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Abstract. We consider Exel’s interaction (V, H) over a unital C∗-algebra
A, such that V(A) and H(A) are hereditary subalgebras of A. For the
associated crossed product, we obtain a uniqueness theorem, ideal lat-
tice description, simplicity criterion and a version of Pimsner–Voiculescu
exact sequence. These results cover the case of crossed products by endo-
morphisms with hereditary ranges and complemented kernels. As model
examples of interactions not coming from endomorphisms we introduce
and study in detail interactions arising from finite graphs.
The interaction (V, H) associated to a graph E acts on the core FE

of the graph algebra C∗(E). By describing a partial homeomorphism

of ̂FE dual to (V, H) we find the fundamental structure theorems for
C∗(E), such as Cuntz–Krieger uniqueness theorem, as results concern-
ing reversible noncommutative dynamics on FE . We also provide a new
approach to calculation of K-theory of C∗(E) using only an induced
partial automorphism of K0(FE) and the six-term exact sequence.
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1. Introduction

In [12] Exel extended celebrated Pimsner’s construction [38] of the (nowadays
called) Cuntz–Pimsner algebras by introducing an intriguing new concept of
a generalized C∗-correspondence. The leading example in [12] arises from an
interaction—a pair (V,H) of positive linear maps on a C∗-algebra A that
are mutual generalized inverses and such that the image of one map is in
the multiplicative domain of the other. An interaction can be considered a
‘symmetrized’ generalization of a C∗-dynamical system, i.e. a pair (α,L) con-
sisting of an endomorphism α : A → A and its transfer operator L : A → A
[11]. One can think of many examples of interactions naturally appearing in
various problems, cf. [13,14,17]. However, at present there is only one signifi-
cant application of an interaction (V,H) which is not a C∗-dynamical system.
Namely, in the recent paper [14] Exel showed that the C∗-algebra On,m in-
troduced in [3], is Morita equivalent to the crossed product C∗(A,V,H) for
an interaction (V,H), over a commutative C∗-algebra A, where neither V nor
H is multiplicative. Moreover, for crossed products under consideration gen-
eral structure theorems known so far concern only the case when the initial
object is an injective endomorphism, cf. [7,18,35,36,43]. In particular, there
are no such theorems for genuine interactions, i.e when both V and H are
not multiplicative.

The purpose of the present article is twofold.
Firstly, we establish general tools to study the structure of C∗(A,V,H)

for an accessible and, as the C∗-dynamical system case indicates, important
class of interactions (V,H). Thus this might be a considerable step in under-
standing these new objects. More precisely, crossed products associated with
C∗-dynamical systems (α,L) on a unital C∗-algebra A boast their greatest
successes in the case α(A) is a hereditary subalgebra of A, cf. [2,11,35,36,42].
Then L is a corner retraction, see [43, page 424], [26]. It is uniquely deter-
mined by α and it is called a complete transfer operator in [2], see [23,26]. In
the present paper we focus on interactions (V,H) for which both V(A) and
H(A) are hereditary subalgebras of A. Then V(A) and H(A) are automati-
cally corners in A. We call such interactions corner interactions. It turns out
that each mapping in such an interaction (V,H) is completely determined by
the other. This plus the obvious connotation to complete transfer operators
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make it tempting to call (V,H) a complete interaction [28], but we resist this
temptation here.

We show that for a corner interaction (V,H) the crossed product
C∗(A,V,H) defined in [12] is the universal C∗-algebra generated by a copy
of A and a partial isometry s subject to relations

V(a) = s(a)s∗, H(a) = s∗(a)s, a ∈ A.

As a consequence C∗(A,V,H) can be modeled as the crossed product A�X Z,
[1], of A by a Hilbert bimodule X = AsA. It also follows that C∗(A,V,H) ∼=
C∗(A,V) ∼= C∗(A,H) where C∗(A,V) (resp. C∗(A,H)) is the crossed product
of A by the completely positive mapping V (resp. H), as introduced in [26].
We study C∗(A,V,H) by applying general methods developed for Hilbert
bimodules [25] and C∗-correspondences [22]. For instance, we have a naturally
defined partial homeomorphism ̂V of ̂A dual to (V,H). Identifying it with
the inverse to the induced partial homeomorphism X -Ind studied in [25]
we obtain: uniqueness theorem—topological freeness of ̂V implies faithfulness
of every representation of C∗(A,V,H) which is faithful on A; ideal lattice
description via ̂V-invariant open sets, when ̂V is free; and the simplicity of
C∗(A,V,H) when ̂V is minimal and topologically free (see Theorem 2.20
below). Similarly, identifying the abstract morphisms in Katsura’s version of
Pimsner–Voiculescu exact sequence [22] we get a natural cyclic exact sequence
for K-groups of C∗(A,V,H) (Theorem 2.25). It generalizes the corresponding
exact sequence obtained by Paschke for injective endomorphisms [36], which
plays a crucial role, for instance, in [42].

Secondly, we provide a detailed analysis of nontrivial corner interactions
with an interesting noncommutative dynamics related to Markov shifts, and
graph C∗-algebras as crossed products. More specifically, already in [9] Cuntz
considered his C∗-algebras On as crossed products of the core UHF-algebras
by injective endomorphisms implemented by one of the generating isome-
tries. As noticed by Rørdam [42, Example 2.5], a similar reasoning can be
performed for Cuntz–Krieger algebras OA by considering an isometry given
by the sum of all generating partial isometries with properly restricted initial
spaces. An analogous isometry in OA, but in a sense canonically associated
with the underlying dynamics of Markov shifts, was found in [11, proof of
Theorem 4.3], cf. [2, formula (4.18)]. For the graph C∗-algebra C∗(E) associ-
ated with a row-finite graph E with no sources1 the corresponding isometry
appears implicitly in [7, Theorem 5.1] and explicitly in [19, Theorem 5.2],
see formula (3.2) below. In particular, if we assume E is finite, i.e. the sets
of vertices and edges are finite, and E has no sources, we know from [19,
Theorem 5.2] that C∗(E) is naturally isomorphic to the crossed product of
the AF-core C∗-algebra FE by an injective endomorphism with hereditary
range implemented by the aforementioned isometry s. Thus we have

C∗(E) = C∗(FE ∪ {s}), sFEs∗ ⊂ FE , s∗FEs ⊂ FE .

