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Abstract. We derive the off-diagonal short-time asymptotics of the heat
kernels of functions of generalised Laplacians on a closed manifold. As
an intermediate step we give an explicit asymptotic series for the kernels
of the complex powers of generalised Laplacians. Each asymptotic series
is formulated in terms of the geodesic distance. The key application con-
cerns upper bounds for the transition density of subordinate Brownian
motion. The approach is highly explicit and tractable.
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1. Introduction

Let M be a closed Riemannian manifold of dimension n and let A be a gen-
eralised Laplacian acting on smooth functions on M , i.e. A is a second-order
differential operator whose principal symbol is the metric tensor. Given the
short-time asymptotics of the heat kernel K(e−tA;x, y) of A we represent
the off-diagonal kernel of the complex powers K(A−z;x, y) as an asymptot-
ic series in powers of the geodesic distance d(x, y). We finally consider the
operator f(A) for suitable functions f and give short-time asymptotics of
the heat kernel of f(A) denoted by K(e−f(A)t;x, y) and Aronson-type upper
bounds. Schematically, this can be illustrated as follows where d denotes the
geodesic distance on M .
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K
(
e−tA;x, y

) ∼ (
1

2πt

)n/2
e−d(x,y)2/4t

∞∑

k=0

Hk(x, y)tk as t → 0

⇓

Γ(z)K(A−z;x, y) ∼
∞∑

k=0

Φk(z;x, y)
(

1
4d(x, y)2

)n
2 −k−z

+
∞∑

k=0

Ψk(z;x, y)
(

1
4d(x, y)2

)k

⇓
K

(
e−tf(A);x, y

)
∼ te−mt

[
H(x, y) + O

(
d(x, y)−n−2α+4

)]

in lowest order in t, where

H(x, y) =
c0H0(x, y)
d(x, y)n+2α

+
c1H0(x, y) + c2H1(x, y)

d(x, y)n+2α−2

⇓∣
∣
∣K

(
e−tf(A);x, y

)∣
∣
∣ ≤ Cte−mt

(
(d(x, y) + t1/2α)−n−2α ∧ H(x, y)

)

for a constants α and m depending on f , constants c0, c1, c2 and functions
Φk,Ψk that depend on the H0,H1, . . . and will be made explicit.

We obtain these results by the well-known Handelsman–Lew method [6]
based on the Mellin transform and complex analysis. This allows an efficient,
tractable and explicit computation of the above series to arbitrary order
avoiding local calculations on the manifold in terms of operator symbols.

The kernels of the complex powers are not only the key building block
in the heat kernel analysis, they are also of independent interest. The on-
diagonal behaviour of the kernels is well-understood from index theory, while
the above series representation gives a complete description of the off-diagonal
integral kernels of the fractional powers Aα in terms of the heat kernel ex-
pansion of A.

The study of the off-diagonal heat kernel K(e−f(A)t;x, y) is motivated
from two perspectives: first, it allows to approximately solve the evolution
equation ∂tu(t) = f(A)u(t). Second, in probability theory one is interested
in the integral P(Xt ∈ B) =

∫
B

K(e−tA;x, y)dy for measurable B ⊆ M . This
gives the probability that a stochastic process X with infinitesimal generator
A that starts at the point x ∈ M at time 0 is in the set B at time t. Also, it
is the basis for Aronson-type estimates of the transition density.

The original motivation for this paper was to investigate the transition
density for subordinate Brownian motion on M . Here f is the Laplace ex-
ponent of the subordinator and A is the infinitesimal generator of Brownian
motion given by 1

2Δ. We illustrate this in Sect. 5.
For symmetric processes on Euclidean space and Riemannian manifolds,

there is a long tradition of upper and lower bounds of heat kernels leading
to Aronson-type estimates, cf. [12,17,18]. There is also a strand of research
that investigates jump processes on R

n, see the survey [9] for comprehen-
sive references and results. A more recent strand concerns jump processes
living in bounded domains in Euclidean space with boundaries of different
degrees of regularity. Exemplary investigations using sophisticated proba-
bilistic techniques cover the special cases of fractional Laplacians [8,10] and
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the relativistic stable processes [11]. The present paper can be regarded as a
complement the latter investigations as we consider certain jump processes
on closed manifolds.

Subordination in the sense of Bochner [7] allows to construct new sto-
chastic processes from a given process using a random time change. On the
level of generators of the corresponding semigroups, this translates to a func-
tional calculus, cf. [24] for an early presentation and for example [27,28] for
a general approach. We refer to [22,29] for a comprehensive and historically
exhaustive presentation.

The present paper considers subordinate Brownian motion using the
calculus of classical pseudodifferential operators. This is also the viewpoint
taken in [14,15]. These articles contain further references concerning the ap-
plication of pseudodifferential operators in the context of certain stochastic
processes. Noteworthy examples of this are the calculus developed in [20]
and in the context of Weyl-Hörmander operators the paper [2] which allows
variable-order subordination.

In the present paper, the geometry of the manifold is expressed by the
coefficient functions in the heat kernel expansion of the Laplace-Beltrami
operator. For completeness we mention that there is an alternative geometric
viewpoint for stochastic processes on Euclidean space as suggested in [23].
This leads to estimates of the transition density of symmetric Lévy processes
given in terms of a natural metric on the real line.

This paper is organised as follows. The following section collects some
preliminaries from the theory of pseudodifferential operators. Sect. 3 moti-
vates and states the key results, these are then proved in Sect. 4. Finally,
Sect. 5 applies the approach to obtain estimates of the transition density for
certain stochastic processes.

