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Abstract. In this paper, we give two characterizations of central elements
in a C∗-algebra A in terms of local properties of maps on A given by
the function calculus. We prove that for a strictly convex increasing
function f defined on an open interval which is unbounded from above,
an element a ∈ A is central if and only if f is locally monotone at a. That
result significantly improves similar theorems by Ogasawara, Pedersen,
Wu, Molnár and Virosztek. An analogous statement on local additivity
is also presented.
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1. Introduction and Statement of the Main Results

Extension of functions has a considerable literature and it gives ways to plug
elements in them which originally did not belong to their domains. One such
way is provided by the function calculi which were developed to provide the
possibility of plugging elements of abstract structures in scalar functions.
Among them, the continuous function calculus can be used to plug normal
elements of a C∗-algebra in complex-valued continuous functions defined on
the spectra of such elements. It is a natural question whether certain proper-
ties of such functions are preserved, meaning that they still possess them on
subsets of those operators. One of the most basic property of scalar functions
is monotonicity, which is investigated on the space of self-adjoint elements
of a C∗-algebra. It turned out that for a large class of monotone functions,
quite surprisingly, the preservation of this property can occur only when the
underlying algebra is commutative. This shows that the monotonicity of cer-
tain maps on C∗-algebras defined by the continuous function calculus gives
us important information about the algebraic structure of the algebra con-
sidered.
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In what follows, we mention some results on the connection between
the commutativity of a C∗-algebra and the property of a monotone function
that its extension to a set of self-adjoint elements of that algebra is also
monotone. Ogasawara [3] proved that a C∗-algebra is commutative exactly
when squaring is monotone on the set of its positive elements. Next, Pedersen
[4] extended this result to power functions with exponent greater than 1.
Continuing this line of investigations, Wu [8] showed that the exponential
function can also be used to characterize commutative C∗-algebras in the
above way, and Ji and Tomiyama [1] determined a large class of functions
having this property.

In these results, the monotonicity property of the functions in question
yields consequences on the underlying C∗-algebra. It also happens that mono-
tonicity on sets of self-adjoint elements has implications on those functions.
An important example of such cases is the one where the considered function
f is defined on an interval D, nonnegative-valued and operator monotone,
meaning that A ≤ B implies f(A) ≤ f(B) for all self-adjoint operators A,B
on a Hilbert space with spectra in D. Such maps are widely investigated
and have significant applications in the theory of operator means. They have
very strong regularity properties, for example each of them has an analytic
continuation to the upper half plane. This shows that in the case of such
functions f , the monotonicity property of the map A �→ f(A) on the set of
self-adjoint elements of the C∗-algebra of bounded operators on a Hilbert
space has considerable consequences on f .

Recently, “localized” versions of the results mentioned in the second
paragraph were also published. First, Molnár [2] has proved that a self-adjoint
element a of a C∗-algebra is central (,i.e., it commutes with all of its mem-
bers) exactly when the exponential function is locally monotone at a. Then
Virosztek [6] has succeeded in finding a quite large class of functions (includ-
ing the power functions with exponent greater than 1 and the exponential
function) which have the property that central elements can be characterized
via their local monotonicity at such points. The main aim of this paper is to
considerably extend that result in order to cover all strictly convex increasing
functions.

Investigations of the above type were carried out also concerning con-
vexity. The study of relations between the commutativity of a C∗-algebra (or
locally, the centrality of an element) and the global (or local) convexity of
some functions is of interest, too. Here, we mention a corresponding result [5,
Thm. 4.] stating that a C∗-algebra A is commutative exactly when one has
a convex function f : ]0,∞[→ R such that the map A �→ f(A) is not convex
on the cone of complex positive definite 2× 2 matrices, but it is so on the set
of such elements of A. Recently, Virosztek [7] has shown that a quite large
class of functions possesses the property that each member of that class is
locally convex exactly at central elements.