1 We follow here the original conventions of [4,29] and hence in the context of representa-
tions of graphs we consider different orientation of edges than in [7,19,39].
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Moreover, one can notice that the above picture remains valid for arbitrary
finite graphs, possibly with sources. The only difference is that s may be
no longer an isometry but a partial isometry. Hence the mapping FE �
a → sas∗ ∈ FE may be no longer multiplicative (at least not on its whole
domain) and then a natural framework for C∗(E) is the crossed product for
an interaction (V,H) over FE where V(·) := s(·)s∗, H(·) := s∗(·)s. We call
the pair (V,H) arising in this way a graph interaction. It can be viewed from
many different perspectives as a model example illustrating and giving new
insight, for instance, to the following objects and issues that we hope to be
pursued in the future.

• Interactions with nontrivial algebras and not multiplicative dynamics. The
crossed product C∗(FE , V,H) is naturally isomorphic to the graph C∗-
algebra C∗(E) (Proposition 3.2). In general, (V,H) is not a C∗-dynamical
system and is not a part of a group interaction [13]. We precisely identify
the values of n ∈ N for which (Vn,Hn) is an interaction (see Proposition
3.5), and it turns out that such n’s might have almost arbitrary distribu-
tion. Moreover, (Vn,Hn) is an interaction for all n ∈ N if and only if (V,H)
is a C∗-dynamical system (which may happen even if E has sources).

• Noncommutative Markov shifts. The main motivation in [11] for introduc-
ing C∗-dynamical systems (α,L) was to realize Cuntz–Krieger algebras
OA as crossed products of the underlying Markov shifts, which was in turn
suggested by [10, Proposition 2.17]. In terms of graph C∗-algebras the rele-
vant statement, see [7, Theorem 5.1], says that when E is finite and has no
sinks, then C∗(E) is isomorphic to Exel crossed product DE �φE ,L N where
DE

∼= C(E∞) is a canonical masa in FE . The spectrum of DE is identified
with the space of infinite paths E∞, φE is a transpose to the Markov shift
on E∞ and L is its classical Ruelle–Perron–Frobenious operator. Both φE

and L extend naturally to completely positive maps on C∗(E) and the
extension of φE is called the noncommutative Markov shift, cf. e.g. [20].
However, from the point of view of the crossed product construction the
predominant role is played by L, see [26]. In particular, L = H where
(V,H) is the graph interaction, and FE is a minimal C∗-algebra invariant
under V and containing DE . Thus there are good reasons to regard the
graph interaction (V,H) as an alternative candidate for the noncommuta-
tive counterpart of the Markov shift. Our dual and K-theoretic pictures of
(V,H) (see Theorem 3.9 and Proposition 3.22, respectively) support this
point of view.

• Graph C∗-algebras. The structure of graph algebras was originally studied
via grupoids [29,30], and K-theory was calculated using a dual Pimsner–
Voiculescu exact sequence and skew products of initial graphs [39,40]. The
corresponding results can also be achieved in the realm of partial actions
of free groups on certain commutative C∗-algebras, see [15,16]. We present
here another approach, based on interactions. We show that the partial
homeomorphism ̂V dual to V is topologically free if and only if E sat-
isfies the so-called condition (L) [4]. Hence we derive the Cuntz–Krieger
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uniqueness theorem [4,30,39] from our general uniqueness theorem for in-
teractions. Similarly, we see that freeness of ̂V is equivalent to condition (K)
for E [4,30]. Thus minimality and freeness of ̂V is equivalent to the known
simplicity criteria for C∗(E). Moreover, it turns out that pure infiniteness
of C∗(E), as defined in [29,31], is equivalent to a very strong version of
topological freeness of ̂V (see Remark 3.20), which therefore might be con-
sidered an instance of a noncommutative version of local boundary action,
see [31]. Finally, our approach to calculation of K-groups for C∗(E) seems
to be the most direct upon the existing ones; it uses only direct limit de-
scription of the AF-core FE and the cyclic six-term exact sequence.

• Topological freeness. The condition known as topological freeness was for
the first time explicitly stated in [32] where the author use it to show,
what we call here, uniqueness theorem. Namely, he proved that topological
freeness of a homeomorphism dual to an automorphisms α of a C∗-algebra
A implies that any representation of A �α Z whose restriction to A is
injective, is automatically faithful. The converse implication (equivalence
between topological freeness and the aforementioned uniqueness property)
in the case A is noncommutative turned out to be a difficult problem. It
was proved in [34, Theorem 10.4] combined with [33, Theorem 2.5], see also
[33, Remark 4.8], under the assumption that A is separable. The proof is
nontrivial and passes through conditions involving such notions as Connes
spectrum, inner derivations, or proper outerness. Since it is known that
condition (L) is necessary for Cuntz–Krieger uniqueness theorem to hold,
our explicit characterization of topological freeness for graph interactions
(see Theorem 3.19) serves as a good illustration and a starting point for
further generalizations of the aforementioned notions and facts.

