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Abstract. There has recently been a resurgence of interest in Born–
Jordan quantization, which historically preceded Weyl’s prescription.
Both mathematicians and physicists have found that this forgotten
quantization scheme is actually not only of great mathematical interest,
but also has unexpected application in operator theory, signal process-
ing, and time-frequency analysis. In the present paper we discuss the
applications to deformation quantization, which in its traditional form
relies on Weyl quantization. Introducing the notion of “Bopp operator”
which we have used in previous work, this allows us to obtain interesting
new results in the spectral theory of deformation quantization.

Mathematics Subject Classification. Primary 47G30; Secondary 35Q40,
65P10, 35S05, 42B10.

Keywords. Moyal product, Born–Jordan operators, Bopp quantization,
Pseudodifferential operators.

1. Introduction

Deformation quantization is a popular framework for quantum mechanics
among mathematical physicists. It was suggested by Moyal [33] and Groe-
newold [26], and put on a firm mathematical ground by Bayen et al. [1,2]; later
Kontsevich [29,30] extended the theory to Poisson manifolds. Roughly speak-
ing, the idea is to “deform” classical (Hamiltonian) mechanics into quantum
mechanics using a parameter (Planck’s constant); this is achieved using the
notion of “star product” or “Moyal product” �� of two functions on R

2n. The
star product is defined in physics by the suggestive formula

a �� b = a exp
(

i�

2

[←−
∂x · −→

∂p − ←−
∂p · −→

∂x

])
b; (1)

the exponential in the right hand side (the “Janus operator”) is understood as
a power series, the arrows indicating the direction in which the derivatives act.
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This formula was proposed for the first time by Groenewold in his seminal
work [26] in 1946. A rigorous definition is the following: denoting by

Weyl←→
the Weyl correspondence between operators and symbols, assume that a, b ∈
S ′(R2n) and let A

Weyl←→ a and B
Weyl←→ b (A is sometimes called the “Weyl

transform” of a). If the product C = AB is defined and C
Weyl←→ c then, by

definition, c = a �� b.
We have shown in previous work [17,18] that we have

a �� b = Ãb (2)

where Ã is a pseudodifferential operator acting on distributions defined on
R

2n; formally

Ã = a
(
x + 1

2 i�∂p, p − 1
2 i�∂x

)
. (3)

We have called Ã the “Bopp pseudodifferential operator” with symbol a; it
is the Weyl operator on T ∗

R
2n ≡ R

2n × R
2n with symbol

ã(z, ζ) = a
(
x − 1

2ζp, p + 1
2ζx

)
(4)

where (ζx, ζp) are viewed as the dual variables of (x, p). This reformulation of
the star product in terms of pseudodifferential operators is very fruitful; not
only does it allow the study of the generalized eigenvalues and eigenfunctions
of “stargenvalue” problems using standard pseudodifferential techniques, but
it also leads to interesting regularity results in various functional spaces. The
main observation, which leads to the theme of the present paper, is that the
whole procedure heavily relies on the Weyl pseudodifferential calculus. From
a physical point of view, this means that we are privileging Weyl quantization;
technically this choice has many advantages because Weyl quantization is the
simplest and most austere of all quantizations: using Schwartz’s kernel the-
orem one shows that every continuous linear operator A: S(Rn) −→ S ′(Rn)
can be viewed as a Weyl operator, and the Weyl correspondence is uniquely
characterized by the property of symplectic covariance: if A

Weyl←→ a then
ŜAŜ−1 Weyl←→ a ◦ S−1 for every metaplectic operator Ŝ ∈ Mp(n) with pro-
jection S ∈ Sp(n) (the symplectic group). However, in real life things are
not always that simple. Just a couple of years before Weyl [38] defined the
eponymous correspondence, Born and Jordan [7], elaborating on Heisenberg’s
1925 “matrix mechanics” [27], proposed a quantization procedure having a
firm physical motivation (conservation of energy); their approach culminated
one year later in their famous “drei Männer Arbeit” [8] with Heisenberg.
There are many good reasons to believe that the Born and Jordan quantiza-
tion scheme is the right one in physics (Kauffmann [28]); in addition, some
very recent work of Boggiatto and his collaborators [3–5] shows that the
Wigner formalism corresponding to Born–Jordan quantization is much more
adequate in signal analysis than the traditional Weyl–Wigner approach. It
allows to damp the appearance of unwanted “ghost” frequencies in spectro-
grams; numerical experiments confirm these theoretical facts.
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In [16] the first of the authors has studied the properties of Born–Jordan
pseudodifferential calculus; in the present paper we go one step further, and
reformulate deformation quantization in terms of this calculus.

Notation. We will write z = (x, p) where x ∈ R
n and p ∈ (Rn)∗ ≡ R

n.
Operators S(Rn) −→ S ′(Rn) are usually denoted by A,B, . . . while operators
S(R2n) −→ S ′(R2n) are denoted by Ã, B̃, . . . The lower-case Greek letters
ψ, φ, . . . stand for functions (or distributions) defined on R

n while their upper-
case counterparts ψ, φ, . . . denote functions (or distributions) defined on R

2n.
The distributional bracket on R

n is denoted by 〈·, ·〉 and that on R
2n by

〈〈·, ·〉〉. We denote by

σ = dp1 ∧ dx1 + · · · + dpn ∧ dxn

the standard symplectic form on T ∗
R

n ≡ R
n × R

n; in coordinates: σ(z, z′) =

Jz · z′ where J =
(

0n In

−In 0n

)
is the standard symplectic matrix.

2. Bopp Operators and Born–Jordan Quantization

2.1. Born–Jordan Versus Weyl

Let us quickly review the Born–Jordan and Weyl quantizations of monomials
xm

j p�
j . In what follows, the capital letters Xj and Pj denote operators acting

on some space of functions or distributions on R
d, and satisfying Born’s

commutation relations

[Xj , Pj ] = XjPj − PjXj = i�. (5)

For instance, in traditional quantum mechanics d = n and Xj is the operator
of multiplication by xj while Pj = −i�∂xj

, but there is no compelling reason
for limiting ourselves to these operators. Keeping this in mind, the Weyl
quantization of monomials is given by the rule

xm
j p�

j
Weyl−→ 1

2�

�∑
k=0

(
�
k

)
P �−k

j Xm
j P k

j (6)

while Born–Jordan quantization is given by

xm
j p�

j
BJ−→ 1

� + 1

�∑
k=0

P �−k
j Xm

j P k
j . (7)

The Weyl and Born–Jordan correspondences agree for all monomials which
are at most quadratic, as well as for monomials of the type pjx

m
j or p�

jxj .
They are however different as soon as we have l ≥ 2 and m ≥ 2 (Turunen
[37]). It turns out that both rules can be obtained from the τ -correspondence,
defined by

xm
j p�

j
τ−→

�∑
k=0

(
�
k

)
(1 − τ)kτ �−kP �−k

j Xm
j P k

j (8)
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where τ is a real number. The case τ = 1
2 yields the Weyl correspondence

(6). Integrating the τ -correspondence over the interval [0, 1] and using the
formula ∫ 1

0

(1 − τ)kτ �−kdτ =
k!(� − k)!
(� + 1)!

we get the Born–Jordan correspondence (7). Historically, things evolved the
other way round: in [7] Born and Jordan were led to the eponymous corre-
spondence (7) by a strict analysis of Heisenberg’s [27] ideas. In their subse-
quent publication [8] with Heisenberg they showed that their constructions
extend mutatis mutandis to systems with an arbitrary number of degrees of
freedom.