Now we turn to our results. Before we present them, we shall introduce
some definitions and notation that will be used in the paper. Let A be a
C∗-algebra, denote by Asa the space of all self-adjoint elements of A and let
σ(a) stand for the spectrum of an element a ∈ A. We say that a is positive
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if it is self-adjoint and σ(a) ⊂ [0,∞). The usual order ≤ on Asa is defined as
follows: a ≤ b if b−a is positive (a, b ∈ Asa). Let f be a real-valued continuous
function defined on some interval D ⊂ R which is unbounded from above and
a ∈ Asa be an element for which σ(a) ⊂ D. Then we say that f is locally
monotone at a, in other words a is a “point of operator monotonicity” of
f exactly when for any b ∈ Asa satisfying a ≤ b, one has f(a) ≤ f(b). The
identity operator on a complex Hilbert space H is denoted by I. Now our first
result follows in which we establish that among the self-adjoint elements of
the C∗-algebra C(H) of all compact operators on H, central elements (which
are easily seen to be the scalar operators in C(H)sa) can be characterized in
terms of a weakened version of this property.

Proposition 1. Let D be an open interval which is unbounded from above and
f : D → R be a strictly convex increasing function. Then for any operator
A ∈ C(H)sa with σ(A) ⊂ D one has that

A ∈ RI ⇐⇒ ∀ X ∈ C(H)sa, rank (X − A) = 1, A ≤ X :
f(A) ≤ f(X).

Consequently, if dim H = ∞, then each statement in this relation is equivalent
to the equality A = 0.

As for this result and the next two, we remark that, as it is well-known,
real convex functions are continuous on the interior of their domain. For
the case of boundary points of the domains, we mention that, as it can be
seen very easily from Sect. 2, the openness of D can be omitted from those
statements provided that continuity of f is assumed on D ∩ ∂D. The general
result on local monotonicity in C∗-algebras reads as follows.

Theorem 1. Let D be an open interval which is unbounded from above and
f : D → R be a strictly convex increasing function. Then for any element
a ∈ Asa satisfying σ(a) ⊂ D, we have that

a is central ⇐⇒ f is locally monotone at a.

Clearly, this theorem is a considerable extension and unification of the
similar results mentioned in the second and fourth paragraphs. In fact, the
most general among them is that of Virosztek [6] which states the same con-
clusion as the one in Theorem 1 with the additional hypotheses that f is
continuously differentiable and its derivative is logarithmically concave. The-
orem 1 has the following global version which establishes a characterization
of commutativity of C∗-algebras in terms of the order ≤.

Corollary 1. Let D be an open interval which is unbounded from above and
f : D → R be a strictly convex increasing function. Then A is commutative
exactly when the map a �→ f(a) (a ∈ Asa, σ(a) ⊂ D) is monotone.

In the particularly important special case where A is the operator alge-
bra B(H) on a complex Hilbert space H, this corollary tells us that there are
no functions f which satisfy its conditions and the second assertion in the
latter equivalence.
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In the following results, analogously to local monotonicity, we consider
local additivity of functions at points in C∗-algebras. The corresponding def-
inition reads as follows. We say that the continuous function f : R → R is
locally additive at the element a ∈ Asa provided that f(a+x) = f(a)+ f(x)
for all elements x ∈ Asa. In what follows, we state that among the operators
in C(H)sa, the central elements are distinguished in terms of a weakened form
of this property.

Proposition 2. Let f : R → R be a nonaffine function which is continuous
at 0 in the case dim H = ∞ and A ∈ C(H)sa be an operator such that
f(α+x) = f(α)+f(x) for all numbers α ∈ σ(A), x ∈ R. Then we have that

A ∈ RI ⇐⇒ ∀ X ∈ C(H)sa, rank X = 1 : f(A + X) = f(A) + f(X)

Therefore in the case dim H = ∞, both assertions in the latter relation are
equivalent to the equality A = 0.

