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Abstract. In this paper we study Schrödinger operators with absolutely
integrable potentials on metric graphs. Uniform bounds—i.e. depending
only on the graph and the potential—on the difference between the nth

eigenvalues of the Laplace and Schrödinger operators are obtained. This
in turn allows us to prove an extension of the classical Ambartsumian
Theorem which was originally proven for Schrödinger operators with
Neumann conditions on an interval. We also extend a previous result
relating the spectrum of a Schrödinger operator to the Euler character-
istic of the underlying metric graph.
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1. Introduction

Quantum graphs—i.e. Schrödinger operators acting on metric graphs—have
become an increasingly important branch of mathematical physics in the
last 20 years or so. They serve as models of branched thin networks, e.g.
nanotubes, and complex molecules. Apart from applications they also serve
as a rich source of objects suitable for mathematical inquiry. In particular
Schrödinger operators on graphs exhibit spectral properties both of partial
differential and ordinary differential operators.

The aim of this paper is twofold. First we work towards proving a spec-
tral estimate, i.e. a comparison between the spectra of the Laplacian and
Schrödinger operators acting on the same metric graph. The main motiva-
tion for obtaining such estimates is that the spectrum of the Laplacian is
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much easier to calculate. We will prove that just as in the case of a single
interval the difference between the Laplace and Schrödinger eigenvalues is
uniformly bounded, provided the potential is just absolutely integrable. The
classical proof of this relied heavily on the explicit formula for the resolvent
kernel of the Laplacian [7]. The corresponding kernel for metric graphs is
not in general given explicitly and we will instead work with general per-
turbation theory. The second goal is to extend results—relating the Laplace
spectrum to geometric properties of the graph—to Schrödinger operators
with L1-potentials. In particular we obtain an inverse spectral theorem that
generalizes the celebrated theorem of Ambartsumian (see Sect. 6), and show
that the Euler characteristic of the underlying graph is reflected in the spec-
trum of the Schrödinger operator in the case of standard vertex conditions
(see (2.1) below).

1.1. Spectral Estimates and Inverse Spectral Theory

Inverse spectral theory for the Schrödinger equation in R
n has classically had

as a goal to determine the potential given a spectrum. To solve the inverse
problem for a Schrödinger operator on a metric graph completely one has in
general to determine not only the potential but the underlying metric graph
and vertex conditions. It appears that this complete inverse problem is rather
difficult, especially since the set of spectral data is not obvious. Therefore it
seems attractive to start investigations assuming that the metric graph and
the vertex conditions are fixed. The simplest graph to be considered is the
star graph formed by a finite number of compact edges, and the corresponding
inverse problem resembles very much the inverse problem on a single interval,
where the potential is determined by two spectra [14,30,33–35]. The case of
general trees has also been studied and we have a rather good understanding
of the problem [2,8,9,31,37]. The case of graphs with cycles is much more
involved—major difficulties are related to the reconstruction of the potential
on the cycles. To assure the uniqueness of the potential one may either use
the dependence of the spectral data on the magnetic fluxes [21,23], or add
extra spectral data like the Dirichlet spectrum [38–41].

The problem to reconstruct the metric graph has not been addressed in
full generality. Topological characteristics of the graph may be reconstructed
[19,20]. Assuming that the edge lengths are rationally independent one may
even reconstruct the graph using the trace formula [15,18], but under the
condition that the potential is zero. Explicit examples of isospectral graphs
have been constructed [4,5,15]. Employing the boundary control method one
may reconstruct metric trees [2] without assuming zero potential. The prob-
lem of reconstructing vertex conditions, as well as the influence of vertex
conditions on the solvability of the inverse problem, is even less understood
[3]. For example a metric tree is not always reconstructable, e.g. if the ver-
tex conditions are not standard [22]. On the other hand more general vertex
conditions may help to solve the inverse problem as it is done in [23,24].

One result in the inverse spectral theory—the Ambartsumian’s cele-
brated theorem from 1929 stating that the spectrum of a (Neumann) Schrö-
dinger operator on an interval coincides with the spectrum of the (Neumann)
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Laplacian if and only if the potential is zero—is of great importance (see
Theorem 6.1). This theorem is rather special, since in order to reconstruct
a non-zero potential, knowledge of two spectra is required. Several authors
generalized this theorem for the case of metric graphs. The results can be
divided into two categories. Some authors proved that if the spectrum of the
standard Schrödinger operator on a fixed metric graph Γ coincides with the
spectrum of the standard Laplacian on Γ, then the potential is zero. This
result was first proved for trees [10,27,29,36] and [30], and then for arbitrary
graphs by Davies [12]. It was also noted that the Laplacian on a metric graph
Γ is isospectral to the Laplacian on an interval if and only if Γ is formed by
a single interval. This can be seen as a geometric version of Ambartsum-
ian’s theorem and it is based on the fact that a single interval maximizes the
spectral gap for the Laplacian among graphs of fixed total length [13,25,28].

The inverse spectral result that we obtain—Theorem 6.5—is that the
spectrum of a finite interval is unique among connected finite compact quan-
tum graphs with standard conditions. More precisely, if the spectrum of a
Schrödinger operator on a connected metric graph coincides with the spec-
trum of the Laplacian with Neumann conditions on an interval, then the
graph is the interval, and the potential of the Schrödinger operator is zero.
Here we assume that standard conditions are imposed on the graph. In the
case of the graph being a compact interval, standard conditions coincide with
Neumann conditions at the end-points. The result can therefore be seen as
an extension of Ambartsumian’s theorem.

1.2. Outline of the Paper

Section 2 contains some fundamentals on quantum graphs. In particular we
give some elementary spectral estimates and prove that normalized eigenfunc-
tions of the Laplacian Lst

0 are uniformly bounded in the L∞ norm. Section 3
contains the definition of the operator Lst

q that we associate with the for-
mal expression Lst

0 + q, for q ∈ L1(Γ). The operator is defined via quadratic
form methods. Section 4 deals with spectral estimates, and we prove that
there exists a uniform bound on the difference of eigenvalues of Laplace and
Schrödinger operators on metric graphs. This is done by using the Max–
Min and Min–Max principles, along with a Sobolev estimate for functions
ψ ∈ W 1

2 (Γ). Section 5 gives a result on the zeros of trigonometric polynomi-
als, namely that if the zeros asymptotically tend to the integers, then all the
zeros are in fact exactly the integers. By combining this fact with the spectral
estimate of Sect. 4 we are able to prove the inverse spectral theorem given
in Sect. 6. Section 7 extends a previous result that the Euler characteristic
of a graph is reflected in the spectrum of a Schrödinger operator with L∞
potential to the case of L1 potentials.