In the general case one proceeds as follows (de Gosson [16]): let τ be
a real parameter, and define the τ -pseudodifferential operator Aτ = Opτ (a)
with symbol a ∈ S ′(R2n) as being the operator S(Rn) −→ S ′(Rn) with
distributional kernel

Kτ (x, y) = F−1
2 [a(τx + (1 − τ)y, ·)](x − y)

where F−1
2 is the inverse Fourier transform in the second set of variables.

This defines the so-called Shubin τ -correspondence [34] A
τ←→ a by; it is

easy to check that one recovers the correspondence (8) for monomials. For
a ∈ S(R2n) and ψ ∈ S(Rn) the more suggestive formula

Aτψ(x) =
∫∫

R2n
e

i
�

p(x−y)a(τx + (1 − τ)y, p)ψ(y)dpdy (9)

holds (Shubin [34], §23), which can also be extended to more general settings.
The choice τ = 1

2 leads to the usual Weyl operators: A = OpBJ(a) with

Aψ(x) =
∫∫

R2n
e

i
�

p(x−y)a( 1
2 (x + y), p)ψ(y)dpdy. (10)

The Born–Jordan pseudodifferential operator A = OpBJ(a) is obtained by
averaging the Shubin operators Aτ over τ ∈ [0, 1]:

A = OpBJ(a) =
∫ 1

0

Aτdτ ; (11)

it is thus the operator S(Rn) −→ S ′(Rn) with kernel

KBJ(x, y) = F−1
2 [aBJ(x, y, p), ·)](x − y)

where the symbol aBJ is defined by

aBJ(x, y, p) =
∫ 1

0

a(τx + (1 − τ)y, p)dτ. (12)

(Heuristically, the Weyl operator (10) is obtained by approximating the in-
tegral in (12) using the midpoint rule). One verifies by a direct calculation,
that the correspondence A

BJ←→ a reduces to the Born–Jordan rules (7) for
polynomials xm

j p�
j .

As already mentioned, the Born–Jordan and Weyl correspondences
agree for all quadratic polynomials in the variables xj , pj . More generally
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(de Gosson [16]) both quantizations are also identical for symbols arising
from physical Hamiltonians of the type

H(z) =
n∑

j=1

1
2mj

(pj − Aj(x))2 + V (x) (13)

where Aj and V are real C∞ functions.

2.2. Harmonic Analysis of ABJ

It is usual to write Weyl operators A = OpW(a) in the form of operator
valued integrals

A =
(

1
2π�

)n
∫

Rn

aσ(z0)T̂ (z0)dz0 (14)

where aσ is the “twisted symbol” of A:

aσ(z) = Fσa(z) =
(

1
2π�

)n
∫

R2n
e− i

�
σ(z,z′)a(z′)dz′ (15)

(Fσ is called the “symplectic Fourier transform”) and T̂ (z0) is the Heisenberg–
Weyl operator defined, for z0 ∈ R

2n by

T̂ (z0)ψ(x) = e
i
�
(p0x− 1

2p0x0)ψ(x − x0) (16)

for a function (or distribution) ψ on R
n. Similarly, the Shubin operator Aτ =

Opτ (a) can be written (de Gosson [16])

Aτ =
(

1
2π�

)n
∫

Rn

aσ(z0)T̂τ (z0)dz0 (17)

where T̂τ (z0) is the modified Heisenberg–Weyl operator defined by

T̂τ (z0) = e
i
2�

(2τ−1)p0x0 T̂ (z0). (18)

Proposition 1. (i) The Born–Jordan operator ABJ = OpBJ(a) is given by

ABJ =
(

1
2π�

)n
∫

Rn

aσ(z0)Θ(z0)T̂ (z0)dz0 (19)

where Θ is defined by

Θ(z0) =
sin(p0x0/2�)

p0x0/2�
. (20)

(ii) The twisted Weyl symbol aW
σ of ABJ is given by the explicit formula

aW
σ (z0) = aσ(z0)Θ(z0). (21)

(iii) The operator ABJ is hence a continuous operator S(Rn) −→ S ′(Rn) for
every a ∈ S ′(R2n).

Remark 2. Notice that Θ(z) = sinc(px/2�) where sinc(t) = (sin t)/t is the
cardinal sine function familiar from signal analysis.
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Proof. The statement (ii) immediately follows from formula (19) taking the
representation (14) of Weyl operators into account. The proof of formula (19)
goes as follows (cf. [16], Proposition 11): integrating both sides of the equality
(17) with respect to the parameter τ ∈ [0, 1] one gets

ABJ =
(

1
2π�

)n
∫

Rn

aσ(z0)
(∫ 1

0

T̂τ (z0)dτ

)
dz0.

Now, in view of definition (18), for p0x0 �= 0
∫ 1

0

T̂τ (z0)dτ =
(∫ 1

0

e
i
2�

(2τ−1)p0x0dτ

)
T̂ (z0)

=
sin(p0x0/2�)

p0x0/2�
T̂ (z0)

hence formula (19) (the formula holds by continuity for p0x0 = 0). (iii) For-
mula (21) implies that aW

σ ∈ S ′(Rn) if aσ ∈ S ′(Rn) because Θ ∈ L∞(R2n) ∩
C∞(R2n). �

It immediately follows from formula (20) that since Θ(z0) = 0 for all
z0 = (x0, p0) such that p0x0 = 2Nπ� for some integer N ∈ Z we see that an
arbitrary continuous operator A : S(Rn) −→ S ′(Rn) is not in general a Born–
Jordan operator: every such operator A has indeed a twisted Weyl symbol aW

σ

in view of Schwartz’s kernel theorem, but because of zeroes of we cannot in
general expect the Eq. (21) to be solved for aσ. This property of Born–Jordan
operators really distinguishes them among all traditional pseudodifferential
operators: the Born–Jordan “correspondence” is neither surjective, nor injec-
tive. Keeping this caveat in mind, we will still write symbolically a

BJ−→ A or
A = OpBJ(a).

