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Abstract. In the present note a spectral theorem for normal definitizable
linear operators on Krein spaces is derived by developing a functional
calculus φ �→ φ(N) which is the proper analogue of φ �→ ∫

φ dE in the
Hilbert space situation. This paper is the first systematical study of
definitizable normal operators on Krein spaces.

Mathematics Subject Classification. 47A60, 47B50, 47B15.

Keywords. Krein space, Definitizable operators, Spectral theorem.

1. Introduction

A bounded linear operator N on a Krein space (K, [., .]) is called normal,
if N commutes with its Krein space adjoint N+, i.e. NN+ = N+N . This
is equivalent to the fact that its real part A := N+N+

2 and its imaginary
part B := N−N+

2i commute. We call N definitizable whenever the selfadjoint
operators A and B are both definitizable in the classical sense. This means
the existence of so-called definitizing polynomials p(z), q(z) ∈ R[z] \ {0} such
that [p(A)x, x] ≥ 0 and [q(B)x, x] ≥ 0 for all x ∈ K; see [4].

In the Hilbert space setting the spectral theorem for bounded linear,
normal operators is a well-known functional analysis result. It is almost as
folklore as the spectral theorem for bounded linear, selfadjoint operators.

In the Krein space world there exists no similar result for general self-
adjoint operators. Assuming in addition definitizability, a spectral theorem
could be derived by Heinz Langer; cf. [4]. This theorem became an important
starting point for various spectral results. The main difference to selfadjoint
operators on Hilbert spaces is the appearance of a finite number of critical
points, where the spectral projections no longer behave like a measure.

Only a rather small number of publications dealt with the situation of a
normal (definitizable) operators on a Krein space. The Pontryagin space case
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was studied up to a certain extent for example in [7] and [5]. Special normal
operators on Krein spaces were considered for example in [1] and [6]. But
until now no adequate version of a spectral theorem on normal definitizable
operators in Krein spaces has been found.

In the present paper we derive a spectral theorem for bounded linear,
normal, definitizable operators formulated in terms of a functional calculus
generalizing the functional calculus φ �→ ∫

φ dE in the Hilbert space case.
Thus, we provide the first systematical study of definitizable normal operators
and their spectral properties on Krein spaces. In order to achieve this goal,
we use the methods developed in [2] for definitizable selfadjoint operators
and extend them for two commuting definitizable selfadjoint operators.

Let us anticipate a little more explicitly what happens in this note.
Denoting by p(z) and q(z) the definitizing real polynomials for A and
B, respectively, we build a Hilbert space V which is continuously and
densely embedded in the given Krein space K. Denoting by T : V → K
the adjoint of the embedding, we have TT+ = p(A) + q(B). Then we
use the ∗-homomorphism Θ : (TT+)′ (⊆ B(K)) → (T+T )′ (⊆ B(V)),
C �→ (T × T )−1(C), studied in [2], in order to drag our normal operator
N ∈ (TT+)′ ⊆ B(K) into (T+T )′ ⊆ B(V). The resulting normal operator
Θ(N) acts on a Hilbert space. Therefore, it has a spectral measure E(Δ) on
C.

The proper family FN of functions suitable for the aimed functional
calculus are bounded and measurable functions on

(
σ(Θ(N)) ∪ (ZR

p + iZR

q )
)∪̇Zi (⊆ C∪̇C2).

Here ZR

p = p−1{0} ∩ R and ZR

q = q−1{0} ∩ R denote the real zeros of p(z)
and q(z), respectively, and Zi = (p−1{0} × q−1{0}) \ (R×R). Moreover, the
functions φ ∈ FN assume values in C on σ(Θ(N)) \ (ZR

p + iZR

q ), values in
C

dp(Re z)·dq(Im z)+2 at z ∈ ZR

p + iZR

q and values in C
dp(ξ)·dq(η) at z = (ξ, η) ∈

Zi. Here dp(w) := min{j : p(j)(w) 
= 0} (dq(w) := min{j : q(j)(w) 
= 0})
denotes p’s (q’s) degree of zero at w. Finally, φ ∈ FN satisfies a growth
regularity condition at all points from ZR

p + iZR

q which are not isolated in
σ(Θ(N)) ∪ (ZR

p + iZR

q ).
Any polynomial s(z, w) ∈ C[z, w] can be seen as a function sN ∈ FN .

The nice thing about these, somewhat tediously defined functions φ ∈ FN is
the fact that

φ(z) = sN (z) + (pN + qN )(z) · g(z) for all z ∈ σ(Θ(N)), (1.1)

for a suitable polynomial s ∈ C[z, w] in two variables and a function g :
σ(Θ(N)) → C∪̇C2, where g : σ(Θ(N)) \ (ZR

p + iZR

q ) → C is bounded and
measurable, and where g : σ(Θ(N)) ∩ (ZR

p + iZR

q ) → C
2.

We then define φ(N) := s(A,B) + T
∫ R1,R2

σ(Θ(N))
g dE T+, show that this

operator does not depend on the actual decomposition (1.1) and that φ �→
φ(N) is indeed a ∗-homomorphism. Here

∫ R1,R2

σ(Θ(N))
g dE is the integral of g

with respect to the spectral measure E taking into account the fact that g
has values in C

2 on σ(Θ(N)) ∩ (ZR

p + iZR

q ).
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If φ stems from a characteristic function corresponding to a Borel subset
Δ of C such that no point of ZR

p + iZR

q belongs to the boundary of Δ, then
φ(N) is a selfadjoint projection on K.

2. Multiple Embeddings

In the present section we fix a Krein space (K, [., .]) and Hilbert spaces
(V, [., .]), (V1, [., .]) and (V2, [., .]). Moreover, let T1 : V1 → K, T2 : V2 → K
and T : V → K be bounded linear, injective mappings such that

TT+ = T1T
+
1 + T2T

+
2

holds true. Since for x ∈ K we have

[T+x, T+x]V = [TT+x, x]

= [T1T
+
1 x, x] + [T2T

+
2 x, x] = [T+

1 x, T+
1 x]V1 + [T+

2 x, T+
2 x]V2 ,

one easily concludes that T+x �→ T+
j x constitutes a well-defined, contractive

linear mapping from ranT+ onto ran T+
j for j = 1, 2. As (ran T+)⊥ = ker T =

{0} and (ranT+
j )⊥ = ker Tj = {0} these ranges are dense in the Hilbert

spaces V and Vj . Hence, there exists a unique bounded linear continuation
of T+x �→ T+

j x to V, which has dense range in Vj .
Denoting by Rj the adjoint mapping of this continuation, we clearly

have Tj = TRj and kerRj = (ranR∗
j )

⊥ = {0}. From TT+ = T1T
+
1 + T2T

+
2

we conclude

T (I)T+ = TT+ = TR1R
∗
1T

+ + TR2R
∗
2T

+ = T (R1R
∗
1 + R2R

∗
2)T

+.

ker T = {0} and the density of ranT+ yields R1R
∗
1 + R2R

∗
2 = I.

If T1T
+
1 and T2T

+
2 commute, then by TT+ = T1T

+
1 + T2T

+
2 also TjT

+
j

and TT+ commute. Moreover, in this case

T (T+TRjR
∗
j )T

+ = TT+TjT
+
j = TjT

+
j TT+ = T (RjR

∗
jT

+T )T+.

Employing again T ’s injectivity and the density of ranT+, we see that RjR
∗
j

and T+T commute for j = 1, 2. We also obtain

T+
j TjR

∗
jRj = R∗

j (T
+TRjR

∗
j )Rj = R∗

j (RjR
∗
jT

+T )Rj = R∗
jRjT

+
j Tj .

Thus, we showed

Lemma 2.1. With the above notations and assumptions there exist injective
contractions R1 : V1 → V and R2 : V2 → V such that T1 = TR1, T2 = TR2

and R1R
∗
1 + R2R

∗
2 = I.

If T1T
+
1 and T2T

+
2 commute, then the operators RjR

∗
j and T+T on V

commute as well as the operators R∗
jRj and T+

j Tj on Vj for j = 1, 2.
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KT
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T2

By Θj : (TjT
+
j )′ (⊆ B(K)) → (T+

j Tj)′ (⊆ B(Vj)), j = 1, 2, and by
Θ : (TT+)′ (⊆ B(K)) → (T+T )′ (⊆ B(V)) we shall denote the ∗-algebra
homomorphisms mapping the identity operator to the identity operator as in
Theorem 5.7 from [2] corresponding to the mappings Tj , j = 1, 2, and T :

Θj(C) = (Tj × Tj)−1(C) = T−1
j CTj , C ∈ (TjT

+
j )′,

Θ(C) = (T × T )−1(C) = T−1CT, C ∈ (TT+)′. (2.1)

Here S′ denotes the commutant of the bounded linear operator S : X →
X in B(X ). We can apply Theorem 5.7 in [2] also to the bounded linear,
injective Rj : Vj → V, j = 1, 2, and denote the corresponding ∗-algebra
homomorphisms by Γj : (RjR

∗
j )

′ (⊆ B(V)) → (R∗
jRj)′ (⊆ B(Vj)):

Γj(D) = (Rj × Rj)−1(D) = R−1
j DRj , D ∈ (RjR

∗
j )

′.

