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Abstract. A new method to enclose the pseudospectrum via the numer-
ical range of the inverse of a matrix or linear operator is presented.
The method is applied to finite-dimensional discretizations of an oper-
ator on an infinite-dimensional Hilbert space, and convergence results
for different approximation schemes are obtained, including finite ele-
ment methods. We show that the pseudospectrum of the full operator is
contained in an intersection of sets which are expressed in terms of the
numerical ranges of shifted inverses of the approximating matrices. The
results are illustrated by means of two examples: the advection–diffusion
operator and the Hain–Lüst operator.
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1. Introduction

Traditional stability analysis of linear dynamic models is based on eigenval-
ues. Thus determining the eigenvalues of a matrix or, more generally, the
spectrum of a linear operator is a major task in analysis and numerics. The
explicit computation of the whole spectrum of a linear operator by analytical
or numerical techniques is only possible in rare cases. Moreover, the spec-
trum is in general quite sensitive with respect to small perturbations of the
operator. This is in particular true for non-normal matrices and operators.
Therefore, one is interested in supersets of the spectrum that are easier to
compute and that are also robust under perturbations. One suitable superset
is the ε-pseudospectrum, a notion which has been independently introduced
by Landau [15], Varah [25], Godunov [14], Trefethen [22] and Hinrichsen and
Pritchard [11]. The ε-pseudospectrum of a linear operator A on a Hilbert
space H consists of the union of the spectra of all operators on H of the form
A+P with ‖P‖ < ε. Besides the fact that the pseudospectrum is robust under
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perturbations, it is also suitable to determine the transient growth behavior
of linear dynamic models in finite time, which may be far from the asymp-
totic behavior. For an overview on the pseudospectrum and its applications
we refer the reader to [8,24].

Numerical computation of the pseudospectrum of a matrix has been
intensively studied in the literature. Most algorithms use simple grid-based
methods, where one computes the smallest singular value of A−z at the points
z of a grid, or path-following methods, see the survey [23] or the overview at
[8]. Both methods face several challenges. The main problem of grid-based
methods is first to find a suitable region in the complex plane and then
to perform the computation on a usually very large number of grid points.
The main difficulty of path-following algorithms is to find a starting point,
that is, a point on the boundary of the pseudospectrum. Moreover, as the
pseudospectrum may be disconnected it is difficult to find every component.
However, there are several speedup techniques available, see [23], which are
essential for applications.

A simple method to enclose the pseudospectrum is in terms of the nu-
merical range. More precisely, under an additional weak assumption, the ε-
pseudospectrum is contained in an ε-neighborhood of the numerical range of
the operator, see Remark 2.8. While this superset is easy to compute for ma-
trices, it can not distinguish disconnected components of the pseudospectrum
as the numerical range is convex.

In this article we propose a new method to enclose the pseudospectrum
via the numerical range of the inverse of the matrix or linear operator. More
precisely, for a linear operator A on a Hilbert space and ε > 0 we show

σε(A) ⊂
⋂

s∈S

[(
Bδs

(W ((A − s)−1))
)−1 + s

]
, (1)

see Theorem 2.2. Here σε(A) denotes the ε-pseudospectrum of A, W ((A −
s)−1) is the numerical range of the resolvent operator (A − s)−1, Bδs

(U) is
the δs-neighborhood of a set U , and S is a suitable subset of the complex
plane. This inclusion holds for matrices as well as for linear operators on
Hilbert spaces. Further, we show that the enclosure of the pseudospectrum
in (1) becomes optimal if the set S is chosen optimally, see Theorem 2.5. The
idea to study the numerical range of the inverses stems from the fact that the
spectrum of a matrix can be expressed in terms of inverses of shifted matrices
[12].

From a numerical point of view this new method faces similar challenges
as grid-based methods as a suitable set S of points has to be found and then
the numerical ranges of a large number of matrices have to be computed.
However, this new method has the advantage that it enables us to enclose
the pseudospectrum of an infinite-dimensional operator by a set which is
expressed by the approximating matrices.

The usual procedure to compute the pseudospectrum of a linear opera-
tor on an infinite-dimensional Hilbert space is to approximate it by matrices
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and then to calculate the pseudospectrum of one of the approximating ma-
trices. In [24, Chapter 43] spectral methods are used for the approximation,
but no convergence properties of the pseudospectrum under discretization
are proved. So far only few results are available concerning the relations be-
tween the pseudospectra of the discretized operator and those of the infinite-
dimensional operator. Convergence properties of the pseudospectrum under
discretization have been studied for the linearized Navier-Stokes equation [9],
for band-dominated bounded operators [18] and for Toeplitz operators [5].
Bögli and Siegl [3,4] prove local and global convergence of the pseudospectra
of a sequence of linear operators which converge in a generalized resolvent
sense. Further, Wolff [27] shows some abstract convergence results for the
approximate point spectrum of a linear operator using the pseudospectra of
the approximations.

In this article we refine the enclosure (1) of the pseudospectrum of linear
operators further and show that it is sufficient to calculate the numerical
ranges of approximating matrices. More precisely, we show in Theorem 3.6
that

σε(A) ⊂
⋂

s∈S

[(
Bδs

(W ((An − s)−1))
)−1 + s

]
(2)

if n is sufficiently large. Here An is a sequence of matrices which approx-
imates the operator A strongly. We refer to Sect. 3 for the precise defi-
nition of strong approximation. If we even have a uniform approximation
of the operator A, then we are able to prove an estimate for the index n
such that (2) holds in intersections with compact subsets of the complex
plane, see Sect. 4. In Sect. 5 we show that finite element discretizations
of elliptic partial differential operators yield uniform approximations. Fur-
ther, as an example of strong approximation we study in Sect. 6 a class of
structured block operator matrices. In the final section we apply our ob-
tained results to the advection–diffusion operator and the Hain–Lüst opera-
tor.

We conclude this introduction with some remarks on the notation used.
Let H be a Hilbert space. Throughout this article we assume that A : D(A) ⊂
H → H is a closed, densely defined, linear operator. We denote the range of
A by R(A) and the spectrum by σ(A). The resolvent set is �(A) = C\σ(A).
Let L(H1,H2) denote the set of linear, bounded operators from the Hilbert
space H1 to the Hilbert space H2. The operator norm of T ∈ L(H1,H2) will
be denoted by ‖T‖L(H1,H2). To shorten notation, we write L(H) = L(H,H)
and denote the operator norm of T ∈ L(H) by ‖T‖. The identity operator
is denoted by I. For every λ ∈ �(A), the resolvent (A − λ)−1 := (A − λI)−1

satisfies (A − λ)−1 ∈ L(H). For a set of complex numbers S ⊂ C we denote
the δ-neighborhood by Bδ(S), i.e., Bδ(S) =

{
z ∈ C

∣∣ dist(z, S) < δ
}
, and we

also use the notation S−1 =
{
z−1

∣∣ z ∈ S\{0}
}
. Further, we use the notation

C
∗ := C\{0}.
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2. Pseudospectrum Enclosures Using the Numerical Range

In this section we present the basic idea of considering numerical ranges of
shifted inverses of an operator in order to obtain an enclosure of its pseu-
dospectrum. We start by recalling the notions of the numerical range and the
ε-pseudospectrum.

The numerical range of an operator A is defined as the set

W (A) =
{
〈Ax, x〉

∣∣x ∈ D(A), ‖x‖ = 1
}

,

see e.g. [13]. It is always a convex set and, if A is additionally bounded, then
W (A) is bounded too. The numerical radius is w(A) = sup

{
|z|
∣∣ z ∈ W (A)

}
.

The numerical range satisfies the inclusions

σp(A) ⊂ W (A), σapp(A) ⊂ W (A),

where σp(A) is the point spectrum of A, i.e., the set of all eigenvalues and
σapp(A) is the so-called approximate point spectrum defined by

σapp(A) =
{

λ ∈ C
∣∣ ∃xn ∈ D(A), ‖xn‖ = 1 : lim

n→∞
(A − λ)xn = 0

}
.

The spectrum, point spectrum and approximate point spectrum are related
by σp(A) ⊂ σapp(A) ⊂ σ(A). If A has a compact resolvent, then the spectrum
consists of eigenvalues only and hence we have equality.

For ε > 0 the ε-pseudospectrum of A is given by

σε(A) = σ(A) ∪
{

λ ∈ �(A)
∣∣ ‖(A − λ)−1‖ >

1
ε

}
.