2. Preliminaries and Notation

For definitions of Sobolev spaces Hs(M) and the calculus of (classical) pseu-
dodifferential operators we refer the reader to [32]. We denote the space of
pseudodifferential operators of order r ∈ C by ΨDOr(M) and the subspace
of classical operators by ΨDOr

cl(M). In the notation of [32] this corresponds
to Lr

1,0(M) and CLr(M), respectively, with symbols from Sr
1,0(M). For Q ∈

ΨDOr(M), we denote its Schwartz kernel by K(Q;x, y).
Define the smooth weight function 〈x〉 = (1 + |x|2)1/2 for x ∈ R

n.
The standard inner product in L2(M) is denoted by round brackets (·, ·).
By Cl(M) we denote the set of l-times continuously differentiable functions
on M and by C∞(M) we denote the set of smooth functions on M . We
define the partial differential operators ∂j = ∂

∂xj
and for a multi-index β =

(β1, . . . , βn) ∈ N
n
0 we set ∂β

x = ∂β1
1 · · · ∂βn

n .
Recall that one can form the complex powers and the heat operator

as classical pseudodifferential operators. For the complex powers let Q ∈
ΨDOr

cl(M) with r > 0 such that the resolvent set of Q as an unbounded
operator on L2(M) contains the half line (−∞, 0]. Moreover assume
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||(Q − λI)−1|| ≤ C(1 + |λ|)−1 (2.1)

for any λ ∈ (−∞, 0] with operator norms on L2(M). Then it is a standard
result that one can form a family of operators Qz ∈ ΨDOrz

cl (M), cf. [31,32].
For Q ∈ ΨDOr

cl(M) with r > 0 such that Q is invertible and (2.1) holds
in a sector {λ ∈ C|θ ≤ arg λ ≤ 2π − θ} for θ ∈ (π/2, π), we can form the heat
operator e−tQ for t > 0 which belongs to ΨDO−∞

cl (M), cf. Section 5.6 in [1].
We recall the definition of asymptotic expansions of real-valued func-

tions. Given a function f : (0,∞) → R we say that f(t) ∼ ∑∞
k=0 aktαk as

t → 0+ if

lim
t→0+

t−αN

(

f(t) −
N∑

k=0

aktαk

)

= 0

for some coefficients ak ∈ R, αk ↑ ∞ and every N ≥ 0. Similarly for t → ∞.
The analogous definition holds for Banach-space valued functions.

Also recall the O-notation: we say that f(t) = O(g(t)) as t → t0 if there
is a constant C such that |f(t)| ≤ Cg(t) for any t in a neighbourhood of t0.

3. Statement of the Key Results

For ease of exposition and conscious of the probabilistic motivation we work
with differential operators on closed manifolds, cf. Remark 3.8.

Assumptions. We summarise the key assumptions.

Hypothesis 3.1. Assume A to be second-order differential operator such that
(i) A is a generalised Laplacian: its principal symbol is given by the metric

tensor;
(ii) A is symmetric; and
(iii) the lowest eigenvalue of A is strictly positive.

The final assumption is listed for convenience only: if A has lowest
eigenvalue 0, then as in §4 of [31] we consider A + εP instead where ε > 0 is
small and P is the projection onto the finite-dimensional kernel of A.

We recall the usual heat kernel asymptotics for generalised Laplacians.

Proposition 3.2. ([5], Theorem 2.30) Under Hypothesis 3.1 there are smooth
functions H0,H1, . . . : M × M → R such that

K
(
e−tA;x, y

) ∼ (
1

2πt

)n/2
e−d(x,y)2/4t

∞∑

k=0

Hk(x, y)tk (3.1)

as t → 0+ for x, y ∈ M . Here, d(x, y) is the geodesic distance of x, y ∈ M .

Since we want to consider f(A) defined by functional calculus we assume
that the function f has symbol-like properties.

Hypothesis 3.3. Let f : [0,∞) → [0,∞) be such that for some α ∈ (0, 1) the
following holds.

(i) The function f is smooth;
(ii) For any l ∈ N0 there is a constant Cl with |∂l

λf(λ)| ≤ Cl〈λ〉α−l for all
λ ≥ 0;
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(iii) The map f has the asymptotic expansion

f(λ) ∼ m + a0λ
α + a1λ

α−1 + a2λ
α−2 + · · · (3.2)

as λ → ∞ with a0, a1, . . . ∈ R and m < 0, i.e. strictly negative.

Example. The key example we have in mind is f(λ) = (1 + λ)α − 1, which is
probabilistically significant: the operator f(1

2Δ) is the infinitesimal generator
of the relativistic α-stable process, cf. Sect. 5. Here

f(λ) ∼ −1 + λα + αλα−1 + α(α−1)
2 λα−2 + · · ·

as λ → ∞ by Taylor’s theorem. More probabilistically motivated functions
satisfying Hypothesis 3.3 can be found in Example 1 of [14].

Kernels of the complex powers. Our first key result gives a representa-
tion of the kernels K(A−z;x, y) as an asymptotic series in d(x, y) for small
distances.

Theorem 3.4. Let A be an operator satisfying Hypothesis 3.1 and choose x, y ∈
M with x �= y. Then there is a function F (w;x, y) : C × M × M → C such
that for any z ∈ C the following asymptotics of the kernels of the complex
powers A−z hold as d(x, y) → 0.

(i) If z − n/2 �∈ Z, then

Γ(z)K(A−z;x, y) ∼
∞∑

k=0

Hk(x, y)
(2π)n/2

Γ
(

n
2 − k − z

)

(
1
4d(x, y)2

)n
2 −k−z

+
∞∑

k=0

F (z − k;x, y)
(−1)k

k!
(

1
4d(x, y)2

)k
;

(ii) If z = n/2 − N for some N ∈ N0, then

Γ(z)K(A−z;x, y) ∼
N−1∑

k=0

Hk(x, y)
(2π)n/2

Γ(N − k)
(

1
4d(x, y)2

)N−k

−
∞∑

k=N

Hk(x, y)
(2π)n/2

(−1)N−k

(N − k)!
(

1
4d(x, y)2

)N−k
log 1

4d(x, y)2;

(iii) If z = n/2 + N for some N ∈ N0, then

Γ(z)K(A−z;x, y) ∼
N−1∑

k=0

F (z − k;x, y)
(−1)k

k!
(

1
4d(x, y)2

)k

−
∞∑

k=N

Hk(x, y)
(2π)n/2

(−1)k

k!
(

1
4d(x, y)2

)k
log 1

4d(x, y)2.

In each case the functions Hk are from (3.1).

The relation ∼ denotes an asymptotic series in powers of d(x, y), and
we refer to (4.8) for explicit bounds of remainder terms.

For completeness, we compare this to the kernel expansion of pseudo-
differential operators of negative order on R

n. Proposition 2.8 of [34], which
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we quote almost verbatim, allows to write the kernel of Q ∈ ΨDO−j
cl (Rn) for

j ∈ N asymptotically in any Cl(Rn × R
n) as

K(Q;x, y) ∼
∞∑

k=0

qk(x, x − y) + pk(x, x − y) log |x − y|.

Here, the qk are such that any Dβ
xqk is a bounded continuous function of x

with values in homogeneous distributions of degree j +k−n that are smooth
on R

n \{0}. The pk are polynomials homogeneous of degree j +k−n in x−y
with coefficients that are bounded continuous functions of x together with
all their x-derivatives.