Proposition 2.2. With the above notations and assumptions we have (T1T
+
1 )′∩

(T2T
+
2 )′ ⊆ (TT+)′ and Θ((T1T

+
1 )′ ∩ (T2T

+
2 )′) ⊆ (R1R

∗
1)

′ ∩ (R2R
∗
2)

′ ∩ (T+T )′,
where in fact (j = 1, 2)

Θ(C)RjR
∗
j = RjΘj(C)R∗

j = RjR
∗
jΘ(C) (2.2)

and
Θj(C) = Γj ◦ Θ(C) for all C ∈ (T1T

+
1 )′ ∩ (T2T

+
2 )′. (2.3)

Proof. (T1T
+
1 )′ ∩ (T2T

+
2 )′ ⊆ (TT+)′ is clear from TT+ = T1T

+
1 + T2T

+
2 .

According to Theorem 5.7 in [2] for j = 1, 2 we have Θj(C)T+
j = T+

j C and
Θ(C)T+ = T+C for C ∈ (T1T

+
1 )′ ∩ (T2T

+
2 )′. Therefore,

T (RjΘj(C)R∗
j )T

+ = TjΘj(C)T+
j = TjT

+
j C

= TRjR
∗
jT

+C = T (RjR
∗
jΘ(C))T+.

From ker T = {0} and the density of ranT+ we obtain RjΘj(C)R∗
j =

RjR
∗
jΘ(C). Applying this equation to C+ and taking adjoints yields

RjΘj(C)R∗
j = Θ(C)RjR

∗
j . In particular, Θ(C) ∈ (RjR

∗
j )

′. Therefore, we
can apply Γj to Θ(C) and get

Γj ◦ Θ(C) = R−1
j T−1CTRj = T−1

j CTj = Θj(C). �
For the following assertion note that, by (2.3) and by the fact that Γj

is a ∗-algebra homomorphism mapping the identity operator to the identity
operator, we have (j = 1, 2)

σ(Θ(C)) ⊇ σ(Θj(C)) for all C ∈ (T1T
+
1 )′ ∩ (T2T

+
2 )′. (2.4)
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Corollary 2.3. With the above notations and assumptions let N ∈ (T1T
+
1 )′ ∩

(T2T
+
2 )′ be normal. Then Θ(N),Θ1(N),Θ2(N) are all normal operators in

the Hilbert spaces V, V1, V2, respectively. If E (E1,E2) denotes the spectral
measure for Θ(N) (Θ1(N), Θ2(N)), then E(Δ) ∈ (R1R

∗
1)

′∩(R2R
∗
2)

′∩(T+T )′

and (j = 1, 2)

Γj(E(Δ)) = Ej(Δ)

for all Borel subsets Δ of C, where Ej(Δ) ∈ (R∗
jRj)′ ∩ (T+

j Tj)′.
Moreover,

∫
h dE ∈ (R1R

∗
1)

′ ∩ (R2R
∗
2)

′ ∩ (T+T )′ and

Γj

(∫
h dE

)

=
∫

h dEj

for any bounded and measurable h : σ(Θ(N)) → C, where
∫

h dEj belongs to
(R∗

jRj)′ ∩ (T+
j Tj)′.

Proof. The normality of Θ(N),Θ1(N) and Θ2(N) is clear, since Θ, Θ1,Θ2

are ∗-homomorphisms. From Proposition 2.2 we know that Θ(N) ∈ (R1R
∗
1)

′∩
(R2R

∗
2)

′ ∩(T+T )′. According to the well known properties of Θ(N)’s spectral
measure we obtain E(Δ) ∈ (R1R

∗
1)

′∩(R2R
∗
2)

′∩(T+T )′ and, in turn,
∫

h dE ∈
(R1R

∗
1)

′ ∩ (R2R
∗
2)

′ ∩ (T+T )′. In particular, Γj can be applied to E(Δ) and∫
h dE. Similarly, Θj(N) ∈ (T+

j Tj)′ implies Ej(Δ),
∫

h dEj ∈ (T+
j Tj)′ for a

bounded and measurable h.
Recall from Theorem 5.7 in [2] that Γj(D)R∗

jx = R∗
jD for D ∈ (RjR

∗
j )

′.
For x ∈ V and y ∈ Vj we therefore have

[Γj(E(Δ))R∗
jx, y] = [R∗

jE(Δ)x, y] = [E(Δ)x,Rjy]

and, in turn,
∫

C

s(z, z̄) d[Γj(E)R∗
jx, y] =

∫

C

s(z, z̄) d[Ex,Rjy] = [s(Θ(N),Θ(N)∗)x,Rjy]

= [R∗
js(Θ(N),Θ(N)∗)x, y] = [Γj(s(Θ(N),Θ(N)∗))R∗

jx, y]

for any trigonometric polynomial s(z, z̄) ∈ C[z, z̄]. By (2.3) and the fact that
Γj is a ∗-homomorphism we have Γj(s(Θ(N),Θ(N)∗)) = s(Θj(N),Θj(N)∗).
Consequently,

∫

C

s(z, z̄) d[Γj(E)R∗
jx, y] =

∫

C

s(z, z̄) d[EjR
∗
jx, y].

Since E(C \ K) = 0 and Ej(C \ K) = 0 for a certain compact K ⊆ C and
since C[z, z̄] is densely contained in C(K), we obtain from the uniqueness
assertion of the Riesz Representation Theorem that

[Γj(E(Δ))R∗
jx, y] = [Ej(Δ)R∗

jx, y] for all x ∈ V, y ∈ Vj ,

for all Borel subsets Δ of C. Due to the density of ranR∗
j in Vj we even

have [Γj(E(Δ))z, y] = [Ej(Δ)z, y], y, z ∈ Vj and, hence, Γj(E(Δ)) = Ej(Δ).
Since Γj maps into (R∗

jRj)′, we have Ej(Δ) ∈ (R∗
jRj)′ and, in turn,

∫
h dEj ∈

(R∗
jRj)′ for any bounded and measurable h.
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If h : σ(Θ(N)) → C is bounded and measurable, then, clearly, also its
restriction to σ(Θj(N)) = σ(Γj ◦Θ(N)) is bounded and measurable; see (2.4).
Due to Ej(Δ)R∗

j = Γj(E(Δ))R∗
j = R∗

jE(Δ) for x ∈ V and y ∈ Vj we have
[

Γj

(∫
h dE

)

R∗
jx, y

]

=
[

R∗
j

(∫
h dE

)

x, y

]

=
[(∫

h dE

)

x,Rjy

]

=
∫

h d[Ex,Rjy] =
∫

h d[EjR
∗
jx, y]

=
[(∫

h dEj

)

R∗
jx, y

]

.

Again the density of ranR∗
j yields Γj

(∫
h dE

)
=

∫
h dEj . �

Recall from Theorem 5.10 in [2] the mappings (j = 1, 2)

Ξj : (T+
j Tj)′ (⊆ B(Vj)) → (TjT

+
j )′ (⊆ B(K)), Ξj(Dj) = TjDjT

+
j , (2.5)

and Ξ : (T+T )′ (⊆ B(V)) → (TT+)′ (⊆ B(K)), Ξ(D) = TDT+. By (j = 1, 2)

Λj : (R∗
jRj)′ (⊆ B(Vj)) → (RjR

∗
j )

′ (⊆ B(V)), Λj(Dj) = RjDjR
∗
j ,

we shall denote the corresponding mappings outgoing from the mappings
Rj : Vj → V. By Lemma 2.1 we have

Ξj(Dj) = TRjDjR
∗
jT

+ = Ξ ◦ Λj(Dj) for Dj ∈ (R∗
jRj)′ ∩ (T+

j Tj)′.