We remark that compact operators can only have 0 as the accumulation
point of their spectra, and the element g(Y ) is well-defined for any Y ∈
C(H)sa and for any complex-valued function g which is continuous on σ(Y ).
Our statement concerning local additivity on C∗-algebras is

Theorem 2. Assume that f : R → R is a nonaffine continuous function and
a ∈ Asa is an element such that for each numbers α ∈ σ(a), x ∈ R, we have
f(α + x) = f(α) + f(x). Then

a is central ⇐⇒ f is locally additive at a.

Observe that a real-valued continuous affine function is locally additive
at a self-adjoint element of a C∗-algebra exactly when it is linear, so it is clear
that the condition on nonaffinity in the last two results is indispensable. As
for a corresponding global version of Theorem 2, we remark that, as it is well-
known, continuous additive real functions are scalar multiples of the identity.
This implies that for a continuous function f : R → R fixed arbitrarily, the
map a �→ f(a) (a ∈ Asa) is additive exactly when f(x) = cx (x ∈ R) with
some number c ∈ R. We immediately conclude that Theorem 2 does not
possess a corresponding global version.

2. Proofs

This section is devoted to the verification of our results formulated in the pre-
vious one. We use the following notation in it. For any vectors u, v in a Hilbert
space H, the symbol u ⊗ v stands for the map z �→ 〈z, v〉u (z ∈ H), moreover
Tr denotes the trace of matrices. In the next four statements (Lemmas 1–3
and Corollary 2), we shall use the following notation and assumptions.
(*) Let H be a complex Hilbert space with dim H = 2 and pick an operator

A ∈ B(H)sa with σ(A) = {a1, a2}. Let u, v ∈ H be orthogonal normal-
ized eigenvectors of A, and define B = (u+v)⊗(u+v). For any number
x ∈ R \ {0}, set

λ1(x) =
a1 + a2 + 2x − √

(a1 − a2)2 + 4x2

2
,
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λ2(x) =
a1 + a2 + 2x +

√
(a1 − a2)2 + 4x2

2
,

α(x) = (f(λ2(x)) − f(λ1(x)))
(

a1 − a2

2(λ2(x) − λ1(x))
+

1
2

)
+ f(λ1(x)),

β(x) = x
f(λ2(x)) − f(λ1(x))

λ2(x) − λ1(x)
,

γ(x) = (f(λ2(x)) − f(λ1(x)))
(

a2 − a1

2(λ2(x) − λ1(x))
+

1
2

)
+ f(λ1(x)). (1)

In this section, we will use the identity

λ2(x) − λ1(x) =
√

(a1 − a2)2 + 4x2. (2)

In our first lemma, we present a useful formula for functions of the sum
of A and a scalar multiple of B.

Lemma 1. Let D be an interval which is unbounded from above, f : D → R

be a function and x ∈ R \ {0} be a number such that x > 0, if D �= R. Then
with the notation and conditions in (*), in the case σ(A) ⊂ D,

f(A + xB) =
(

α(x) β(x)
β(x) γ(x)

)
.

Proof. One can check that the matrix of A + xB with respect to the basis
{u, v} is

(
x + a1 x

x x + a2

)

and that its eigenvalues are λ1(x), λ2(x). The function

e : t �→ f(λ2(x)) − f(λ1(x))
λ2(x) − λ1(x)

(t − λ1(x)) + f(λ1(x))

equals f on σ(L(x)), thus f(L(x)) = e(L(x)). Now using (2), the assertion
in Lemma 1 follows very easily. �

The statement below has a crucial role in verifying the main results on
local monotonicity.

Lemma 2. Let D be an open interval which is unbounded from above and
f : D → R be a strictly convex increasing function. Then with the notation
and conditions in (*), we have that the hypotheses σ(A) ⊂ D, A /∈ RI imply
the existence of elements t0 > 0, w ∈ H for which ‖w‖ = 1, the quantity

Δ(a1, a2) = 〈f(A)w,w〉 − 〈f(A + t0B)w,w〉 (3)

is positive and t0, Δ(a1, a2) depend only on σ(A).