Heat kernel asymptotics. Our second key result gives the asymptotics
of the heat kernels of f(A).

Theorem 3.5. Assume that the closed manifold M has dimension n > 4−2α.
Let A be a differential operator satisfying Hypotheses 3.1 and suppose that f
is a function satisfying Hypothesis 3.3. Then for x, y ∈ M with x �= y the
following holds.

(i) Let K1 and K2 be compact and disjoint subsets of M . Under Hypotheses
3.1 and 3.3 we have the heat kernel asymptotics

K
(
e−f(A)t;x, y

)
∼ e−mt

∞∑

k=1

(−1)k

k!
K

(
(f(A) − mI)k;x, y

)
tk (3.3)

as t → 0+ in C(K1 × K2), where m is from (3.2).
(ii) In the lowest order in t we have

K
(
e−tf(A);x, y

)
∼ te−mt

[
H(x, y) + O

(
d(x, y)−n−2α+4

)]

as t → 0+ where

H(x, y) =
Γ(n

2 + α)4n/2+α

Γ(1 − α)(2π)n/2
· αa0H0(x, y)

d(x, y)n+2α

+
Γ(n

2 + α − 1)4n/2+α−2

Γ(1 − α)(2π)n/2
· αa0H1(x, y) − a1H0(x, y)

d(x, y)n+2α−2
(3.4)

and H0,H1 are from the heat kernel expansion (3.1).

Remark 3.6. Note that the expansion (3.3) is rather suggestive. The right
hand side is the power series for the exponential function of f(A) − mI with
the lowest-order term removed. Formally in terms of operators

e−f(A)t = e−mte−(f(A)−m)t = e−mt
∞∑

k=0

(−1)k

k!
(f(A) − mI)ktk,

so that (3.3) rigorously phrases this in terms of integral kernels.

An immediate corollary gives an upper bound for the heat kernel.

Corollary 3.7. Under the assumptions of Theorem 3.5 we have the bound

K
(
e−f(A)t;x, y

)
≤ Cte−mt

(
(d(x, y) + t1/2α)−n−2α ∧ H(x, y)

)
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for t ∈ (0, 1) and a constant C > 0. Here, a ∧ b denotes the minimum of a
and b.

Remark 3.8. The setup and results can be easily generalised to pseudodif-
ferential operators and more general manifolds. One could apply the same
approach to a hypoelliptic operator A on a Heisenberg manifold [25] with
heat kernel expansion as in [4]. The heat kernel of f(A) would have the prob-
abilistic interpretation of the transition density for a subordinate process.

4. Proof of the Key Results

The main idea in deriving the heat kernel asymptotics of f(A) is to exploit the
well-known correspondence between the heat kernel asymptotics and the pole
structure of the kernel of the complex powers f(A)−z. This correspondence
is implemented by the Mellin transform.

4.1. Relation Between the Heat Kernel and Complex Powers

First recall the Mellin transform which turns a function f : [0,∞) → C into

M[f ; z] =
∫ ∞

0

f(t)tz−1dt

for z ∈ C whenever the integral makes sense. The Mellin transform is analytic
in the strip α < Re z < β where

α = inf
{

α∗
∣
∣
∣f(t) = O(t−α∗

) as t → 0+
}

β = sup
{

β∗
∣
∣
∣f(t) = O(t−β∗

) as t → ∞
}

.

Often the Mellin transform can be extended meromorphically beyond this
strip of analyticity (there is an analogous statement for t → ∞).

Lemma 4.1. Suppose the function f : (0,∞) → C has the asymptotics

f(t) ∼
∞∑

m=0

N(m)∑

k=0

pmk(log t)ktam (4.1)

as t → 0+ with Re am ↑ ∞ and N(m) ≥ 0 finite for each m. Then α =
−Re a0 and M[f ; z] can be analytically continued as a meromorphic function
into the left half plane Re z ≤ α with poles at the points z = −am. This
extension has a Laurent expansion about z = −am with singular part

N(m)∑

k=0

pmk(−1)kk!
(z + am)k+1

. (4.2)

Moreover, for any x < β we have lim|y|→∞ M[f ;x + iy] = 0.
The converse also holds, so that (4.1) and (4.2) are equivalent.

Proof. This is standard: cf. Lemma 4.3.6 of [6] for the implication (4.1) ⇒
(4.2) and §3.3.3.2 of [30] for the converse. �
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The correspondence between heat kernel asymptotics and properties of
the complex powers of an operator is based on the relation

Γ(z)K
(
Q−z;x, y

)
= M [

K
(
e−tQ;x, y

)
; z

]
,

for Re z suitably large where Γ is the Gamma function. This relation is
typically exploited to investigate the on-diagonal behaviour of the heat kernel,
see for example Section 5.5 of [1]. Lemma 4.1 allows us to link the singular
structure of the kernel of the complex powers and the heat kernel asymptotics.

Corollary 4.2. Let Q ∈ ΨDOr
cl(M) be self-adjoint and elliptic such that the

complex powers Q−z exist in ΨDO−rz
cl (M). Fix x, y ∈ M and let z ∈ C with

Re z > n/r. If Γ(z)K (Q−z;x, y) has the singularity structure
∞∑

k=0

ck(x, y)
z − lk

+
∞∑

k=1

c′
k(x, y)

(z − k)2
,

for functions ck, c′
k : M × M → C and complex numbers lk, then the heat

kernel K(e−tQ;x, y) has the asymptotic expansion

K
(
e−tQ;x, y

) ∼
∞∑

k=0

ck(x, y)t−lk +
∞∑

k=1

c′
k(x, y)tk log t

as t → 0. Double poles of Γ(z)K (Q−z;x, y) lead to logarithmic terms in the
heat kernel expansion.

Proof. Let μk be the eigenvalues of Q in increasing order with corresponding
orthonormal basis ϕk of L2(M) consisting of eigenfunctions. We then have

K
(
e−tQ;x, y

)
=

∞∑

k=1

e−μktϕk(x)ϕk(y) (4.3)

and

K
(
Q−z;x, y

)
=

∞∑

k=1

μ−z
k ϕk(x)ϕk(y). (4.4)

So Γ(z)K (Q−z;x, y) =
∫ ∞
0

K
(
e−tQ;x, y

)
tz−1dt and the claim follows from

Lemma 4.1. �

4.2. Asymptotics of the Kernels of the Complex Powers

We first define two transforms

F (w;x, y) = M
[
K

(
e−At;x, y

)
ed(x,y)2/4t;w

]
,

G(w;x, y) = M
[
e−d(x,y)2/4t;w

]
,

where we omit the x, y-dependence in the following to ease the presentation.
Each of these functions is meromorphic in w with explicit pole structure.