2.2.1. Composition and Adjoints of Born–Jordan Operators. Let A : S(Rn)
−→ S ′(Rn) and B : S(Rn) −→ S(Rn) be two continuous operators; their
product AB is well-defined, and its Weyl symbol can be explicitly determined
in terms of those of A and B. In fact if A = OpW(a) and B = OpW(b) then
AB = OpW(a �� b) where a �� b is the Moyal product:

(a �� b)(z) =
(

1
4π�

)2n
∫∫

R4n
e

i
2�

σ(u,v)a(z + 1
2u)b(z − 1

2v)dudv. (22)

There are several ways to rewrite this formula; performing elementary changes
of variables we have

(a �� b)(z) =
(

1
π�

)2n
∫∫

R4n
e− 2i

�
σ(z−z′,z−z′′)a(z′)b(z′′)dz′dz′′ (23)

which is well-known in the literature. For our purposes, it will be more
tractable to use the following formula, which gives the twisted symbol of
the compose in terms of the twisted symbols of the factors:

(a �� b)σ(z) =
∫

R2n
e

i
2�

σ(z,z′)aσ(z − z′)bσ(z′)dz′. (24)
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Proposition 3. Let A = OpBJ(a) and B = OpBJ(b) be two Born–Jordan pseu-
dodifferential operators; we suppose that C = AB is defined as an operator
S(Rn) −→ S ′(Rn). (i) The Weyl symbol of C = AB is given by the formula

cW
σ (z) =

∫
R2n

e
i
2�

σ(z,z′)aσ(z − z′)bσ(z′)Θ(z − z′)Θ(z′)dz′ (25)

where Θ is defined by (20). (ii) If we can factorize cW
σ as cW

σ (z) = χ(z)Θ(z)
where χ ∈ S ′(Rn) then χ = cσ with C = OpBJ(c). (iii) The adjoint of
A = OpBJ(a) is A∗ = OpBJ(a). In particular, the Born–Jordan operator A
is formally self-adjoint if and only its symbol is real.

Proof. (i) Formula (25) is an immediate consequence of formulas (24) and of
(21) since cσ = a �� b. The statement (ii) follows, using again (21). (iii) The
adjoint of the τ -pseudodifferential operator Aτ = Opτ (a) is A∗

τ = Op1−τ (a)
(see [15,34]); it follows that

A∗ =
∫ 1

0

Op1−τ (a)dτ =
∫ 1

0

Opτ (a)dτ = OpBJ(a). �

Remark 4. Note that χ, and hence c, are not uniquely defined by the relation
cW
σ (z) = χ(z)Θ(z) since Θ(z) = 0 for infinitely many values of z. On the

other hand, it is not obvious that an arbitrary Weyl operator can be written
as a Born–Jordan operator. That this is however the case has been proven
recently in Cordero et al. [11] using techniques from distribution theory (the
Paley–Wiener theorem).

3. Bopp Quantization of Born–Jordan Operators

3.1. Bopp Calculus

Setting v = z0, z + 1
2u = z′ in the formula (23) and introducing the notation

T̃ (z0)b(z) = e− i
�

σ(z,z0)b(z − 1
2z0) (26)

we can rewrite formula (22) as

a �� b(z) =
(

1
2π�

)n
∫

R2n
aσ(z0)T̃ (z0)b(z)dz0. (27)

The restrictions of the operators T̃ (z0) : S ′(R2n) −→ S ′(R2n) to L2(R2n) are
unitary, and satisfy the same commutation relations

T̃ (z0)T̃ (z1) = e
i
�

σ(z0,z1)T̃ (z1)T̃ (z0) (28)

as the Heisenberg–Weyl operators. In [17] we have proven the following result:

Proposition 5. The Weyl symbol of the operator Ã : b 
−→ a �� b is the distri-
bution ã ∈ S ′(Rn × R

n) defined by

ã(z, ζ) = a
(
z − 1

2Jζ
)

= a
(
x − 1

2ζp, p + 1
2ζx

)
(29)

where (z, ζ) ∈ T ∗
R

2n, ζ = (ζx, ζp).
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We now introduce the following elementary operators (called “Bopp
shifts” following Bopp [6]; also see Kubo [31]) acting on phase space functions
and distributions:

X̃j = xj +
i�

2
∂pj

, P̃j = pj − i�

2
∂xj

. (30)

These operators satisfy Born’s commutation relations (5), and we can thus
define the extended quantization rule

xm
j p�

j
Weyl−→ 1

2�

�∑
k=0

(
�
k

)
P̃ �−k

j X̃m
j P̃ k

j (31)

corresponding to (6)–(7), respectively. The Weyl and Born–Jordan symbols of
X̃j and P̃j being, respectively, xj − 1

2ζp,j and pj + 1
2ζx,j formula (29) suggests

the notation

Ã = a
(
x + 1

2 i�∂p, p − 1
2 i�∂x

)
used in the Sect. 1.

3.2. The Born–Jordan Starproduct

In the Born–Jordan case we would like to define Bopp quantization using a
procedure extending the natural correspondence

xm
j p�

j
BJ−→ 1

� + 1

�∑
k=0

P̃ �−k
j X̃m

j P̃ k
j .

induced by the monomial rule (7). We will proceed as follows: returning to
formula (17) we define the phase-space τ -operator by

Ãτ =
(

1
2π�

)n
∫

R2n
aσ(z0)T̃τ (z0)dz0 (32)

where T̃τ (z0) is defined in terms of the operator (26) by

T̃τ (z0) = e
i
2�

(2τ−1)p0x0 T̃ (z0). (33)

In analogy with formula (2) we now define the “Born–Jordan starproduct”
��,BJ:

Definition 6. Let a ∈ S ′(R2n). The Bopp–Born–Jordan (BBJ) operator with
symbol a is the operator

ÃBJ = ÕpBJ(a) : S(R2n) −→ S ′(R2n)

defined by the integral

ÃBJ =
∫ 1

0

Ãτdτ (34)

where Ãτ is the pseudodifferential operator (32). Let b ∈ S(R2n). We set

a ��,BJ b = ÃBJb. (35)



Vol. 84 (2016) Born–Jordan Pseudodifferential Calculus 471

In view of formula (19) the BBJ operator has the explicit expression

ÃBJ =
(

1
2π�

)n
∫

R2n
aσ(z)Θ(z)T̃ (z)dz (36)

where Θ ∈ L∞(R2n) ∩ C∞(R2n) is given by (20).

3.3. The Functions AmbBJ and WigBJ

In what follows 〈〈·, ·〉〉 denotes the distributional bracket on R
2n.