2. Preliminaries–Basics on Quantum Graphs

A quantum graph is a metric graph equipped with a Schrödinger operator,
or more formally, a triple (Γ, L,vc) with Γ a metric graph, L a differential
operator, and vc a set of vertex conditions imposed to connect the edges and
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ensure the self-adjointness of L. In this paper we limit ourselves to compact
finite graphs (see below). We give a brief overview of these - for a thorough
treatment of the theory of quantum graphs, see for example [6] and [26].

Metric Graphs: A compact finite metric graph is a finite collection of compact
intervals of R glued together at the endpoints. More precisely, let, {En}N

n=1 be
a finite set of compact intervals, each En considered as a subset of a separate
copy of R,

En = [x2n−1, x2n], 1 ≤ n ≤ N.

Let V = {xj} = {x2n−1, x2n}N
n=1 denote the set of endpoints of the intervals.

Fix a partition of V into equivalence classes

V = V1 ∪ · · · ∪ VM .

Identifying the endpoints yields a graph with vertices given by the equivalence
classes Vi.
We let �n = x2n − x2n−1 denote the length of the edge En and define the
total length L of a graph as the sum of its edge lengths:

L =
N∑

n=1

�n.

Differential Operators on Graphs: Lq acts as a differential operator on each
edge separately, in our case − d2/dx2 + q for some real potential function
q—subscripts will denote the potential of the operator, and L0 means that
the potential is identically 0, so that L0 is the Laplacian. The action is in
the Hilbert spaces L2(Ei) of square integrable functions on the edges Ei. The
measure on each edge is given naturally by the identification of the edge with
an interval. Lq then acts on

L2(Γ) =
N⊕

i=1

L2(Ei).

Note that if q ∈ L1(Γ) then the formal expression −d2/dx2 + q should be
understood as a sum of quadratic forms (see Sect. 3).

Vertex Conditions: We shall solely study quantum graphs with standard
conditions—also known as Kirchoff, Neumann, natural or free conditions.
Operators with standard conditions imposed will be written as Lst

q . Let us
first discuss the case of a bounded potential q ∈ L∞(Γ), where the domain of
the Schrödinger operator can be given explicitly. For any ψ ∈ L2(Γ), also qψ ∈
L2(Γ), so Lqψ = −(d/dx)2ψ + qψ ∈ L2(Γ) if and only if ψ ∈ W 2

2 (Γ \ V ). Let
Vj = {xj1 , . . . , xjk} and let ψ(xji) denote the limit ψ(xji) = limx→xji

ψ(x),
where the limit is taken over x inside the interval with xji as an end-point.
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Standard conditions are then given by imposing the following relations at
each vertex Vj

{
ψ(xj1) = ψ(xj2) = · · · = ψ(xjk)∑

xj∈Vm
∂nψEn(j)(xj) = 0,

(2.1)

where ∂n denotes the normal derivative, i.e.

∂nψ(xj) =
{

ψ′(xj) xj left end-point
−ψ′(xj) xj right end-point.

In other words, ψ is required to be continuous in each vertex Vj and the sum
of normal derivatives should vanish there. This yields a self-adjoint operator
Lst

q on Γ.
We will study Lst

q for q ∈ L1(Γ). This means that in general qψ �∈ L2(Γ),
so the formal expression Lq = −d2/dx2 + q lacks an immediate meaning as
a sum of operators from L2(Γ) to L2(Γ). We will however establish that
the perturbation by q is infinitesimally form-bounded (see Proposition 3.2)
with respect to the quadratic form of L0. More precisely, the quadratic form
Q0(ψ,ψ) = (Lst

0 ψ,ψ) = (ψ′, ψ′) is defined on the domain of functions from
W 1

2 (Γ\V ), which are in addition continuous at all vertices. Then the expres-
sion Lst

0 + q = Lst
q can be assigned a meaning via the KLMN theorem (see

e.g. [32]), as a self-adjoint operator with the same form domain as Lst
0 . Note

that the domain of the quadratic form only includes the continuity condition
from (2.1).

The Spectrum: We denote the spectrum of L by σ(L). For finite compact
graphs the spectrum of L0 is discrete, for any self-adjoint boundary condi-
tions, and furthermore satisfy Weyl asymptotics. This also holds for Lq, for
q ∈ L1(Γ) (see Sect. 4). The nth eigenvalue, counting multiplicities, of Lst

q (Γ)
is denoted by λn(Lst

q ) = λn(Lst
q (Γ)). When we write σ(Lst

q1(Γ1)) = σ(Lst
q2(Γ2))

we mean not only equality as sets, but also that the multiplicities of all eigen-
values are equal.

For a given finite compact graph of total length L with N edges and M
vertices, the following lower and upper estimates can be proven (see “Appen-
dix” for the proof)

(π

L
)2

(n − M)2 ≤ λn(Lst
0 ) ≤

(π

L
)2

(n + N − 1)2. (2.2)

In particular this estimate implies that the multiplicity of the eigenvalues is
uniformly bounded by M + N , since (2.2) implies

λn−N+1 ≤ π2

L2
n2 ≤ λn+M .

The above estimate is enough for our purposes, but it may be improved
further taking into account the structure of the graph [17].

Another implication of (2.2) is the well-known Weyl asymptotics:

lim
n→∞

λn(Lst
0 )

(πn/L)2
= 1. (2.3)
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We shall also need the following uniform bound on the amplitude of
eigenfunctions of the Laplacian on finite metric graphs:

‖ψ‖L∞ ≤ c(Γ) ‖ψ‖L2 , (2.4)

where the constant c(Γ) is determined by the graph Γ but is independent
of n.

One can find explicit proofs of all the above mentioned formulas (2.2),
(2.3), and (2.4) in the “Appendix”.

3. Definition of the Operator

The following well-known Sobolev estimate (a special case of Gagliardo-
Nirenberg estimate) is valid for any function ψ ∈ W 1

2 (0, �) on an interval
of finite length � < ∞ (see proof in the “Appendix”)

‖ψ‖2
L∞ ≤ ε‖ψ′‖2

L2
+

2
ε
‖ψ‖2

L2
(3.1)

for sufficiently small ε > 0. The constants, though sufficient for our needs,
may be improved if one is willing to sacrifice some elegance in the proof.

In particular any function ψ ∈ W 1
2 (Γ \V ) will satisfy the estimate (3.1)

on each edge En of Γ, with � = �n. As the set of edges is finite there is an
edge that has minimal length so we obtain a global estimate of |ψ(x)|2 on Γ:

Corollary 3.1. Let Γ be a finite compact graph and ψ ∈ W 1
2 (Γ). Then

‖ψ‖2
L∞(Γ) ≤ ε‖ψ′‖2

L2(Γ) +
2
ε
‖ψ‖2

L2(Γ) (3.2)

for sufficiently small ε > 0 and x ∈ Γ.