If we understand ‖(A − λ)−1‖ to be infinity for λ ∈ σ(A), then this can be
shortened to

σε(A) =
{

λ ∈ C
∣∣ ‖(A − λ)−1‖ >

1
ε

}
.

Hence

C\σε(A) =
{

λ ∈ �(A)
∣∣ ‖(A − λ)−1‖ ≤ 1

ε

}
.

The central idea of this article is the following: If λ ∈ C is such that
1/λ has a certain positive distance δ to the numerical range of the inverse
operator A−1, then this yields an estimate of the form

‖(A − λ)x‖ ≥ ε‖x‖, x ∈ D(A),

with some constant ε > 0, which will in turn be used to show λ ∈ �(A)
with ‖(A − λ)−1‖ ≤ 1

ε , i.e., λ �∈ σε(A). This is made explicit with the next
proposition:

Proposition 2.1. Suppose that 0 ∈ �(A). Then for every 0 < ε < 1
‖A−1‖ and

δ = ‖A−1‖2ε
1−‖A−1‖ε we have

σε(A) ⊂
(
Bδ(W (A−1))

)−1
.
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Proof. Let us denote U =
(
Bδ(W (A−1))

)−1. As a first step we show that

‖(A − λ)x‖ ≥ ε for all λ ∈ C\U, x ∈ D(A), ‖x‖ = 1. (3)

So let λ ∈ C\U . We consider two cases. First suppose that |λ| > 1
‖A−1‖ − ε.

Then λ �= 0, λ−1 �∈ Bδ(W (A−1)) and hence dist(λ−1,W (A−1)) ≥ δ. For
x ∈ D(A), ‖x‖ = 1 we find

δ ≤ |λ−1 − 〈A−1x, x〉| = |〈(λ−1 − A−1)x, x〉| ≤ ‖(λ−1 − A−1)x‖.

Consequently

‖(A − λ)x‖ = |λ|‖A(λ−1 − A−1)x‖ ≥ |λ|
‖A−1‖‖(λ−1 − A−1)x‖

≥ δ

‖A−1‖

(
1

‖A−1‖ − ε

)
=

δ(1 − ‖A−1‖ε)
‖A−1‖2

= ε.

In the other case if |λ| ≤ 1
‖A−1‖ − ε then |λ|‖A−1‖ ≤ 1 − ‖A−1‖ε and hence

I −λA−1 is invertible by a Neumann series argument with ‖(I −λA−1)−1‖ ≤
1

‖A−1‖ε . For x ∈ D(A), ‖x‖ = 1 this implies

‖(A − λ)x‖ = ‖A(I − λA−1)x‖ ≥ 1
‖A−1‖‖(I − λA−1)−1‖ ≥ ε.

We have thus shown (3). In particular, λ ∈ C\U implies λ �∈ σapp(A), i.e.,

σapp(A) ∩ C\U = ∅. (4)

Since Bδ(W (A−1)) is convex and bounded, the set C
∗\Bδ(W (A−1)) is con-

nected and hence also

C
∗\U =

(
C

∗\Bδ(W (A−1))
)−1

,

the image under the homeomorphism C
∗ → C

∗, z �→ z−1. On the other
hand, the boundedness of Bδ(W (A−1)) implies that a neighborhood around
0 belongs to C\U = (C∗\U) ∪ {0}. Consequently, the set C\U is connected
and satisfies 0 ∈ �(A) ∩ C\U . Using (4) and the fact that ∂σ(A) ⊂ σapp(A),
we conclude that

C\U ⊂ �(A).

Here ∂σ(A) denotes the boundary of the spectrum of A. Now (3) implies that
if λ ∈ C\U then ‖(A − λ)−1‖ ≤ 1

ε and therefore we obtain λ �∈ σε(A). �
Applying the last result to the shifted operator A − s and then taking

the intersection over a suitable set of shifts, we obtain our first main result
on an enclosure of the pseudospectrum:

Theorem 2.2. Consider a set S ⊂ �(A) such that

M := sup
s∈S

‖(A − s)−1‖ < ∞.

Then for 0 < ε < 1
M we get the inclusion

σε(A) ⊂
⋂

s∈S

[(
Bδs

(W ((A − s)−1))
)−1 + s

]
(5)

where δs = ‖(A−s)−1‖2ε
1−‖(A−s)−1‖ε .
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Proof. For every s ∈ S we can apply Proposition 2.1 to the operator A − s
and obtain

σε(A) − s = σε(A − s) ⊂
(
Bδs

(W ((A − s)−1))
)−1

.

�

The following simple example demonstrates that the δ-neighborhood
around the numerical range is actually needed to obtain an enclosure of the
pseudospectrum.

Example 2.3. Let A = diag(−1 + i,−1 − i, 1 + i, 1 − i) ∈ C
4×4. Then A−1 =

1
2 diag(−1 − i,−1 + i, 1 − i, 1 + i). Since A−1 is normal, its numerical range
is simply the convex hull of its eigenvalues. Thus W (A−1) is the following
square:

1−1

1

−1

Then, using the fact that z �→ 1
z is a Möbius transformation, we obtain

for W (A−1)−1 the following curve plus its exterior:

1 2−1−2

1

−1

We see that W (A−1)−1 touches the spectrum of A. This is of course clear: if
an eigenvalue 1/λ of A−1 is on the boundary of W (A−1), then the eigenvalue
λ of A is on the boundary of W (A−1)−1. In particular in this example we do
not have σε(A) ⊂ W (A−1)−1 for any ε > 0 since σε(A) contains discs with
radius ε around the eigenvalues.
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Proposition 2.4. For s ∈ �(A), 0 < ε < 1
‖(A−s)−1‖ and δs = ‖(A−s)−1‖2ε

1−‖(A−s)−1‖ε we
have that

Bρs
(s) ∩

[(
Bδs

(W ((A − s)−1))
)−1 + s

]
= ∅

where ρs = 1
w((A−s)−1)+δs

≥ 1
‖(A−s)−1‖+δs

.

Proof. Let s ∈ �(A) and t ∈
(
Bδs

(W ((A − s)−1))
)−1 + s. Then

1
t − s

∈ Bδs
(W ((A − s)−1))

and we can estimate
1

|t − s| < δs + sup
‖x‖=1

|〈(A − s)−1x, x〉| = δs + w((A − s)−1) =
1
ρs

.

This implies |t − s| > ρs and therefore t /∈ Bρs
(s). �

The following theorem shows that the enclosure of the pseudospectrum
in Theorem 2.2 becomes optimal if the shifts are chosen optimally.

Theorem 2.5. Let ε > 0 be such that 1
ε is not a global minimum of the norm

of the resolvent of A and Sγ :=
{

s ∈ �(A)
∣∣ ‖(A − s)−1‖ = 1

ε+γ

}
for γ > 0.

Let further δs = ‖(A−s)−1‖2ε
1−‖(A−s)−1‖ε . Then:

(a)

σε(A) ⊂
⋂

γ>0

⋂

s∈Sγ

[(
Bδs

(W ((A − s)−1))
)−1

+ s
]

⊂
{

λ ∈ C
∣∣ ‖(A − λ)−1‖ ≥ 1

ε

}
= σε(A),

(b)

σε(A) =
⋂

γ>0

⋂

s∈Sγ

[(
Bδs

(W ((A − s)−1))
)−1

+ s

]
,

(c) Under the additional assumption that A is normal with compact resol-
vent and L > 0, there exists an ε0 > 0 (depending on L) such that for
all ε < ε0

σε(A) ∩ BL(0) =
⋂

γ>0

⋂

s∈Sγ

[(
Bδs

(W ((A − s)−1))
)

+ s
]
∩ BL(0).

Proof. (a) The first inclusion follows from Theorem 2.2. In order to prove
the second inclusion first note that

Sγ ∩
⋂

s∈Sγ

[(
Bδs

(W ((A − s)−1))
)−1 + s

]
= ∅

for every γ > 0 by Proposition 2.4. Hence,
⋂

γ>0

⋂

s∈Sγ

[(
Bδs

(W ((A − s)−1))
)−1

+ s
]

⊂
⋂

γ>0

C\Sγ = C\
⋃

γ>0

Sγ
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= C\
{

s ∈ �(A)
∣∣ ‖(A − s)−1‖ <

1
ε

}
=
{

s ∈ C
∣∣ ‖(A − s)−1‖ ≥ 1

ε

}
.

From [4, Theorem 3.2] we have that the norm of the resolvent can only be
constant on an open subset of �(A) at its minimum. Since by assumption
1
ε is not this minimum, we obtain the equality with the closure of the
pseudospectrum.