• Dilations of completely positive maps. Let us consider a C∗-algebra C∗(A∪
{s}) generated by a C∗-algebra A and a partial isometry s such that sAs∗ ⊂
A. Also assume that A and C∗(A∪{s}) have a common unit. Then V(·) =
s(·)s∗ is a completely positive map on A sending the unit to an idempotent
(this is a general form of such mappings, cf. [26]). We may put H(·) :=
s∗(·)s and then one can see that

B := span {a0s
∗a1s

∗a2 . . . s∗ansb1sb2 . . . sbn : ai, bi ∈ A, n ∈ N}

is the smallest C∗-algebra preserved by H and containing A. Plainly, the
pair (V,H) is a corner interaction on B. Hence, potentially, our results
could be applied to study the structure of C∗(A ∪ {s}) = C∗(B ∪ {s}).
Nevertheless, the dilation of V from A to B is a nontrivial procedure and
in general depends on the initial representation of V via s. The core algebras
B arising in this way are studied in detail for instance in [21,24,27]. Our
analysis of the graph interaction (V,H) can be viewed as a case study of
the above situation when A ∼= C

N is a finite dimensional commutative C∗-
algebra, see Remark 3.10. In particular, Theorem 3.9 can be interpreted as
that the partial homeomorphism dual to a dilation of the Ruelle–Perron–
Frobenius operator H = L (from A to B = FE) is a quotient of the Markov
shift.
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We begin by presenting relevant notions and statements concerning
Hilbert bimodules and briefly clarifying their relationship with generalized
C∗-correspondences. General corner interactions are studied in Sect. 2. Sec-
tion 3 is devoted to analysis of graph interactions.

1.1. Preliminaries on Hilbert Bimodules

Throughout A is a C∗-algebra which (starting from Sect. 2) will always be
unital. By homomorphisms, epimorphisms, etc. between C∗-algebras we al-
ways mean ∗-preserving maps. All ideals in C∗-algebras are assumed to be
closed and two sided. We adhere to the convention that

β(A,B) = span{β(a, b) ∈ C : a ∈ A, b ∈ B}
for maps β : A × B → C such as inner products, multiplications or represen-
tations.

As in [25] we say that a partial homeomorphism ϕ of a topological
space M , i.e. a homeomorphism whose domain Δ and range ϕ(Δ) are open
subsets of M , is topologically free if for any n > 0 the set of fixed points
for ϕn (on its natural domain) has empty interior. A set V is ϕ-invariant if
ϕ(V ∩ Δ) = V ∩ ϕ(Δ). If there are no nontrivial closed invariant sets, then
ϕ is called minimal, and ϕ is said to be (residually) free, if it is topologically
free on every closed invariant set (in the Hausdorff space case this amounts
to requiring that ϕ has no periodic points).

Following [6, 1.8] and [1] by a Hilbert bimodule over A we mean X which
is both a left Hilbert A-module and a right Hilbert A-module with respective
inner products 〈·, ·〉A and A〈·, ·〉 satisfying the so-called imprimitivity condi-
tion: x · 〈y, z〉A = A〈x, y〉 · z, for all x, y, z ∈ X. A covariant representation
of X is a pair (πA, πX) consisting of a homomorphism πA : A → B(H) and a
linear map πX : X → B(H) such that

πX(ax) = πA(a)πX(x), πX(xa) = πX(x)πA(a), (1.1)
πA(〈x, y〉A) = πX(x)∗πX(y), πA(A〈x, y〉) = πX(x)πX(y)∗, (1.2)

for all a ∈ A, x, y ∈ X. The crossed product A�X Z is a C∗-algebra generated
by a copy of A and X universal with respect to covariant representations of
X, see [1]. It is equipped with the circle gauge action γ = {γz}z∈T given on
generators by γz(a) = a and γz(x) = zx, for a ∈ A, x ∈ X, z ∈ T = {z ∈ C :
|z| = 1}.

As it is standard, we abuse the language and denote by π both an
irreducible representation of A and its equivalence class in the spectrum ̂A of
A. It should not cause confusion when we consider induced representations, as
for a Hilbert bimodule X over A the induced representation functor X -Ind
preserves such classes. We briefly recall, and refer to [41] for all necessary
details, that X -Ind maps a representation π : A → B(H) to a representation
X -Ind(π) : A → B(X ⊗π H) where the Hilbert space X ⊗π H is generated
by simple tensors x ⊗π h, x ∈ X, h ∈ H, satisfying 〈x1 ⊗π h1, x2 ⊗π h2〉 =
〈h1, π(〈x1, x2〉A)h2〉, and

X -Ind(π)(a)(x ⊗π h) = (ax) ⊗π h, a ∈ A.
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The spaces 〈X,X〉A and A〈X,X〉 are ideals in A and the bimodule X im-
plements a Morita equivalence between them. Hence X -Ind : ̂〈X,X〉A →

̂
A〈X,X〉 is a homeomorphism which we may naturally treat as a partial
homeomorphism of ̂A, see [25].

The results of [25] can be summarized as follows.

Theorem 1.1. Let X -Ind be a partial homeomorphism of ̂A, as described
above.

(i) If X -Ind is topologically free, then every faithful covariant representa-
tion (πA, πX) of X ‘integrates’ to the faithful representation of A�X Z.

(ii) If X -Ind is free, then J 
→ Ĵ ∩ A is a lattice isomorphism between ideals
in A �X Z and open invariant sets in ̂A.

(iii) If X -Ind is topologically free and minimal, then A �X Z is simple.

Remark 1.2. The map X -Ind is a lift of the so-called Rieffel homeomor-
phism hX : Prim 〈X,X〉A → Prim A〈X,X〉, cf. [41, Corollary 3.33], [25, Re-
mark 2.3]. Plainly, topological freeness of (Prim (A), hX) implies topological
freeness of ( ̂A,X -Ind), but the converse is not true and as we will see, cf.
Example 3.4 below, Cuntz algebras On provide an excellent example of this
phenomenon.