Proposition 3.2. Let q ∈ L1(Γ), and let Qq be the quadratic form given by

Qq(ψ,ψ) =
∫

Γ

q(x)|ψ(x)|2dx,

and QLst
0

the quadratic form associated with Lst
0 . Then for sufficiently small

ε > 0 there exists b(ε) such that

|Qq(ψ,ψ)| ≤ εQLst
0
(ψ,ψ) + b(ε)(ψ,ψ).

In other words Qq is infinitesimally bounded by QLst
0
.

Proof. Corollary 3.1 shows that for sufficiently small ε > 0

|ψ(x)|2 ≤ ε‖ψ′‖2
L2(Γ) +

2
ε
‖ψ‖2

L2(Γ).

Multiplying by q and integrating we obtain
∣∣∣∣
∫

Γ

q(x)|ψ(x)|2dx

∣∣∣∣ ≤
∫

Γ

|q(x)||ψ(x)|2dx

≤ ε‖q‖L1(Γ)‖ψ′‖2
L2(Γ) +

2
ε
‖q‖L1(Γ)‖ψ‖2

L2(Γ)

= ε‖q‖L1(Γ)QLst
0
(ψ,ψ) +

2
ε
‖q‖L1(Γ)‖ψ‖2

L2(Γ).

Replacing ε with ε/‖q‖L1(Γ), we may chose b(ε) = 2
ε ‖q‖2

L1(Γ). �
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The KLMN theorem [32] now lets us conclude that there is a unique
bounded from below self-adjoint operator associated with the form QLst

0
+Qq:

Definition 3.1. For q ∈ L1(Γ) we denote by Lst
q (Γ) the operator associated

with the form QLst
0

+ Qq.

We note that the form domains of Lst
q and Lst

0 coincide, and

(Lst
q ψ, φ) = (Lst

0 ψ, φ) +
∫

Γ

q(x)ψ(x)φ(x)dx,

for all ψ, φ ∈ Dom(QLq
) = Dom(QLst

0
).

4. Spectral Estimates

We recall the following standard variational theorems, see e.g. [32] for proofs.
The lowest eigenvalue will be denoted by λ0.

Proposition 4.1. (Min-Max). Let A be a self-adjoint, bounded from below,
operator with discrete spectrum, then the nth eigenvalue of A is given by

λn−1(A) = min
Vn

max
u∈Vn

‖u‖L2=1

QA(u, u),

where Vn ranges over all n-dimensional subspaces of Dom(QA), the domain
of the quadratic form QA associated with A.

Proposition 4.2. (Max-Min). Let A be a self-adjoint bounded from below, op-
erator with discrete spectrum, then the nth eigenvalue of A is given by

λn−1(A) = max
Vn−1

min
u⊥Vn−1
‖u‖L2=1

QA(u, u),

where Vn−1 ranges over all (n − 1)-dimensional subspaces of Dom(QA), the
domain of the quadratic form QA associated with A.

In order to apply Propositions 4.1 and 4.2 as we do in the following it
is of course required that the spectrum of Lst

q (Γ) is discrete. For Schrödinger
operators with L1 potentials on finite intervals this is well known, so it is true
for finite metric graphs as well since these are just finite-rank perturbations—
in the resolvent sense—of the Dirichlet Schrödinger operators (defined by
Dirichlet conditions at all vertices), which is nothing else than an orthogonal
sum of Dirichlet Schrödinger operators on a collection of finite intervals.

We now proceed to prove the spectral estimate for finite compact graphs,
i.e. we show that the difference between the Laplace and the Schrödinger
eigenvalues is uniformly bounded:

Theorem 4.3. Let Γ be a finite compact metric graph, and let q ∈ L1(Γ).
Then the difference between the eigenvalues λn(Lst

0 ) and λn(Lst
q ) is bounded

by a constant, i.e.

|λn(Lst
0 ) − λn(Lst

q )| ≤ C, (4.1)

where C = C(Γ, ‖q‖L1(Γ)) is independent of n.
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Similar questions have been discussed in [11] for the case of equilateral
metric graphs.

We are going to prove the Theorem using Propositions 4.1 and 4.2. To
illustrate the strategy let us first try to derive an upper estimate for λn(Lst

q )
using a more naive approach. The quadratic form is

QLst
q
(u, u) =

∫

Γ

|u′(x)|2dx +
∫

Γ

q(x)|u(x)|2dx.

It can be estimated from above by

QLst
q
(u, u) ≤ QLst

q+
(u, u) =

∫

Γ

|u′(x)|2dx +
∫

Γ

q+(x)|u(x)|2dx, (4.2)

where q+ is the positive part of the potential q:

q(x) = q+(x) − q−(x), q±(x) ≥ 0. (4.3)

This step cannot be improved much, since the new estimate coincides with
the original one in the case where q is nonnegative.

The idea how to proceed is to choose a particular n-dimensional sub-
space V0

n. Then the Rayleigh quotient gives not an exact value for λn−1(Lst
q ),

but an upper estimate when Proposition 4.1 is used

λn−1(Lst
q ) = min

Vn

max
u∈Vn

QLst
q
(u, u)

‖u‖2
L2

≤ max
u∈V0

n

QLst
q
(u, u)

‖u‖2
L2

.

The only reasonable candidate for V0
n we have at hand is the linear span of

the Laplacian eigenfunctions corresponding to the n lowest eigenvalues

V0
n = L

{
ψ

Lst
0

0 , ψ
Lst

0
1 , . . . , ψ

Lst
0

n−1

}
. (4.4)

If q ≡ 0 then this estimate gives the exact value for λn−1. Therefore it is
natural to split the quadratic form as follows:

λn−1(Lst
q ) ≤ max

u∈V0
n

QLst
q
(u, u)

‖u‖2
L2

≤ max
u∈V0

n

∫
Γ

|u′(x)|2dx

‖u‖2
L2

+ max
u∈V0

n

∫
Γ

q+(x)|u(x)|2dx

‖u‖2
L2

.

Then the first quotient is equal to λn−1(Lst
0 ) and the maximum is attained

on

u = ψ
Lst

0
n−1.

If nothing about q is known, then to estimate the second quotient one may
use

∫

Γ

q+(x)|u(x)|2dx ≤ ‖q+‖L1(Γ)

(
max
x∈Γ

|u(x)|
)2

. (4.5)
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We need to estimate |u(x)|2, provided u =
∑n−1

j=1 αjψ
Lst

0
j . Since max |ψLst

0
j (x)|

≤ c (formula (2.4)) we obtain with the Schwarz inequality

max
x∈Γ

|u(x)| ≤
n−1∑

0

|αj |max |ψLst
0

j (x)| ≤ c

n−1∑

0

|αj |

≤ c
√

n

(
n−1∑

0

|αj |2
)1/2

= c
√

n‖u‖L2 .