Lemma 4.3. Fix x, y ∈ M with x �= y. Then the following holds.
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(i) The map F (w) is analytic for Re w > n/2. It can be meromorphically
extended to the complex plane with at most simple poles in the set

PF =
{

n
2 , n

2 − 1, n
2 − 2, . . .

}
.

The residue of F at n
2 − k is given by Hk(x,y)

(2π)n/2 .
(i) For given z ∈ C the map G(z − w) can be evaluated as

G(z − w) =
(

1
4d(x, y)2

)z−w
Γ(−(z − w)).

It is analytic for Re w > Re z and can be meromorphically continued to
the complex plane with simple poles in the set

PG = {z, z − 1, z − 2, . . .}.

The residue of G(z − w) at w = z − k is given by (−1)k

k! ( 1
4d(x, y)2)k.

In summary, the map w �→ F (w)G(z − w) is analytic the half plane Re w >
max{n

2 ,Re z} and can be extended to a meromorphic function with poles at
points in the discrete set PF ∪ PG. The poles at points in the intersection
PF ∩ PG are double poles, all other poles are at most simple.

Proof. First consider F (w): the kernel K
(
e−At;x, y

)
ed(x,y)2/4t can asymp-

totically be expressed in powers of t for t → 0+ as

K
(
e−At;x, y

)
ed(x,y)2/4t ∼ H0(x, y)

(2π)n/2
t−n/2 +

H1(x, y)
(2π)n/2

t−n/2+1 + · · · , (4.5)

so that the strip of analyticity is bounded to the left by n/2 < Re w. Note
that K

(
e−At;x, y

)
ed(x,y)2/4t decays like e−μ1t as t → ∞ with μ1 > 0 the

lowest eigenvalue of A. So this function decays faster than any polynomial,
and hence the Mellin transform is analytic on the strip n/2 < Re w < ∞.

By Lemma 4.1, the Mellin transform F of K(e−tA;x, y) extends mero-
morphically to the left-half plane Re w < n/2 with simple poles in the set

PF =
{

n
2 , n

2 − 1, n
2 − 2, . . .

}
.

The corresponding residues are given as H0(x,y)
(2π)n/2 , H1(x,y)

(2π)n/2 , . . . which follows
from (4.5).

Second, for fixed z ∈ C the transform M
[
e−d(x,y)2/4t; z − w

]
can be

explicitly computed as

M
[
e−d(x,y)2/2t; z − w

]
=

(
1
4d(x, y)2

)z−w
Γ(−(z − w))

by the usual integral representation of the Gamma function and a change of
variables. It is meromorphic on C with simple poles at the points in the set

PG = {z, z − 1, z − 2, . . .},

the residues are given by standard properties of the Gamma function. �

We also bound certain integrals that later appear as error terms.
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Lemma 4.4. For z ∈ C with Re z �= c there is a constant C such that
∣
∣
∣
∣

1
2πi

∫ c+i∞

c−i∞
F (w)G(z − w)dw

∣
∣
∣
∣ ≤ C

(
1
4d(x, y)2

)−(c−Re z)
.

The constant C depends on z and c.

Proof. Recall the upper bound of the Gamma function

|Γ(x + iy)| ≤ C ′|y|x−1/2e−π|y|/2 (4.6)

for some constant C ′, cf. Chapter 2.4.3 of [26]. We thus find
∣
∣
∣
∣

1
2πi

∫ c+i∞

c−i∞
F (w)G(z − w)dw

∣
∣
∣
∣

≤ 1
2π

∫ c+i∞

c−i∞
|F (w)|

∣
∣
∣
∣
∣

Γ(w − z)
(

1
4d(x, y)2

)w−z

∣
∣
∣
∣
∣
dw

≤ 1
2π

∫ c+i∞

c−i∞
|F (w)|C

′|Im (w − z)|c−Re z−1/2e−π|Im (w−z)|/2

(
1
4d(x, y)2

)c−Re z
dw.

The Mellin transform F (w) goes to zero as |Im w| → ∞ by Lemma
4.1 so that the integral can be bounded in norm. By the definition of F this
bound may depend on x, y through the functions d and H0,H1, . . . However,
these are bounded as M is compact and the maps are smooth. Overall, we
can bound the integral in terms of a constant depending on c and z. �

We are now ready to prove the theorem concerning the kernels of the
complex powers.

Proof of Theorem 3.4. Starting with the formal relation

Γ(z)K(A−z;x, y) =
∫ ∞

0

K(e−tA;x, y)tz−1dt (4.7)

we first establish that this is valid for any z ∈ C and then approximate the
right hand side in powers of d(x, y).

1. Observe that the right hand side of (4.7) defines an entire function in
z: as t → 0+, the kernel K(e−tA;x, y) is of rapid decay due to the factor of
e−d(x,y)2/4t in (3.1) and as t → ∞, the kernel is of rapid decay as the lowest
eigenvalue of A is positive.

The kernel K(A−z;x, y) in the sense of the series representation (4.4)
makes sense for Re z > n/2 and can be analytically continued to an entire
function in z, cf. Theorem 12.1 of [32]. The zeros of K(A−z;x, y) cancel the
poles of the Gamma function.

Overall, the relation (4.7) is valid for any z ∈ C.
2. We now expand the right hand side of (4.7) in powers of d(x, y). First

recall the Parseval formula for the Mellin transform ([35], Chapter II.2.1.):
∫ ∞

0

f(t)g(t)dt =
1

2πi

∫ c+i∞

c−i∞
M[f(t);w]M[g(t); 1 − w]dw
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where the vertical line c+iR lies in the intersection of the strips of analyticity
of the Mellin transforms of f and g. We formally apply this to obtain

Γ(z)K
(
A−z; x, y

)

=

∫ ∞

0

K
(
e−At; x, y

)
ed(x,y)

2/4t · e−d(x,y)2/4ttz−1dt

=
1

2πi

∫ c+i∞

c−i∞
M

[
K

(
e−At; x, y

)
ed(x,y)

2/4t; w
]
M

[
e−d(x,y)2/4ttz−1; 1 − w

]
dw

=
1

2πi

∫ c+i∞

c−i∞
M

[
K

(
e−At; x, y

)
ed(x,y)

2/4t; w
]
M

[
e−d(x,y)2/4t; z − w

]
dw

=
1

2πi

∫ c+i∞

c−i∞
F (w)G(z − w)dw

with c to be determined: by Lemma 4.3, the integrand is analytic on the
half-plane Re w > max{n

2 ,Re z} so we choose c such that the contour c + iR
lies in this half-plane.