According to Lemma 5.10 in [2], Λj ◦ Γj(D) = DRjR
∗
j . Hence, using the

notation from Corollary 2.3

Ξj

(∫
h dEj

)

= Ξ ◦ Λj ◦ Γj

(∫
h dE

)

= Ξ
(

RjR
∗
j

∫
h dE

)

. (2.6)

Finally, T−1TjT
+
j T = T−1TRjR

∗
jT

+T = RjR
∗
jT

+T . In case that T1T
+
1 and

T2T
+
2 commute we have T1T

+
1 , T2T

+
2 ∈ (TT+)′ and the later equality can be

expressed as (j = 1, 2)

Θ(TjT
+
j ) = RjR

+
j T+T. (2.7)

3. Normal Definitizable Operators

Definition 3.1. We will call a bounded linear and normal operator N on
a Krein space definitizable if its real part A := N+N+

2 and its imaginary
part B := N−N+

2i are both definitizable, i.e. there exist real polynomials
p, q ∈ R[z] \ {0} such that p is definitizing for A ([p(A)x, x] ≥ 0, x ∈ K) and
such that q is definitizing for B ([q(B)x, x] ≥ 0, x ∈ K); see [4]. ♦

By Corollary 7.15 in [2] the definitizability of A and B is equivalent to
the concept of definitizability in [2]. Also note that in Pontryagin spaces any
bounded linear and normal operator is definitizable in the above sense; see
Example 6.2 in [2].
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Proposition 3.2. Let A and B be commuting, bounded linear, selfadjoint and
definitizable operators on a Krein space (K, [., .]) with definitizing polynomials
p ∈ R[z] \ {0} for A and q ∈ R[z] \ {0} for B. Then there exist Hilbert spaces
(V1, [., .]), (V2, [., .]), (V, [., .]) and bounded linear and injective operators
T1 : V1 → K, T2 : V2 → K, T : V → K such that

T1T
+
1 = p(A), T2T

+
2 = q(B), TT+ = p(A) + q(B) = T1T

+
1 + T2T

+
2

with commuting T1T
+
1 and T2T

+
2 . Moreover, if Θ : (TT+)′ (⊆ B(K)) →

(T+T )′ (⊆ B(V)) is as in (2.1) and Rj : Vj → V (j = 1, 2) are as in
Lemma 2.1, then

p(Θ(A)) = R1R
∗
1

(
p(Θ(A)) + q(Θ(B))

)
,

q(Θ(B)) = R2R
∗
2

(
p(Θ(A)) + q(Θ(B))

)
,

(3.1)

where R1R
∗
1 and R2R

∗
2 commute with p(Θ(A)) + q(Θ(B)).

Proof. Let (V1, [., .]) be the Hilbert space completion of K/ ker p(A) with
respect to [p(A)., .] and let T1 : V1 → K be the adjoint of the embedding of K
into V1. Since T+

1 has dense range, T1 is injective. Analogously let (V2, [., .])
be the Hilbert space completion of K/ ker q(B) with respect to [q(B)., .] and
denote by T2 : V2 → K the injective adjoint of the embedding of K into V2.
Finally, let (V, [., .]) be the Hilbert space completion of K/(ker p(A) + q(B))
with respect to [(p(A) + q(B))., .] and let T : V → K be the injective adjoint
of the embedding of K into V.

From [TT+x, y] = [T+x, T+y]V = [x, y]V = [(p(A) + q(B))x, y],
[T1T

+
1 x, y] = [T+

1 x, T+
1 y]V1 = [x, y]V1 = [p(A)x, y] and [T2T

+
2 x, y] =

[q(B)x, y] for all x, y ∈ K we conclude that

T1T
+
1 = p(A), T2T

+
2 = q(B), TT+ = p(A) + q(B),

where p(A) = T1T
+
1 and q(B) = T2T

+
2 commute, because A and B do.

From (2.7) and Theorem 5.7 in [2] we obtain

p(Θ(A)) = Θ(p(A)) = Θ(T1T
+
1 ) = R1R

∗
1T

+T = R1R
∗
1Θ(TT+)

= R1R
∗
1Θ(p(A) + q(B)) = R1R

∗
1

(
p(Θ(A)) + q(Θ(B))

)
.

Similarly, q(Θ(B)) = R2R
∗
2(p(Θ(A)) + q(Θ(B))). Finally, R1R

∗
1 and R2R

∗
2

commute with T+T = p(Θ(A)) + q(Θ(B)) by Lemma 2.1. �
The fact that a normal operator is definitizable implies certain spectral

properties of Θ(N).

Lemma 3.3. With the notation of Proposition 3.2 applied to the real part
A := N+N+

2 and the imaginary part B := N−N+

2i of a bounded linear, normal
and definitizable operator N we have

{z ∈ C : |p(Re z)| > ‖R1R
∗
1‖ · |p(Re z) + q(Im z)|} ⊆ ρ(Θ(N)),

and

{z ∈ C : |q(Im z)| > ‖R2R
∗
2‖ · |p(Re z) + q(Im z)|} ⊆ ρ(Θ(N)).

In particular, the zeros of p(Re z) + q(Im z) are contained in ρ(Θ(N)) ∪ {z ∈
C : p(Re z) = 0 = q(Im z)}.
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Proof. We are going to show the first inclusion. The second one is shown in
the same manner. For this let n ∈ N and set

Δn :=
{

z ∈ C : |p(Re z)|2 >
1
n

+ ‖R1R
∗
1‖2 · |p(Re z) + q(Im z)|2

}

.

For x ∈ E(Δn)(V) we then have

‖p(Θ(A))x‖2 =
∫

Δn

|p(Re ζ)|2 d[E(ζ)x, x]

≥
∫

Δn

1
n

d[E(ζ)x, x] + ‖R1R
∗
1‖2

∫

Δn

|p(Re ζ)

+ q(Im ζ)|2 d[E(ζ)x, x]

≥ 1
n

‖x‖2 + ‖R1R
∗
1

(
p(Θ(A)) + q(Θ(B))

)
x‖2.

By (3.1) this inequality can only hold for x = 0. Since Δn is open, by the
Spectral Theorem for normal operators on Hilbert spaces we have Δn ⊆ ρ(N).
The asserted inclusion finally follows from

{z ∈ C : |p(Re z)| > ‖R1R
∗
1‖ · |p(Re z) + q(Im z)|} =

⋃

n∈N

Δn. �

Corollary 3.4. With the notation and assumptions from Lemma 3.3 we have

R1R
∗
1 E{z ∈ C : p(Re z) 
= 0 or q(Im z) 
= 0}

=
∫

{z∈C:p(Re z) �=0 or q(Im z) �=0}

p(Re z)
p(Re z) + q(Im z)

dE(z)

and

R2R
∗
2 E{z ∈ C : p(Re z) 
= 0 or q(Im z) 
= 0}

=
∫

{z∈C:p(Re z) �=0 or q(Im z) �=0}

q(Re z)
p(Re z) + q(Im z)

dE(z)

Proof. First note that the integrals on the right hand sides exist as bounded
operators, because by Lemma 3.3 we have |p(Re z)| ≤ ‖R1R

∗
1‖ · |p(Re z) +

q(Im z)| and |q(Im z)| ≤ ‖R2R
∗
2‖ · |p(Re z) + q(Im z)| on σ(Θ(N)).

Clearly, both sides vanish on the range of E{z ∈ C : p(Re z) = 0 =
q(Im z)}. Its orthogonal complement

H : = ranE{z ∈ C : p(Re z) = 0 = q(Im z)}⊥

= ran E{z ∈ C : p(Re z) 
= 0 or q(Im z) 
= 0},

is invariant under
∫ (

p(Re z) + q(Im z)
)
dE(z) =

(
p(Θ(A)) + q(Θ(B))

)
. By

Lemma 3.3 the restriction of this operator to H is injective, and hence, has
dense range in H. If x belongs to this dense range, i.e. x =

(
p(Θ(A)) +
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q(Θ(B))
)
y with y ∈ H, then

∫

{z∈C:p(Re z) �=0 or q(Im z) �=0}

p(Re z)
p(Re z) + q(Im z)

dE(z)x

=
∫

{z∈C:p(Re z) �=0 or q(Im z) �=0}
p(Re z) dE(z) y = p(Θ(A)) y

= R1R
∗
1

(
p(Θ(A)) + q(Θ(B))

)
y = R1R

∗
1 x.

By a density argument the first asserted equality of the present corollary
holds true on H and in turn on V. The second equality is shown in the same
manner. �

4. The Proper Function Class

In order to introduce a functional calculus we have to introduce an algebra
structure on Am,n := (Cm ⊗C

n) ×C
2 � C

m·n+2 and on Bm,n := C
m ⊗C

n �
C

m·n for m,n ∈ N.