Hence ∫
Γ

q+(x)|u(x)|2dx

‖u‖2
L2

≤ ‖q+‖L1c
2n,

and

QLst
q
(u, u) ≤ (

λn−1(Lst
0 ) + c2n‖q+‖L1

) ‖u‖2
L2

, (4.6)

which implies

λn−1(Lst
q ) − λn−1(Lst

0 ) ≤ ‖q+‖L1c
2n, (4.7)

i.e. we do not get an estimate uniform in n—the estimate grows linearly with
n. The reason is the splitting of the quadratic form of Lst

q into two parts. To
obtain the upper bounds we used two intrinsically different vectors: the first
term is maximized if u = ψ

Lst
0

n−1, while to estimate the second term we used

u = ψ
Lst

0
0 + ψ

Lst
0

1 + · · · + ψ
Lst

0
n−1. This is the reason that the estimate (4.7) is

not optimal.

Proof of Theorem 4.3. We divide the proof into two parts deriving upper and
lower estimates separately.

Upper Estimate

As before we use the estimate

λn−1(Lst
q ) ≤ max

u∈V0
n

∫
Γ

|u′(x)|2dx +
∫
Γ

q+(x)|u(x)|2dx

‖u‖2
L2

, (4.8)

where V0
n is defined by (4.4). Every function u =

∑n−1
j=0 αjψ

Lst
0

j from V0
n can

be written as a sum u = u1 + u2, where

u1 := α0ψ
Lst

0
0 + α1ψ

Lst
0

1 + · · · + αn−p−1ψ
Lst

0
n−p−1,

u2 := αn−pψ
Lst

0
n−p + αn−p+1ψ

Lst
0

n−p+1 + · · · + αn−1ψ
Lst

0
n−1.

Here p is a natural number to be fixed later (independent of n, but depending
on Γ and q). Therefore as n increases the first function u1 will contain an
increasing number of terms, while the second function will always be given
by a sum of p terms.

From the inequality
∫ |u1 + u2|2dx ≤ 2

∫ |u1|2dx + 2
∫ |u2|2dx and the

fact that q+ is nonnegative we have
∫

Γ

q+(x)|u1(x) + u2(x)|2dx ≤ 2
∫

Γ

q+(x)|u1(x)|2dx + 2
∫

Γ

q+(x)|u2(x)|2dx.

(4.9)
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That u1, u2 are orthogonal is clear, and from this the orthogonality of u′
1 and

u′
2 also follows:

(u′
1, u

′
2) = −(u′′

1 , u2) = −
n−p−1∑

i=0

λi(Lst
0 )(αiψ

Lst
0

i u1, u2) = 0.

Taking this into account we arrive at

QLst
q+

(u, u) ≤
∫

Γ

|u′
1(x)|2dx + 2

∫

Γ

q+(x)|u1(x)|2dx

︸ ︷︷ ︸
=: QLst

2q+
(u1, u1)

+
∫

Γ

|u′
2(x)|2dx + 2

∫

Γ

q+(x)|u2(x)|2dx

︸ ︷︷ ︸
=: QLst

2q+
(u2, u2)

.
(4.10)

To estimate the first form we use (4.5) and the Sobolev estimate (3.2) for
max |u(x)|. We get

QLst
2q+

(u1, u1) =
∫
Γ

|u′
1(x)|2dx + 2

∫
Γ

q+(x)|u1(x)|2dx

≤ ‖u′
1‖2

L2
+ 2‖q+‖L1 maxx∈Γ |u1(x)|2

≤ ‖u′
1‖2

L2
+ 2‖q+‖L1(ε‖u′

1‖2
L2

+ 2
ε ‖u1‖2

L2
)

= (1 + 2ε‖q+‖L1)‖u′
1‖2

L2
+ 4

ε ‖q+‖L1‖u1‖2
L2

.

Using

‖u′
1‖2

L2 = (u′
1, u

′
1) = −(u′′

1 , u1) =

n−p−1∑

j=0

λj(L
st
0 )(αjψj , αjψj)

=

n−p−1∑

j=0

λj(L
st
0 )|αj |2 ≤ λn−p−1(L

st
0 )

n−p−1∑

j=0

|αj |2 = λn−p−1(L
st
0 )‖u1‖2

L2 ,

(4.11)

we get

QLst
2q+

(u1, u1) ≤ (1 + 2ε‖q+‖L1)‖u′
1‖2

L2
+ 4

ε ‖q+‖L1‖u1‖2
L2

≤ (
(1 + 2ε‖q+‖L1)λn−p−1(Lst

0 ) + 4
ε ‖q+‖L1

) ‖u1‖2
L2

.

The key point is that ε and p can be chosen in such a way that

(1 + 2ε‖q+‖L1)λn−p−1(Lst
0 ) +

4
ε
‖q+‖L1 < λn−1(Lst

0 )

holds (see (4.14) below).
On the other hand, our naive approach (4.6) can be applied to the

second form with the only difference being that the number of eigenfunctions
involved is p, not n

QLst
2q+

(u2, u2) ≤ (
λn−1(Lst

0 ) + 2c2p‖q+‖L1

) ‖u2‖2
L2

. (4.12)



IEOT Schrödinger Operators on Graphs and Geometry II Page 11 of 24 40

Putting together the obtained estimates in (4.10) and using that ‖u2‖2
L2

=
‖u‖2

L2
− ‖u1‖2

L2
we get

QLst
q
(u, u) ≤ (

(1 + 2ε‖q+‖L1)λn−p−1(Lst
0 ) + 4

ε ‖q+‖L1

) ‖u1‖2
L2

+
(
λn−1(Lst

0 ) + 2c2p‖q+‖L1

) ‖u2‖2
L2≤ λn−1(Lst

0 )‖u‖2
L2

+ 2c2p‖q+‖L1p‖u‖2
L2− (

λn−1(Lst
0 ) − (1 + 2ε‖q+‖L1)λn−p−1(Lst

0 ) − 4
ε ‖q+‖L1

) ‖u1‖2
L2

.

We would get the desired estimate

λn−1(Lst
q ) ≤ max

u∈V0
n

QLst
q
(u, u)

‖u‖2
L2

≤ λn−1(Lst
0 ) + C (4.13)

with C = 2c2p‖q+‖L1 if we manage to prove that

λn−1(Lst
0 ) − (1 + 2ε‖q+‖L1)λn−p−1(Lst

0 ) − 4
ε
‖q+‖L1 > 0 (4.14)

for a certain ε that may depend on n and p. We use the estimate for Laplacian
eigenvalues given in (2.2):

(π

L
)2

(n − M)2 ≤ λn(Lst
0 ) ≤

(π

L
)2

(n + N − 1)2. (4.15)

Substituting λn−1(Lst
0 ) with the lower bound and λn−p−1(Lst

0 ) with the
upper and setting ε = 1/n, we get the following inequality for the left-hand
side of (4.14)

λn−1(Lst
0 ) − (1 + 2/n‖q+‖L1)λn−p−1(Lst

0 ) − 4n‖q+‖L1

≥
(π

L
)2

(n − 1 − M)2 − (1 + 2/n‖q+‖L1)

×
(π

L
)2

(n − 1 − p + N − 1)2 − 4n‖q+‖L1

= 2n
(π

L
)2 (

p − M − N + 1 −
(
1 + 2

(L
π

)2)
‖q+‖L1

)
+ O(1).