(b) Taking the closure in Theorem 2.2 yields

σε(A) ⊂
⋂

γ>0

⋂

s∈Sγ

[(
Bδs

(W ((A − s)−1))
)−1

+ s

]
.

The other inclusion can be shown as in part (a) since we also have

Sγ ∩
⋂

s∈Sγ

[(
Bδs

(W ((A − s)−1))
)−1 + s

]
= ∅

for every γ > 0 as a consequence of Proposition 2.4.
(c) By (a) it suffices to show that λ ∈ �(A) ∩ BL(0), ‖(A − λ)−1‖ = 1

ε

implies λ /∈
(
Bδs

(W ((A − s)−1))
)−1 + s for some γ > 0 and s ∈ Sγ . Let

ε1 =
1
2

min
{

dist(μ, σ(A)\{μ})
∣∣μ ∈ σ(A) ∩ BL(0)

}
.

Since A has compact resolvent, the minimum exists and is positive.
With

ε0 =
1
2

min
{

dist(μ, σ(A)\{μ})
∣∣μ ∈ σ(A) ∩ BL+3ε1(0)

}
(6)

we then have 0 < ε0 ≤ ε1. Let now ε < ε0 and λ ∈ �(A) ∩ BL(0) with
‖(A−λ)−1‖ = 1

ε . Since A is normal, we get dist(λ, σ(A)) = ε and hence
there exists a μ ∈ σ(A) such that |λ − μ| = ε. In particular we have
μ ∈ BL+ε1(0). Choose now γ ∈ (0, ε0 − ε), i.e. ε < ε + γ < ε0, and set

s = μ +
ε + γ

ε
(λ − μ).

Then s ∈ Bε0(μ) and

dist(s, σ(A)) = |μ − s| = ε + γ.

Indeed if μ′ ∈ σ(A) ∩ BL+3ε1(0) with μ �= μ′, then Bε0(μ) ∩ Bε0(μ
′) =

∅ and hence |μ′ − s| > ε0. If μ′ ∈ σ(A) and |μ′| > L + 3ε1, then
dist(μ′, Bε0(μ)) > ε1 since Bε0(μ) ⊂ BL+ε1+ε0(0) and thus |μ′ − s| >
ε1 ≥ ε0. Due to |μ − s| < ε0 we therefore obtain dist(s, σ(A)) = |μ − s|
and because A is normal we can conclude

‖(A − s)−1‖ =
1

ε + γ
,

i.e. s ∈ Sγ . Since

1
δs + ‖(A − s)−1‖ =

(
‖(A − s)−1‖

1 − ‖(A − s)−1‖ε

)−1

=
1

‖(A − s)−1‖ − ε = γ, (7)
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Proposition 2.4 implies

Bγ(s) ∩
[(

Bδs
(W ((A − s)−1))

)−1
+ s
]

= ∅.

By our choice of s we have λ ∈ Bγ(s) and thus

λ /∈
(
Bδs

(W ((A − s)−1))
)−1

+ s.

�

Remark 2.6. (a) The statements of part (a) and (b) of the previous theorem
continue to hold under the weaker assumption δs ≥ ‖(A−s)−1‖2ε

1−‖(A−s)−1‖ε , i.e.,
equality is not needed there.

(b) Note that ε0 in part (c) depends on L. For instance if we consider an
operator A with

σ(A) =

{
μn =

n∑

k=1

1
k

∣∣n ∈ N

}

we have limn→∞ |μn − μn+1| = 0, limn→∞ μn = ∞ and from (6) we
obtain ε0 → 0 for L → ∞.

(c) The cutoff with the large ball BL(0) in part (c) is not needed in the
matrix case (i.e. dim H < ∞), or if the eigenvalues of A satisfy a uniform
gap condition. On the other hand, the equality in (c) will typically not
hold for all ε > 0, i.e. the restriction ε < ε0 is needed, even in the matrix
case. This is illustrated with the next (counter-)example.

Example 2.7. Let the normal matrix A be given by

A =
(

1 0
0 − 1

)

and consider ε = 1. Then σε(A) = B1(1) ∪ B1(−1) and in particular 0 /∈
σε(A). See Fig. 2 for the pseudospectrum with an enclosure. We will show
now that 0 ∈

(
Bδs

(W ((A − s)−1))
)−1 + s for all s ∈ Sγ , γ > 0. Hence

σε(A) �

⋂

γ>0

⋂

s∈Sγ

[(
Bδs

(W ((A − s)−1))
)−1

+ s
]

in this case. First observe that for s ∈ Sγ , i.e. ‖(A − s)−1‖ = 1
ε+γ , we have

1
δs+‖(A−s)−1‖ = γ, see (7). This implies

δs =
1
γ

− ‖(A − s)−1‖ =
1
γ

− 1
ε + γ

=
ε

γ(ε + γ)
=

1
γ(1 + γ)

since ε = 1. We also have

(A − s)−1 =
(

(1 − s)−1 0
0 (−1 − s)−1

)

and hence

W ((A − s)−1) =
{
r(1 − s)−1 + (1 − r)(−1 − s)−1

∣∣ r ∈ [0, 1]
}

.
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Figure 1. 1-pseudospectrum of A with Sγ

Due to A being normal, Sγ is the boundary of the (1 + γ)-neighborhood of
{−1, 1}. Thus by taking s0 ∈ Sγ with Re s0 = 0 we have

|s|2 ≥ |s0|2 = (1 + γ)2 − 12 = γ2 + 2γ

and hence |s| > γ, see Fig. 1.
From

|(±1 − s)−1 − (−s−1)| =
∣∣∣∣

1
±1 − s

+
1
s

∣∣∣∣ =
1

|s|| ± 1 − s| ≤ 1
|s|(1 + γ)

we get

dist(−s−1,W ((A − s)−1))

≤ min
r∈[0,1]

r
∣∣(1 − s)−1 − (−s−1)

∣∣+ (1 − r)
∣∣(−1 − s)−1 − (−s)−1

∣∣

≤ 1
|s|(1 + γ)

<
1

γ(1 + γ)
= δs.

This shows that −s−1 ∈ Bδs
(W ((A − s)−1)) and therefore

0 ∈
(
Bδs

(W ((A − s)−1))
)−1

+ s.

Remark 2.8. Note that under the assumption σ(A) ⊂ W (A) (which holds for
example if A has a compact resolvent) it is known (see e.g. [24] for the matrix
case) that the pseudospectrum can also be enclosed by an ε-neighborhood of
the numerical range, namely

σε(A) ⊂ Bε(W (A)). (8)

Indeed for λ ∈ σε(A)\σ(A) we have ‖(A − λ)−1‖ > 1
ε and therefore

‖(A − λ)x‖ < ε for all x ∈ D(A), ‖x‖ = 1.

This implies

|〈Ax, x〉 − λ| = |〈(A − λ)x, x〉| ≤ ‖(A − λ)x‖ < ε

for x ∈ D(A), ‖x‖ = 1. See Sect. 7 for a comparison of the enclosure (8) with
our method (5).
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Figure 2. Exemplary enclosure of the 1-pseudospectrum of
A from Example 2.7. The blue lines depict the boundaries
of the sets

(
Bδs

(W ((A − s)−1))
)−1 + s for some s in an Sγ

(color figure online)

3. A Strong Approximation Scheme

In this section we consider finite-dimensional approximations An to the full
operator A. Our aim is to prove a version of Theorem 2.2 which provides
a pseudospectrum enclosure for the full operator A in terms of numerical
ranges of the approximating matrices An; this will allow us to compute the
enclosure by numerical methods.

We suppose that 0 ∈ �(A) and consider a sequence of approximations
An of the operator A of the following form:

(a) Un ⊂ H, n ∈ N, are finite-dimensional subspaces of the Hilbert space
H.

(b) Pn ∈ L(H) are projections (not necessarily orthogonal) onto Un, i.e.
R(Pn) = Un, such that

lim
n→∞

Pnx = x for all x ∈ H. (9)

(c) An ∈ L(Un) are invertible such that

lim
n→∞

A−1
n Pnx = A−1x for all x ∈ H. (10)

In this case we say that the family (Pn, An)n∈N approximates A strongly.
Note that (9) implies that

⋃
n∈N

Un is dense in H and that supn∈N ‖Pn‖ < ∞
by the uniform boundedness principle.