Remark 1.3. Schweizer [43] showed that if X is a full nondegenerate C∗-
correspondence over a unital C∗-algebra A, then the Cuntz–Pimsner algebra
OX , defined as in [38], is simple if and only if X is minimal and aperiodic [43,
Definition 3.7]. Clearly, if X is a Hilbert bimodule, minimality of X -Ind is
equivalent to the minimality of X and topological freeness of X -Ind implies
the aperiodicity of X. Moreover, the algebras OX and A �X Z coincide if
and only if A〈X,X〉 is an essential ideal in A (which in turn is equivalent to
injectivity of the left action of A on X). In particular, if the ideal A〈X,X〉
is essential in A and 〈X,X〉A = A is unital, then [43, Theorem 3.9] implies
that A �X Z is simple iff X is minimal and aperiodic.

Let us fix a Hilbert bimodule X over A. We notice that it is naturally
equipped with the ternary ring operation

[x, y, z] := x〈y, z〉A = A〈x, y〉z, x, y, z ∈ X,

making it into a generalized correspondence over A, as defined in [12, Defin-
ition 7.1]. Alternatively, this generalized correspondence could be described
in terms of [12, Proposition 7.6] as the triple (X,λ, ρ) where we consider X
as a A〈X,X〉-〈X,X〉A-Hilbert bimodule and define homomorphisms λ : A →
A〈X,X〉 and ρ : A → 〈X,X〉A to be (necessarily unique) extensions of the
identity maps.

The following fact should be compared with [12, Proposition 7.13].

Proposition 1.4. The crossed product A �X Z of the Hilbert bimodule X is
naturally isomorphic to the covariance algebra C∗(A,X), as defined in [12,
7.12], for X treated as a generalized correspondence.
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Proof. The Toeplitz algebra T (A,X) for the generalized correspondence X,
see [12, page 57], is a universal C∗-algebra generated by a copy of A and X
subject to all A–A-bimodule relations plus the ternary ring relations:

xy∗z = x〈y, z〉A = A〈x, y〉z, x, y, z ∈ X. (1.3)

The C∗-algebra C∗(A,X) is the quotient T (A,X)/(J� + Jr) where J� (re-
spectively Jr) is an ideal in T (A,X) generated by the elements a − k such
that a ∈ (ker λ)⊥, k ∈ XX∗ (resp. a ∈ (ker ρ)⊥, k ∈ X∗X) and

ax = kx (or resp. xa = xk) for all x ∈ X. (1.4)

Note that (ker λ)⊥ = A〈X,X〉 and (ker ρ)⊥ = 〈X,X〉A. By (1.3), XX∗ and
X∗X are C∗-subalgebras of T (A,X). Hence using approximate units argu-
ment we see that when a is fixed relations (1.4) determine k uniquely. It
follows that

J� = span {A〈x, y〉 − xy∗ : x, y ∈ X} , Jr = span{〈x, y〉A − x∗y : x, y ∈ X},

because if (for instance) a − k ∈ J� where a =
∑n

i=1 A〈xi, yi〉 ∈ (ker λ)⊥

and k ∈ X∗X, then by (1.3), ax =
∑n

i=1 xiy
∗
i x for all x ∈ X and thus

k =
∑n

i=1 xiy
∗
i .

Accordingly, both C∗(A,X) and A�X Z are universal C∗-algebras gen-
erated by copies of A and X subject to the same relations. �

Katsura [22] obtained a version of the Pimsner–Voiculescu exact se-
quence for general C∗-correspondences and their C∗-algebras. We recall it in
the case X is a Hilbert bimodule and in a form suitable for our purposes.
We consider the linking algebra DX = K(X ⊕ A) in the following matrix
representation

DX =
(

K(X) X
˜X A

)

,

where ˜X is the dual Hilbert bimodule of X, cf. e.g. [41, pages 49, 50]. Let
ι : A〈X,X〉 → A, ι11 : K(X) → DX and ι22 : A → DX be inclusion

maps; ι11(a) =
(

a 0
0 0

)

, ι22(a) =
(

0 0
0 a

)

. By [22, Proposition B.3], (ι22)∗ :

K∗(A) → K∗(DX) is an isomorphism and by [22, Theorem 8.6] the following
sequence is exact:

K0(A〈X,X〉)
ι∗−(X∗◦φ∗)

�� K0(A)
(iA)∗

�� K0(A �X Z)

��
K1(A �X Z)

��

K1(A)
(iA)∗�� K1(A〈X,X〉)ι∗−(X∗◦φ∗)��

(1.5)

where φ : A → L(X) is the homomorphism implementing the left action
of A on X, and X∗ : K∗(A〈X,X〉) → K∗(A) is the composition of (ι11)∗ :
K∗(A〈X,X〉) → K∗(DX) and the inverse to the isomorphism (ι22)∗ : K∗(A)
→ K∗(DX).
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2. Corner Interactions and Their Crossed Products

In this section, following closely the relationship between C∗-dynamical sys-
tems and interactions, we introduce corner interactions, describe the struc-
ture of the associated crossed product and establish fundamental tools for its
analysis (Theorems 2.20, 2.25).

2.1. Interactions and C∗-Dynamical Systems

It is instructive to consider interactions as generalization of pairs (α,L), some-
times called Exel systems [19], consisting of an endomorphism α : A → A
and its transfer operator, i.e. a positive linear map L : A → A such that
L(α(a)b) = aL(b), a, b ∈ A, see [11]. Then L is automatically continuous, ∗-
preserving, and we also have: L(bα(a)) = L(b)a, a, b ∈ A. We say that a trans-
fer operator L is regular if α(L(1)) = α(1), or equivalently [11, Proposition
2.3], if E(a) := α(L(a)) is a conditional expectation from A onto α(A). We
note that originally [11] Exel called such transfer operators non-degenerate.
However, the use of the latter term is a bit unfortunate. For instance, it is
used in the related context to mean a different property in [12, page 60], and
also there are historical reasons to change this name, see [26].