We see that for any integer p > M + N − 1 + (1 + 2(L/π)2)‖q+‖L1 the
expression is positive for sufficiently large n and the difference between the
eigenvalues possesses the uniform upper estimate:

λn(Lst
q ) − λn(Lst

0 ) ≤ C. (4.16)

If one is interested in the difference between the eigenvalues for large n only,
then the constant C can be taken equal to

C = 2c2‖q‖L1(M + N − 1 + (1 + 2(L/π)2)‖q‖L1),

but this value of C may be too small in order to ensure that (4.16) holds
for all n, since proving (4.14) we assumed that n is sufficiently large. The
latter assumption does not affect the final result, since for a finite number of
eigenvalues (4.16) is always satisfied, but the value of the constant C may be
affected.
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Lower Estimate

To obtain a lower estimate we are going to use the Max-Min principle (Propo-
sition 4.2). The first step is to notice that

QLst
q
(u, u) ≥

∫

Γ

|u′(x)|2dx −
∫

Γ

q−(x)|u(x)|2dx. (4.17)

Using the subspace V0
n−1 defined in (4.4) we get

λn−1(Lst
q ) ≥ min

u⊥Vn−1

QLst
q
(u, u)

‖u‖2
L2

.

Since u is orthogonal to V0
n−1 it possesses the representation

u =
∞∑

j=n−1

αjψ
Lst

0
j .

As before let us split the function u = u1 + u2

u1 := αn−1ψ
Lst

0
n−1 + αnψ

Lst
0

n + · · · + αn+p−2ψ
Lst

0
n+p−2,

u2 := αn+p−1ψ
Lst

0
n+p−1 + αn+pψ

Lst
0

n+p + . . . .

Note two important differences:
• the function u1 is given by the sum of p terms, where the number p in-

dependent of n will be chosen later, so the functions u1 and u2 exchange
roles compared with the proof of the upper estimate;

• the function u2 is given by an infinite series, not by an increasing number
of terms as the function u1 in the proof of upper estimate.

Using the fact that q− is nonnegative we may split the quadratic form (com-
pare (4.10))

QLst
q−

(u, u) ≥
∫

Γ

|u′
1(x)|2dx − 2

∫

Γ

q−(x)|u1(x)|2dx

︸ ︷︷ ︸
=: QLst

−2q−
(u1, u1)

+
∫

Γ

|u′
2(x)|2dx − 2

∫

Γ

q−(x)|u2(x)|2dx

︸ ︷︷ ︸
=: QLst

−2q−
(u2, u2)

. (4.18)

Now the function u1 is given by a finite number of terms and we may similarly
to (4.12) estimate

QLst
−2q−

(u1, u1) ≥ (
λn−1(Lst

0 ) − 2c2p‖q−‖L1(Γ)

) ‖u1‖2
L2

. (4.19)

To estimate the second form we use (4.5) and the Sobolev estimate (3.2) for
max |u(x)|2. We get

QLst
−2q−

(u2, u2) ≥ ‖u′
2‖2

L2
− 2‖q−‖L1 max |u2(x)|2

≥ ‖u′
2‖2

L2
− 2‖q−‖L1

(
ε‖u′

2‖2
L2

+ 2
ε ‖u2‖2

L2

)

= (1 − 2ε‖q−‖L1)‖u′
2‖2

L2
− 4‖q−‖L1

ε ‖u2‖2
L2

.
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Taking into account

‖u′
2‖2

L2
= (u′

2, u
′
2) = −(u′′

2 , u2) =
∞∑

j=n+p−1

λj(Lst
0 )(αjψj , αjψj)

=
∞∑

j=n+p−1

λj(Lst
0 )|αj |2 ≥ λn+p−1(Lst

0 )
∞∑

j=n+p−1

|αj |2

= λn+p−1(Lst
0 )‖u2‖2

L2
,

(4.20)

we arrive at

QLst
−2q−

(u2, u2)

≥
(

(1 − 2ε‖q−‖L1(Γ))λn+p−1(Lst
0 ) − 4‖q−‖L1(Γ)

ε

)
‖u2‖2

L2
. (4.21)

Summing the estimates (4.19) and (4.21) and taking into account that
‖u2‖2

L2
= ‖u‖2

L2
− ‖u1‖2

L2
we get

QLst
q
(u, u) ≥ (

λn−1(Lst
0 ) − 2c2p‖q−‖L1

) ‖u1‖2
L2

+
(

(1 − 2ε‖q−‖L1)λn+p−1(Lst
0 ) − 4‖q−‖L1

ε

)
‖u2‖2

L2

≥ λn−1(Lst
0 )‖u‖2

L2
− 2c2p‖q−‖L1‖u‖2

L2

+
(

(1 − 2ε‖q−‖L1)λn+p−1(Lst
0 ) − 4‖q−‖L1

ε
− λn−1(Lst

0 )
)

‖u2‖2
L2

.

As before, to prove the desired uniform estimate it is sufficient to show that
for large enough n the following expression can be made positive by choosing
an appropriate ε:

(1 − 2ε‖q−‖L1)λn+p−1(Lst
0 ) − 4‖q−‖L1

ε
− λn−1(Lst

0 ) > 0. (4.22)

Again we use (4.15): we substitute λn+p−1(Lst
0 ) with the lower bound and

λn−1(Lst
0 ) with the upper. As before we choose ε = 1/n, so the left-hand side

of (4.22) becomes

(1 − 2ε‖q−‖L1)λn+p−1(Lst
0 ) − 4

ε
‖q−‖L1 − λn−1(Lst

0 )

≥ (1 − 2‖q−‖L1/n)
(π

L
)2

(n + p − 1 − M)2

−4n‖q−‖L1 −
(π

L
)2

(n − 1 + N − 1)2

= 2n
(π

L
)2 (

p − M − N + 1 −
(
1 + 2

(L
π

)2 )
‖q−‖L1

)
+ O(1).

If p > M + N − 1 + (1 + 2(L/π)2)‖q−‖L1 , then for sufficiently large n the
expression is positive, hence the following lower estimate holds

λn(Lst
q ) − λn(Lst

0 ) ≥ C, (4.23)

where the exact value of C is determined by the difference between the first
few eigenvalues as described above. �
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Theorem 4.3 allows us to conclude that the spectra of Schrödinger op-
erators satisfy Weyl asymptotics as well:

Corollary 4.4. Let q ∈ L1(Γ), then λn(Lst
q (Γ)) satisfies Weyl asymptotics.