The Weyl correspondence between symbols and operators can be defined
using the Wigner formalism. In fact, given a symbol a ∈ S(R2n) one can show

(see e.g. [15], §10.1) that the operator A
Weyl←→ a is the only operator such that

(Aψ|φ)L2 = 〈〈a,Wig(ψ, φ)〉〉 (37)

where Wig(ψ, φ) is the cross-Wigner distribution (or function) of ψ, φ ∈
S(Rn):

Wig(ψ, φ)(z) =
(

1
2π�

)n
∫

Rn

e− i
�

pyψ(x + 1
2y)φ(x − 1

2y)dy. (38)

Noting that (Aψ|φ)L2 = 〈Aψ, φ〉 and that Wig(ψ, φ) ∈ S(R2n) formula (37)
allows to extend the definition of the operator A to the case where a ∈
S ′(R2n). In view of Plancherel’s theorem we can rewrite (37) as

(Aψ|φ)L2 = 〈〈aσ, Fσ Wig(ψ, φ)∨〉〉 (39)

where f∨(z) = f(−z). Since the symplectic Fourier transform of the cross-
Wigner transform is the cross-ambiguity function [14,15,23]

Amb(ψ, φ)(z) =
(

1
2π�

)n
∫

Rn

e− i
�

pyψ(y + 1
2x)φ(y − 1

2x)dy

we have
(Aψ|φ)L2 = 〈〈aσ,Amb(ψ, φ)∨〉〉. (40)

It turns out that we have similar formulas for Born–Jordan operators. We
first recall [15, §8.3.1] that the symplectic Fourier transform defined by (15)
is involutive: F 2

σ = Id and satisfies the following variant of the Plancherel
identity where 〈〈., .〉〉 denotes the scalar product on R

2n:

〈〈a, Fσb〉〉 = 〈〈(Fσa)∨, b〉〉 = 〈〈Fσa, b∨〉〉. (41)

Proposition 7. Let a ∈ S ′(R2n) and ψ, φ ∈ S(Rn); we have

(ABJψ|φ)L2 = 〈〈aσ,AmbBJ(ψ, φ)∨〉〉 (42)
(ABJψ|φ)L2 = 〈〈a,WigBJ(ψ, φ)〉〉 (43)

where AmbBJ(ψ, φ) and WigBJ(ψ, φ) are defined by

AmbBJ(ψ, φ) = Amb(ψ, φ)Θ (44)
WigBJ(ψ, φ) = Fσ AmbBJ(ψ, φ) (45)

where Θσ = FσΘ is the symplectic Fourier transform of Θ.
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Proof. In view of formula (19) we have

(ABJψ|φ)L2 =
(

1
2π�

)n
∫

R2n
aσ(z)Θ(z)(T̂ (z)ψ|φ)L2dz.

Now, a straightforward calculation [15, §9.1.1] using the explicit expression
for the Heisenberg–Weyl operator T̂ (z0) shows that

(T̂ (z)ψ|φ)L2 = (2π�)n Amb(ψ, φ)(−z)

so that

(ABJψ|φ)L2 =
∫

R2n
aσ(z)Θ(z)Amb(ψ, φ)(−z)dz

hence formula (42) since Θ(−z) = Θ(z). By the second equality in Plancherel’s
formula (41), we have, since Fσ is involutive,

〈〈aσ,AmbBJ(φ, ψ)∨〉〉 = 〈〈a, Fσ(AmbBJ(ψ, φ)∨)〉∨〉
= 〈〈a, Fσ(AmbBJ(ψ, φ))〉〉
= 〈〈a,WigBJ(ψ, φ)〉〉

which is formula (43). �
The symplectic Fourier transform satisfying the convolution formula

Fσu ∗ Fσv = (2π�)n
Fσ(uv) we have

WigBJ(ψ, φ) =
(

1
2π�

)n
Fσ Amb(ψ, φ) ∗ FσΘ

hence the explicit formula

WigBJ(ψ, φ) =
(

1
2π�

)n Wig(ψ, φ) ∗ Θσ. (46)

Remark 8. Due to formula (46) the modified Wigner function WigBJ ψ is
an element of the Cohen class (Cohen [12,13], Gröchenig [24]); as such it
can be viewed as a probability quasi-distribution having a similar status as
that of the usual Wigner function (it has, for instance the “right” marginal
properties): for ψ ∈ L1(Rn) ∩ L2(Rn) we have∫

Rn

WigBJ ψ(x, p)dp = |ψ(x)|2
∫

Rn

WigBJ ψ(x, p)dx = |ψ̂(p)|2.

The symbol of Born–Jordan operators are obtained by averaging the
τ -symbol over [0, 1] (formula (12)). A similar procedure holds for WigBJ: for
τ ∈ R and ψ, φ ∈ S(Rn) define the τ -cross-Wigner transform

Wigτ (ψ, φ)(z) =
(

1
2π�

)n
∫

Rn

e− i
�

pyψ(x + τy)φ(x − (1 − τ)y)dy. (47)

One proves (Boggiatto et al. [3]) that Wigτ belongs to the Cohen class; in
fact:

Wigτ (ψ, φ) = Wig(ψ, φ) ∗ FσΘ(τ) (48)
where Θ(τ) is the function

Θ(τ)(z) =
2n

|2τ − 1|n exp
(

i

�

2px

2τ − 1

)
. (49)
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We have [5,16]

WigBJ(ψ, φ) =
∫ 1

0

Wigτ (ψ, φ)dτ. (50)

As the usual cross-Wigner transform, Wigτ satisfies a Moyal identity
(or “orthogonality relation” as it is sometimes called): Boggiatto et al. [5]
have shown that

((Wigτ (ψ, φ)|Wigτ (ψ′, φ′)))L2 =
(

1
2π�

)n (ψ|ψ′)L2(φ|φ′)L2 (51)

for every τ ∈ R and for all functions ψ,ψ′, φ, φ′ in L2(Rn). However, the Moyal
identity does not hold for WigBJ. Here is why: let Q(ψ, φ) = Wig(ψ, φ) ∗ θ
(θ ∈ S ′(Rn)) be an element of the Cohen class. The Moyal identity is satisfied
if and only if the Fourier transform θ̂ of the Cohen kernel θ satisfies |θ̂(z)| =
(2π�)n (Cohen [12,13]). In the Born–Jordan case the Fourier transform of
the Cohen kernel is the function Θ(z) = sinc(px/2π�) which does not satisfy
this condition.

4. Intertwiners

We are going to show that the usual Born–Jordan operator ABJ = OpBJ(a)
and the corresponding BBJ operator ÃBJ = ÕpBJ(a) are intertwined by a
family of linear mappings L2(Rn) −→ L2(R2n). This important result will
allow us to study the regularity and spectral properties of the BBJ operators.