It is important, see [23], that the range of a regular transfer operator
L coincides with the annihilator (kerα)⊥ of the kernel of α and L(1) is the
unit in L(A) = (ker α)⊥, so in particular the latter is a complemented ideal.

Definition 2.1. A pair (α,L) where L : A → A is a regular transfer operator
for an endomorphism α : A → A will be called a C∗-dynamical system.

A dissatisfaction concerning asymmetry in the C∗-dynamical system
(α,L); α is multiplicative while L is ‘merely’ positive linear, lead the author
of [12] to the following more general notion.

Definition 2.2. ([12], Definition 3.1) The pair (V,H) of positive linear maps
V,H : A → A is called an interaction over A if
(i) V ◦ H ◦ V = V,
(ii) H ◦ V ◦ H = H,
(iii) V(ab) = V(a)V(b), if either a or b belong to H(A),
(iv) H(ab) = H(a)H(b), if either a or b belong to V(A).

Remark 2.3. An interaction (V,H), or even a C∗-dynamical system (α,L),
in general does not generate a semigroup of interactions [28] and all the more
is not an element of a group interaction in the sense of [13]. This will be a
generic case in our example arising from graphs, cf. Proposition 3.5 below.
Accordingly, in general the facts proved in [13,28], can not be applied in our
present context.

Let (V,H) be an interaction. By [12, Propositions 2.6, 2.7], V(A) and
H(A) are C∗-subalgebras of A, EV := V ◦H is a conditional expectation onto
V(A), EH := H◦V is a conditional expectation onto H(A), and the mappings

V : H(A) → V(A), H : V(A) → H(A)

are isomorphisms, each being the inverse of the other. Actually we have
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Proposition 2.4. The relations EV = V ◦ H, EH = H ◦ V, θ = V|EH(A) yield a
one-to-one correspondence between interactions (V,H) and triples (θ, EV , EH)
consisting of two conditional expectations EV , EH and an isomorphism θ :
EH(A) → EV(A).

Proof. It suffices to verify that if (θ, EV , EH) is as in the assertion, then
V(a) := θ(EH(a)) and H(a) := θ−1(EV(a)) form an interaction. This is
straightforward. �

Recall that the C∗-algebra A has the unit 1. It follows that the algebras
involved in an interaction are automatically also unital.

Lemma 2.5. If (V,H) is an interaction, then V(1) = EV(1) and H(1) = EH(1)
are units in V(A) and H(A), respectively (in particular, they are projections).

Proof. Let us observe that

EV(1) = V(H(1)) = V(H(1)1) = V(H(1))V(1) = V(H(1))V
(

H(V(1))
)

= V
(

H(1)H(V(1))
)

= V
(

H(1V(1))
)

= V
(

H(V(1))
)

= V(1).

Therefore we have V(a) = EV(V(a)) = EV(1V(a)) = EV(1)V(a) = V(1)V(a)
for arbitrary a ∈ A. It follows that V(1) is the unit in V(A) and a similar
argument works for H. �

The following statement generalizes [12, Proposition 3.4].

Proposition 2.6. Any C∗-dynamical system (α,L) is an interaction.

Proof. Consider the conditions (i)-(iv) in Definition 2.2. Since α ◦ L ◦ α =
E ◦ α = α, (i) is satisfied. To see (ii) recall that L(1) is the unit in L(A), cf.
[23, Proposition 1.5], and therefore

L(α(L(a))) = L(1α(L(a))) = L(1)L(a) = L(a).

Condition (iii) is trivial for (α,L), and (iv) holds because

L(aα(b)) = L(a)b = L(a)L(1)b = L(a)L(1α(b)) = L(a)L(α(b)),

and by passing to adjoints we also get L(α(b)a) = L(α(b))L(a). �
As shown in [2], in the case the conditional expectation E = α ◦ L is

given by
E(a) = α(1)aα(1), a ∈ A, (2.1)

there is a very natural crossed product associated to the C∗-dynamical system
(α,L). This crossed product coincides with the one introduced in [11] and is
sufficient to cover many classic constructions, see [2].

A transfer operator for which (2.1) holds is called complete [2,23]. It is a
corner retraction [26,43]. By [23] a given endomorphism α admits a complete
transfer operator L if and only if kerα is a complemented ideal and α(A) is a
hereditary subalgebra of A. In this case L is a unique regular transfer operator
for α, see [2,23,26,43]. We naturally generalize the aforementioned concepts
to interactions, cf. also [28].

Definition 2.7. An interaction (V,H) will be called a corner interaction if
V(A) and H(A) are hereditary subalgebras of A.
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Proposition 2.8. An interaction (V,H) is corner if and only if V(A) =
V(1)AV(1) and H(A) = H(1)AH(1) are corners in A. Moreover, for a corner
interaction (V,H) the following conditions are equivalent

(i) (V,H) is a (corner) C∗-dynamical system,
(ii) V is multiplicative,
(iii) ker V is an ideal in A,
(iv) H(A) is an ideal in A,
(v) H(1) lies in the center of A.

Proof. For the first part of the assertion apply Lemma 2.5 and notice that
if B is a hereditary subalgebra of A and B has a unit P , then B = PAP .
To show the second part of assertion let us suppose that (V,H) is a corner
interaction.

The implications (i) ⇒ (ii) ⇒ (iii) and the equivalence (iv) ⇔ (v) are
clear.

(iii) ⇒ (v). By the first part of the assertion V is isometric on H(1)AH(1)
and thus kerV ∩ H(1)AH(1) = {0}. In view of Lemma 2.5, for any a ∈ A
we have a(1 − H(1)) ∈ ker V. Hence if ker V is an ideal, then H(1)a

(

1 −
H(1)

)

a∗H(1) ∈ (ker V) ∩ H(1)AH(1) = {0}, that is H(1)a(1 − H(1)) = 0
which means that H(1)a = aH(1).