Lemma 3.1. Let Un, Pn be such that (9) holds and let An ∈ L(Un) be invert-
ible. Then the following assertions are equivalent:

(a) limn→∞ A−1
n Pnx = A−1x for all x ∈ H, i.e., (10) holds.
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(b) supn∈N ‖A−1
n ‖L(Un) < ∞ and for all x ∈ D(A) there exist xn ∈ Un such

that

lim
n→∞

xn = x, lim
n→∞

Anxn = Ax.

Proof. (a) ⇒ (b). The uniform boundedness principle yields

sup
n∈N

‖A−1
n Pn‖L(H) < ∞.

Since ‖A−1
n u‖ = ‖A−1

n Pnu‖ ≤ ‖A−1
n Pn‖L(H)‖u‖ for all u ∈ Un, this shows the

first part. For the second, let x ∈ D(A) and set y = Ax and xn = A−1
n Pny.

Then xn → A−1y = x and Anxn = Pny → y = Ax as n → ∞.
(b) ⇒ (a). Let y ∈ H. Set x = A−1y and choose xn ∈ Un according to

(b). Then

A−1
n Pny = A−1

n PnAx = A−1
n (PnAx − Anxn) + xn.

Since both PnAx → Ax and Anxn → Ax as n → ∞ and ‖A−1
n ‖ is uniformly

bounded, we obtain (a). �

The following lemma shows that if A is approximated by An strongly,
then A − λ is approximated by An − λ strongly too, provided ‖(An − λ)−1‖
is uniformly bounded in n.

Lemma 3.2. Suppose that (Pn, An)n∈N approximates A strongly. If λ ∈ �(A)
is such that λ ∈ �(An) for all n ∈ N and supn∈N ‖(An − λ)−1‖ < ∞, then

lim
n→∞

(An − λ)−1Pnx = (A − λ)−1x for all x ∈ H.

Proof. This follows immediately from Lemma 3.1 since

lim
n→∞

Anxn = Ax ⇐⇒ lim
n→∞

(An − λ)xn = (A − λ)x

whenever limn→∞ xn = x. �

Remark 3.3. In the literature there is a variety of notions describing the ap-
proximation of a linear operator. Two notions that are close to our definition
of a strong approximation scheme are generalized strong resolvent conver-
gence, considered in [2,3,26], and discrete-stable convergence, see [6]. There
are however subtle differences between these two notions and our setting:
First, we do not assume that Pn(D(A)) ⊂ Un. Second, in Lemma 3.1(b) we
do not have the convergence of AnPnx to Ax, which would be the case for
discrete-stable convergence. Up to these differences, the results of Lemmas 3.1
and 3.2 are well known in the literature, see [2, Lemma 1.2.2, Theorem 1.2.9]
and [6, Lemma 3.16].

We now prove a convergence result for the numerical range of the inverse
operator under strong approximations.

Lemma 3.4. Suppose that (Pn, An)n∈N approximates A strongly. Then
(a) for every x ∈ H, ‖x‖ = 1 there exists a sequence yn ∈ Un, ‖yn‖ = 1

such that

lim
n→∞

〈A−1
n yn, yn〉 = 〈A−1x, x〉;
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(b) for all δ > 0 there exists n0 ∈ N such that

W (A−1) ⊂ Bδ

(
W (A−1

n )
)
, n ≥ n0.

Proof. (a) We set yn = Pnx/‖Pnx‖. Note that yn is well defined for almost
all n since ‖Pnx‖ → ‖x‖ = 1. We get yn → x as n → ∞ and

|〈A−1x, x〉 − 〈A−1
n yn, yn〉|

≤ |〈A−1x − A−1
n Pnx, x〉| + |〈A−1

n Pnx, x − yn〉| + |〈A−1
n (Pnx − yn), yn〉|

≤ ‖A−1x − A−1
n Pnx‖ + ‖A−1

n ‖‖Pnx‖‖x − yn‖ + ‖A−1
n ‖‖Pnx − yn‖,

which yields the assertion.
(b) Since W (A−1) is bounded, it is precompact and hence there exist points

z1, . . . , zm ∈ W (A−1) such that

W (A−1) ⊂
m⋃

j=1

Bδ/2(zj).

For every j we have zj = 〈A−1xj , xj〉 with some xj ∈ H, ‖xj‖ = 1, and
by (a) there exists nj ∈ N such that for all n ≥ nj there is a yj ∈ Un,
‖yj‖ = 1 such that

|〈A−1xj , xj〉 − 〈A−1
n yj , yj〉| <

δ

2
.

Hence

W (A−1) ⊂
m⋃

j=1

Bδ

(
〈A−1

n yj , yj〉
)

⊂ Bδ

(
W (A−1

n )
)

for all n ≥ n0 = max{n1, . . . , nm}.
�

The previous lemma allows us easily to prove an approximation version
of the basic enclosure result Proposition 2.1.

Proposition 3.5. Suppose that (Pn, An)n∈N approximates A strongly. For 0 <

ε < 1
‖A−1‖ and δ > ‖A−1‖2ε

1−‖A−1‖ε there exists n0 ∈ N such that

σε(A) ⊂
(
Bδ(W (A−1

n ))
)−1

for all n ≥ n0.

Proof. By Proposition 2.1 we have

σε(A) ⊂
(
Bδ′(W (A−1))

)−1

where δ′ = ‖A−1‖2ε
1−‖A−1‖ε . Since δ − δ′ > 0, Lemma 3.4 yields a constant n0 ∈ N

such that

W (A−1) ⊂ Bδ−δ′
(
W (A−1

n )
)
, n ≥ n0.

Consequently Bδ′(W (A−1)) ⊂ Bδ(W (A−1
n )) for n ≥ n0 and the proof is

complete. �
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Combining the previous proposition with shifts of the operator, we get
our second main result. It is analogous to Theorem 2.2, but provides an
enclosure of the pseudospectrum of the infinite-dimensional operator in terms
of numerical ranges of the approximating matrices.

Theorem 3.6. Suppose that (Pn, An)n∈N approximates A strongly. Let the
shifts s1, . . . , sm ∈ �(A) be such that

sup
n∈N

‖(An − sj)−1‖ < ∞ for all j = 1, . . . ,m.

Let 0 < ε < 1
maxj=1,...,m ‖(A−sj)−1‖ and δj >

‖(A−sj)
−1‖2ε

1−‖(A−sj)−1‖ε for all j. Then
there exists n0 ∈ N such that

σε(A) ⊂
m⋂

j=1

[(
Bδj

(W ((An − sj)−1))
)−1

+ sj

]
for all n ≥ n0.

Proof. In view of Lemma 3.2, Proposition 3.5 can be applied to every A−sj .
Hence there exists nj ∈ N such that

σε(A − sj) ⊂
(
Bδj

(W ((An − sj)−1))
)−1

, n ≥ nj .

Since σε(A) = σε(A−sj)+sj , the claim follows with n0 = max{n1, . . . , nm}.
�

4. A Uniform Approximation Scheme

In this section we pose additional assumptions on the approximations An of
the infinite-dimensional operator A, that will allow us to estimate the starting
index n0 for which the pseudospectrum enclosures from Proposition 3.5 and
Theorem 3.6 hold on bounded sets.

Throughout this section we assume that A has a compact resolvent,
0 ∈ �(A) and that D(A) ⊂ W ⊂ H where the Hilbert space W is continuously
and densely embedded into H. The closed graph theorem then implies A−1 ∈
L(H,W ). Further, we suppose that there is a sequence of approximations of
the operator A in the following sense:

(a) Un ⊂ H, n ∈ N, are finite-dimensional subspaces of H.
(b) There exist projections Pn ∈ L(H) onto Un, n ∈ N, not necessarily

orthogonal, with supn∈N ‖Pn‖ < ∞ and ‖(I − Pn)|W ‖L(W,H) → 0 as
n → ∞.

(c) There exist invertible operators An ∈ L(Un), n ∈ N, such that ‖A−1 −
A−1

n Pn‖ → 0 as n → ∞.

We say that (Pn, An)n∈N approximates A uniformly. For ‖(I −Pn)|W ‖L(W,H)

we will write abbreviatory ‖I − Pn‖L(W,H).

Remark 4.1. (a) Property (c) already implies that A has compact resolvent:
indeed A−1 is the uniform limit of the finite rank operators A−1

n Pn and
hence compact.
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(b) If (Pn, An)n∈N approximates A uniformly, then also strongly. Note here
that from (b) we first obtain Pnx → x for x ∈ W , which can then
be extended to all x ∈ H by the density of W in H and the uniform
boundedness of the Pn. One particular consequence of the strong ap-
proximation is

sup
n∈N

‖A−1
n ‖ < ∞,

see Lemma 3.1.
(c) Property (c) amounts to the convergence of An to A in generalized norm

resolvent sense, see [2,3,26] for this notion. Note however that our set-
ting has the additional assumption that Pn → I uniformly in L(W,H)
where D(A) ⊂ W ⊂ H. For generalized norm resolvent convergence this
is not the case, but it will be a crucial element in the following proofs.