Definition 9. For φ ∈ S(Rn) with ||φ||L2 = 1 we denote by Uφ and Uφ,(τ) the
linear operators L2(Rn) −→ L2(R2n) defined, by

Uφψ = (2π�)n/2 WigBJ(ψ, φ) (52)

and

Uφ,(τ)ψ = (2π�)n/2 Wigτ (ψ, φ).

We will call Uφ and Uφ,(τ) the Born–Jordan and τ -intertwiner, respectively

The reason for this terminology will become clear in a moment.

4.1. The Intertwining Property

Recall that we defined (formula (26)) the unitary operator T̃ (z0) : L2(R2n)
−→ L2(R2n) by

T̃ (z0)ψ(z) = e− i
�

σ(z,z0)ψ
(
z − 1

2z0

)
.

We will need the following property of the cross-Wigner transform:

Lemma 10. We have

Wig(T̂ (z0)ψ, φ) = T̃ (z0)Wig(ψ, φ). (53)
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Proof. The cross-Wigner transform has the following well-known transla-
tional property ([23], [15], §9.2.2): for all z0, z1 ∈ R

2n

Wig(T̂ (z0)ψ, T̂ (z1)φ)(z) = e− i
�

γ(z,z0,z1) Wig(ψ, φ)
(
z − 1

2 (z0 + z1)z
)

where the phase γ is given by

γ(z, z0, z1) = σ(z, z0 − z1) + 1
2σ(z0, z1).

Taking z1 = 0 yields

Wig(T̂ (z0)ψ, φ)(z) = e− i
�

σ(z,z0) Wig(ψ, φ)
(
z − 1

2z0

)
which is (53). �

The interest of the definition of the mapping Uφ comes from their in-
tertwining properties:

Proposition 11. Let ÃBJ = ÕpBJ(a) and ABJ = OpBJ(a). The following
intertwining properties

ÃBJUφ = UφABJ, U∗
φÃBJ = ABJU

∗
φ (54)

hold for all φ ∈ S(Rn).

Proof. Let Ψ ∈ S(R2n). In view of formula (36) we have

ÃBJΨ(z) =
(

1
2π�

)n
∫

R2n
aσ(z0)Θ(z0)T̃ (z0)Ψ(z)dz

and hence, for Ψ = Uφψ,

ÃBJUφψ(z) =
(

1
2π�

)n
∫

R2n
aσ(z0)Θ(z0)T̃ (z0)(Uφψ)(z)dz.

We have

T̃ (z0)(Uφψ)(z) = (2π�)n/2T̃ (z0)WigBJ(ψ, φ)(z)

= (2π�)n/2T̃ (z0)(Wig(ψ, φ) ∗ Θσ)(z).

In view of formula (53) we have

T̃ (z0)(Wig(ψ, φ) ∗ Θσ)(z) =
∫

R2n
T̃ (z0)Wig(ψ, φ)(z − u)Θσ(u)du

=
∫

R2n
Wig(T̂ (z0)ψ, φ)(z − u)Θσ(u)du

= WigBJ(T̂ (z0)ψ, φ)

and hence

ÃBJUφψ(z) =
(

1
2π�

)n
∫

R2n
aσ(z0)Θ(z0)(UφT̂ (z0)ψ)(z)dz

= UφABJψ(z)

which proves the first formula (54). The second formula follows from the
equalities

U∗
φÃBJ = (Ã∗

BJUφ)∗ = (UφA∗
BJ)

∗ = ABJU
∗
φ . �
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4.2. Properties of Intertwiners

We begin by considering the τ -intertwiners.

Proposition 12. (i) The τ -intertwiner Uφ,(τ) is a linear isometry of L2(Rn)
on a closed subspace Hφ,(τ) of L2(R2n). (ii) The adjoint U∗

φ,(τ) is given by the
formula

U∗
φ,(τ)ψ(y) =

(
2

π�

)n/2
∫

R2n
e− 2i

�
p(y−x)φ(2x − y)(ψ ∗ FσΘ(τ))(x, p)dpdx (55)

where Θ(τ) is defined by (49).

Proof. (i) Taking φ = φ′ with ||φ|| = 1 in Moyal’s formula (51) we have

((Uφ,(τ)ψ|Uφ,(τ)ψ
′))L2 = (ψ|ψ′) (56)

hence Uφ,(τ) is an isometry. By definition of the adjoint we have

((Uφ,(τ)ψ|ψ))L2 = (ψ|U∗
φ,(τ)ψ)L2 .

Set Pφ,(τ) = Uφ,(τ)U
∗
φ,(τ); we have P ∗

φ,(τ) = Pφ,(τ) and PφP ∗
φ,(τ) = Uφ,(τ)

U∗
φ,(τ) = Pφ,(τ) because U∗

φ,(τ)Uφ,(τ) is the identity on L2(Rn). It follows that
Pφ,(τ) is the orthogonal projection on Hφ,(τ); since the range of a projection
is closed, so is Hφ,(τ). (ii) By definition of Uφ,(τ) we have

((Uφ,(τ)ψ|Ψ))L2 =
(

1
2π�

)n/2 ((Wig(ψ, φ) ∗ FσΘ(τ)|Ψ))L2 . (57)

(cf. formula (46)). Recalling the classical formula (f ∗ g|h) = (f |g∨ ∗ h) and
noting that FσΘ∨

(τ) = FσΘ(τ), the formula above becomes

((Uφ,(τ)ψ|Ψ))L2 =
(

1
2π�

)n/2 ((Wig(ψ, φ)|Ψ ∗ FσΘ(τ)))L2 .

Taking the definition (38) of Wig(ψ, φ) into account, we get

((Uφ,(τ)ψ|Ψ))L2 =
(

1
2π�

)n/2
∫

Rn

ψ(x + 1
2y)

×
(∫

R2n
e− i

�
pyφ(x − 1

2y)(Ψ ∗ FσΘ(τ))(x, p)dpdx

)
dy

that is, setting u = x + 1
2y,

((Uφ,(τ)ψ|Ψ))L2 =
(

2
π�

)n/2
∫

Rn

ψ(u)

×
(∫

R2n
e− 2i

�
p(u−x)φ(2x − u)(Ψ ∗ FσΘ(τ))(x, p)dpdx

)
du

hence

U∗
φ,(τ)Ψ(u) =

(
2

π�

)n/2
∫

R2n
e− 2i

�
p(u−x)φ(2x − u)(Ψ ∗ FσΘ(τ))(x, p)dpdx

which is formula (55). �
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We would now like to extend this result to the intertwiners Uφ. However,
the proof of part (i) of Proposition 12 relies on the Moyal identity (51), since
the latter allows to derive (56). However, as we have remarked above, the
Moyal identity does not hold for the transform WigBJ(ψ, φ). We must thus
expect a somewhat weaker result. We will need the following lemma, which
is a kind of interpolation result:

Lemma 13. Let τ and τ ′ be two real numbers and two windows φ and φ′.
There exists a constant Cφ,φ′ > 0 such that

|((Uφ,(τ)ψ|Uφ′,(τ ′)ψ
′))L2 | ≤ Cφ,φ′ ||ψ|| ||ψ′|| (58)

for all (ψ,ψ′) ∈ L2(Rn) × L2(Rn).