Definition 4.1. For m,n ∈ N we provide Am,n with the componentwise addi-
tion and scalar multiplication. Moreover, writing the elements a ∈ Am,n as
a = (ak,l)(k,l)∈Im,n

with index set Im,n := ({0, . . . , m − 1} × {0, . . . , n − 1}) ∪
{(m, 0), (0, n)}, we set a :=

(
āk,l

)
(k,l)∈Im,n

and define the multiplication of
elements a = (ak,l)(k,l)∈Im,n

, b = (bk,l)(k,l)∈Im,n
from Am,n by

a · b :=
( k∑

c=0

l∑

d=0

ac,dbk−c,l−d

)

(k,l)∈Im,n

.

On Bm,n we define addition, scalar multiplication, multiplication and conju-
gation in the same way only neglecting the entries with indices (m, 0) and
(0, n).

Finally, for m,n ∈ N we introduce the projection π : Am,n → Bm,n,
(ak,l)(k,l)∈Im,n

�→ (ak,l)0≤k≤m−1
0≤l≤n−1

. On Bm,n we assume π to be the identity.

♦

Remark 4.2. It is easy to check that Am,n and Bm,n are commutative, unital
∗-algebras. Setting e0,0 = 1 and ek,l = 0, (k, l) 
= (0, 0), it is easy to verify
that

(
ek,l

)
(k,l)∈Im,n

is the multiplicative unit in Am,n and
(
ek,l

)
0≤k≤m−1
0≤l≤n−1

is

the multiplicative unit in Bm,n. We shall denote these units by e.
Moreover, it is straight forward to check that an element (ak,l) of Am,n

(of Bm,n) has a multiplicative inverse in Am,n (in Bm,n) if and only if a0,0 
= 0.
♦

For the rest of the paper assume that N is a bounded linear, normal
and definitizable operator in a Krein space K with real part A and imaginary
part B. Moreover, we fix definitizing polynomials p ∈ R[z] \ {0} for A and
q ∈ R[z] \ {0} for B.
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Definition 4.3. We define the functions dp, dq : C → N ∪ {0} by dp(z) :=
min{j ∈ N ∪ {0} : p(j)(z) 
= 0} and dq(z) := min{j ∈ N ∪ {0} : q(j)(z) 
= 0}.
Moreover, we shall denote the set of their real zeros by ZR

p and ZR

q , i.e.

ZR

p := p−1{0} ∩ R, ZR

q := q−1{0} ∩ R,

and we set Zi := (p−1{0} × q−1{0}) \ (R × R).
Now we introduce the following classes of functions:

(i) By MN we denote the set of functions φ defined on
(
σ(Θ(N)) ∪ (ZR

p + iZR

q )
)∪̇Zi

with φ(z) ∈ C(z), where C(z) := Bdp(ξ),dq(η) for z = (ξ, η) ∈ Zi, C(z) :=
Adp(Re z),dq(Im z) for z ∈ (ZR

p + iZR

q ) and C(z) := C for z ∈ σ(Θ(N)) \
(ZR

p + iZR

q ).
(ii) We provide MN pointwise with scalar multiplication, addition and mul-

tiplication, where the operations on Adp(Re z),dq(Im z) or Bdp(ξ),dq(η) are
as in Definition 4.1. We also define a conjugate linear involution .# on
MN by

φ#(z) = φ(z) for z ∈ σ(Θ(N)) ∪ (ZR

p + iZR

q ),

φ#(ξ, η) = φ(ξ̄, η̄) for (ξ, η) ∈ Zi.

(iii) By R we denote the set of all elements φ ∈ MN such that π(φ(z)) = 0
for all z ∈ (ZR

p +iZR

q )∪̇Zi; see Definition 4.1. ♦

With the operations introduced in Definition 4.3 MN is a commutative
∗-algebra as can be verified in a straight forward manner. Moreover, R is an
ideal of MN .

Definition 4.4. Let f : dom f → C be a function with dom f ⊆ C
2 such that

τ
(
σ(Θ(N)) ∪ (ZR

p + iZR

q )
) ⊆ dom f , where τ : C → C

2, (x + iy) �→ (x, y),
such that f ◦τ is sufficiently smooth—more exactly, at least maxx,y∈R dp(x)+
dq(y) − 1 times continuously differentiable—on an open neighbourhood of
ZR

p + iZR

q , and such that f is holomorphic on an open neighbourhood of Zi.
Then f can be considered as an element fN of MN by setting fN (z) :=

f ◦ τ(z) for z ∈ σ(Θ(N)) \ (ZR

p + iZR

q ), by

fN (z) :=
(

1
k!l!

∂k+l

∂xk∂yl
f ◦ τ(z)

)

(k,l)∈Idp(Re z),dq(Im z)

for z ∈ ZR

p + iZR

q , and by

fN (ξ, η) :=
(

1
k!l!

∂k+l

∂zk∂wl
f(ξ, η)

)

0≤k≤dp(ξ)−1
0≤l≤dq(η)−1

,

for (ξ, η) ∈ Zi. ♦

Remark 4.5. By the Leibniz rule f �→ fN is compatible with multiplication.
Obviously, it is also compatible with addition and scalar multiplication. If we
define for a function f as in Definition 4.4 the function f# by f#(z, w) =
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f(z̄, w̄), (z, w) ∈ dom f , then we also have (f#)N = (fN )#. Note that in
general (f̄)N 
= (fN )#. ♦

Example 4.6. For the constant one function 1 on C
2 we have 1N (z) = e for

all z ∈ (
σ(Θ(N)) ∪ (ZR

p + iZR

q )
)∪̇Zi, where e is the multiplicative unit in

C(z); see Remark 4.2. ♦

Example 4.7. p(z) considered as an element of C[z, w] is clearly holomorphic
on C

2. Hence, we can consider pN as defined in Definition 4.4. Thereby,
pN (z)k,l = 0, (k, l) ∈ Idp(Re z),dq(Im z) \ {(dp(Re z), 0)}, and

pN (z)dp(Re z),0 =
1

dp(Re z)!
p(dp(Re z))(Re z)

for all z ∈ ZR

p + iZR

q . Since Re z is a zero of p of degree exactly dp(Re z) the
entries with index (dp(Re z), 0) do not vanish. Moreover, pN (ξ, η) = 0 for all
(ξ, η) ∈ Zi. Hence, pN ∈ R. Similarly, if q(w) is considered as an element of
C[z, w], then qN (z)k,l = 0, (k, l) ∈ Idp(Re z),dq(Im z) \ {(0, dq(Im z))}, and

qN (z)0,dq(Im z) =
1

dq(Im z)!
q(dq(Im z))(Im z) 
= 0

for all z ∈ ZR

p + iZR

q . Also here qN (ξ, η) = 0 for all (ξ, η) ∈ Zi and, in turn,
qN ∈ R. ♦

We need an easy algebraic lemma based on the Euclidean algorithm.

Lemma 4.8. Let a(z), b(z) ∈ C[z] \ {0} be polynomials of positive degrees m
and n, respectively. By a−1{0} we denote the set of all zeros of a in C, and
we set da(z) := min{j : a(j)(w) 
= 0}. The set b−1{0} and the function da(z)
is defined correspondingly. Then any s ∈ C[z, w] can be written as

s(z, w) = a(z)u(z, w) + b(w)v(z, w) + r(z, w)

with u(z, w), v(z, w), r(z, w) ∈ C[z, w] such that r’s z-degree is less than m
and its w-degree is less than n. Here u(z, w), v(z, w), r(z, w) can be found in
R[z, w] for a(z), b(z) ∈ R[z] and s ∈ R[z, w].

If we define � : C[z, w] → C
m·n by

�(s) =

(
( 1

k!l!
∂k+l

∂zk∂wl
s(z, w)

)

0≤k≤da(z)−1
0≤l≤db(w)−1

)

z∈a−1{0},w∈b−1{0}
,

then s ∈ ker � if and only if s(z, w) = a(z)u(z, w) + b(w)v(z, w) for some
u(z, w), v(z, w) ∈ C[z, w]. Moreover, � restricted to the space of all poly-
nomials from C[z, w] with z-degree less than m and w-degree less than n is
bijective.

Proof. Applying the Euclidean algorithm to s(z, w) ∈ C[z, w] and a(z) we
obtain s(z, w) = a(z)u(z, w) + t(z, w), where u(z, w), t(z, w) ∈ C[z, w] are
such that t’s z-degree is less than m. Applying the Euclidean algorithm to
t(z, w) and b(w) we obtain

s(z, w) = a(z)u(z, w) + b(w)v(z, w) + r(z, w),
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where v(z, w), r(z, w) ∈ C[z, w] are such that r’s z-degree is less than m
and its w-degree is less than n. The resulting polynomials u(z, w), t(z, w),
v(z, w), r(z, w) belong to R[z, w] if a(z), b(z) ∈ R[z], s(z, w) ∈ R[z, w].

