regularity, that is,

u ∈ H1
ρ(R;L2(Ω)) ∩ H1/2

ρ (R; dom(C)) ∩ L2,ρ(R; dom(C∗NρC)).

Moreover, the solution mapping f �→ u is continuous as an operator from
L2,ρ(R;L2(Ω)) into H1

ρ(R;L2(Ω))∩H
1/2
ρ (R; dom(C))∩L2,ρ(R; dom(C∗NρC)).

Proof. Reformulating the equation in the variables u and q = −NρCu, we
obtain

(

∂t,ρ

(

1 0
0 0

)

+
(

0 0
0 N −1

ρ

)

+
(

0 −C∗

C 0

))(

u
q

)

=
(

f
0

)

.

With the same argument as in Remark 6.3, we infer that ˜N : t �→ N(t)−1

satisfies (5.2). Thus, with Proposition 5.12, Theorem 5.1 is applicable, which
yields the assertion. �

Remark 6.7. (a) Even though the conditions (5.2) and (6.1) do not compare
(see [3, Introduction]), we have established that both of the results in
[3,8] applied to standard divergence form equations can be obtained
by the same overriding principle of suitably bounded commutators with
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∂
1/2
t,ρ . Note that (6.1) implies boundedness as an operator in L2, whereas

(5.2) yields infinitesimal boundedness relative to ∂
1/2
t,ρ only.

(b) The condition on the regularity of the coefficient N leading to maximal
regularity of the considered divergence form equation obtained in [1]
seems to be weaker than the one of (infinitesimal) boundedness of the
commutator with ∂

1/2
t,ρ . However, note that in order to apply the max-

imal regularity theorem in [1], one needs to assume Kato’s square root
property (potentially) resulting in undue regularity requirements of the
boundary of Ω, which we do not want to impose here.

The above results (and the corresponding proofs) provide potential for
the following maximal regularity result, which invokes both lower order terms
and (time-)nonlocal effects in the time derivative term. This will be addressed
next.

6.2. Maximal Regularity for Integro-Differential Equations

In this section, we consider equations of the following form (see [21,23]),
which has applications for instance in visco-elasticity. We need the following
notion.

Definition 6.8. Let G be a Hilbert space, T ∈ L1,μ(R≥0;L(G)) for some μ ≥
0. We call T admissible, if the following conditions are met:

1. for all t ≥ 0, T (t) is selfadjoint,
2. there exists d ≥ 0 and ρ0 ≥ μ such that for all t ∈ R we have

t Im T̂ (t − iρ0) ≤ d,

where

〈T̂ (t − iρ)φ, ψ〉G:=
1√
2π

∫

e−itse−ρs〈T (s)φ, ψ〉G ds (φ, ψ ∈ G).

Remark 6.9. As highlighted in [23, Remark 3.6]; T being admissible gener-
alises the standard assumption for convolution kernels for the class of integro-
differential equations considered in the literature.

Proposition 6.10. ([23, Proposition 3.9 (and its proof)]) Let G be a Hilbert
space, T ∈ L1,μ(R≥0;L(G)) for some μ ≥ 0. Assume that T is admissible.
Then there exists c1, c2 > 0, ρ1 ≥ ρ0 such that for all ρ ≥ ρ1 we have

Re〈∂t,ρ(1 + T∗)φ, φ〉ρ,0 ≥ (c1ρ − c2) 〈φ, φ〉ρ,0 (φ ∈ H1
ρ(R;G)),

where T∗ ∈ L(L2,ρ(R;G)) is defined as the operator of convolving with T
(extended by zero to R).

The corresponding theorem for maximal regularity of parabolic-type
non-autonomous integro-differential equations, now reads as follows.

Theorem 6.11. Let H0,H1 be Hilbert spaces, μ ≥ 0, T ∈ L1,μ(R;L(H0))
admissible. Assume Nij : Sc(R;Hj) → ⋂

ρ≥ρ0
L2,ρ(R;Hi) is evolutionary at

ρ0 for each pair (i, j) ∈ {(0, 0), (0, 1), (1, 1)} and some ρ0 satisfying

Re〈N11φ1, φ1〉ρ,0 ≥ c〈φ1, φ1〉ρ,0 (φ1 ∈ Sc(R;H1), ρ ≥ ρ0)
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for some c > 0. In addition, assume that for all ρ ≥ ρ0 and all ε > 0 there
exists d > 0 such that

‖
[

N11,ρ, ∂
1/2
t,ρ

]

φ1‖ρ,0 ≤ ε‖φ1‖ρ, 12
+ d‖φ1‖ρ,0 (φ1 ∈ H1/2

ρ (R;H1)).