3. The idea now is to repeatedly apply Cauchy’s residue theorem and
to move the contour across the poles of the integrand. Shifting the contour
is allowed since the integrand F (w)G(z − w) goes to zero as |Im w| → ∞ for
fixed z. This is for two reasons: the Mellin transform F (w) goes to zero as
|Im w| → ∞ by Lemma 4.1 and we have (4.6) bounding G.

Case I: only simple poles. Here we assume that z − n/2 �∈ Z so that
the sets of poles of F and G do not overlap. We move the contour c + iR to
the left to a contour c′ + iR with c′ < c thereby possibly crossing poles. The
contour c′ + iR itself must avoid any poles. This leads to

1

2πi

∫ c+i∞

c−i∞
F (w)G(z − w)dw

=
∑

k: n
2 −k>c′

Φk(x, y)
(
1
4d(x, y)2

)n/2−k−z

︸ ︷︷ ︸
poles of F (w) to the right of c′ + iR

+
∑

k:z−k>c′
Ψk(x, y)

(
1
4d(x, y)2

)k

︸ ︷︷ ︸
poles of G(w − z) to the right of c′ + iR

+R(x, y)

where

Φk(x, y) = Γ
(

n
2 − k − z

)
, Ψk(x, y) = F (z − k)

(−1)k

k!
,

R(x, y) =
1

2πi

∫ c′+i∞

c′−i∞
F (w)G(z − w)dw.

By Lemma 4.4, the error term R can be bounded as

|R(x, y)| ≤ C
(

1
4d(x, y)2

)−(c′−Re z)

for a constant C. This can be recast in more familiar terms of asymptotic
expansions: given c′ ∈ R such that the contour c′ + iR avoids any poles in
PF ∪ Pg, there are natural numbers N1, N2 such that
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∣
∣
∣
∣
∣
Γ(z)K

(
A−z;x, y

) −
N1∑

k=0

Φk(x, y)
(

1
4d(x, y)2

)n/2−k−z
+

N2∑

k=0

Ψk(x, y)
(

1
4d(x, y)2

)k

∣
∣
∣
∣
∣

≤ C
(

1
4d(x, y)2

)Re z−c′
. (4.8)

More precisely, we set N1 = sup{k|n
2 −k > c′} and N2 = sup{k|Re z−k > c′}.

If the set over which the supremum is taken is empty, i.e. if there are no
poles of F or G to the right of the contour c′ + iR, then we understand the
corresponding sums to be zero.

Case II: double poles. First, we assume that z = n/2 − N for some
N ∈ N0. This means that the rightmost pole of F (w)G(z − w) is located at
n/2. Thus, if we start with a contour c+ iR to the right of n/2 and move this
to the left we will cross the pole(s) of F first before encountering the double
poles. If z = n/2−N , then we will have only finitely many simple poles: they
are due to F and are located at points of the set {n

2 , n
2 − 1, . . . , n

2 − (N − 1)}.
All other poles are double poles and are located at points in the set {n

2 −
N, n

2 − (N + 1), . . .}.
Suppose that we have crossed all simple poles of F so that we integrate

along a contour c′ + iR with c′ < n/2 − N . We pick up all simple poles of
F plus the double poles at n/2 − k which lie to the right of c′ + iR, i.e. for
which n/2 − k > c′. We thus obtain

1
2πi

∫ c+i∞

c−i∞
F (w)G(z − w)dw

=
N−1∑

k=0

Φk(x, y)
(

1
4d(x, y)2

)n/2−k−z

︸ ︷︷ ︸
simple poles to the right of c′ + iR

+
∑

N≤k<
n
2 −c′

res
w=

n
2 −k

F (w)G(z − w)

︸ ︷︷ ︸
double poles to the right of c′ + iR

+R(x, y)

with Φk and R as above. To compute the residue at the double poles note
that in a neighbourhood of wk = n/2 − k we have

F (w)G(z − w) =
Hk(x, y)
(2π)n/2

(−1)N−k

(N − k)!
g(w)

(w − wk)2
+ holo

where holo denotes a holomorphic function which is of no concern here and

g(w) =
(

1
4d(x, y)2

)−w+n/2−N
.

Cauchy’s theorem for derivatives gives

res
w=

n
2 −k

F (w)G(z − w)

=
Hk(x, y)
(2π)n/2

(−1)N−k

(N − k)!
g′(wk)
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=
Hk(x, y)
(2π)n/2

(−1)N−k

(N − k)!
·
[
− (

1
4d(x, y)2

)k−N · log 1
4d(x, y)2

]
,

which proves the claim.
It remains to consider the alternative z = n/2 + N for some N ∈ N0,

whereupon the rightmost poles of F (w)G(z−w) are simple poles of G(z−w).
The argument is almost verbatim as before. �

4.3. Heat Kernel Asymptotics

To analyse the heat kernel asymptotics of f(A) we expand f(A) in fractional
powers of A to write f(A) = a0A

α + a1A
α−1 + · · · and then use the kernel

asymptotics of these powers.

Proposition 4.5. Under the above hypotheses, the following assertions hold.

(i) The operator f(A) − mI belongs to ΨDO2α
cl (M).

(ii) There is a pseudodifferential operator R2α−4 ∈ ΨDO2α−4
cl (M) such that

f(A) = mI + a0A
α + a1A

α−1 + R2α−4.

(iii) The complex powers (f(A) − mI)−z belong to ΨDO−2αz
cl (M).

(iv) For x, y ∈ M with x �= y, the kernel K ((f(A) − mI)−z;x, y) of the
complex powers can be analytically continued to an entire function in z.

Remark 4.6. If Q = f(A) − mI were a differential operator, then the k-
ernel K (Q−z;x, y) would vanish at z = 0,−1,−2, . . . since then the oper-
ator Q−(−l) = Ql is a differential operator and hence local. To see this,
let u, v ∈ C∞(M) with disjoint support. Then in L2(M) the inner product
(Qlu, v) = 0. Since this holds for any such u, v, the kernel of Ql must be
zero off-diagonal, cf. step 4 of the proof of Theorem 12.1 in [32]. In gener-
al, f(A) − mI is not local so that we expect K ((f(A) − mI)−z;x, y) to be
nonzero at z from the nonpositive integers.