(v) ⇒ (i). By the first part of the assertion EH(a) = H(1)aH(1). Thus,
for any a, b ∈ A, we have

V(ab) = V(EH(ab)) = V(H(1)abH(1)) = V(aH(1)bH(1))

= V(aEH(b)) = V(a)V(EH(b)) = V(a)V(b).

Hence V is an endomorphism of A. The map H is a transfer operator for V
because

H(aV(b)) = H(a)H(V(b))) = H(a)H(1)bH(1) = H(a)b. �

As it is indicated by the uniqueness of the complete transfer operator,
it turns out that each mapping in a corner interaction determines the other.

Proposition 2.9. A positive linear map V : A → A is a part of a non-zero
corner interaction (V,H) if and only if ‖V(1)‖ = 1, V(A) is a hereditary
subalgebra of A and there is a projection P ∈ A such that V : PAP → V(A)
is an isomorphism.

Moreover, in the above equivalence P and H are uniquely determined by
V, and we have

H(a) := V−1(V(1)aV(1)), a ∈ A, (2.2)
where V−1 is the inverse to V : PAP → V(A).

Proof. The necessity of the stated conditions follows from Proposition 2.8
and Lemma 2.5. For the sufficiency note that V(P ) is a unit in V(A) and
therefore V(A) = V(P )AV(P ), as V(A) is hereditary in A. In particular,
EV(a) := V(P )aV(P ) is a conditional expectation onto V(A). We define
EH(a) := V−1(V(a)) where V−1 is the inverse to V : PAP → V(A). Then
EH is an idempotent map of norm one because ‖EH‖ = ‖V‖ = ‖V(1)‖ =
1. Hence EH is a conditional expectation onto PAP . By Proposition 2.4,
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the triple (V, EV , EH) yields a (necessarily corner) interaction (V,H) where
H(a) = V−1(V(P )aV(P )). In particular, it follows from Lemma 2.5 that
V(P ) = V(1), that is H is given by (2.2).

What remains to be shown is the uniqueness of P . Suppose then that
(V,Hi), i = 1, 2, are two corner interactions and consider projections P1 :=
H1(1) and P2 := H2(1). We have

V(P1P2P1) = V(P2) = V(1) = V(P1) = V(P2P1P2),

and as V is injective on Hi(A) = PiAPi, i = 1, 2, it follows that P1P2P1 = P1

and P2 = P2P1P2. This implies P1 = P2. �
2.2. Crossed Product for Corner Interactions

From now on (V,H) will always stand for a corner interaction. We define the
corresponding crossed product in universal terms.

Definition 2.10. A covariant representation of (V,H) is a pair (π, S) con-
sisting of a non-degenerate representation π : A → B(H) and an operator
S ∈ B(H) (which is necessarily a partial isometry) such that

Sπ(a)S∗ = π(V(a)) and S∗π(a)S = π(H(a)) for all a ∈ A.

The crossed product for the interaction (V,H) is the C∗-algebra C∗(A,V,H)
generated by iA(A) and s where (iA, s) is a universal covariant representa-
tion of (V,H). It is equipped with the circle gauge action determined by
γz(iA(a)) = iA(a), a ∈ A, and γz(s) = zs.

Obviously, the above definition generalizes the crossed product stud-
ied in [2]. In other words C∗(A,V,H) coincides with Exel’s crossed product
[11] when (V,H) is a C∗-dynamical system. To show it is essentially the
same algebra as the one associated to (general) interactions in [12], we real-
ize C∗(A,V,H) as the crossed product for a Hilbert bimodule. To this end,
we conveniently adopt Exel’s construction of his generalized correspondence
associated to (V,H), [12, Section 5].

Let X0 = A � A be the algebraic tensor product over the complexes,
and let 〈·, ·〉A and A〈·, ·〉 be the A-valued sesqui-linear functions defined on
X0 × X0 by

〈a � b, c � d〉A = b∗H(a∗c)d, A〈a � b, c � d〉 = aV(bd∗)c∗.

We consider the linear space X0 as an A–A-bimodule with the natural module
operations: a · (b � c) = ab � c, (a � b) · c = a � bc.

Lemma 2.11. A quotient of X0 becomes naturally a pre-Hilbert A–A-bimodule.
More precisely,

(i) the space X0 with a function 〈·, ·〉A (respectively A〈·, ·〉) becomes a right
(respectively left) semi-inner product A-module;

(ii) the corresponding semi-norms

‖x‖A := ‖〈x, x〉A‖ 1
2 and A‖x‖ := ‖A〈x, x〉‖ 1

2

coincide on X0 and thus the quotient space X0/‖ · ‖ obtained by mod-
ding out the vectors of length zero with respect to the seminorm ‖x‖ :=
‖x‖A = A‖x‖ is both a left and a right pre-Hilbert module over A;
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(iii) denoting by a ⊗ b the canonical image of a � b in the quotient space
X0/‖ · ‖ we have

ac ⊗ b = a ⊗ H(c)b, if c ∈ V(A), a ⊗ cb = aV(c) ⊗ b, if c ∈ H(A),

and a ⊗ b = aV(1) ⊗ H(1)b for all a, b ∈ A;
(iv) the inner-products in X0/‖ · ‖ satisfy the imprimitivity condition.

Proof. (i) All axioms of A-valued semi-inner products for 〈·, ·〉A and A〈·, ·〉
except the non-negativity are straightforward, and to show the latter
one may rewrite the proof of [12, Proposition 5.2] [just erase the symbol
eH or put eH = H(1)].