Furthermore, let C : dom(C) ⊆ H0 → H1 be densely defined and closed.
Then we find ρ1 ≥ ρ0 such that for all ρ ≥ ρ1 and f ∈ L2,ρ(R;H0) there
exists a unique u ∈ L2,ρ(R;H0) with

∂t,ρ(1 + T∗)u + N00,ρu + N01,ρN −1
11,ρCu + C∗N −1

11,ρCu = f.

Moreover, u satisfies the regularity

u ∈ H1
ρ(R;H0) ∩ H1/2

ρ (R; dom(C)) ∩ L2,ρ(R; dom(C∗N −1
11,ρC)).

Proof. Using the substitution q:= − N −1
11,ρCu, we consider for ρ ≥ ρ1 for

ρ1 ≥ ρ0 to be fixed later
(

∂t,ρ

(

(1 + T∗) 0
0 0

)

+
(N00,ρ −N01,ρ

0 N11,ρ

)

+
(

0 −C∗

C 0

)) (

u
q

)

=
(

f
0

)

. (6.3)

For M =
(

(1 + T∗) 0
0 0

)

and N =
(N00,ρ −N01,ρ

0 N11,ρ

)

, we show that the

positive definiteness condition in Theorem 2.8 is satisfied. For this, we use
Proposition 6.10 and estimate for φ = (φ0, φ1) ∈ L2,ρ(R;H0 × H1) and ε > 0

Re〈(∂t,ρM + N ) φ, φ〉ρ,0

≥ (c1ρ − c2) 〈φ0, φ0〉ρ,0 − ‖N00,ρ‖L(L2,ρ(R;H0))‖φ0‖2
ρ,0

− ‖N01,ρ‖L(L2,ρ(R;H0))‖φ0‖ρ,0‖φ1‖ρ,0 + c‖φ1‖2
ρ,0

≥
(

c1ρ − c2 − ‖N00,ρ‖L(L2,ρ(R;H0)) − 1
2ε

‖N01,ρ‖2
L(L2,ρ(R;H0))

)

‖φ0‖2
ρ,0

+ (c − 1
2
ε)‖φ1‖2

ρ,0.

Thus, choosing ε > 0 small enough, we find ρ1 ≥ ρ0 such that for all ρ ≥ ρ1

we have

Re〈(∂t,ρM + N ) φ, φ〉ρ,0 ≥ c

2
‖φ‖2

ρ,0.

Hence, (u, q) ∈ L2,ρ(R;H0 ×H1) are uniquely determined by (6.3). Note that
Theorem 2.8 asserts that actually

(

∂t,ρ

(

(1 + T∗) 0
0 0

)

+
(N00,ρ −N01,ρ

0 N11,ρ

)

+
(

0 −C∗

C 0

)) (

u
q

)

=
(

f
0

)

.
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Since both N00,ρ and N01,ρ are bounded linear operators, we obtain
(

∂t,ρ

(

(1 + T∗) 0
0 0

)

+
(

0 0
0 N11,ρ

)

+
(

0 −C∗

C 0

))(

u
q

)

=
(

f
0

)

+
(−N00,ρ N01,ρ

0 0

) (

u
q

)

=
(

f − N00,ρu + N01,ρq
0

)

.

Next, as the convolution operator (1+T∗) commutes with ∂−1
t,0 , we infer with

the help of Theorem 5.1 the desired regularity statement. �
Remark 6.12. (a) Note that the coefficients of the lower order terms N01

and N00 are not required to satisfy any regularity in time, which is
in line with the concluding example in [1]. Moreover, in the theorem
presented here the coefficient N11,ρ may well depend suitably regular
on time, i.e., N11,ρ may be induced by a multiplication operator, which
satisfies either (6.1) or (5.2).

(b) The results above directly apply to systems of divergence form equa-
tions, see [8, Parabolic systems] for examples concerning maximal reg-
ularity and [7, Proposition 3.8] for the corresponding formulation as
evolutionary equation.