Proof. (i) The fact that f(A) − mI ∈ ΨDO2α(M) follows from functional
calculus, cf. [13], Theorem 1 of [33] or Theorem 1 of [19].

To show that the operator is classical, define an operator BN as a finite
sum of classical pseudodifferential operators

BN = a0A
α + a1A

α−1 + a2A
α−2 + · · · + aNAα−N .

Let {ϕk} be an orthonormal basis of L2(M) consisting eigenfunctions of A
with corresponding eigenvalues {μk}. We have

(f(A) − mI)ϕk = (f(μk) − mμk)ϕk

and

BNϕk =
(
a0μ

α
k + · · · + aNμα−N

k

)
ϕk.

So we find in L2(M) that

||[(f(A) − mI) − BN ]ϕk||
=

∣
∣
∣
∣[(f(μk) − mμk) − (

a0μ
α
k + · · · + aNμα−N

k

)]
ϕk

∣
∣
∣
∣
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=
∣
∣(f(μk) − mμk) − (

a0μ
α
k + · · · + aNμα−N

k

)∣∣

≤ CN |μk|α−N−1,

for some constant CN independent of k where the last inequality follows from
(3.2). Thus, A−α+N+1[(f(A) − mI) − BN ] ∈ ΨDO0(M) or (f(A) − mI) −
BN ∈ ΨDO2α−2(N+1)(M). Letting N → ∞ in the equation for BN and
asymptotically summing (Proposition 3.5 in Chapter I of [32]) we obtain an
operator

B = a0A
α + a1A

α−1 + a2A
α−2 + · · ·

which belongs to ΨDO2α
cl . Moreover, (f(A)−mI)−B ∈ ΨDO−∞(M) so that

f(A) − mI ∈ ΨDO2α
cl (M) and is classical.

(ii) This follows from the construction of f(A) − mI itself.
(iii) and (iv) follow from Theorem 5.5.1 of [1]. �

Remark 4.7. For technical reasons we consider f(A) − mI instead of f(A)
since the former is a classical pseudodifferential operator whereas the latter
is not classical: the symbol can be expanded into homogeneous terms with
orders 2α − k for k = 0, 1, 2, . . . plus a term of order 0 (a multiple of the
identity), so the difference in orders is not an integer.

We proceed to the heat kernel asymptotics of f(A) − mI, viz. assertion
(i) of Theorem 3.5.

Proposition 4.8. Let K1 and K2 be compact and disjoint subsets of M . Under
Hypotheses 3.1 and 3.3 we have

K
(
e−f(A)t;x, y

)
∼ e−mt

∞∑

k=1

(−1)k

k!
K

(
(f(A) − mI)k;x, y

)
tk

as t → 0+ in C(K1 × K2).

Proof. We start with the equation

Γ(z)K((f(A) − mI)−z;x, y) =
∫ ∞

0

K(e−(f(A)−mI)t;x, y)tz−1dt.

The integral on the right hand side is absolutely convergent for Re z > −1:
the kernel K(e−(f(A)−mI)t;x, y) decreases exponentially for t → ∞ due to
the lowest eigenvalue being positive and it is bounded as t → 0 of order
t by Theorem 1 of [16], equation (*). The left hand side can be extended
to a meromorphic function in the entire complex plane with at most simple
poles at the points z = 0,−1,−2, . . . that correspond to the poles of the
Gamma function as K((f(A) − mI)−z;x, y) is entire. This yields the unique
meromorphic continuation of the right hand side.

For Re z > n/2α we invert the Mellin transform to write

K
(
e−(f(A)−mI)t;x, y

)
=

1
2πi

∫ c+i∞

c−i∞
Γ(z)K((f(A) − mI)−z;x, y)t−zdz

and repeat the method of the proof of Theorem 3.4. Here, c+ iR is a contour
chosen so that all poles of the integrand Γ(z)K((f(A) − mI)−z;x, y)t−z are
to the left of the contour. We then shift the contour across the poles of
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the integrand. These are due to the Gamma function and are located at
z = 0,−1,−2, . . . We find by Cauchy’s theorem that

K
(
e−(f(A)−mI)t;x, y

)
=

N∑

k=0

(−1)k

k!
K

(
(f(A) − mI)k;x, y

)
tk + RN (x, y)

with remainder term

RN (x, y) =
1

2πi

∫ cN+i∞

cN −i∞
Γ(z)K((f(A) − mI)−z;x, y)t−zdz

where the contour cN satisfies −(N + 1) < cN < −N so that exactly N
poles lie to its right. Since we assumed x ∈ K1 and y ∈ K2 with K1 and
K2 disjoint the zero-order term vanishes: the corresponding (distributional)
Schwartz kernel is concentrated in the diagonal x = y and zero elsewhere.

To estimate the remainder RN (x, y) note that since (f(A)−mI) belongs
to ΨDO−2z

cl (M), its kernel K ((f(A) − mI)−z;x, y) is the Fourier transform
of a symbol of order −2Re z, cf. [1,31]. This means that for Re z sufficiently
large, the absolute value |K ((f(A) − mI)−z;x, y) | is bounded above inde-
pendently of z and of x, y. The bound on the Gamma function (4.6) gives a
bound of RN in the form |RN (x, y)| ≤ CN t−cN . Since −(N + 1) < cN < −N
we have for t < 1 that t−cN < tN , so

∣
∣
∣
∣
∣
K

(
e−(f(A)−mI)t;x, y

)
−

N∑

k=1

(−1)k

k!
K

(
(f(A) − mI)k;x, y

)
tk

∣
∣
∣
∣
∣
≤ CN tN

which proves the asymptotic property in C(K1 × K2).
Also, K

(
e−(f(A)−mI)t;x, y

)
= emtK

(
e−f(A)t;x, y

)
from the series rep-

resentation of K
(
e−(f(A)−mI)t;x, y

)
in terms of eigenfunctions (4.3). �

Remark 4.9. If f(A)−mI were a local operator, then the argument of Remark
4.6 shows that the kernels of the integer powers (f(A) − mI)k would vanish
and the heat kernel of f(A) would decay faster than any polynomial in t as
t → 0. So the nonlocality of f(A) is a key part in this argument.

We are now ready to prove the heat kernel asymptotics of f(A).

Proof of Theorem 3.5. We compute the lowest-order term in (3.3) in powers
of the geodesic distance d(x, y). Recall from Proposition 4.5 (ii) that we had

f(A) − mI = a0A
α + a1A

α−1 + R2α−4 (4.9)

with remainder term R2α−4 ∈ ΨDO2α−4(M). We will estimate the sum-
mands on the right and side of (4.9) in terms of powers of d(x, y).