In order to obtain improved enclosures of the pseudospectrum under a
uniform approximation scheme, that is, additional estimates of the starting
index n0 for which the pseudospectrum enclosures from Proposition 3.5 and
Theorem 3.6 hold on bounded sets, we refine the results from Sect. 2 in terms
of certain subsets of the full numerical range of A−1. For d > 0 we define

W (A−1, d) =
{
〈A−1x, x〉

∣∣ ‖x‖ = 1, x ∈ W, ‖x‖W ≤ d
}

. (11)

Clearly W (A−1, d) ⊂ W (A−1). Moreover since W is dense in H we get
⋃

d>0

W (A−1, d) = W (A−1). (12)

Proposition 4.2. Let L > 0 and d = L‖A−1‖L(H,W ). Then

(a) σ(A) ∩ BL(0) ⊂ W (A−1, d)−1.
(b) If in addition 0 < ε < 1

‖A−1‖ , L > ε and δ = ‖A−1‖2ε
1−‖A−1‖ε then

σε(A) ∩ BL−ε(0) ⊂
(
Bδ(W (A−1, d))

)−1
.

Proof. (a) Let λ ∈ σ(A) with |λ| ≤ L. Then there exists x ∈ D(A) with
‖x‖ = 1 and Ax = λx. This implies

1
|λ| ‖x‖W = ‖A−1x‖W ≤ ‖A−1‖L(H,W )‖x‖ = ‖A−1‖L(H,W )

and thus we obtain

‖x‖W ≤ ‖A−1‖L(H,W )|λ| ≤ L‖A−1‖L(H,W ) = d.

Consequently λ−1 = 〈A−1x, x〉 ∈ W (A−1, d).
(b) The proof is similar to the one of Proposition 2.1. We set

U =
(
Bδ(W (A−1, d))

)−1

and first show

‖(A − λ)x‖ ≥ ε for all λ ∈ BL−ε(0)\U, x ∈ D(A), ‖x‖ = 1. (13)
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Let λ ∈ BL−ε(0)\U , x ∈ D(A), ‖x‖ = 1. We consider three cases.
Suppose first that |λ| > 1

δ+‖A−1‖ and ‖x‖W ≤ d. From λ �∈ U we obtain
dist(λ−1,W (A−1, d)) ≥ δ, which implies

δ ≤ |λ−1 − 〈A−1x, x〉| = |〈(λ−1 − A−1)x, x〉| ≤ ‖(λ−1 − A−1)x‖
and thus

‖(A − λ)x‖ ≥ |λ|
‖A−1‖‖(λ−1 − A−1)x‖ ≥ δ

‖A−1‖(δ + ‖A−1‖)
= ε.

In the second case assume ‖x‖W ≥ d. Then

d ≤ ‖x‖W ≤ ‖A−1‖L(H,W )‖Ax‖,

which in view of λ ∈ BL−ε(0) implies

‖(A − λ)x‖ ≥ ‖Ax‖ − |λ| ≥ d

‖A−1‖L(H,W )
− |λ| = L − |λ| ≥ ε.

Finally if |λ| ≤ 1
δ+‖A−1‖ , the same reasoning as in the proof of Propo-

sition 2.1 yields once again that ‖(A − λ)x‖ ≥ ε, and therefore (13) is
proved. Now, since A has a compact resolvent (13) implies that

λ ∈ BL−ε(0)\U ⇒ λ ∈ �(A), ‖(A − λ)−1‖ ≤ 1
ε
.

Consequently σε(A) ∩ BL−ε(0) ⊂ U .
�

From Proposition 4.2 we get again a shifted version:

Theorem 4.3. Let S ⊂ �(A) be such that

M0 := sup
s∈S

‖(A − s)−1‖ < ∞, M1 := sup
s∈S

‖(A − s)−1‖L(H,W ) < ∞.

For 0 < ε < 1
M0

, L > ε, d = LM1 and δs = ‖(A−s)−1‖2ε
1−‖(A−s)−1‖ε we get the inclusion

σε(A) ∩
⋂

s∈S

BL−ε(s) ⊂
⋂

s∈S

[(
Bδs

(W ((A − s)−1, d))
)−1

+ s
]
.

Proof. Apply Proposition 4.2(b) to A − s for all s ∈ S and note that

λ ∈ σε(A − s) ∩ BL−ε(0) ⇔ λ + s ∈ σε(A) ∩ BL−ε(s).

�

Remark 4.4. By the continuity of the embedding W ↪→ H, the condition
M1 < ∞ already implies M0 < ∞.

For a uniform approximation scheme, the numerical range of A−1 can
now be approximated with explicit control on the starting index n0:

Lemma 4.5. Suppose that (Pn, An)n∈N approximates A uniformly. Let

C0 = sup
n∈N

(
‖A−1

n ‖‖Pn‖ + 6‖A−1
n ‖‖Pn‖2

)
. (14)
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(a) If d > 0, 0 < δ ≤ C0
2 and n0 ∈ N are such that for every n ≥ n0

‖A−1 − A−1
n Pn‖ + dC0‖I − Pn‖L(W,H) < δ,

then

W (A−1, d) ⊂ Bδ(W (A−1
n )), n ≥ n0.

(b) If δ > 0 and n0 ∈ N are such that for every n ≥ n0 we have ‖A−1 −
A−1

n Pn‖ < δ, then

W (A−1
n ) ⊂ Bδ(W (A−1)), n ≥ n0.

Proof. Let x ∈ W with ‖x‖ = 1 and ‖x‖W ≤ d. Then we obtain

|〈A−1x, x〉 − 〈A−1
n Pnx, Pnx〉|

≤ |〈A−1x − A−1
n Pnx, x〉| + |〈A−1

n Pnx, x − Pnx〉|
≤ ‖A−1 − A−1

n Pn‖‖x‖2 + ‖A−1
n ‖‖Pn‖‖x‖‖I − Pn‖L(W,H)‖x‖W

≤ ‖A−1 − A−1
n Pn‖ + d‖A−1

n ‖‖Pn‖‖I − Pn‖L(W,H).

as well as

|1 − ‖Pnx‖| ≤ ‖x − Pnx‖ ≤ ‖I − Pn‖L(W,H)‖x‖W ≤ d‖I − Pn‖L(W,H).

Let n ≥ n0. Then

|1 − ‖Pnx‖| ≤ d‖I − Pn‖L(W,H) <
δ

C0
≤ 1

2

and hence ‖Pnx‖ ≥ 1
2 . Let xn = Pnx

‖Pnx‖ . Then ‖xn‖ = 1 and
∣∣∣∣1 − 1

‖Pnx‖2

∣∣∣∣ =
∣∣∣∣
‖Pnx‖2 − 1

‖Pnx‖2

∣∣∣∣

=
(‖Pnx‖ + 1)|‖Pnx‖ − 1|

‖Pnx‖2

=
(

1
‖Pnx‖ +

1
‖Pnx‖2

)
|1 − ‖Pnx‖|

≤ 6|1 − ‖Pnx‖|
≤ 6d‖I − Pn‖L(W,H).

This implies

|〈A−1
n Pnx, Pnx〉 − 〈A−1

n xn, xn〉|

=
∣∣∣∣〈A

−1
n Pnx, Pnx〉 − 〈A−1

n Pnx, Pnx〉
‖Pnx‖2

∣∣∣∣

=
∣∣∣∣1 − 1

‖Pnx‖2

∣∣∣∣ |〈A
−1
n Pnx, Pnx〉|

≤ 6d‖I − Pn‖L(W,H)‖A−1
n ‖‖Pn‖2,

and thus for n ≥ n0 we arrive at

|〈A−1x, x〉 − 〈A−1
n xn, xn〉|

≤ ‖A−1 − A−1
n Pn‖ + d‖I − Pn‖L(W,H)(‖A−1

n ‖‖Pn‖ + 6‖A−1
n ‖‖Pn‖2)
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≤ ‖A−1 − A−1
n Pn‖ + dC0‖I − Pn‖L(W,H)

< δ.

This yields 〈A−1x, x〉 ∈ Bδ(W (A−1
n )) if n ≥ n0 and proves (a).