6.3. Maxwell’s Equations

The concluding example is concerned with Maxwell’s equations. For this, we
introduce the necessary operator from vector analysis:

Definition 6.13. Let Ω ⊆ R
3 open. Then we define

curl(0) : H(0)(curl,Ω) ⊆ L2(Ω)3 → L2(Ω)3, φ �→ ∇ × φ,

where H(curl,Ω) is the space of L2(Ω)-vector fields with distributional curl
in L2(Ω)3 and H0(curl,Ω) is the closure of C∞

c (Ω)3 in H(curl,Ω). It is not
difficult to see that curl∗0 = curl .

The result on maximal regularity for Maxwell’s equations is concerned
with the eddy current approximation, which is a parabolic variant of the origi-
nal Maxwell’s equations. The catch is that in electrically conducting materials
like metals the dielectricity ε is negligible compared to the conductivity σ,
which we assume to depend on time. This setting has applications to moving
domains, see e.g. [6]. The result reads as follows.

Theorem 6.14. Let Ω ⊆ R
3 open, ρ > 0 and let μ = μ∗ ∈ L(L2(Ω)3); assume

μ ≥ c for some c > 0. Moreover, let σ ∈ L(L2,ρ(R;L2(Ω)3) satisfy

Re〈σE,E〉ρ,0 ≥ c‖E‖2
ρ,0 (E ∈ L2,ρ(R;L2(Ω)3).

and for all ε > 0 we find d > 0 such that

‖
[

σ, ∂
1/2
t,ρ

]

φ‖ ≤ ε‖φ‖ρ, 12
+ d‖φ‖ρ,0 (φ ∈ H1/2

ρ (R;L2(Ω)3)).

Then for all ρ > 0 and for all (J,K) ∈ L2,ρ(R;L2(Ω)6) the equation
(

∂t,ρ

(

μ 0
0 0

)

+
(

0 0
0 σ

)

+
(

0 curl0
− curl 0

)) (

H
E

)

=
(

K
−J

)
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admits a unique solution (E,H) ∈ L2,ρ(R;L2(Ω)6). If, in addition, J ∈
H

1/2
ρ (R;L2(Ω)3) then E ∈ H

1/2
ρ (R;L2(Ω)3) ∩ L2,ρ(R;H0(curl,Ω)) and H ∈

H1
ρ(R;L2(Ω)3) ∩ H

1/2
ρ (R;H(curl,Ω)).

Proof. The proof is a direct application of Theorem 5.1. �
Remark 6.15. (a) The commutator condition imposed on σ is satisfied, if

σ is a multiplication operator induced by a function satisfying (6.1) or
(5.2).

(b) In applications, non-zero terms K can occur for inhomogeneous bound-
ary values. A result corresponding to Theorem 6.14 is valid also for
mixed boundary conditions or with homogeneous boundary conditions
for H.

(c) There is no condition assumed on the regularity of the boundary of Ω.

7. Conclusion

We presented a maximal regularity theorem for evolutionary equations. The
core assumptions abstractly describe a parabolic type evolutionary equation
and lead to well-posedness on L2,ρ and H

1/2
ρ . For applications, the operator

theoretic insight of the need of commutator estimates for the commutator
with ∂

1/2
t found in [3,8] showed to be decisive also for evolutionary equations.

Moreover, we showed that both conditions on the coefficients imposed in [3,8],
which are not comparable, imply the well-posedness in H

1/2
ρ and hence, yield

the maximal regularity of the problem under consideration within the pre-
sented framework. Naturally, the regularity phenomenon for the unknown to
belong to H1/2 with values in the form domain, observed in [3,8], resurfaced
also in the framework of evolutionary equations. The conditions derived here
are deliberately focussed on the coefficients rather than the whole space-time
operator in order that it is possible to generate results independent of the
regularity of the boundary of the underlying domain, which is needed in [1]
in order to warrant some form of the square root property. Due to the view
of the time derivative as a normal continuously invertible operator it is pos-
sible to use a straightforward functional calculus and to compute fractional
powers of the time derivative and to work with them without the need of
explicitly invoking the Hilbert transform or other technicalities. It remains
to be seen, whether the commutator assumptions or the basic result Theo-
rem 4.1 implying maximal regularity lead to slightly stronger statements also
in the situation of divergence form equations.
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