In any case it is easy to check that then �(s) = �(r). Hence, r(z, w) = 0
yields s(z, w) ∈ ker �. On the other hand, if 0 = �(s) = �(r), then for each
fixed ζ ∈ a−1{0} and k ∈ {0, . . . , da(ζ) − 1} the function w �→ ∂k

∂zk r(ζ, w) has
zeros at all w ∈ b−1{0} with multiplicity at least db(w). Since w �→ ∂k

∂zk r(ζ, w)
is of w-degree less than n, it must be identically equal to zero.

This implies that for any η ∈ C the polynomial z �→ r(z, η) has zeros
at all ζ ∈ a−1{0} with multiplicity at least da(ζ). Since the degree of this
polynomial in z is less than m, we obtain r(z, η) = 0 for any z ∈ C. Thus,
r ≡ 0.

Our description of ker� shows in particular that � restricted to the
space of all polynomials from C[z, w] with z-degree less than m and w-degree
less than n is one-to-one. Comparing dimensions shows that this restriction
of � is also onto. �

Corollary 4.9. With the notation from Definition 4.3 for any φ ∈ MN we
find an s ∈ C[z, w] such that φ − sN ∈ R.

Proof. By Lemma 4.8 there exists an s ∈ C[z, w] such that �(s)Re z,Im z =
π(φ(z)) for all z ∈ ZR

p + iZR

q , and such that �(s)ξ,η = φ(ξ, η) for all (ξ, η) ∈
Zi. Hence, by the definition of R we obtain φ − sN ∈ R. �

Remark 4.10. Recall from Lemma 3.3 that p(Re z) + q(Im z) = 0 with z ∈
σ(Θ(N)) implies p(Re z) = 0 = q(Im z), i.e. z ∈ ZR

p + iZR

q .
If φ ∈ R, then we find a function g on σ(Θ(N)) with g(z) ∈ C for

z ∈ σ(Θ(N)) \ (ZR

p + iZR

q ) and g(z) ∈ C
2 for z ∈ σ(Θ(N))∩ (ZR

p + iZR

q ), such
that φ(z) = (pN+qN )(z)·g(z), z ∈ σ(Θ(N)). Here we define (pN+qN )(z)·g(z)
as the usual multiplication on C for z ∈ σ(Θ(N)) \ (ZR

p + iZR

q ), whereas
(
(pN + qN )(z) · g(z)

)
k,l

= 0, k = 0, . . . , dp(Re z) − 1; l = 0, . . . , dq(Im z) − 1,

and
(
(pN + qN )(z) · g(z)

)
dp(Re z),0

= (pN + qN )(z)dp(Re z),0 · g1(z),
(
(pN + qN )(z) · g(z)

)
0,dq(Im z)

= (pN + qN )(z)(z)0,dq(Im z) · g2(z).

for z ∈ σ(Θ(N)) ∩ (ZR

p + iZR

q ); see Example 4.7.

In fact, we set g(z) := φ(z)
p(Re z)+q(Im z) for z ∈ σ(Θ(N)) \ (ZR

p + iZR

q ) and

g1(z) :=
dp(Re z)!φ(z)dp(Re z),0

p(dp(Re z))(Re z)
, g2(z) :=

dq(Im z)!φ(z)0,dq(Im z)

q(dq(Im z))(Im z)

for z ∈ σ(Θ(N)) ∩ (ZR

p + iZR

q ). ♦

We are going to introduce a subclass of MN , which will be the suitable
class, in order to build up our functional calculus.
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Definition 4.11. With the notation from Definition 4.3 we denote by FN the
set of all elements φ ∈ MN such that z �→ φ(z) is Borel measurable and
bounded on σ(Θ(N)) \ (ZR

p + iZR

q ), and such that for each w ∈ σ(Θ(N)) ∩
(ZR

p + iZR

q )

φ(z) − ∑dp(Re w)−1
k=0

∑dq(Im w)−1
l=0 φ(w)k,l Re(z − w)k Im(z − w)l

max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w))
(4.1)

is bounded for z ∈ σ(Θ(N)) ∩ U(w) \ {w}, where U(w) is a sufficiently small
neighbourhood of w. ♦

Note that (4.1) is immaterial if w is an isolated point of σ(Θ(N)).

Example 4.12. For ζ ∈ (ZR

p + iZR

q )∪̇Zi and a ∈ C(ζ) consider the functions
aδζ ∈ MN which assumes the value a at ζ and the value zero on the rest of(
σ(Θ(N)) ∪ (ZR

p + iZR

q )
)∪̇Zi

If ζ belongs to Zi or if ζ is an isolated point of σ(Θ(N))∪(ZR

p +iZR

q ), then
aδζ belongs to FN . ♦

Remark 4.13. Let h be defined on an open subset D of C with values in
C. Moreover, assume that for given m,n ∈ N the function h is m + n − 1
times continuously differentiable, and fix w ∈ D. The well-known Taylor
Approximation Theorem from multidimensional calculus then yields

h(z)=
m+n−2∑

j=0

∑

k,l∈N0
k+l=j

1
k!l!

∂jh

∂xk∂yl
(w)Re(z − w)k Im(z − w)l+O(|z − w|m+n−1)

for z → w. From

|z − w|m+n−1 ≤ 2m+n−1 max(|Re(z − w)|m+n−1, | Im(z − w)|m+n−1)

= O(max(|Re(z − w)|m, | Im(z − w)|n))

and from Re(z − w)k Im(z − w)l = O(max(|Re(z − w)|m, | Im(z − w)|n)) for
k ≥ m or l ≥ n, we conclude that also

h(z) =
m−1∑

k=0

n−1∑

l=0

1
k!l!

∂k+lh

∂xk∂yl
(w)Re(z − w)k Im(z − w)l

+O(max(|Re(z − w)|m, | Im(z − w)|n)). ♦

Lemma 4.14. Let f : dom f (⊆ C
2) → C be a function with the properties

mentioned in Definition 4.4. Then fN belongs to FN .

Proof. For a fixed w ∈ σ(Θ(N)) ∩ (ZR

p + iZR

q ) and z ∈ σ(Θ(N)) \ (ZR

p + iZR

q )
by Remark 4.13 the expression

fN (z) −
dp(Re w)−1∑

k=0

dq(Im w)−1∑

l=0

fN (w)k,l Re(z − w)k Im(z − w)l

= f ◦ τ(z) −
dp(Re w)−1∑

k=0

dq(Im w)−1∑

l=0

1
k!l!

∂k+lf ◦ τ

∂xk∂yl
(w)Re(z − w)k Im(z − w)l
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is a O(max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w))) for z → w. Therefore,
fN ∈ FN . �

In order to be able to prove spectral results for our functional calculus,
we need that with φ also z �→ φ(z)−1 belongs to FN if φ is bounded away
from zero.

Lemma 4.15. If φ ∈ FN is such that φ(z) is invertible in C(z) (see
Remark 4.2) for all z ∈ (

σ(Θ(N)) ∪ (ZR

p + iZR

q )
)∪̇Zi and such that 0 does

not belong to the closure of φ
(
σ(Θ(N))\ (ZR

p + iZR

q )
)
, then φ−1 : z �→ φ(z)−1

also belongs to FN .

Proof. By the first assumption φ−1 is a well-defined object belonging to MN .
Clearly, with φ also z �→ φ(z)−1 = 1

φ(z) is measurable on σ(Θ(N))\(ZR

p +iZR

q ).
By the second assumption z �→ φ(z)−1 = 1

φ(z) is bounded on this set.
It remains to verify the boundedness of (4.1) on a certain neighbourhood

of w for each w ∈ σ(Θ(N))∩ (ZR

p + iZR

q ) for φ−1. To do so, for z ∈ σ(Θ(N))\
(ZR

p + iZR

q ) we calculate

φ−1(z) −
dp(Re w)−1∑

k=0

dq(Im w)−1∑

l=0

φ−1(w)k,l Re(z − w)k Im(z − w)l (4.2)

=
1

φ(z)
− 1

∑dp(Re w)−1
k=0

∑dq(Im w)−1
l=0 φ(w)k,l Re(z − w)k Im(z − w)l

(4.3)

+
1

∑dp(Re w)−1
k=0

∑dq(Im w)−1
l=0 φ(w)k,l Re(z − w)k Im(z − w)l

−
dp(Re w)−1∑

k=0

dq(Im w)−1∑

l=0

φ−1(w)k,l Re(z − w)k Im(z − w)l (4.4)

The expression in (4.3) can be written as

1
φ(z)