Proof. This is an immediate consequence of (2.3) and Theorem 4.3. �

More importantly we may now show that the effect of an L1-perturbation
on the eigenvalues will tend to zero in n in the scale of square roots. This
step is critical in the proof of Theorem 6.5.

Corollary 4.5. Let λn(Lst
q ) = k2

n,q and λn(Lst
0 ) = k2

n,0. If |λn(Lst
q )−λn(Lst

0 )| ≤
C ∈ R then |kn,q − kn,0| ≤ C0

n , for some constant C0 ∈ R. In particular,

|kn,q − kn,0| → 0, n → ∞. (4.24)

Proof. Since the eigenvalues satisfy Weyl asymptotics that depend only on
the length of Γ we have that kn,q, kn,0 ≥ nD for some constant D and suffi-
ciently large n. We have

|kn,q − kn,0| =
∣∣∣ (kn,q+kn,0)(kn,q−kn,0)

kn,q+kn,0

∣∣∣ =
∣∣∣k2

n,q−k2
n,0

kn,q+kn,0

∣∣∣

=
∣∣∣λn(Lst

q )−λn(Lst
0 )

kn,q+kn,0

∣∣∣ ≤ C
|kn,q+kn,0| ≤ C0

n ,

for some constant C0 ∈ R. �

5. On the Zeros of Trigonometric Polynomials

In this section we recall the secular equation for the spectrum σ(Lst
0 (Γ)): it

is given as the squares of the zeros of a trigonometric polynomial. We then
prove that if the zeros km of such a finite trigonometric polynomial with
constant coefficients are close to a certain equispaced sequence, i.e. satisfy
|km − mπ/L| → 0 then in fact km = mπ/L for all m (Theorem 5.2). From
this we then prove the geometric Ambartsumian Theorem 6.5.

Theorem 5.1. Let Γ be a finite compact metric graph. The eigenvalues λn(Lst
0 )

are given by the squares of the zeros of a certain trigonometric polynomial

p(k) =
N∑

n=1

aneiωnk

with k-independent coefficients an ∈ C and ωn ∈ R: λn(Lst
0 ) = k2

n,0 if and
only if p(kn,0) = 0.

Proof. We sketch the proof: for each non-zero eigenvalue the corresponding
eigenfunction is edge-wise just a sum of sine and cosine functions: ψ(x) =
aj cos(kx) + bj sin(kx), x ∈ Ej . The solutions have to satisfy the vertex
conditions. Continuity can at each V be written as

ai cos kx + bi sin kx = aj cos ky + bj sin ky,
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if x ∈ Ei, y ∈ Ej , and x, y ∈ V . This yields 2N − M equations, where N is
the number of edges and M is the number of vertices. The conditions on the
normal derivatives can at each vertex V be written as∑

xj∈V

(−1)j
(−a[(j+1)/2] sin kxj + b[(j+1)/2] cos kxj

)
= 0,

where k has been factored out. This yields an additional M equations, so
that we in total have 2N equations, which may be written in the form:

T (k)�c = 0,

with �c a vector of the coefficients ai, bi and T (k) a matrix with trigonometric
entries depending on k. A real number λ = k2 is an eigenvalue of Lst

0 if and
only if k is a root of the trigonometric polynomial detT (k) = 0. We refer to
[6,18] for details. See also eg. [15] and [26]. �

Note that it is crucial that the vertex conditions were standard: in the
case of more general vertex conditions the secular equation is given by a
quasipolynomial instead of the trigonometric polynomial.

Theorem 5.2. Let f be the trigonometric polynomial

p(k) =
J∑

j=1

aje
iωjk (5.1)

with all ωj ∈ R, aj ∈ C. If the zeros km of f satisfy

lim
m→∞(km − m) = 0

then km = m for all m.

First we need a Lemma:

Lemma 5.3. Given ω1, . . . , ωJ ∈ R there exists a subsequence {mn} of the
natural numbers such that, for each ωj,

eiωjmn → 1.

Proof. For �ω := (ω1, . . . , ωJ ) ∈ R
J let [�ω] := ([ω1], . . . , [ωJ ]) denote the

image of ω under the standard projection to the J-torus: RJ → (R/2πZ)J .
The statement of the Lemma is equivalent to the existence of an increasing
sequence of integers mn such that [mnω] → �0 := (0, . . . , 0) ∈ (R/2πZ)J .
Consider the set of points m�ω, with m ∈ N and its projection [m�ω] =
([mω1], . . . , [mωJ ]). Since the J-torus is compact this set has a limit point
�z and an increasing subsequence (mi) ⊂ N such that [mi�ω] → �z. This is
a Cauchy sequence so for any ε > 0 there exists I(ε) such that for any
i1, i2 ≥ I(ε)

d([ni1�ω], [ni2�ω]) < ε,

where d(·, ·) denotes the metric on the J-torus. Taking a sequence εi → 0
we may chose i1(εi) = I(εi) and in each step i2(εi) > I(εi) so large that the
difference

mi := ni2(εi) − ni1(εi),
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is an increasing sequence. It follows that

[mi�ω] = [(ni2(εi) − ni1(εi))�ω] → �0. �
Remark 5.1. Note that in the special case where 2π, ω1, . . . , ωJ are rationally
independent the classical theorem of Kronecker (see e.g. [16]) can be used.

Proof of Theorem 5.2. Consider the trigonometric polynomial p(k) in (5.1).
Denote km − m =: γm so that γm tends to zero as m → ∞. We have km =
m + γm so for each ωj :

eiωjkm = eiωjmeiωjγm .

Choose a subsequence {mn} as described in Lemma 5.3 and pass, for an
arbitrary r ∈ N, to the (r + mn):th zero of p. We have

0 = p(kr+mn
) =

J∑

j=1

aje
iωj(r+mn)eiωjγ(r+mn)

=
J∑

j=1

aje
iωjreiωjmneiωjγ(r+mn) →

J∑

j=1

aje
iωjr = p(r),

as n → ∞. The limit follows from the choice of mn and the fact that γ(r+mn)

tends to 0.
The above calculation shows that p(r) = 0. But p(r) = 0 and kr −r → 0

together imply that kr = r, since even a single extra zero would make the
asymptotic behaviour impossible. �
Remark 5.2. It is not important in the above theorem that kn tends to the
integers. A scaling argument allows one to extend it to the case where kn are
close to integer-multiples of an arbitrary real number.

6. An Ambartsumian Theorem

With the result of the previous two sections we are now in a position to
prove an inverse spectral theorem that may be seen as a generalization of
Ambartsumian’s classical theorem. For the proof we recall the classical result
as well as its geometric version for Laplacians.