(ii) Similarly, the proof of [12, Proposition 5.4] implies that for x =
∑n

i=1 a∗
i

� bi, ai, bi ∈ A, we have

‖x‖A = ‖H(aa∗)
1
2 H(V(bb∗))

1
2 ‖ = ‖V(H(aa∗))

1
2 V(bb∗)

1
2 ‖ = A‖x‖ (2.3)

where a = (a1, . . . , an)T and b = (b1, . . . , bn)T are viewed as column
matrices.

(iii) For the first part consult the proof of [12, Proposition 5.6]. The second
part can be proved analogously. Namely, for every x, y, a, b ∈ A we
have

〈x⊗y, a ⊗ b〉A =y∗H(x∗a)b=y∗H(x∗aV(1))H(1)b=〈x ⊗ y, aV(1) ⊗ H(1)b〉A,

which implies that ‖a ⊗ b − aV(1) ⊗ H(1)b‖ = 0.
(iv) The form of imprimitivity condition allows us to check it only on simple

tensors. Using (iii), for a, b, c, d, e, f ∈ A, we have

a ⊗ b〈c ⊗ d, e ⊗ f〉A = a ⊗ bd∗H(c∗e)f = a ⊗ H(1)bd∗H(c∗e)f

= aV
(

H(1)bd∗H(c∗e)
)

⊗ f =aV(H(1)bd∗)V(H(c∗e))⊗f

= aV(bd∗)V(1)c∗eV(1) ⊗ f = aV(bd∗)c∗e ⊗ f

= A〈a ⊗ b, c ⊗ d〉e ⊗ f. �

Definition 2.12. We call the completion X of the pre-Hilbert bimodule X0

described in Lemma 2.11 a Hilbert bimodule associated to (V,H).

Remark 2.13. The Hilbert bimodule X could be obtained directly from the
imprimitivity KV–KH-bimodule X constructed in [12, Section 5]. Indeed, by
(2.3), X and X coincide as Banach spaces, and since

〈X,X〉A = AH(1)A, A〈X,X〉 = AV(1)A,

X can be considered an imprimitivity AV(1)A–AH(1)A-bimodule. Further-
more, the mappings λV : A → KV , λH : A → KV , the author of [12] uses
to define an A–A-bimodule structure on X , when restricted respectively to
AV(1)A and AH(1)A are isomorphisms. Hence we may use them to assume
the identifications KV = AV(1)A and KH = AH(1)A, and then Exel gener-
alized correspondence and the Hilbert bimodule X coincide.

Now we are ready to identify the structure of C∗(A,V,H) as the Hilbert
bimodule crossed product.
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Proposition 2.14. We have a one-to-one correspondence between covariant
representations (π, S) of the interaction (V,H) and covariant representations
(π, πX) of the Hilbert bimodule X associated to (V,H). It is given by relations

πX(a ⊗ b) = π(a)Sπ(b), x ∈ X, S = πX(1 ⊗ 1).

In particular, C∗(A,V,H) ∼= A�X Z and the isomorphism is gauge-invariant.

Proof. Let (π, S) be a covariant representation of (V,H). Since
∥

∥

∑

i

π(ai)Sπ(bi)
∥

∥

2 =
∥

∥

∑

i,j

π(ai)Sπ(bib
∗
j )S

∗π(a∗
j )
∥

∥=
∥

∥π
(
∑

i,j

aiV(bib
∗
j )a

∗
j

)∥

∥

≤
∥

∥

∑

i

ai ⊗ bi

∥

∥

2
,

we see that πX(
∑

i ai ⊗ bi) :=
∑

i π(ai)Sπ(bi) defines a contractive linear
mapping on X0/‖ · ‖. Clearly, it satisfies (1.1) and (1.2). Hence by continuity
it extends uniquely to X in a way that (π, πX) is a covariant representation
of X. Conversely suppose that (π, πX) is a covariant representation of the
Hilbert bimodule X and put S := πX(1 ⊗ 1). Then for a ∈ A we have

Sπ(a)S∗ = πX((1 ⊗ 1)a)πX(1 ⊗ 1)∗ = π(A〈1 ⊗ a, 1 ⊗ 1〉) = π(V(a)).

Similarly, S∗π(a)S = πX(1⊗1)∗πX(a(1⊗1)) = π(〈1⊗1, a⊗1〉A) = π(H(a)).
�

Remark 2.15. The Hilbert bimodule X is nothing but the GNS C∗-correspon-
dence determined by the completely positive map H, cf. [26]. In particular,
the above proposition shows that C∗(A,V,H) is isomorphic to the crossed
product of A by the completely positive map H (or V, depending on prefer-
ences), see [26].

Finally, by Remark 2.13 and Propositions 1.4, 2.14 we get

Corollary 2.16. Let X be the generalized correspondence constructed out of
(V,H) as in [12, Section 5]. The crossed product C∗(A,V,H) for the in-
teraction (V,H) and the covariance algebra C∗(A,X ) for X are naturally
isomorphic.

2.3. Topological Freeness, Ideal Structure and Simplicity Criteria

Let (V,H) be a corner interaction. Since V(A) and H(A) are hereditary sub-
algebras of A we have a standard way, cf. e.g. [37, Proposition 4.1.9], of
identifying their spectra with open subsets of ̂A. Namely, we assume that

̂V(A) = {π ∈ ̂A : π(V(1)) �= 0}, ̂H(A) = {π ∈ ̂A : π(H(1)) �= 0}. (2.4)

The isomorphisms V : H(A) → V(A) and H : V(A) → H(A) induce mutually
inverse homeomorphisms ̂V : ̂V(A) → ̂H(A) and ̂H : ̂H(A) → ̂V(A), which
under identifications (2.4) become partial homeomorphisms of ̂A.