· 1
∑dp(Re w)−1

k=0

∑dq(Im w)−1
l=0 φ(w)k,l Re(z − w)k Im(z − w)l

·
⎛

⎝φ(z) −
dp(Re w)−1∑

k=0

dq(Im w)−1∑

l=0

φ(w)k,l Re(z − w)k Im(z − w)l

⎞

⎠

Here 1
φ(z) is bounded by assumption. The assumed invertibility of φ(w) means

φ(w)0,0 
= 0. Hence,

1
∑dp(Re w)−1

k=0

∑dq(Im w)−1
l=0 φ(w)k,l Re(z − w)k Im(z − w)l

= O(1)

for z → w. As φ ∈ FN we conclude that the expression (4.3) is a
O(max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w))) for z → w.
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Because of φ(w) · φ−1(w) = e (4.4) can be rewritten as

− 1
∑dp(Re w)−1

k=0

∑dq(Im w)−1
l=0 φ(w)k,l Re(z − w)k Im(z − w)l

·
( dp(Re w)−1∑

k=0

dq(Im w)−1∑

l=0

Re(z − w)k Im(z − w)l ·

k∑

c=0

l∑

d=0

φ(w)c,d · φ−1(w)k−c,l−d

+O(max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w))) − 1
)

= O(1) · O(max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w)))

= O(max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w)))

for z → w. Thus, φ−1 ∈ FN since we verified that the expression (4.2) is a
O(max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w))). �

5. Functional Calculus

In this section we employ the same assumptions and notation as in the pre-
vious one.

Lemma 5.1. For any φ ∈ FN there exists a polynomial s ∈ C[z, w] and a
function g on σ(Θ(N)) with values in C on σ(Θ(N))\ (ZR

p + iZR

q ) and values
in C

2 on σ(Θ(N))∩ (ZR

p + iZR

q ) such that φ−sN ∈ R, such that g is bounded
and measurable on σ(Θ(N)) \ (ZR

p + iZR

q ), and such that

φ(z) = sN (z) + (pN + qN )(z) · g(z), z ∈ σ(Θ(N)), (5.1)

where the multiplication here has to be understood in the sense of Remark 4.10.

Proof. According to Corollary 4.9 there exists an s ∈ C[z, w] such that φ −
sN ∈ R, and by Remark 4.10 we then find a function g such that (5.1) holds
true. The measurability of

g(z) =
φ(z) − s(Re z, Im z)
p(Re z) + q(Im z)

on σ(Θ(N)) \ (ZR

p + iZR

q )

follows from the assumption φ ∈ FN ; see Definition 4.11.
In order to show g’s boundedness, first recall from Lemma 3.3 that

max(|p(Re z)|, |q(Im z)|) ≤ max(‖R1R
∗
1‖, ‖R2R

∗
2‖) |p(Re z) + q(Im z)|

for z ∈ σ(Θ(N)). Hence, for z ∈ σ(Θ(N)) \ (ZR

p + iZR

q ) we have

max(|p(Re z)|, |q(Im z)|)
|p(Re z) + q(Im z)| ≤ max(‖R1R

∗
1‖, ‖R2R

∗
2‖).

As φ ∈ FN for each w ∈ σ(Θ(N))∩(ZR

p +iZR

q ) we find an open neighbourhood
U(w) of w such that (4.1) is bounded for z ∈ U(w) \ {w}. Clearly, we can
make the neighbourhoods U(w) smaller so that they are pairwise disjoint.
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Since for w ∈ σ(Θ(N)) ∩ (ZR

p + iZR

q ) the real number Re w (Im w) is a zero
of p(Re z) (q(Im z)) with multiplicity dp(Re w) (dq(Im w)), we have

c|Re(z − w)|dp(Re w) ≤ |p(Re z)| and d| Im(z − w)|dq(Im w) ≤ |q(Im z)|
for z ∈ U(w) with constants c, d > 0. Hence,

max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w))
max(|p(Re z)|, |q(Im z)|) ≤ Cw

on σ(Θ(N)) ∩ U(w) \ {w} for some Cw > 0. By what was said in Remark
4.13 we also have

s(Re z, Im z) =
dp(Re w)−1∑

k=0

dq(Im w)−1∑

l=0

φ(w)k,l Re(z − w)k Im(z − w)l

+O
(
max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w))

)
,

because φ − sN ∈ R implies φ(w)k,l = 1
k!l!

∂k+ls
∂xk∂yl (Re w, Im w). Using the

boundedness of (4.1), altogether we obtain the boundedness of

g(z) =
φ(z) − s(Re z, Im z)
p(Re z) + q(Im z)

=
max(|p(Re z)|, |q(Im z)|)

p(Re z) + q(Im z)

·max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w))
max(|p(Re z)|, |q(Im z)|)

· φ(z) − s(Re z, Im z)
max(|Re(z − w)|dp(Re w), | Im(z − w)|dq(Im w))

(5.2)

for z ∈ σ(Θ(N))∩U(w)\{w}. Since by Lemma 3.3 the function 1
p(Re z)+q(Im z)

is continuous, and hence bounded on σ(Θ(N)) \ ⋃
w∈σ(Θ(N))∩(ZR

p+iZR
q ) U(w),

we see that (5.2) is even bounded for z ∈ σ(Θ(N)) \ (ZR

p + iZR

q ). �

Definition 5.2. For any φ ∈ FN we define

φ(N) := s(A,B) + Ξ

(∫ R1,R2

σ(Θ(N))

g dE

)

,

where s ∈ C[z, w] and g is a function on σ(Θ(N)) with the properties men-
tioned in Lemma 5.1, and where
∫ R1,R2

σ(Θ(N))

g dE :=
∫

σ(Θ(N))\(ZR
p+iZR

q )

g dE

+
∑

w∈σ(Θ(N))∩(ZR
p+iZR

q )

(
g(w)1R1R

∗
1E{w}+g(w)2R2R

∗
2E{w}).

♦

First we show that φ(N) is well defined.
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Theorem 5.3. Let φ ∈ FN , s, s̃ ∈ C[z, w] and functions g, g̃ on σ(Θ(N)) be
given, such that the assertion of Lemma 5.1 holds true for s, g as well as for
s̃, g̃. Then

s(A,B) + Ξ

(∫ R1,R2

σ(Θ(N))

g dE

)

= s̃(A,B) + Ξ

(∫ R1,R2

σ(Θ(N))

g̃ dE

)

.

Proof. By assumption we have φ − sN , φ − s̃N ∈ R. Subtracting these func-
tions yields s̃N − sN ∈ R. Using the notation of Lemma 4.8 this gives
�(s̃ − s)ξ,η = 0 for (ξ, η) ∈ p−1{0} × q−1{0}. According to Lemma 4.8
we then have

s̃(z, w) − s(z, w) = p(z)u(z, w) + q(w)v(z, w) (5.3)

for some u(z, w), v(z, w) ∈ C[z, w].
By Lemma 5.10 in [2] we have

Ξ1

(
u(Θ1(A),Θ1(B))

)
= Ξ1

(
Θ1(u(A,B))

)
= p(A)u(A,B),

Ξ2

(
v(Θ2(A),Θ2(B))

)
= Ξ2

(
Θ2(v(A,B))

)
= q(B)v(A,B),

where Ξj , j = 1, 2, are as defined in (2.5). Since u(Θ1(A),Θ1(B))
=

∫
u(Re z, Im z) dE1(z), we obtain from (2.6)

Ξ1

(
u(Θ1(A),Θ1(B))

)
= Ξ

(

R1R
∗
1

∫
u(Re z, Im z) dE(z)

)

.

Similarly, Ξ2

(
v(Θ2(A),Θ2(B))

)
= Ξ

(
R2R

∗
2

∫
v(Re z, Im z) dE(z)

)
. Therefore,

employing Corollary 3.4 we get

s̃(A, B) − s(A, B) = p(A)u(A, B) + q(B)v(A, B)

= Ξ

(

R1R
∗
1

∫
u(Re z, Im z) dE(z) + R2R

∗
2

∫
v(Re z, Im z) dE(z)

)

= Ξ

( ∫

σ(Θ(N))\(ZR
p+iZR

q )

p(Re z)u(Re z, Im z) + q(Im z)v(Re z, Im z)

p(Re z) + q(Im z)
dE(z)

+
∑

w∈σ(Θ(N))∩(ZR
p+iZR

q )

(
u(Re w, Im w) R1R

∗
1 E{w} + v(Re w, Im w) R2R

∗
2 E{w})

)

.