1. The third summand can be bounded using a standard result on the
behaviour of Schwartz kernels of pseudodifferential operators. By Proposition
2.2 in Chapter 7 of [34] we have that for Q ∈ ΨDOr(Rn), its Schwartz kernel
satisfies the estimate

|K(Q;x, y)| ≤ C|x − y|−n−r (4.10)

provided r > −n. Now fix y ∈ M and choose normal coordinates around y.
If x is in this coordinate patch, then the above estimate holds with |x − y|
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replaced by the geodesic distance d(x, y). Using (4.10) we obtain that the
kernel of the remainder term R2α−4 in (4.9) is bounded as |K(R2α−4;x, y)| ≤
Cd(x, y)−n−(2α−4) for some constant C.

2. From Theorem 3.4 (i) we obtain with n > 4 − 2α and z = −α that

Γ(−α)K (Aα;x, y)

=
H0(x, y)
(2π)n/2

Γ
(

n
2 + α

)

(
1
4d(x, y)2

)n/2+α
+

H1(x, y)
(2π)n/2

Γ(n
2 + α − 1)

(
1
4d(x, y)2

)n/2+α−1

+ O
(
d(x, y)−n−2α+4

)

and

Γ(−(α − 1))K(Aα−1;x, y)

=
H0(x, y)
(2π)n/2

Γ(n
2 + α − 1)

( 1
4d(x, y)2)n/2+α−1

+ O(d(x, y)−n−2α+4),

where H0 and H1 are from (3.1).
3. Overall we find

K (f(A) − mI;x, y)

= a0K (Aα;x, y) + a1K
(
Aα−1;x, y

)
+ O

(
d(x, y)−n−2α+4

)

=
a0

Γ(−α)

[
H0(x, y)
(2π)n/2

Γ(n
2 + α)

(
1
4d(x, y)2

)n/2+α
+

H1(x, y)
(2π)n/2

Γ(n
2 − 1 + α)

(
1
4d(x, y)2

)n/2+α−1

]

+
a1

Γ(−(α − 1))
H0(x, y)
(2π)n/2

Γ(n
2 + α − 1)

(
1
4d(x, y)2

)n/2+α−1
+ O(d(x, y)−n−2α+4)

=
a0

Γ(−α)
H0(x, y)
(2π)n/2

Γ(n
2 + α)

(
1
4d(x, y)2

)n/2+α

+
[

a0

Γ(−α)
H1(x, y)
(2π)n/2

+
a1

Γ(1 − α)
H0(x, y)
(2π)n/2

]
Γ(n

2 + α − 1)
(

1
4d(x, y)2

)n/2+α−1

+ O(d(x, y)−n−2α+4),

whence equation (3.4) follows using the identity Γ(−α) = Γ(1 − α)/(−α).
This finishes the proof of assertion (ii) Theorem 3.5. �

Remark 4.10. Note that that the dimensional restriction n > 4 − 2α in
Theorem 3.5 is due to the bound (4.10). More generally, if one extended the
sum in (4.9) up to order Aα−(k−1), the bound of the corresponding error term
would hold for n > 2k − 2α indicating a trade-off between the order of the
approximation and the dimension of the manifold M .

Aronson-type upper bounds of K(e−tf(A);x, y) are now easy to obtain.

Proof of Corollary 3.7. We recall the upper bounds of Theorem 1 of [16]. In
our notation, their equation (*) reads

K
(
e−t(f(A)−mI);x, y

)
≤ C1te

−ct
(
d(x, y) + t1/2α

)−n−2α

, (4.11)
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where C1 is a constant and c is less than the infimum of the spectrum of
f(A)−mI. The infimum of the spectrum of f(A)−mI is greater than 0 since
A has positive real spectrum, f takes only nonnegative values and m < 0. So
we can choose c = 0 yielding

K
(
e−t(f(A)−mI);x, y

)
≤ C1t

(
d(x, y) + t1/2α

)−n−2α

.

The upper bound in terms of H(x, y) follows from Theorem 3.5 (ii) as

K
(
e−t(f(A)−mI);x, y

)
≤ C2tH(x, y)

using the compactness of M to bound the error term of order d(x, y)−n−2α+4

in terms of d(x, y)−n−2α+2, the highest power of d in H. Now set C =
max{C1, C2} to conclude. �

5. Subordinate Brownian Motion on a Closed Manifold

Let M be a closed manifold of dimension n with Laplace-Beltrami operator
Δ. Then 1

2Δ is the generator of the standard Brownian motion B = (Bt)t≥0

on M , cf. [21].
We refer to the monograph [29] for details of subordinate stochastic

processes. Let (Xt)t≥0 be a subordinator on [0,∞) independent of B, i.e. an
increasing Lévy process with values in [0,∞) and X0 = 0 almost surely. We
can characterise the distribution of Xt by its generating function

E
(
e−λXt

)
= e−tf(λ), (5.1)

for t ≥ 0 and λ > 0 where f is the the Laplace exponent of Xt. Here, f has
the additional property that it is a Bernstein function. This means that f is
smooth, f(λ) ≥ 0 and (−1)k−1f (k)(λ) ≥ 0 for k ∈ N.

The Bernstein function is defined on the entire spectrum of 1
2Δ so that

this is a particularly straightforward case of functional calculus related to the
subordination of semigroups.

Proposition 5.1. ([3]; [22], Chapter 4.3) The generator of the process (BXt
)t≥0

is f
(

1
2Δ

)
as defined by the spectral theorem.

The heat kernel on M has an asymptotic expansion as t → 0 of the form
(cf. Theorem 2.30 of [5] or Theorem 5.1.1 of [21])

K
(
e− 1

2Δt;x, y
)

∼ (
1

2πt

)n/2
e−d(x,y)2/2t

∞∑

m=0

Hm(x, y)tm, (5.2)

which is valid if x and y are not within each other’s cut locus. Here, d(x, y)
is the geodesic distance of x, y ∈ M . The smooth functions Hm have the
property that we obtain the classical heat invariants of M (volume, total
scalar curvature, . . . ) as integrals along the diagonal

∫
M

Hm(x, x)dx.
To obtain the heat kernel asymptotics of f(1

2Δ) we would like to use the
framework of Sect. 3. This, however, hinges on the existence of the complex
powers of A = 1

2Δ. Since the lowest eigenvalue of this operator is zero we
cannot apply Theorem 3.5 directly. Instead, we consider the operator Aε =
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1
2Δ + εP , where P is the projection onto the finite-dimensional kernel of Δ
and ε > 0 is small. This perturbation has the following effects

(i) The symbols of A and Aε agree so that on the scale of Sobolev spaces
we only adjust by an operator of order −∞.