In order to show part (b), let x ∈ Un with ‖x‖ = 1. As x = Pnx we have

|〈A−1
n x, x〉 − 〈A−1x, x〉| ≤ ‖A−1

n x − A−1x‖‖x‖
= ‖A−1

n Pnx − A−1x‖ ≤ ‖A−1 − A−1
n Pn‖.

Thus 〈A−1
n x, x〉 ∈ Bδ(W (A−1)) for n ≥ n0. �

Corollary 4.6. If (Pn, An)n∈N approximates A uniformly, then

W (A−1) = {λ ∈ C | ∃(λn)n∈N with λn ∈ W (A−1
n ) and lim

n→∞
λn = λ}

or, equivalently,

W (A−1) =
⋂

m∈N

⋃

n≥m

W (A−1
n ).

Proof. We first show the inclusion “⊃”. Let (λn)n∈N be a convergent sequence
in C with λn ∈ W (A−1

n ) and define λ = limn→∞ λn. Let δ > 0 be arbitrary.
Lemma 4.5(b) implies that there exists n0 ∈ N such that λn ∈ Bδ(W (A−1))
for every n ≥ n0. This implies λ ∈ Bδ(W (A−1)) for every δ > 0, and thus
λ ∈ W (A−1).

Conversely, let λ ∈ W (A−1, d) for some d > 0. Using Lemma 4.5(a),
we can construct a sequence (λn)n∈N in C with λn ∈ W (A−1

n ) and λ =
limn→∞ λn. The statement now follows from (12). �

The last result shows that W (A−1) can be represented as the pointwise
limit of the finite-dimensional numerical ranges W (A−1

n ). Lemma 4.5 even
yields a uniform approximation, but this is asymmetric, since one inclusion
only holds for the restricted numerical range W (A−1, d). A more symmetric
result is discussed in the next remark:

Remark 4.7. If Un ⊂ W for some n ∈ N then, due to the fact that the space
Un is finite-dimensional,

dn := sup
x∈Un

‖x‖W

‖x‖ < ∞.

Using the same reasoning as in the proof of Lemma 4.5(b), we then obtain

W (A−1
n ) ⊂ Bδ(W (A−1, dn))

if ‖A−1 − A−1
n Pn‖ < δ.

Note however that for finite element discretization schemes the condition
Un ⊂ W will usually not be fulfilled. In our examples for instance Un are
piecewise linear finite elements while W ⊂ H2(Ω) is a second order Sobolev
space, and thus Un �⊂ W .

Under a uniform approximation scheme the pseudospectrum can be ap-
proximated as follows.
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Proposition 4.8. Suppose that (Pn, An)n∈N approximates A uniformly. Let

r > 0, 0 < ε <
1

‖A−1‖ and
‖A−1‖2ε

1 − ‖A−1‖ε
< δ ≤ ‖A−1‖2ε

1 − ‖A−1‖ε
+

7
2
‖A−1‖.

If we choose n0 ∈ N such that for every n ≥ n0

‖A−1 − A−1
n Pn‖ + (r + ε)‖A−1‖L(H,W )C0‖I − Pn‖L(W,H) < δ − ‖A−1‖2ε

1 − ‖A−1‖ε
,

where C0 is defined in (14), then we obtain

σε(A) ∩ Br(0) ⊂
(
Bδ(W (A−1

n ))
)−1

for all n ≥ n0.

Proof. Let δ′ = ‖A−1‖2ε
1−‖A−1‖ε , L = r+ε and d = L‖A−1‖L(H,W ). Proposition 4.2

implies

σε(A) ∩ Br(0) ⊂ (Bδ′(W (A−1, d)))−1.

Next note that

δ − δ′ ≤ 7
2
‖A−1‖ = lim

n→∞

7
2
‖A−1

n Pn‖

≤ 1
2

lim sup
n→∞

(
‖A−1

n ‖‖Pn‖ + 6‖A−1
n ‖‖Pn‖2

)
≤ C0

2
,

because Pn is a projection. We can therefore apply Lemma 4.5 with δ replaced
by δ − δ′ and n0 chosen as stated above and obtain

W (A−1, d) ⊂ Bδ−δ′(W (A−1
n )) for n ≥ n0

and hence the assertion. �

5. Finite Element Discretization of Elliptic Partial Differential
Operators

As an example for a uniform approximation scheme defined in Sect. 4 we
now consider finite element discretizations. We use the standard textbook
approach via form methods, which can be found e.g. in [1,21].

Let V and H be Hilbert spaces with V ⊂ H densely and continuously
embedded. In particular there is a constant c > 0 such that

‖x‖ ≤ c‖x‖V , x ∈ V. (15)

Moreover, we consider a bounded and coercive sesquilinear form a : V ×V →
C, that is, there exists constants M,γ > 0 such that

|a(x, y)| ≤ M‖x‖V ‖y‖V and Re a(x, x) ≥ γ‖x‖2
V , x, y ∈ V. (16)

Let A : D(A) ⊂ H → H be the operator associated with a, which is given by

D(A) = {x ∈ V | ∃cx > 0 : |a(x, y)| ≤ cx‖y‖ for y ∈ V },

a(x, y) = 〈Ax, y〉, x ∈ D(A), y ∈ V.

Then A is a densely defined, closed operator with 0 ∈ �(A) and ‖A−1‖ ≤ c2

γ ,
where c > 0 is the constant from (15).
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Let (Un)n∈N be a sequence of finite-dimensional subspaces of V which
are nested, that is Un ⊂ Un+1. We denote by an = a|Un

the restriction of
a from V to Un. The form an is again bounded and coercive with the same
constants M and γ. Let An ∈ L(Un) be the operator associated with an, i.e.

a(x, y) = 〈Anx, y〉, x, y ∈ Un.

Then again 0 ∈ �(An) and ‖A−1
n ‖ ≤ c2

γ . Let Pn ∈ L(H) be the orthogonal
projection onto Un. Thus ‖Pn‖ = 1 and An = PnAn+1|Un

, that is, An is a
compression of An+1.

To obtain a uniform approximation scheme, we now consider an ad-
ditional Hilbert space W which is densely and continuously embedded into
H such that D(A) ⊂ W ⊂ V . We assume that there exists a sequence of
operators Qn ∈ L(W,V ) with R(Qn) ⊂ Un and

lim
n→∞

‖I − Qn‖L(W,V ) = 0. (17)

Lemma 5.1. For all n ∈ N the estimates

‖I − Pn‖L(W,H) ≤ c‖I − Qn‖L(W,V ),

‖A−1 − A−1
n Pn‖ ≤ cM

γ
‖A−1‖L(H,W )‖I − Qn‖L(W,V )

hold. In particular, the family (Pn, An)n∈N approximates A uniformly.

Proof. For w ∈ W we calculate

‖w − Pnw‖ = inf
u∈Un

‖w − u‖ ≤ ‖w − Qnw‖ ≤ c‖w − Qnw‖V

≤ c‖I − Qn‖L(W,V )‖w‖W ,

which shows the first assertion. Moreover, for f ∈ H we set x = A−1f and
xn = A−1

n Pnf . Then we obtain

a(x, y) = 〈Ax, y〉 = 〈f, y〉, y ∈ V,

a(xn, u) = 〈Anxn, u〉 = 〈Pnf, u〉 = 〈f, u〉, u ∈ Un.

Using the Lemma of Cea [21, Theorem VII.5.A], we find

‖A−1f − A−1
n Pnf‖ = ‖x − xn‖ ≤ c‖x − xn‖V ≤ cM

γ
inf

u∈Un

‖x − u‖V

≤ cM

γ
‖x − Qnx‖V ≤ cM

γ
‖I − Qn‖L(W,V )‖x‖W

≤ cM

γ
‖I − Qn‖L(W,V )‖A−1‖L(H,W )‖f‖,

which implies the second assertion. �

Theorem 5.2. Let A be the operator associated with the coercive form a and
let An, Qn be as above. Let

r > 0, 0 < ε <
1

‖A−1‖ and
‖A−1‖2ε

1 − ‖A−1‖ε
< δ ≤ ‖A−1‖2ε

1 − ‖A−1‖ε
+

7
2
‖A−1‖.
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If n0 ∈ N is such that for every n ≥ n0

‖I − Qn‖L(W,V ) <
δ − ‖A−1‖2ε

1−‖A−1‖ε

c‖A−1‖L(H,W )

(
M
γ + (r + ε) 7c2

γ

) ,

then

σε(A) ∩ Br(0) ⊂
(
Bδ(W (A−1

n ))
)−1

for all n ≥ n0.