(5.4)

On the other hand, since (5.1) holds true for s, g and s̃, g̃, we have

(s̃N − sN )(z) = (pN + qN )(z) · (g(z) − g̃(z)), z ∈ σ(Θ(N)). (5.5)

For z ∈ σ(Θ(N)) \ (ZR

p + iZR

q ) by (5.3) this means

p(Re z)u(Re z, Im z) + q(Im z)v(Re z, Im z)
= s̃(Re z, Im z) − s(Re z, Im z) = (p(Re z) + q(Im z)) · (g(z) − g̃(z))

and, in turn,

g(z) − g̃(z) =
p(Re z)u(Re z, Im z) + q(Im z)v(Re z, Im z)

p(Re z) + q(Im z)
.
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Considering for z ∈ σ(Θ(N)) ∩ (ZR

p + iZR

q ) the entries of (5.5) with indices
(dp(Re z), 0) and (0, dq(Im z)) together with (5.3) we get

1
dp(Re z)!

p(dp(Re z))(Re z)u(Re z, Im z)

=
1

dp(Re z)!
∂dp(Re z)

∂xdp(Re z)
(s̃(Re z, Im z) − s(Re z, Im z))

=
1

dp(Re z)!
p(dp(Re z))(Re z) (g(z)1 − g̃(z)1)

and
1

dq(Im z)!
q(dq(Im z))(Im z) v(Re z, Im z)

=
1

dq(Im z)!
∂dq(Im z)

∂ydq(Im z)
(s̃(Re z, Im z) − s(Re z, Im z))

=
1

dq(Im z)!
q(dq(Im z))(Im z) (g(z)2 − g̃(z)2)

where we employed the product rule and the fact that p(k)(Re z) = 0 =
q(l)(Im z) for 0 ≤ k < dp(Re z), 0 ≤ l < dq(Im z). Since p(dp(Re z))(Re z)
and q(dq(Im z))(Im z) do not vanish for z ∈ σ(Θ(N)) ∩ (ZR

p + iZR

q ), we obtain
u(Re z, Im z) = g(z)1 − g̃(z)1 and v(Re z, Im z) = g(z)2 − g̃(z)2. Therefore,
we can write (5.4) as

s̃(A,B) − s(A,B) = Ξ

(∫ R1,R2

σ(Θ(N))

(
g − g̃

)
dE

)

,

showing the asserted equality. �
Theorem 5.4. The mapping φ �→ φ(N) constitutes a ∗-homomorphism from
FN into {N,N+}′′ (⊆ B(K)) with sN (N) = s(A,B) for all s ∈ C[z, w].

Proof. From Theorem 5.3 we infer sN (N) = s(A,B) for all s ∈ C[z, w]
because we have sN = sN + (pN + qN )(z) · 0 for all z ∈ σ(Θ(N)).

Assume that for φ, ψ ∈ FN we have s, r ∈ C[z, w] and functions g, h on
σ(Θ(N)) such that φ − sN , ψ − rN ∈ R, such that g and h are bounded and
measurable on σ(Θ(N)) \ (ZR

p + iZR

q ), and such that (5.1) as well as

ψ(z) = rN (z) + (pN + qN )(z) · h(z) for z ∈ σ(Θ(N))

hold true; see Lemma 5.1. Then for λ, μ ∈ C we get from Remark 4.5

(λφ + μψ)(z) = (λs + μr)N (z) + (pN + qN )(z) · (λg(z) + μh(z))

for z ∈ σ(Θ(N)), where λφ+μψ − (λs+μr)N = λ(φ− sN )+μ(ψ − rN ) ∈ R,
and where λg + μh is bounded and measurable on σ(Θ(N)) \ (ZR

p + iZR

q ).
Since the definition of φ(N) in Definition 5.2 depends linearly on s and g, we
conclude from Theorem 5.3 that

(λφ + μψ)(N) = λφ(N) + μψ(N).

Similarly, φ#(z) = (s#)N (z)+(pN +qN )(z)·ḡ(z) for z ∈ σ(Θ(N)); see Remark
4.5. Thereby, φ# − (s#)N = (φ − sN )# ∈ R holds true due to the fact that



Vol. 85 (2016) Spectral Theorem for Definitizable Normal 239

dp(ξ) = dp(ξ̄) and dq(η) = dq(η̄) for all (ξ, η) ∈ Zi. Since ḡ is bounded and
measurable on σ(Θ(N)) \ (ZR

p + iZR

q ), and since

φ(N)+ = s#(A,B) + Ξ

(∫ R1,R2

σ(Θ(N))

ḡ dE

)

,

we again obtain from Theorem 5.3 that φ#(N) = φ(N)+.
Concerning the compatibility with ·, first note that by Remark 4.5

φ(z) · ψ(z) = (s · r)N (z) + (pN + qN )(z) · ω(z) for z ∈ σ(Θ(N)).

Here we have ω(z) = s(z)h(z) + r(z)g(z) + g(z)h(z)(p(Re z) + q(Im z)) for
z ∈ σ(Θ(N)) \ (ZR

p + iZR

q ) and ω(z)j = s(z)h(z)j + r(z)g(z)j , j = 1, 2 for
z ∈ σ(Θ(N)) ∩ (ZR

p + iZR

q ) because a, b ∈ ker π implies a · b = 0 and, in turn,
(pN + qN )(z) · (pN + qN )(z) = 0 for z ∈ σ(Θ(N)) ∩ (ZR

p + iZR

q ).
On the other hand, by Lemma 5.10 in [2] we have Ξ(D)C = Ξ(DΘ(C)),

CΞ(D) = Ξ(Θ(C)D), and Ξ(D1)Ξ(D2) = Ξ(D1D2T
+T ), where T+T =

p(Θ(A)) + q(Θ(B)). Hence,

φ(N) ψ(N)

= s(A,B) r(A,B) + Ξ

(∫ R1,R2

σ(Θ(N))

g dE

)

r(A,B)

+ s(A,B) Ξ

(∫ R1,R2

σ(Θ(N))

h dE

)

+ Ξ

(∫ R1,R2

σ(Θ(N))

g dE

)

Ξ

(∫ R1,R2

σ(Θ(N))

h dE

)

= (s · r)(A,B) + Ξ

(∫ R1,R2

σ(Θ(N))

(g · r + h · s) dE

+
∫

σ(Θ(N))\(ZR
p+iZR

q )

(
p(Re(.)) + q(Im(.))

) · h · g dE

)

= (s · r)(A,B) + Ξ

(∫ R1,R2

σ(Θ(N))

ω dE

)

.

Here ω is bounded and measurable on σ(Θ(N)) \ (ZR

p + iZR

q ) and, using the
fact that R is an ideal,

φ · ψ − (s · r)N = (φ − sN ) · ψ + (ψ − rN ) · sN ∈ R.

Hence, we again obtain from Theorem 5.3 that φ(N) · ψ(N) =
(
φ · ψ

)
(N).

Finally, we shall show that φ(N) ∈ {N,N+}′′. Clearly, s(A,B) ∈
{A,B}′′ = {N,N+}′′. If C ∈ {A,B}′ ⊆ (

p(A) + q(B)
)′ = (TT+)′, then

Θ(C) ∈ {Θ(A),Θ(B)}′ because Θ is a homomorphism. By the spectral the-
orem for normal operators Θ(C) commutes with

D :=
∫ R1,R2

σ(Θ(N))

g dE.
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According to Lemma 5.10 in [2] we then get

Ξ(D)C = Ξ(DΘ(C)) = Ξ(Θ(C)D) = CΞ(D).

Hence, Ξ(D) ∈ {A,B}′′ = {N,N+}′′, and altogether φ(N) ∈ {A,B}′′ =
{N,N+}′′. �

Example 5.5. We want to discuss the simple case of a normal N on a Krein
space K such that its real part A and its imaginary part B are both non-
negative, i.e. [Ax, x] ≥ 0 and [Bx, x] ≥ 0 for all x ∈ K. According to these
assumptions the polynomial p(t) := t =: q(t) is definitizing for A and B.
Consequently, ZR

p = {0} = ZR

q , Zi = ∅ and dp = δ0 = dq.
Therefore, the elements φ ∈ MN are functions defined on σ(Θ(N)) ∪

{0} with φ(z) ∈ C for z 
= 0 and φ(0) ∈ A1,1
∼= C

3. Such a φ belongs to
FN if φ|σ(Θ(N))\{0} is bounded and measurable and, in case that 0 is an
accumulation point of σ(Θ(N)), if

φ(z) − φ(0)0,0

max(|Re z|, | Im z|)
is locally bounded for z ∈ σ(Θ(N))\{0} near 0. If we split up a given φ ∈ FN

as φ = φ1 + φ2, where φ1|σ(Θ(N))\{0} = φ|σ(Θ(N))\{0}, φ2|σ(Θ(N))\{0} = 0
and φ1(0)0,0 = φ(0)0,0, φ2(0)1,0 = φ(0)1,0, φ2(0)0,1 = φ(0)0,1, φ1(0)1,0 =
φ1(0)0,1 = φ2(0)0,0 = 0, then φ1, φ2 ∈ FN with φ2

2 = 0. Hence,

φ(N) = φ1(N) + φ2(N), (5.6)

where φ2(N)2 = 0. Applying Lemma 5.1 to φ and φ1, φ2 we see that the
polynomial s(z, w) for φ2 can be chosen to be the zero polynomial and that
the polynomial s(z, w) for φ and φ1 can be choose to be equal. Moreover, the
corresponding functions g in (5.1) vanish at 0 for φ1 and assumes the value
(φ(0)1,0, φ(0)0,1) ∈ C

2 for φ2; see also Remark 4.10. Thus,

φ1(N) = s(A,B) + T

∫

σ(Θ(N))\{0}
g dE T+,

φ2(N) = T
(
φ(0)1,0R1R

∗
1E{0} + φ(0)0,1R2R

∗
2E{0}) T+.