Proof. This amounts to establishing the existence of a constant Cφ,φ′ > 0
such that

|((Wigτ (ψ, φ)|Wigτ ′(ψ′, φ′)))L2 | ≤ (2π�)−nCφ,φ′ ||ψ|| ||ψ′||.

Using Cauchy–Schwarz’s inequality we have

|((Wigτ (ψ, φ)|Wigτ ′(ψ′, φ′)))L2 | ≤ ||Wigτ (ψ, φ)|| ||Wigτ ′(ψ′, φ′)||.
Applying Moyal’s identity to the terms in the right-hand side we have

||Wigτ (ψ, φ)|| =
(

1
2π�

)n ||ψ|| ||φ||
||Wigτ ′(ψ′, φ′)|| =

(
1

2π�

)n ||ψ′|| ||φ′||
hence the inequality (58) with Cφ,φ′ = ||φ|| ||φ′||. �

Let us now prove the analogue of Proposition 12 for the Born–Jordan
intertwiners:

Proposition 14. (i) The Born–Jordan intertwiner Uφ is a continuous linear
mapping L2(Rn) −→ L2(R2n). (ii) The adjoint U∗

φ is given by the formula

U∗
φΨ(y) =

(
2

π�

)n/2
∫

R2n
e− 2i

�
p(y−x)φ(2x − y)(Ψ ∗ FσΘ)(x, p)dpdx. (59)

(iii) Let (φj)j∈F be an orthonormal basis of L2(Rn) and set Φjk = Uφj
φk.

The system (Φjk)(j,k)∈F×F spans L2(R2n).

Proof. (i) We have

((Uφψ|Uφ,ψ
′))L2 =

((∫ 1

0

Uφ,(τ)ψdτ

∣∣∣∣∣
∫ 1

0

Uφ,(τ ′)ψdτ ′
))

L2

=
∫

[0,1]×[0,1]

((Uφ,(τ)ψ|Uφ,(τ ′)ψ))L2 .

In view of formula (58) we thus have

|((Uφψ|Uφ,ψ
′))L2 | ≤ Cφ||ψ|| ||ψ′||

where Cφ = Cφ,φ, which proves the continuity of Uφ. (ii) The proof of formula
(59) is similar to the proof of (55) in Proposition 12. (iii) We have to show
that if ((Φjk|Ψ))L2 = 0 for all (j, k) ∈ F × F then Ψ = 0 almost everywhere.
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We have ((Ψ|Φ))L2 = (U∗
φj

Ψ|Φk)L2 hence ((Ψ|Φjk))L2 = 0 is equivalent to
(U∗

φj
Ψ|φk)L2 = 0; since this equality holds for all k ∈ F it follows that

U∗
φj

Ψ = 0 (for all j ∈ F ). We have

((Φjk|Ψ))L2 =
(

1
2π�

)n/2 ((Wig(ψk, φj) ∗ Θσ|Ψ))L2

=
(

1
2π�

)n/2 ((Wig(ψk, φj)|Ψ ∗ Θσ))L2 .

The family of functions (Wig(ψk, φj))(j,k)∈F×F being an orthonormal basis
of L2(R2n) (de Gosson and Luef [17], Lemma 3), it follows that Ψ ∗ Θσ = 0,
and hence

Fσ(Ψ ∗ Θσ) = (2π�)−n (FσΨ)Θ = 0.

Since the set of zeroes of the function Θ is the union of the null sets {z : px =
2Nπ�} (N ∈ Z) we have FσΨ = 0 a.e. and hence Ψ = 0 a.e., which was to
be proven. �

5. Functional and Symbol Spaces

5.1. The Modulation Spaces Mq
s (R

n)
The theory of modulation spaces goes back to Feichtinger [20,21]; for a de-
tailed exposition see Gröchenig [24]. The traditional definition of these func-
tional spaces makes use of the short-time Fourier transform (or Gabor trans-
form) familiar from time-frequency analysis; we will replace the latter by the
cross-Wigner transform whose symplectic symmetries are more visible; that
both definitions are equivalent was proven in de Gosson and Luef [18] and de
Gosson [15].

We will use the notation 〈z〉s = (1 + |z|2)s/2 for z ∈ R
2n; here s is any

nonnegative real number. It follows from Peetre’s inequality that the function
z 
−→ 〈z〉s is submultiplicative:

〈z + z′〉s ≤ 2s〈z〉s〈z′〉s. (60)

Let q be a real number ≥ 1, or ∞. We denote by Lq
s(R

2n) the space
of all Lebesgue-measurable functions Ψ on R

2n such that 〈·〉sΨ ∈ Lq
s(R

2n).
When q < ∞ the formula

||ψ||Lq
s

=
(∫

R2n
|〈z〉Ψ(z)|qdz

)1/q

defines a norm on Lq
s(R

2n); when q = ∞ we set

||Ψ||L∞
s

= ess sup
z∈R2n

|〈z〉sΨ(z)|.

Let now φ be a fixed element of S(Rn), hereafter to be called a “window”.
For q < ∞ the modulation space Mq

s (Rn) is the vector space consisting of all
ψ ∈ S ′(Rn) such that Wig(ψ, φ) ∈ Lq

s(R
2n) where by (38) is the cross-Wigner

transform [14,15]; equivalently

||ψ||φ
Mq

s
=

(∫
R2n

|〈z〉s Wig(ψ, φ)(z)|qdz

)1/q

< ∞. (61)
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The space M∞
s (Rn) is similarly defined by

||ψ||φM∞
s

= ess sup
z∈R2n

|〈z〉s Wig(ψ, φ)(z)| < ∞. (62)

One shows that in both cases the definitions are independent of the choice of
the window φ, and that the || · ||φ

Mq
s

(1 ≤ q ≤ ∞) form a family of equivalent
norms on Mq

s (Rn), which becomes a Banach space for the topology thus
defined; in addition Mq

s (Rn) contains S(Rn) as dense subspace.
The class of modulation spaces Mq

s (Rn) contain as particular cases many
of the classical function spaces. For instance

M2
s (Rn) = L2

s(R
2n) ∩ Hs(R2n)

which is the Sobolev-like space Qs(R2n) studied by Shubin [34], p. 45. We
also have

S(Rn) =
⋂
s≥0

M2
s (Rn).