The following theorem has been a source of inspiration for researchers
in inverse problems for almost a century. In the original article [1] it was
assumed that the potential is continuous, but the result holds even if q ∈ L1.
We adjusted the formulation to our notations.

Proposition 6.1. (Ambartsumian’s theorem [1]) Let q be a real-valued abso-
lutely integrable function on an interval I. Then the spectrum of the stan-
dard Schrödinger operator Lst

q (I) coincides with the spectrum of the standard
Laplacian Lst

0 (I) if and only if the potential q is identically equal to zero.

Standard conditions on a single compact interval is of course just the
classical Neumann conditions at both end-points. It appears that the theorem
is still valid if instead of the interval I we have arbitrary connected finite com-
pact metric graph Γ. This result was proven step-by-step by several authors
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[10,27,29,36] and [30], but the most general version was given by E.B. Davies
[12] (Davies proved it for q ∈ L∞(Γ) but noted that this condition surely can
be weakened).

Proposition 6.2. (following [12]) Let Lst
q (Γ) and Lst

0 (Γ) be the standard Schrö-
dinger and Laplace operators on a connected finite compact metric graph Γ.
Assume that the potential q is absolutely integrable. Then the eigenvalues of
the two operators coincide if and only if the potential q is equal to zero almost
everywhere.

The second theorem is a geometric version of Ambartsumian theorem
for standard Laplacians. We start by recalling the result that among graphs
with fixed total length the spectral gap is minimized by the single interval
[13,28] and [25]:

Proposition 6.3. (Theorem 3 from [25]) Let Lst
0 (Γ) be the standard Laplace

operator on a connected finite compact metric graph Γ of total length L(Γ).
Assume that the first (nonzero) eigenvalue of Lst

0 (Γ) coincides with the first
(nonzero) eigenvalue of the Laplacian on the interval I of length L(Γ)

λ1(Lst
0 (Γ)) = λ1(Lst

0 (I));

then the graph Γ coincides with the interval I.

The multiplicity of the eigenvalue zero for the standard Laplacian is
equal to the number of connected components in the metric graph and the
asymptotics of the spectrum determines the total length of the graph. Hence
the above proposition implies:

Theorem 6.4. Let Γ be a finite compact metric graph. The spectrum of the
standard Laplacian on Γ coincides with the spectrum of the standard Lapla-
cian on the interval I

λj(Lst
0 (Γ)) = λj(Lst

0 (I)), j = 0, 1, 2, . . . , (6.1)

if and only if the graph Γ coincides with the interval I.

The assumptions of the theorem can be weakened, since to ensure that
Γ and I have the same total length it is enough to check the asymptiotics.

Our goal is to prove that if the spectrum of a Schrödinger operator on
a metric graph coincides with the spectrum of the Laplacian on an interval
then the graph coincides with the interval and the potential is zero. This
statement cannot be proven as a simple combination of the above mentioned
results (Proposition 6.2 and Theorem 6.4). The main difficulty is to show
that the graph coincides with the interval. Theorem 6.4 cannot be applied
directly, since it requires q ≡ 0.

Theorem 6.5. Let Γ be a finite compact metric graph and q ∈ L1(Γ). The
spectrum of the standard Schrödinger operator Lst

q (Γ) coincides with the spec-
trum of the standard (i.e. Neumann) Laplacian on an interval

λj(Lst
q (Γ)) = λj(Lst

0 (I)), (6.2)

if and only if Γ = I and q ≡ 0.
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Proof. Equation (6.2) implies that the total length of the graph Γ coincides
with the length of the interval I. To see this it is enough to compare the
corresponding asymptotics. Then the spectrum of the Laplacian on I is

λn(Lst
0 (I)) =

(πn

L
)2

, n ∈ N.

The spectral estimate (4.1) implies that
∣∣ λn(Lst

q (Γ))
︸ ︷︷ ︸

=
(πn

L
)2

−λn(Lst
0 (Γ)

∣∣ = O(1).

Hence the square roots of the eigenvalues of Lst
0 (Γ) satisfy

∣∣∣kn(Lst
0 (Γ)) − πn

L
∣∣∣ → 0, as n → ∞. (6.3)

But kn are given as the zeros of a trigonometric polynomial (Theorem 5.1).
Hence the spectrum of the Laplacian on Γ given by zeroes of the trigono-
metric polynomial is asymptotically close to a set of equidistant points and
Theorem 5.2 can be applied. We conclude that in fact kn(Lst

0 (Γ)) = πn/L, for
all n. This means that the spectrum of the Laplacian on Γ coincides with the
spectrum of the Laplacian on an intreval. We may finally apply the geometric
version of Ambartsumian theorem for Laplacians (Theorem 6.4) to conclude
that the graph Γ coincides with the interval I. But then Ambartsumian’s
classical theorem (Proposition 6.1) implies that the potential is identically
equal to zero q ≡ 0. �

Proving our main theorem we have shown that in order to ensure that
the graph Γ coincides with the interval, it is enough to require that the
spectrum of the Schrödinger operator is close to the spectrum of the Laplacian
on an interval. In fact we proved the following theorem:

Theorem 6.6. Let Lst
q (Γ) be standard Schrödinger operator with L1-potential

on a finite compact connected metric graph Γ. Then Γ = I if
√

λn(Lst
q (Γ)) −

√
λn(Lst

0 (I)) → 0, n → ∞. (6.4)

7. Euler Characteristic

The spectral estimate (4.1) allows us to extend a previous result of one of
the authors regarding the Euler characteristic χ = M − N .

Theorem 7.1. Let Γ be a finite compact metric graph and q ∈ L1(Γ). Then the
Euler characteristic χ(Γ) is uniquely determined by the spectrum σ(Lst

q (Γ)),
and can be calculated as the limit

χ(Γ) = 2 lim
t→∞

∞∑

n=0

cos
√

λn(Lst
q )/t

⎛

⎝
sin

√
λn(Lst

q )/2t
√

λn(Lst
q )/2t

⎞

⎠

2

, (7.1)
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with the convention that λn = 0 implies

sin
√

λn(Lst
q )/2t

√
λn(Lst

q )/2t
= 1. (7.2)

Proof. In [19] formula (7.1) was proven for the case of zero potential. In
other words formula (7.1) gives the Euler characteristics if one substitutes the
eigenvalues λn(Lst

0 ). We have shown that the difference between λn(Lst
q (Γ))

and λn(Lst
0 (Γ)) is uniformly bounded and therefore

|kn − k0
n| = O

(
1
n

)
. (7.3)

Taking into account Weyls asymptotics

k0
n =

π

Ln + O(1), (7.4)

one may apply Lemma 2 from [20] to conclude that formula (7.1) gives the
same result independently of whether the eigenvalues of the standard Lapla-
cian Lst

0 (Γ) or of the standard Schrödinger operator Lst
q (Γ) are

substituted. �

Note that proving the theorem we assumed that the vertex conditions
are standard; this assumption in general cannot be removed.