Proof. In this argument, we mainly identify operators on H and elements of
H with their matrices and coordinate row vectors, respectively with respect
to the basis {u, v}. We are going to show that there is a number t0 > 0 such
that det(f(A+ t0B)− f(A)) < 0. In order to do so, select an arbitrary scalar
x > 0. Then using Lemma 1 and the notation in (1), we compute
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det(f(A + xB) − f(A)) = (α(x) − f(a1))(γ(x) − f(a2)) − β(x)2

=

[(
1 +

a1 − a2

λ2(x) − λ1(x)

)
f(λ2(x))

2
+ (a2 − a1)

f(λ1(x))

2(λ2(x) − λ1(x))

+

(
f(λ1(x))

2
− f(a1)

) ][(
1 +

a2 − a1

λ2(x) − λ1(x)

)
f(λ2(x))

2

+(a1 − a2)
f(λ1(x))

2(λ2(x) − λ1(x))
+

(
f(λ1(x))

2
− f(a2)

) ]

− x2

(λ2(x) − λ1(x))2
(f(λ2(x))

2 − 2f(λ1(x))f(λ2(x))

+f(λ1(x))
2).

By performing the multiplications in this difference and grouping the ob-
tained terms with respect to the exponent i ∈ {0, 1, 2} in their factors of the
form f(λ2(x))i, we see that the ones with i = 2 cancel. Upon merging the
ones with i = 1 and i = 0, we get two terms which are denoted by S1(x) and
S0(x), respectively. Defining

s1(x) =
(a1 − a2)2f(λ1(x))
2(λ2(x) − λ1(x))2

+
1
2

[(
1 +

a1 − a2

λ2(x) − λ1(x)

) (
1
2
f(λ1(x)) − f(a2)

)

+
(

1 +
a2 − a1

λ2(x) − λ1(x)

) (
1
2
f(λ1(x)) − f(a1)

) ]

+2f(λ1(x))
x2

(λ2(x) − λ1(x))2
,

it is straightforward to see that

S1(x) = s1(x)f(λ2(x)), (4)

S0(x) =
(

(a2 − a1)
f(λ1(x))

2(λ2(x) − λ1(x))
+

1
2
f(λ1(x)) − f(a1)

)

·
(

(a1 − a2)
f(λ1(x))

2(λ2(x) − λ1(x))
+

1
2
f(λ1(x)) − f(a2)

)

− x2

(λ2(x)−λ1(x))2
f(λ1(x))2,det(f(A+xB) − f(A))=S1(x)+S0(x).

(5)

Now we are going to examine the limit limx→∞(S1(x) + S0(x)). To this
end, using (2) and the continuity of f , we compute

lim
x→∞(λ2(x) − λ1(x)) = ∞, lim

x→∞
x2

(λ2(x) − λ1(x))2
=

1
4
,

lim
x→∞ f(λ1(x)) = f

(
a1 + a2

2

)
.

Then we see that
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lim
x→∞ S0(x) =

(
1
2
f

(
a1 + a2

2

)
− f(a1)

)(
1
2
f

(
a1 + a2

2

)
− f(a2)

)

−1
4
f

(
a1 + a2

2

)2

, lim
x→∞ s1(x)=f

(
a1 + a2

2

)
− f(a1)+f(a2)

2
.

(6)

Now we distinguish the two possible cases concerning the limit of the
increasing function f at ∞. In the first one, suppose that it is ∞. Then
clearly, limx→∞ f(λ2(x)) = ∞. Since A is not a scalar matrix, a1 �= a2, and
therefore by the strict convexity of f and (6), limx→∞ s1(x) < 0. Then it
follows that limx→∞ S1(x) = −∞ which, together with (6), gives us that
limx→∞(S1(x) + S0(x)) = −∞ < 0.

Suppose now that limx→∞ f(x) < ∞. In this case, by considering f −
lim
x→∞ f(x) instead of f , we may and do assume that

lim
x→∞ f(x) = 0. (7)

Observe that regarding the conditions and conclusions in Lemma 2, there is
no loss of generality in this assumption. Then by (4) and (6), we deduce that

lim
x→∞(S1(x) + S0(x)) =

1
4

(
2f(a1)f(a2) − f

(
a1 + a2

2

)
(f(a1) + f(a2))

)

The assumption (7) and the condition that f is increasing imply that f ≤ 0.
Since f is strictly convex, then it follows that

lim
x→∞(S1(x) + S0(x))≤ 1

8

(
4f(a1)f(a2)−(f(a1)+f(a2))

2
)
=−1

8
(f(a1) − f(a2))

2.