A particularly interesting example of modulation space is obtained by
choosing q = 1 and s = 0; the corresponding space M1

0 (Rn) is often denoted
by S0(Rn), and is called the Feichtinger algebra [21] (it is an algebra both
for pointwise product and for convolution). We have the inclusions

S(Rn) ⊂ S0(Rn) ⊂ C0(Rn) ∩ L1(Rn) ∩ L2(Rn). (63)

5.2. Metaplectic and Heisenberg–Weyl Invariance Properties

Recall that the Wigner transform and the Heisenberg–Weyl operators satisfy

Wig(T̂ (z0)ψ, T̂ (z0)φ)(z) = Wig(ψ, φ)(z − z0). (64)

for all ψ, φ ∈ S ′(Rn). Let (R2n, σ) be the standard symplectic space. We
denote by Sp(n) be the symplectic group of (R2n, σ): we have S ∈ Sp(n) if and
only if S is a linear automorphism of R

2n such that S∗σ = σ. Equivalently,

ST JS = SJST = J where J =
(

0 I
−I 0

)
. The symplectic group has a unique

(connected) covering group of order two; the latter has a true representation
as a group Mp(n) of unitary operators on L2(Rn); this group is called the
metaplectic group. The covering projection Π: Mp(n) −→ Sp(n) is uniquely
defined up to inner automorphisms; we calibrate this projection so that we
have Π(Ĵ) = J where Ĵ ∈ Mp(n) is the modified Fourier transform defined
by

Ĵψ(x) =
(

1
2π�

)n/2
e−inπ/4

∫
Rn

e− i
�

xx′
ψ(x′)dx′.

(we refer to [14,15,23] for detailed studies of the metaplectic representation).
The modulation spaces Mq

s (Rn) have remarkable invariance properties:

Proposition 15. (i) Each space Mq
s (Rn) is invariant under the action of the

Heisenberg–Weyl operators T̂ (z); in fact there exists a constant C > 0 such
that

||T̂ (z)ψ||φ
Mq

s
≤ C〈z〉s||ψ||φ

Mq
s
. (65)
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(ii) For 1 ≤ q < ∞ the space Mq
s (Rn) is invariant under the action of the

metaplectic group Mp(n): if Ŝ ∈ Mp(n) then Ŝψ ∈ Mq
s (Rn) if and only if

ψ ∈ Mq
s (Rn). In particular Mq

s (Rn) is invariant under the Fourier transform.

(See de Gosson and Luef [18], Gröchenig [24]).
A remarkable property of the Feichtinger algebra is that it is the smallest

Banach space invariant under the action of the Heisenberg–Weyl operators
(16) and of the metaplectic group.

5.3. The Sjöstrand Symbol Classes

In [35,36] Sjöstrand introduced a class M∞,1(R2n) of general pseudodifferen-
tial symbols; Gröchenig [25] showed that this class is identical to the weighted
modulation space M∞,1

s (R2n) when s = 0.

5.4. Definition and Main Properties

Let us set, for s ≥ 0,

〈〈z, ζ〉〉s = (1 + |z|2 + |ζ|2)s/2. (66)

By definition, M∞,1
s (R2n) consists of all a ∈ S ′(R2n) such that there exists a

function Φ ∈ S(R2n) for which∫
R2n

sup
z∈R2n

|W̃ig(a,Φ)(z, ζ)|〈〈z, ζ〉〉sdζ < ∞ (67)

where W̃ig(a,Φ) is the cross-Wigner transform on R
2n:

W̃ig(a,Φ)(z, ζ) =
(

1
2π�

)2n
∫

R2n
e− i

�
ζz′

a(z + 1
2z′)Φ(z − 1

2z′)dz′. (68)

When s = 0 one obtains the Sjöstrand class: M∞,1(R2n) = M∞,1
0 (R2n). It is

easy to check that for every window φ ∈ S(R2n) the formula

||a||Φ
M∞,1

s
=

∫
R2n

sup
z∈R2n

[|W̃ig(a,Φ)(z, ζ)|〈〈z, ζ〉〉s]dζ < ∞ (69)

defines a norm on M∞,1
s (R2n). As for the modulation spaces Mq

s (Rn) con-
dition (69) is independent of the choice of window Φ, and when Φ runs
through S(R2n) the functions || · ||Φ

M∞,1
s

form a family of equivalent norms on
M∞,1

s (R2n). It turns out that M∞,1
s (R2n) is a Banach space for the topology

defined by any of these norms; moreover the Schwartz space S(R2n) is dense
in M∞,1

s (R2n).
The Sjöstrand classes M∞,1

s (R2n) contain many of the usual pseudo-
differential symbol classes and we have the inclusion

C2k+1
b (R2n) ⊂ M∞,1

0 (R2n) (70)

where C2k+1
b (R2n) is the vector space of all functions which are differentiable

up to order 2n + 1 with bounded derivatives. In fact, for every window Φ
there exists a constant CΦ > 0 such that

||a||Φ
M∞,1

s
≤ CΦ||a||C2k+1 = CΦ

∑
|α|≤2k+1

||∂α
z a||∞. (71)
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We first recall the following result, which says that these space are
invariant under linear changes of variables:

Proposition 16. Let M be a real invertible 2n×2n matrix. If a ∈ M∞,1
s (R2n)

then a ◦ M ∈ M∞,1
s (R2n), and there exists a constant CM > 0 such that for

every window Φ and every a ∈ M∞,1
s (R2n) we have

||a ◦ M ||Φ
M∞,1

s
≤ CM ||a||ψ

M∞,1
s

(72)

where Ψ = Φ ◦ M−1

For a proof of this result, see Proposition 7 in de Gosson and Luef [18].
We are next going to show that M∞,1

s (R2n) is invariant under the ac-
tion of the metaplectic group Mp(2n). Denoting by S̃ the generic element of
Mp(2n) we have:

Proposition 17. Let S̃ ∈ Mp(2n) and a ∈ S ′(R2n). We have a ∈ M∞,1
s (R2n)

if and only if S̃a ∈ M∞,1
s (R2n) and we have

||S̃a||S̃Φ
M∞,1

s
≤ λs

max||Sa||Φ
M∞,1

s
(73)

where λs
max is the largest eigenvalue of ST S ∈ Sp(2n), S = Π(S̃).