The decomposition in (5.6) can be seen as generalization of the result in [3]
saying that any non-negative operator H on a Krein space can be written as
the sum S +

∫ +∞
−∞ t dF , where S satisfies S2 = 0 and where F is the classical

Krein space spectral function of H. ♦

6. Spectral Properties

Remark 6.1. For ζ ∈ Zi or for an isolated ζ ∈ σ(Θ(N)) ∪ (ZR

p + iZR

q ) we saw
in Example 4.12 that aδζ ∈ FN . If a is the unit e ∈ C(ζ) (see Remark 4.2),
then (eδζ) · (eδζ) = (eδζ) together with Theorem 5.4 shows that (eδζ)(N) is
a projection. It is a kind of Riesz projection corresponding to ζ.

We set ξ := Re ζ, η := Im ζ if ζ ∈ σ(Θ(N))∪ (ZR

p + iZR

q ) and (ξ, η) := ζ

if ζ ∈ Zi. For λ ∈ C \ {ξ + iη} and for s(z, w) := z + iw − λ we then have
sN ·(eδζ) =

(
sN (ζ)

)
δζ , where the entry s(ξ, η) of sN (ζ) with index (0, 0) does
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not vanish. By Remark 4.2 it therefore has a multiplicative inverse b ∈ C(ζ).
We obtain

sN · (eδζ) · (bδζ) = eδζ .

From sN (N) = N−λ we then see that N |ran(eδζ)(N)−λ has (bδζ)(N)|ran(eδζ)(N)

as its inverse operator. Thus, σ(N |ran(eδζ)(N)) ⊆ {ξ+iη}. ♦

Lemma 6.2. If for φ ∈ FN we have φ(z) = 0 for all

z ∈ (
σ(Θ(N)) ∪ ((ZR

p + iZR

q ) ∩ σ(N))
)∪̇{(α, β) ∈ Zi : α + iβ, ᾱ + iβ̄ ∈ σ(N)},

then φ(N) = 0.

Proof. Since any ζ ∈ (ZR

p + iZR

q ) \σ(N) is isolated in σ(Θ(N))∪ (ZR

p + iZR

q ),
we can apply Remark 6.1. Hence, for

ζ ∈ (
(ZR

p + iZR

q ) \ σ(N)
)

︸ ︷︷ ︸
=:Z1

∪̇ {(α, β) ∈ Zi : α + iβ ∈ ρ(N)}
︸ ︷︷ ︸

=:Z2

the expression (eδζ)(N) is a bounded projection commuting with N . Hence,
(eδζ)(N) also commutes (N − (ξ + iη))−1, where ξ := Re ζ, η := Im ζ if
ζ ∈ Z1 and (ξ, η) := ζ if ζ ∈ Z2.

Consequently, N |ran(eδζ)(N) − (ξ + iη) is invertible on ran(eδζ)(N), i.e.
ξ+ iη 
∈ σ(N |ran(eδζ)(N)). By Remark 6.1 we have σ(N |ran(eδζ)(N)) ⊆ {ξ+ iη}.
Hence, σ(N |ran(eδζ)(N)) = ∅, which is impossible for ran(eδζ)(N) 
= {0}. Thus,
(eδζ)(N) = 0. For

(ξ, η) ∈ Z3 := {(α, β) ∈ Zi : ᾱ + iβ̄ ∈ ρ(N)}
we have (ξ̄, η̄) ∈ Z2, and in turn

0 = (eδξ̄,η̄)(N)+ = (eδξ,η)(N).

By our assumption φ is supported on Z1 ∪ Z2 ∪ Z3. Therefore,

φ(N) =

⎛

⎝
∑

ζ∈Z1∪Z2∪Z3

φ(ζ)δζ

⎞

⎠ (N) =
∑

ζ∈Z1∪Z2∪Z3

φ(ζ)(eδζ)(N) = 0. �

Remark 6.3. As a consequence of Lemma 6.2 for φ ∈ FN the operator φ(N)
only depends on φ’s values on

σN :=
(
σ(Θ(N)) ∪ ((ZR

p + iZR

q ) ∩ σ(N))
)

∪̇{(α, β) ∈ Zi : α + iβ, ᾱ + iβ̄ ∈ σ(N)}
Thus, we can re-define the function class FN for our functional calculus so
that the elements φ of FN are functions on this set with φ(z) ∈ C(z) such
that z �→ φ(z) is measurable and bounded on σ(Θ(N))\ (ZR

p + iZR

q ) and such
that (4.1) is bounded locally at w for all w ∈ σ(Θ(N)) ∩ (ZR

p + iZR

q ). ♦

Lemma 6.4. If φ ∈ FN is such that φ(z) is invertible in C(z) for all z ∈ σN

and such that 0 does not belong to the closure of φ
(
σ(Θ(N)) \ (ZR

p + iZR

q )
)
,

then φ(N) is a boundedly invertible operator on K.
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Proof. We think of φ as a function on
(
σ(Θ(N))∪ (ZR

p + iZR

q )
)∪̇Zi by setting

φ(z) = e (see Remark 4.2) for all z not belonging to σN . Then all assumptions
of Lemma 4.15 are satisfied. Hence φ−1 ∈ FN , and we conclude from Theorem
5.4 and Example 4.6 that

φ−1(N)φ(N) = φ(N)φ−1(N) = (φ · φ−1)(N) = 1N (N) = I. �

Corollary 6.5. If N is a definitizable normal operator on the Krein space K,
then σ(N) equals to

σ(Θ(N)) ∪ ((ZR

p + iZR

q ) ∩ σ(N))

∪{α + iβ : (α, β) ∈ Zi, α + iβ, ᾱ + iβ̄ ∈ σ(N)} (6.1)

Proof. Since Θ is a homomorphism, we have σ(Θ(N)) ⊆ σ(N). Hence, (6.1)
is contained in σ(N).

For the converse, consider the polynomial s(z, w) = z+iw−λ for a λ not
belonging to (6.1). We conclude that for any z ∈ σN the first entry (sN (z))0,0

of sN (z) ∈ C(z) does not vanish, i.e. is invertible in C(z). (sN (σ(Θ(N))))0,0 =
σ(Θ(N))−λ being compact, 0 does not belong to the closure of sN

(
σ(Θ(N))\

(ZR

p + iZR

q )
)
. Applying Lemma 6.4 we see that sN (N) = (N −λ) is invertible.

�

Corollary 6.6. For φ ∈ FN we have

σ(φ(N)) ⊆ φ(σN )0,0.

Proof. For λ /∈ φ(σN )0,0 and any z ∈ σN we have (φ(z) − λ1N (z))0,0 =
φ(z)0,0 − λ 
= 0. Hence φ(z) − λ1N (z) is invertible in C(z).

Moreover, 0 does not belong to the closure of φ
(
σ(Θ(N))\(ZR

p +iZR

q )
)−

λ = (φ − λ1N )
(
σ(Θ(N)) \ (ZR

p + iZR

q )
)
0,0

. Therefore, we can apply Lemma
6.4 to φ − λ1N , and get λ ∈ ρ(φ(N)). �

Remark 6.7. For any characteristic function 1Δ of a Borel subset Δ ⊆ C such
that (ZR

p + iZR

q ) ∩ σ(N) ∩ ∂CΔ = ∅ the function (1τ(Δ))N belongs to FN ; see
Definition 4.4 and Lemma 4.14. Since this function is idempotent and satisfies
(1τ(Δ))

#
N = (1τ(Δ))N , (1τ(Δ))N (N) is a bounded and self-adjoint projection

on the Krein space K. These projections constitute the family of spectral pro-
jections for N . ♦
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