Using the plain fact that strictly convex increasing functions are injective and
the relation a1 �= a2, which is due to the condition A /∈ RI, we deduce from
the last displayed chain of equalities that limx→∞(S1(x) + S0(x)) < 0 in this
case, too. This inequality and (5) yield that limx→∞ det(f(A+xB)−f(A)) =
−∞, hence we conclude that there is a number t0 > 0 for which

det(f(A + t0B) − f(A)) < 0, (8)

implying that f(A + t0B) − f(A) is not positive semidefinite in both cases.
To sum up, we have shown that, identifying A with the matrix

diag(a1, a2), for the latter matrix, one has a scalar t0 ∈ R \ {0} and a vec-
tor w ∈ C

2 such that the quantity in (3) is positive. Moreover, clearly, that
quantity depends only on w, diag(a1, a2) and t0. But the last three objects
depend only on σ(A), thus so does Δ(a1, a2). Now the statement of Lemma 2
follows easily. �

We have seen in this proof that if the conditions of that result hold, then
(8) is satisfied by all large enough numbers. Therefore, it is straightforward
to see that the following statement is valid, which we think interesting on its
own right.

Corollary 2. Let D be an open interval which is unbounded from above and
f : D → R be a strictly convex increasing function. Then with the notation
and conditions in (*), if σ(A) ⊂ D and for each number t > 0 there is a
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scalar t0 > t satisfying that f(A+ t0B) and f(A) are comparable with respect
to the order ≤, then A ∈ RI.

The next assertion is the key tool for the proofs of our results concerning
local additivity.

Lemma 3. Let f : R → R be a nonaffine function. Then with the notation
and conditions in (*), one has that the relation A /∈ RI implies the existence
of elements t0 ∈ R \ {0}, w ∈ H for which ‖w‖ = 1, the quantity

δ(a1, a2) = 〈(f(A) + f(t0B))w,w〉 − 〈f(A + t0B)w,w〉 (9)

is not 0 and t0, δ(a1, a2) depend only on σ(A).

Proof. In the sequel, we identify operators on H and elements of H with their
matrices and coordinate row vectors, respectively with respect to the basis
{u, v}. Assume that for all admissible choices of t0, w, the quantity in (9) is
0. We shall show that this hypothesis leads to a contradiction. In order to
do so, choose an arbitrary scalar x ∈ R \ {0} and observe that the latter
assumption implies

f(A + xB) = f(A) + f(xB).

Using the notation in (1) and the formula in Lemma 1, it follows easily that
the left-hand and right-hand side of the latter equation is

L(x) =
(

α(x) β(x)
β(x) γ(x)

)

and

R(x) =
(

(f(2x) + f(0))/2 + f(a1) (f(2x) − f(0))/2
(f(2x) − f(0))/2 (f(2x) + f(0))/2 + f(a2)

)
,

respectively, furthermore one clearly has

Tr R(x) = f(2x) + f(0) + f(a1) + f(a2). (10)

From the equality of the first rows of L(x) and R(x), we deduce

(f(λ2(x)) − f(λ1(x)))
(

a1 − a2

2(λ2(x) − λ1(x))
+

1
2

)
+ f(λ1(x))

=
f(2x) + f(0)

2
+ f(a1) (11)

and

x
f(λ2(x)) − f(λ1(x))

λ2(x) − λ1(x)
= (f(2x) − f(0))/2. (12)

Using (12) and (10), we compute the left hand-side of (11) in order to get

(f(λ2(x)) − f(λ1(x)))
(

a1 − a2

2(λ2(x) − λ1(x))
+

1
2

)
+ f(λ1(x))

= (a1 − a2)
f(2x) − f(0)

4x
+

f(λ2(x)) + f(λ1(x))
2
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= (a1 − a2)
f(2x) − f(0)

4x
+

Tr L(x)
2

= (a1 − a2)
f(2x) − f(0)

4x

+
Tr R(x)

2
= (a1 − a2)

f(2x) − f(0)
4x

+
f(2x) + f(0) + f(a1) + f(a2)

2
.