8. Discussion

It would be interesting to understand under which assumptions a similar
result holds for other than the standard vertex conditions that are assumed
throughout in this paper. The cases, where the vertex conditions are such
that the coefficients of the trigonometric polynomial given by Theorem 5.1
are k independent, could potentially be dealt with in a similar way as in
this paper. The bounds on the differences of the eigenvalues obtained in
Theorem 4.3 can be established for other choices of vertex conditions, but
Theorem 6.4 in general may fail.
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Appendix A: Elementary spectral properties

In this appendix we provide proofs for the elementary spectral properties
of quantum graphs already mentioned in Sect. 2. Most of these results are
well-known, but we need them for the sake of completeness.

Proof of formula (2.2). For a bounded from below self-adjoint operator A
with discrete spectrum, define the eigenvalue counting function EA : R → N,
by

EA(λ) = #{λj ∈ σ(A) |λj ≤ λ}.

The standard Laplacian is positive (hence the lower estimate in (2.2) is in-
teresting only if n > M) therefore when calculating the eigenvalue counting
function we assume that λ ≥ 0.

Consider first the Laplace operator LD
0 on a single interval I of length �

with Dirichlet conditions at the end-points. The eigenvalues are λn =
(

πn
�

)2,
n = 1, 2, . . . So the eigenvalue counting function for λ ≥ 0 is in fact given by

ELD
0 (I)(λ) =

[√
λ

π
�

]
,

where square-brackets denote the integer-part of the argument. Returning to
Γ we note that if we impose Dirichlet conditions on the vertices of Γ—denote
the operator by LD

0 (Γ)—then we really just have a decoupled set of intervals
and therefore the set of eigenvalues is just the union of the eigenvalues for
each interval (counting multiplicities). Therefore the corresponding counting
function ELD

0 (Γ) is given by

ELD
0 (Γ)(λ) =

N∑

n=1

ELD
0 (En)(λ)

=

[√
λ

π
�1

]
+

[√
λ

π
�2

]
+ · · · +

[√
λ

π
�N

]
≤

[√
λ

π
L

]
, (A.1)

since taking integer parts may only decrease the value. First adding and then
taking integer parts may—compared to adding the integer parts—at most
raise the value by the number of terms −1, i.e. the number of edges −1, so
conversely we also have

[√
λ

π
L

]
− N + 1 ≤ ELD

0 (Γ)(λ). (A.2)

Formulas (A.1) and (A.2) give effective two-sided bounds for the eigenvalues
of the Dirichlet Laplacian on Γ.

We now show that (LD
0 (Γ)−λ)−1 −(Lst

0 (Γ)−λ)−1 is of finite rank. Take
λ �= 0, and suppose that

(LD
0 − λ)uD = f, (Lst

0 − λ)ust = f.

Then for the differential operator −d2/dx2 we have that
(

− d2

dx2
− λ

)
(uD − ust) = 0.
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Since functions in the domain of LD
0 and Lst

0 are continuous, to determine the
rank of the resolvent difference, we need to determine dim ker

(
− d2

dx2 − λ
)

on
continuous functions. Prescribing values uj at each vertex Vj in Γ, we see
that a unique solution to this boundary value problem is given as follows: on
an edge En = [x2n−1, x2n] between Vi and Vj , set

u(x) := ui
sin k(x − x2n)

sin k(x2n−1 − x2n)
+ uj

sin k(x − x2n−1)
sin k(x2n − x2n−1)

for k2 = λ. Then u is continous on Γ and solves (−d2/dx2 − λ)u = 0, so
dim ker(−d2/dx2 − λ) ≤ M . Therefore we have

ELst
0 (Γ)(λ) ≤ ELD

0 (Γ)(λ) + M ≤
[√

λ

π
L

]
+ M. (A.3)

The lower estimate estimate (A.2) can be modified in a similar way, but
instead we shall take into account that Lst

0 (Γ) ≤ LD
0 (Γ). Really Dirichlet con-

ditions in particular imply the continuity of functions in the domain of the
quadratic form. Passing to standard conditions means weakening the con-
ditions on functions in the domain of the quadratic form, since now only
continuity is required at the vertices. Therefore the domain of the quadratic
form QLst

0
is larger than that of QLD

0
, so by the Min-Max principle (see Propo-

sition 4.1) eigenvalues can only go up when imposing Dirichlet conditions. In
particular, the lower bound (A.2) on the eigenvalue counting function ELD

0 (Γ)

is also valid for ELst
0 (Γ).

Putting the lower and upper estimates together we have
[√

λ

π
L

]
− N + 1 ≤ ELst

0 (Γ)(λ) ≤
[√

λ

π
L

]
+ M (A.4)

Setting λ = π2

L2 n2 we obtain

n − N + 1 ≤ ELst
0 (Γ)

(
π2

L2
n2

)
≤ n + M,

so

λn−N+1 ≤ π2

L2
n2 ≤ λn+M .

Setting n′ = n + M we get λn′ ≥ π2

L2 (n′ − M)2 and similarly we find λn′ ≤
π2

L2 (n′ + N − 1)2, which proves the theorem. �
Proof of formula (2.3). The Weyl asymptotics follow from the relation

(π

L
)2

(n − M)2 ≤ λn(Lst
0 ) ≤

(π

L
)2

(n + N − 1)2. �

Proof of formula (2.4). For ψ corresponding to λ = k2 we have

‖ψ‖2
L2(Γ) ≥

∫

En

|ψ(x)|2dx ≥
(

max
x∈En

|ψ(x)|
)2 1

2

[
�nk

2π

]
2π

k
,

where [·] denotes the integer part of the argument. [�nk/2π] may be equal to
zero for only finitely many k since the eigenvalues satisfy Weyl asymptotics.
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Since [�nk/2π]/k is bounded for k ∈ R this implies the existence of a k-
independent bound c(Γ). �

Proof of formula (3.1). Let xmin denote a global minimum for ψ. Then in
particular |ψ(xmin)|2 ≤ ‖ψ‖2

L2
/�. We then have

|ψ(x)|2 = |ψ(xmin)|2 + 2
∫ x

xmin

ψ(y)ψ′(y)dy

≤ |ψ(xmin)|2 + 2
∫ �

0

|ψ(y)ψ′(y)|dy

≤ |ψ(xmin)|2 + ε

∫ �

0

|ψ′(y)|2dy +
1
ε

∫ �

0

|ψ(y)|2dy

≤ ‖ψ‖2
2/� + ε‖ψ′‖2

2 +
1
ε
‖ψ‖2

2

= ε‖ψ′‖2
2 +

(
1
ε

+
1
�

)
‖ψ‖2

2.

For ε < � we have 1/ε > 1/� and the claim follows. �
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