Proof. Let S ∈ Sp(2n) be the projection of S̃. We have

||S̃a||S̃Φ
M∞,1

s
=

∫
R2n

sup
z∈R2n

[|W̃ig(S̃a, S̃Φ)(z, ζ)|〈〈(z, ζ)〉〉s]dζ

=
∫

R2n
sup

z∈R2n
[|W̃ig(a,Φ)(S−1(z, ζ))|〈〈(z, ζ)〉〉s]dζ

=
∫

R2n
sup

z∈R2n
[|W̃ig(a,Φ)(z, ζ))|〈〈S(z, ζ)〉〉s]dζ.

Now 〈〈S(z, ζ)〉〉 ≤ λmax〈〈z, ζ〉〉 hence

||S̃a||S̃Φ
M∞,1

s
≤ λs

max

∫
R2n

sup
z∈R2n

[|W̃ig(a,Φ)(z, ζ))|〈〈z, ζ〉〉s]dζ

which is the inequality (73). �

5.5. Regularity Properties

The following result is well-known (see e.g. Gröchenig [25]); it shows that

the Weyl correspondence a
Weyl←→ A is a continuous mapping M∞,1

s (R2n) −→
Mq

s (Rn):

Proposition 18. Let a ∈ M∞,1
s (R2n). The Weyl operator A

Weyl←→ a is bounded
on Mq

s (Rn) for every q ∈ [1,∞], and there exists a constant C > 0 indepen-
dent of q such that following uniform estimate holds

||A||B(Mq
s ) ≤ C||a||M∞,1

s

for all a ∈ M∞,1
s (R2n) (|| · ||Mq

s
is the operator norm on the Banach space

Mq
s (Rn)).
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The Sjöstrand class M∞,1(R2n) contains the Hörmander symbol class
S0

0,0(R
2n) consisting of all a ∈ C∞(R2n) such that for every pair of multi-

indices α, β ∈ Nn there exists Cαβ ≥ 0 such that |∂α
x ∂β

p a(x, p)| ≤ Cαβ . The
result above implies as a particular case a Calderón and Vaillancourt [9] type

result: if a ∈ S0
0,0(R

2n) then A
Weyl←→ a is bounded on L2(Rn).

For our purposes the following property is very important:

Proposition 19. Let a, b ∈ M∞,1
s (R2n). Then a �� b ∈ M∞,1

s (R2n). In partic-
ular, for every window of the type Φ = Wig ϕ where ϕ ∈ S(Rn), there exists
a constant CΦ > 0 such that

||a �� b||Φ
M∞,1

s
≤ CΦ||a||Φ

M∞,1
s

||b||Φ
M∞,1

s
.

Since obviously a ∈ M∞,1
s (R2n) if and only if a ∈ M∞,1

s (R2n) the
property above can be restated by saying that M∞,1

s (R2n) is a Banach ∗-
algebra with respect to the Moyal product �� if and only if CΦ ≤ 1 and the
involution a 
−→ a.

6. Spectral Properties of the BBJ Operators

Recall that intertwining properties (54) hold more generally:

ÃBJUφ = UφABJ, U∗
φÃBJ = ABJU

∗
φ

hold for all φ in Feichtinger’s algebra S0(Rn). Feichtinger has shown that a
kernel theorem holds for S0(Rn), see [21]. Suppose ABJ is a mapping from
S0(Rn) to its dual space S′

0(R
n). Then there exists a K ∈ S0(R2n) such that

ABJφ(x) =
∫

K(x, y)φ(y)dy.

In this section we want to discuss generalized eigenvectors and gen-
eralized eigenvalues for Bopp Born Jordan operators that map S0(Rn) to
S′

0(R
n) based on the Gelfand triple (S0(Rn), L2(Rn), S′

0(R
n) as advocated by

Feichtinger with various collaborators in a series of papers [10,22] and pro-
vide an example of a Banach Gelfand triple. More concretely, we have that
S0(Rn) is continuously and densely embedded into L2(Rn) and the Hilbert
space L2(Rn) is w∗-continuously and densely embedded into S′

0(R
n).

Note that the scalar product (., .)L2 on L2(Rn) extends in a natural way
to a duality between S0(Rn) and S′

0(R
n).

The usefulness of the Gelfand triple (S0(Rn), L2(Rn), S′
0(R

n)) lies in the
treatment of generalized eigenvectors for operators mapping Feichtinger’s al-
gebra into its dual space. As motivation for the notion of generalized eigenvec-
tors we consider the translation operator Txf(t) = f(t − x) on S0(Rn). Then
the eigenvectors of Tx are given by the exponentials χω(t) = e2πiωt for the
eigenvalues e−2πiωx for every ω ∈ R

n, but the eigenvectors are not in S0(Rn).
One way to cope with this problem, is to interpret the eigenvalue problem in
a weak sense, see Maurin [32]. In our situation we have the following result,
see [19]:
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Lemma 20. Suppose A is a self-adjoint operator on S0(Rn). Then there exists
a complete family of distributions (ψα)α∈A in S′

0(R
n) (the so-called general-

ized eigenvectors of A) such that

(ψα, Aφ) = λα(ψα, φ) for each φ ∈ S0(Rn)

and that there exists a least one ψα such that (ψα, φ) �= 0 for each φ ∈ S0(Rn),
and the generalized eigenvalues λα of A.

Based on this useful fact we are going to treat spectral properties for
Bopp Born Jordan operators. The Banach-Gelfand triple (S0(Rn), L2(Rn),
S′

0(R
n)) provides a convenient setting for extending eigenvalue problems from

the Hilbert space setting to a distributional framework.

Proposition 21. Suppose ABJ is an essentially self-adjoint operator from
S0(Rn) to S′

0(R
n), i.e. the symbol of ABJ is real-valued. (i) There exists a

complete family of generalized eigenvectors {ψα}α∈A and generalized eigen-
vectors {λα}α∈A for ABJ with ψα in S′

0(R
n) for each α ∈ A. (ii) Furthermore,

ÃBJ : S0(R2n) −→ S′
0(R

2n) has a complete set {ψ}α∈A of generalized eigen-
vectors with respect to generalized eigenvalues {λα}α∈A.

Proof. By assumption the operators ABJ has a complete family of eigenvec-
tors ψα by the preceding lemma if one considers the operator ABJ on S0(Rn)
and one extends it to S′

0(R
n). The correspondence between the eigenvectors

of ABJ and ÃBJ follows from the intertwining relations (54) that extend natu-
rally to this setting. If ψα is a generalized eigenvector of ABJ, then ψα = Uφψα

is a generalized eigenvector of ÂBJ for the same eigenvalue. Suppose on the
other hand, that ψα is a generalized eigenvector of ÃBJ, then U∗

φψα is an
eigenvector of ABJ corresponding to the same eigenvalue. �
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