That side is equal to (f(2x) + f(0))/2 + f(a1) by (11). Furthermore, since
A /∈ RI, one has a1 �= a2, so we get very easily that f(2x) − f(0) = αx for a
real number α. Since x ∈ R \ {0} was an arbitrary scalar, it follows that f is
affine, a contradiction. Now we can conclude that our initial hypothesis was
false, therefore there must exist a number t0 ∈ R \ {0} and a vector w ∈ C

2

such that the quantity in (9) is not 0. Finally, the proof can be completed in
the same way as in the last paragraph of the verification of Lemma 2. �

Now we are in a position to prove our result concerning local mono-
tonicity on C(H).

Proof of Proposition 1. To prove the nontrivial implication ⇐=, assume that
A /∈ RI. Then since A ∈ C(H)sa, it is straightforward to see that A has at
least two different eigenvalues with a corresponding eigenvector for both. In
addition, the 2-dimensional subspace L ⊂ H spanned by those vectors and
its orthogonal complement L⊥ are invariant under A. Now Lemma 2 applies
to A|L and we get very easily that there is a self-adjoint operator X0 on L for
which A|L ≤ X0 and X0−A|L has rank 1, but f(A|L) ≤ f(X0) does not hold.
Then the element X̃0 ∈ C(H)sa with X̃0|L = X0, X̃0|L⊥ = A|L⊥ satisfies
rank (X̃0 − A) = 1, A ≤ X̃0, but does not fulfill the relation f(A) ≤ f(X̃0).
Now the proof can be completed in a trivial way. �

The statement of Proposition 2 can be shown using the same argument
as above. Now we proceed with the verification of our second main result.

Proof of Theorem 1. In the sequel, we use the argument in the proof of [6,
Theorem1] and we shall skip some steps of our argument which can be done
in the same way as there. This applies to the verification of the implication
=⇒ in Theorem 1. Hence, we turn to the proof of the other implication
there, which will be carried out by contraposition. Accordingly, assume that
a is not central. Then the mentioned argument in [6] applies and just as
there, we infer that one has a complex Hilbert space H and an irreducible
representation π : A → B(H) such that σ(π(a)) has (at least) two elements,
say x and y. Furthermore, for any integer n ∈ N, there are orthogonal unit
vectors un, vn ∈ H that satisfy

lim
n→∞(π(a)un − xun) = 0, lim

n→∞(π(a)vn − yvn) = 0.

Now let n ∈ N be a number, Kn be the subspace of H generated by
{un, vn} and En be the projection on H onto the orthogonal complement of
Kn. Define

ψn(a) = xun ⊗ un + yvn ⊗ vn + Enπ(a)En.

Observe that for any given number n ∈ N, the set σ(ψn(a)|Kn
) is the

same. Therefore, Lemma 2 applies and, using the notation Bn = (un + vn) ⊗
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(un + vn), we infer the existence of elements t0 > 0, wn ∈ Kn for which
‖wn‖ =

√
2 and

〈f(ψn(A))wn, wn〉 − 〈f(ψn(A) + t0Bn)wn, wn〉 > 0,

moreover this inner product and t0 do not depend on n. The rest of the proof
is the same as the corresponding part of the argument in [6]. �

The statement of Theorem 2 can be verified using the previous proof
with some trivial modifications and applying Lemma 3 instead of Lemma 2
in its corresponding part.
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tions on C∗-algebras. In: Böttcher, A., Potts, D., Stollmann, P., Wenzel, D.
(eds.) Operator Theory: Advances and Applications, pp. 487–494. Birkhäuser,
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