Proof. We check that the conditions of Proposition 4.8 are satisfied: Using
Lemma 5.1, we estimate for n ≥ n0 and with C0 from (14),

‖A−1 − A−1
n Pn‖ + (r + ε)‖A−1‖L(H,W )C0‖I − Pn‖L(W,H)

≤ c‖A−1‖L(H,W )‖I − Qn‖L(W,V )

(
M

γ
+ (r + ε)

7c2

γ

)
< δ − ‖A−1‖2ε

1 − ‖A−1‖ε
.

�

Example 5.3. Let Ω ⊂ R
2 be a bounded, open, convex domain with polygonal

boundary Γ and ΓD ⊂ Γ a union of polygons of Γ. Let

V = H1
0 (Ω),

equipped with the H1-norm. On V we consider the sesquilinear form

a(u, v) =
∫

Ω

⎛

⎝
2∑

i,j=1

aijuxi
vxj

+
2∑

i=1

biuxi
v + cuv

⎞

⎠ dx, (18)

where aij ∈ C0,1(Ω) and bi, c ∈ L∞(Ω). We suppose that a is coercive and
uniformly elliptic. Let {Tn}n∈N be a family of nested, admissible and quasi-
uniform triangulations of Ω satisfying supT∈Tn

diam(T ) ≤ 1
n . Let

W = H2(Ω) ∩ H1
0 (Ω),

equipped with the H2-norm, and

Un =
{
u ∈ C0(Ω)

∣∣u|T ∈ P1(T ), T ∈ Tn, u|Γ = 0
}

, n ∈ N.

Here P1(T ) denotes the set of polynomials of degree 1 on the triangle T . We
get Un ⊂ V . Moreover, the operator A associated with a is given by

Au = −
2∑

i,j=1

∂xj
(aijuxi

) +
2∑

i=1

biuxi
+ cu,

D(A) = W.

For the proof of D(A) = W we refer to [10, Theorem 3.2.1.2 and §2.4.2].
By the Sobolev embedding theorem we have H2(Ω) ↪→ C0(Ω). For u ∈

W we define Qnu as the unique element of Un satisfying (Qnu)(x) = u(x) for
every vertex of the triangulation Tn. Then Qn ∈ L(W,V ) with R(Qn) ⊂ Un.
Moreover, [1, Theorem 9.27] implies that there is a constant K > 0 such that

‖I − Qn‖L(W,V ) ≤ K

n
, n ∈ N.
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We conclude that Theorem 5.2 can be applied in this example with n0 ∈ N

chosen such that

n0 >
Kc‖A−1‖L(H,W )

(
M
γ + (r + ε) 7c2

γ

)

δ − 2‖A−1‖2ε
.

Note that in Example 5.3 we can also consider Ω to be an open interval
in R. All results continue to hold in an analogous way.

6. Discretization of a Structured Block Operator Matrix

In this section we investigate discretizations of a certain kind of block operator
matrices. We consider block matrices of the form

A =
(

A B
B∗ D

)

where A is a closed, densely defined operator A : D(A) ⊂ H → H on the
Hilbert space H, and B,D ∈ L(H). Then the block matrix A is a closed,
densely defined operator on the product space H × H with domain D(A) =
D(A)×H. Additionally we assume that 0 ∈ �(A), 0 ∈ �(D) and that both A
and −D are uniformly accretive, i.e., there exist constants γA, γD > 0 such
that

Re〈Ax, x〉 ≥ γA‖x‖2, x ∈ D(A), (19)
Re〈Dx, x〉 ≤ −γD‖x‖2, x ∈ H. (20)

In the next lemma we show that under the above assumptions there is
a gap in the spectrum of A along the imaginary axis, and we also prove an
estimate for the norm of the resolvent. Similar results were obtained in [16,17]
under the additional assumption that A is sectorial and, in [17], without the
condition that B and D are bounded. However, no corresponding resolvent
estimates were shown. We remark that the boundedness of D is not essential
in Lemma 6.1 but will be used thereafter.

Lemma 6.1. We have
{
λ ∈ C

∣∣ − γD < Re λ < γA

}
⊂ �(A) and

‖(A − λ)−1‖ ≤ 1
min{γA − Re λ, γD + Re λ} , −γD < Re λ < γA.

Proof. Consider the block operator matrix

J =
(

I 0
0 − I

)
.

A simple calculation shows that for λ ∈ U :=
{
λ ∈ C

∣∣ − γD < Re λ < γA

}

and x ∈ D(A), y ∈ H,

Re
〈

J(A − λ)
(

x
y

)
,

(
x
y

)〉

= Re
(
〈(A − λ)x, x〉 + 〈By, x〉 − 〈B∗x, y〉 − 〈(D − λ)y, y〉

)

= Re〈(A − λ)x, x〉 − Re〈(D − λ)y, y〉
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≥ (γA − Re λ)‖x‖2 + (γD + Re λ)‖y‖2

≥ cλ

∥∥∥∥

(
x
y

)∥∥∥∥
2

,

where cλ = min{γA − Re λ, γD + Re λ}. It follows that

‖J(A − λ)v‖‖v‖ ≥ |〈J(A − λ)v, v〉| ≥ cλ‖v‖2, v ∈ D(A),

and therefore, since ‖Jw‖ = ‖w‖ for all w ∈ H × H,

‖(A − λ)v‖ ≥ cλ‖v‖, v ∈ D(A). (21)

In particular λ �∈ σapp(A), i.e., U ∩ σapp(A) = ∅. The adjoint of A is the
block operator matrix

A∗ =
(

A∗ B
B∗ D∗

)
,

which also satisfies the assumptions of this lemma. Indeed, (20) obviously
also holds for D∗. Moreover, the uniform accretivity (19) of A together with
0 ∈ �(A) imply that A − γA is m-accretive, see [13, §V.3.10]. This in turn
yields that A∗ − γA is m-accretive too and hence

Re〈A∗x, x〉 ≥ γA‖x‖2, x ∈ D(A∗).

It follows that (21) also holds for A∗. In particular kerA∗ = {0} or, equiv-
alently, R(A) ⊂ H × H is dense. On the other hand, (21) implies that
ker A = {0} and that R(A) is closed. Consequently R(A) = H × H and
therefore 0 ∈ �(A). Using ∂σ(A) ⊂ σapp(A) and the connectedness of the set
U , we obtain U ⊂ �(A). Now (21) implies ‖(A − λ)−1‖ ≤ 1/cλ for all λ ∈ U .
�

We consider approximations An of A of the form

An =
(

An Bn

B∗
n Dn

)

where
(a) (Pn, An)n∈N is a family which approximates A strongly in the sense of

Sect. 3;
(b) all projections Pn are orthogonal and all An are uniformly accretive

with the same constant γA as in (19);
(c) Bn = PnB|Un

, Dn = PnD|Un
where Un = R(Pn)

Lemma 6.2. (a)
{
λ ∈ C

∣∣ − γD < Re λ < γA

}
⊂ �(An) and

‖(An − λ)−1‖ ≤ 1
min{γA − Re λ, γD + Re λ} , −γD < Re λ < γA.

(b) (Pn,An)n∈N approximates A strongly where Pn = diag(Pn, Pn).

Proof. (a) From

〈Dnx, x〉 = 〈PnDx, x〉 = 〈Dx, x〉, x ∈ Un,

it follows that −Dn is uniformly accretive with constant γD from (20).
Consequently Lemma 6.1 can be applied to An.
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(b) In view of (a) and Lemma 3.1 it suffices to show that for all (x, y) ∈
D(A) × H there exist (xn, yn) ∈ Un × Un such that

lim
n→∞

(
xn

yn

)
=
(

x
y

)
, lim

n→∞
An

(
xn

yn

)
= A

(
x
y

)
. (22)

Let (x, y) ∈ D(A) × H. From Lemma 3.1 we get xn ∈ Un with xn → x
and Anxn → Ax as n → ∞. Set yn = Pny. Then yn → y and

‖Dnyn − Dy‖ ≤ ‖Pn(Dyn − Dy)‖ + ‖PnDy − Dy‖
≤ ‖Dyn − Dy‖ + ‖PnDy − Dy‖ → 0, n → ∞,

i.e., Dnyn → Dy. The proof of Bnyn → By and B∗
nxn → B∗x is the

same after the additional observation B∗
n = PnB∗|Un

. Hence we have
shown (22).