(ii) The lowest eigenvalue μ1 of Aε is positive, namely it is given by μ1 = ε.
(iii) We can form the complex powers of Aε in the algebra of classical pseu-

dodifferential operators.
(iv) Explicitly, the heat kernel of A and Aε are related by (for simplicity we

assume a one-dimensional null space of A with basis vector ϕ0)

K
(
e−Aεt;x, y

)
= K

(
e−At;x, y

)
+

(
e−εt − 1

)
ϕ0(x)ϕ0(y)

so that the heat kernel asymptotics of kA and kAε
are identical in the

orders t−n/2, . . . , t−1 and t0. This is sufficient for our purposes.
We can thus apply the approach with Aε and in the end let ε → 0. Note that
due to A being one-half the Laplacian, the asymptotics of A−z are in powers
of 1

2d(x, y)2 as opposed to 1
4d(x, y)2.

Theorem 5.2. Assume that the dimension n of the closed manifold M satisfies
n > 4−2α. Suppose that the Laplace exponent f satisfies Hypothesis 3.3. Let
for x, y ∈ M such that x and y are not in each other’s cut locus. Then the
short-time asymptotics of the transition density of the subordinate Brownian
motion are given by

K
(
e−f( 1

2Δ)t;x, y
)

∼ te−mt
[
H(x, y) + O

(
d(x, y)−n−2α+4

)]

as t → 0+ and

H(x, y) =
Γ(n

2 + α)2n/2+α

Γ(1 − α)(2π)n/2
· αa0H0(x, y)

d(x, y)n+2α

+
Γ(n

2 + α − 1)2n/2+α−1

Γ(1 − α)(2π)n/2
· αa0H1(x, y) − a1H0(x, y)

d(x, y)n+2α−2

where H0,H1 are from the heat expansion (5.2).

One can view α as a probabilistic parameter and the dimension n, the
coefficient functions H0,H1 and the geodesic distance d as geometric objects.
Thus, the above expansion mixes the geometry of the manifold and proba-
bilistic information.

By Corollary 3.7, we find an upper bound for the heat kernel

K
(
e−f( 1

2Δ)t;x, y
)

≤ Cte−mt
(
(d(x, y) + t1/2α)−n−2α ∧ H(x, y)

)

for t ∈ (0, 1) and any x, y ∈ M .
In the case of the relativistic α-stable processes, i.e. f(λ) = (1+λ)α −1,

we can compare this to [11]. Although the authors consider processes liv-
ing on a bounded domain D ⊂ R

n, a comparison of the heat kernel bounds
is nonetheless instructive. Using sophisticated probabilistic methods the au-
thors obtain in their Theorem 1.1 the upper bound

K
(
e−f(Δ)t;x, y

)
≤ C

(
1 ∧ δ(x)α

√
t

) (
1 ∧ δ(y)α

√
t

)(

t−n/2α ∧ tϕ( |x−y|
16 )

|x − y|n+2α

)

,
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for a constant C where δ(·) measures the distance to the boundary and ϕ(r) =
e−r(1 + r(n+2α−1)/2). (Since [11] is set on domains in R

n, the generator of
Brownian motion is Δ and not 1

2Δ as is the case on closed manifolds.)
This seems to suggest that bounds of this type hold for a larger class

of subordinate Brownian motion and not just for the relativistic α-stable
processes.
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[3] Bañuelos, R., Baudoin, F.: Trace Asymptotics for Subordinate Semigroups.
arXiv:1308.4944 (2013)
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55(6), 1099–1126 (2012)

[24] Phillips, R.S.: On the generation of semigroups of linear operators. Pac. J.
Math. 2(3), 343–369 (1952)

[25] Ponge, R.: Heisenberg calculus and spectral theory of hypoelliptic operators on
Heisenberg manifolds. Mem, vol. 194. American Mathematical Society, Provi-
dence (2008)

[26] Remmert, R.: Classical Topics in Complex Function Theory. Grad, vol. 172.
Texts in Math. Springer, New York (1997)

[27] Schilling, R.L.: On the domain of the generator of a subordinate semigroup.
In: Potential theory—ICPT 94 (Kouty, 1994), pp. 449–462. de Gruyter, Berlin
(1996)

[28] Schilling, R.L.: Subordination in the sense of Bochner and a related functional
calculus. J. Austral. Math. Soc. (Ser. A) 64(03), 368–396 (1998)

[29] Schilling, R.L., Song, R., Vondracek, Z.: Bernstein Functions: Theory and Ap-
plications. Studies in Mathematics, vol. 37, 2nd edn. de Gruyter, Berlin (2012)

[30] Scott, S.: Traces and Determinants of Pseudodifferential Operators. Oxford
Math. Monogr. Oxford University Press, Oxford (2010)

[31] Seeley, R.T.: Complex powers of an elliptic operator. Proc. Sympos. Pure Math.
10, 288–307 (1967)

[32] Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, 2nd edn.
Springer, Berlin (2001)



Vol. 87 (2017) Off-diagonal heat kernel asymptotics... 347

[33] Strichartz, R.S.: A functional calculus for elliptic pseudo-differential operators.
Am. J. Math. 94(3), 711–722 (1972)

[34] Taylor, M.E.: Partial Differential Equations II: Qualitative Studies of Linear
Equations. Appl, vol. 116, 2nd edn. Mathamatical Science. Springer Science &
Business Media, New York (2013)

[35] Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Clarendon
Press, Oxford (1948)

M. A. Fahrenwaldt(B)

Department of Actuarial Mathematics and Statistics
Maxwell Institute for Mathematical Sciences
Heriot-Watt University
Edinburgh EH14 4AS
UK
e-mail: m.fahrenwaldt@hw.ac.uk

Received: July 29, 2016.

Revised: December 28, 2016.


	Off-Diagonal Heat Kernel Asymptotics of Pseudodifferential Operators on Closed Manifolds and Subordinate Brownian Motion
	Abstract
	1. Introduction
	2. Preliminaries and Notation
	3. Statement of the Key Results
	4. Proof of the Key Results
	4.1. Relation Between the Heat Kernel and Complex Powers
	4.2. Asymptotics of the Kernels of the Complex Powers
	4.3. Heat Kernel Asymptotics

	5. Subordinate Brownian Motion on a Closed Manifold
	Acknowledgements
	Open Access
	References