�

Theorem 6.3. Let s1, . . . , sm ∈
{
λ ∈ C

∣∣ − γD < Re λ < γA

}
. Let 0 < ε <

minj=1,...,m (min{γA − Re sj , γD + Re sj}) and

δj >
ε

min{γA − Re sj , γD + Re sj}2 − ε min{γA − Re sj , γD + Re sj}
for j = 1, . . . ,m. Then there exists n0 ∈ N such that

σε(A) ⊂
m⋂

j=1

[(
Bδj

(W ((An − sj)−1))
)−1

+ sj

]
for all n ≥ n0.

Proof. Lemmas 6.1 and 6.2 imply

‖(A − sj)−1‖ ≤ 1
min{γA − Re sj , γD + Re sj}

≤ 1
ε
, ‖(An − sj)−1‖ ≤ 1

ε
,

and hence the assertion follows from Theorem 3.6. �

Remark 6.4. Suppose that A is the operator associated with a coercive sesqui-
linear form a on V ⊂ H and that Un, W , Pn ∈ L(H), An ∈ L(Un) are
chosen as in Sect. 5. Then (Pn, An) approximates A uniformly, and hence
also strongly, see Remark 4.1. Moreover, the coercivity of a implies that A
and all An are uniformly accretive with constant γA = γ from (16). Hence
all assumptions of this section are fulfilled in this case.

7. Numerical Examples

In order to exemplify the previously developed theory we take a look at
the results of numerical computations. We investigate the steps that were
involved in the discretization of a given operator and describe a visualization
of supersets of the pseudospectrum.

Example 7.1. In this example we will examine the Hain–Lüst operator which
fits into the framework of Sect. 6. See [19,20] for results on the approximation
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of the quadratic numerical range of such a block operator. The Hain–Lüst
operator under consideration here is defined by

A =
(

A B
B∗ D

)

on the Hilbert space L2(0, 1) × L2(0, 1) where A = − 1
100

∂2

∂x2 + 2, B = I and
D = 2e2πi· − 3 with D(A) = {u ∈ H2(0, 1) | u(0) = u(1) = 0}, D(B) =
D(D) = L2(0, 1) and D(A) = D(A) ⊕ D(D). Hence, for u ∈ D(A) and
v ∈ C∞(0, 1) × C∞(0, 1) with v(0) = v(1) = 0 we have

〈Au, v〉 =
∫ 1

0

((
− 1

100
∂2

∂x2
+ 2
)

u1(x) + u2(x)
)

v1(x) dx

+
∫ 1

0

(
u1(x) +

(
2e2πix − 3

)
u2(x)

)
v2(x) dx

=
∫ 1

0

1
100

∂

∂x
u1(x)

∂

∂x
v1(x) + (2u1(x) + u2(x))v1(x) dx

+
∫ 1

0

(
u1(x) +

(
2e2πix − 3

)
u2(x)

)
v2(x) dx. (23)

Let {T 1
n
}n∈N be the family of decompositions of the interval (0, 1) where

every subinterval T ∈ T 1
n

is of length 1
n and let

Un = {u ∈ C(0, 1) | u|T ∈ P1(T ), T ∈ T 1
n
, u(0) = u(1) = 0}, n ∈ N.

Here P1(T ) denotes the set of polynomials of degree 1 on the subinterval T .
The piecewise linear functions

ϕ̃i =

⎧
⎪⎨

⎪⎩

nx − i + 1, x ∈ ( i−1
n , i

n ),
i + 1 − nx, x ∈ ( i

n , i+1
n ),

0, else,

for i ∈ {1, . . . , n − 1} form a basis of Un and therefore the functions

ϕi =

{
(ϕ̃i, 0), i ≤ n − 1,

(0, ϕ̃i−n+1), i > n − 1,

for i ∈ {1, . . . , 2(n − 1)} form a basis of Un × Un. Evaluating (23) on these
basis functions, the finite-element discretization matrices An of A are given
by

An =
(
(〈Aϕi, ϕj〉)i,j · (〈ϕi, ϕj〉)−1

i,j

)ᵀ
.

Due to Lemma 6.2, Theorem 3.6 can be applied here. In order to illustrate
the inclusion specified therein the boundaries of the sets

(
Bδj

(W ((An − sj)−1))
)−1 + sj

(blue) are depicted in Fig. 3 for shifts s1, . . . , sm ∈ �(A). The choice of the
shifts was determined by the expected shape of the pseudospectrum aiming
to obtain a relatively small superset thereof. They are located on two circles
around −3 with radii greater and smaller than 2 and on lines parallel to the
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Figure 3. Pseudospectrum approximation for the Hain–
Lüst operator

real axis in the right half plane. Here n = 600, δj = 1.1 ‖(An−sj)
−1‖2ε

1−‖(An−sj)−1‖ε and
ε ≈ 0.4. The red dots are the eigenvalues of An while the black lines corre-
spond to the boundaries of the pseudospectrum of the approximation matrix
σε(An) computed by eigtool, see [7]. Note that according to Theorem 3.6 the
intersection of the blue areas form an enclosure of the pseudospectrum of the
actual operator σε(A), while the black lines only give the information for the
discretized operator. Furthermore the spectral gap mentioned in Lemma 6.1
becomes visible.

Example 7.2. Let us consider the the advection–diffusion operator A : D(A)
⊂ L2(0, 1) → L2(0, 1) defined by

A = η
∂2

∂x2
+

∂

∂x

with D(A) = {u ∈ H2(0, 1) | u(0) = u(1) = 0}, which has also been examined
in [24, pp. 115]. For u ∈ D(A) and v ∈ C∞(0, 1) we have

〈Au, v〉 =
∫ 1

0

(
η

∂2

∂x2
u(x) +

∂

∂x
u(x)

)
v(x) dx

=
∫ 1

0

∂

∂x
u(x)v(x) − η

∂

∂x
u(x)

∂

∂x
v(x) dx. (24)

As in the previous example let {T 1
n
}n∈N be the family of decompositions of

the interval (0, 1) where every subinterval T ∈ T 1
n

is of length 1
n and let

Un = {u ∈ C(0, 1) | u|T ∈ P1(T ), T ∈ T 1
n
, u(0) = u(1) = 0}, n ∈ N.
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Figure 4. Pseudospectrum approximation for the
advection–diffusion operator

Here P1(T ) denotes the set of polynomials of degree 1 on the subinterval T .
The piecewise linear functions

ϕi =

⎧
⎪⎨

⎪⎩

nx − i + 1, x ∈ ( i−1
n , i

n ),
i + 1 − nx, x ∈ ( i

n , i+1
n ),

0, else,

for i ∈ {1, . . . , n − 1} form a basis of Un. Evaluating (24) on these basis
functions, the finite-element discretization matrices An of A are given by

An =
(
(〈Aϕi, ϕj〉)i,j · (〈ϕi, ϕj〉)−1

i,j

)ᵀ
.

With the choice of η = 0.015, Fig. 4 shows the eigenvalues of An for n = 40
(red) and the sets

(
Bδj

(W ((An − sj)−1))
)−1 + sj

(blue) for a number of shifts s1, . . . , sm where δj = 1.1 ‖(An−sj)
−1‖2ε

1−‖(An−sj)−1‖ε and
ε ≈ 16. The shifts are located at a certain distance to the expected pseu-
dospectrum so as to obtain a relatively small superset thereof. The black line
corresponds to the boundary of σε(An) computed by eigtool, see [7]. This
demonstrates the result of Theorem 3.6 which actually yields an enclosure
for the pseudospectrum of the operator A while the black line only shows the
boundary of the pseudospectrum of the approximation matrix An.

As already mentioned in Remark 2.8 we also have the enclosure

σε(A) ⊂ Bε(W (A))

for operators A with a compact resolvent. Note that, because both sides of the
enclosure are in terms of the same operator A, this only yields an enclosure
for the discretized operator when applied numerically, not the full operator.
So let us take a look at the discretizations of the Hain–Lüst (Fig. 5) and
the advection–diffusion operator (Fig. 6) again. Here, the ε-neighborhoods
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Figure 5. ε-neighborhood of the numerical range of the
Hain–Lüst operator

Figure 6. ε-neighborhood of the numerical range of the
advection–diffusion operator

of the numerical ranges are depicted by green lines. As you can see, this
approach leads to a very similar result in case of the advection–diffusion
operator (where the pseudospectrum is convex), while it fails to distinguish
disconnected components of the pseudospectrum in case of the Hain–Lüst
operator.
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analytische und numerische Methoden. Springer Spektrum, Berlin (2018)
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