Definition 2.17. We refer to ̂V and ̂H as partial homeomorphisms dual to
(V,H).
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Remark 2.18. For an irreducible representation π : A → B(H) with π(H(1))
�= 0 the element ̂H(π) ∈ ̂A is given by the (unique up to unitary equivalence)
extension of the representation

̂H(π)|V(A) = π ◦ H : V(A) → B(π(H(1))H),

Moreover, in the case (V,H) is a C∗-dynamical system H(A) is an ideal and
then π(H(1))H = H.

Proposition 2.19. If X is the Hilbert bimodule associated to (V,H) and X -Ind
is the partial homeomorphism of ̂A associated to X, then X -Ind = ̂H.

Proof. Let π : A → B(H) be an irreducible representation with π(H(1)) �= 0.
For (a ⊗ b) ⊗π h ∈ X ⊗π H, a, b ∈ A, h ∈ H, using Lemma 2.11 (iii) we have

X -Ind(π)(V(1))(a ⊗ b) ⊗π h =
(

V(1)a ⊗ b
)

⊗π h =
(

V(1)aV(1) ⊗ b
)

⊗π h

= (1 ⊗ H(a)b) ⊗π h = (1 ⊗ 1) ⊗π π(H(a)b)h.

Hence we see that the space H0 := X -Ind(π)
(

V(1)
)

(X ⊗π H) consists of the
vectors of the form (1⊗ 1)⊗π h, h ∈ π(H(1))H. Moreover, for h ∈ π(H(1))H
we have

‖(1 ⊗ 1) ⊗π h‖2 = 〈(1 ⊗ 1) ⊗π h, (1 ⊗ 1) ⊗π h〉 = 〈h, π(〈1 ⊗ 1, 1 ⊗ 1〉A)h〉
= 〈h, π(H(1))h〉 = ‖h‖2,

and thus the mapping (1⊗1)⊗πh 
→ h is a unitary U from H0 onto π(H(1))H.
For a ∈ V(A) we have

X -Ind(π)(a)(1 ⊗ 1) ⊗π h = (a ⊗ 1) ⊗π h = (1 ⊗ H(a)) ⊗π h

= (1 ⊗ 1) ⊗π π(H(a))h,

that is X -Ind(π)(a)U∗h = U∗π(H(a))h. It follows that U establishes uni-
tary equivalence between X -Ind(π) : V(A) → B(H0) and π ◦ H : V(A) →
B(π(H(1))H). Hence X -Ind = ̂H, cf. Remark 2.18. �

As ̂H = ̂V−1, our preference for ̂V in the sequel is totally a subjective
choice.

Theorem 2.20. Let (V,H) a corner interaction and ̂V the partial homeomor-
phism dual to V.

(i) If ̂V is topologically free, then every representation of C∗(A,V,H) which
is faithful on A is automatically faithful on C∗(A,V,H).

(ii) If ̂V is free, then J 
→ Ĵ ∩ A is a lattice isomorphism between ideals in
C∗(A,V,H) and open ̂V-invariant sets in ̂A.

(iii) If ̂V is topologically free and minimal, then C∗(A,V,H) is simple.

Proof. Combine Propositions 2.14, 2.19 and Theorem 1.1. �

Remark 2.21. Our simplicity criterion [Theorem 2.20 (iii)] have an inter-
section with the criteria in [43, Theorems 4.1, 4.6] only in the case of a
C∗-dynamical system (α,L) where α is an isomorphism from A onto a full
corner α(1)Aα(1) in A, cf. Remark 1.3 and Corollary 2.23 below. In this case
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topological freeness implies that no power of α or L is inner (i.e. implemented
by an isometry in A).

In general, one can deduce from Propositions 2.14, 2.19, see [25, discus-
sion before Theorem 2.5], that open ̂V-invariant sets in ̂A are in a one-to-one
correspondence with gauge invariant ideals in C∗(A,V,H). Therefore it is
useful to have a convenient description of the former.

Lemma 2.22. Let I be an ideal in A. The following conditions are equivalent:
(i) The set ̂I ⊂ ̂A is ̂V-invariant,
(ii) V(I) = V(1)IV(1),
(iii) V(I) ⊂ I and H(I) ⊂ I.

Proof. Notice that V(1)IV(1) = I ∩V(A) and H(1)IH(1) = I ∩H(A). Hence
V(I) = V(H(1)IH(1)) = V(I∩H(A)) and (ii) reads as V(I∩H(A)) = I∩V(A).
Now equivalence (i)⇔ (ii) is clear.
(ii)⇒ (iii). We have V(I) = V(1)IV(1) ⊂ I and H(I) = H(V(1)IV(1)) =
H(V(I)) = H(1)IH(1) ⊂ I.
(iii)⇒ (ii). The inclusion V(I) ⊂ I implies V(I) ⊂ V(1)IV(1) and H(I) ⊂ I
implies that V(1)IV(1) = V(H(I)) ⊂ V(I). �
Corollary 2.23. Suppose (α,L) is a corner C∗-dynamical system. The partial
homeomorphism α̂ is minimal if and only if there is no nontrivial ideal I in
A such that α(I) ⊂ I.

Proof. The if part follows immediately from Lemma 2.22. If we suppose that
α(I) ⊂ I and α(I) �= α(1)Iα(1) for a certain nontrivial ideal I in A, then
one sees (by induction on n) that the closure J of elements of the form
∑n

k=0 Lk(ak), ak ∈ I, k = 0, . . . , n, n ∈ N, is a nontrivial ideal in A (it does
not contain the unit) such that α(J) ⊂ J and L(J) ⊂ J . Hence by Lemma
2.22, α̂ is not minimal. �
2.4. K-Theory

We retain the notation from page 8 with the additional assumption that X is
the Hilbert bimodule associated to a corner interaction (V,H). In particular,
A〈X,X〉 = AV(1)A.

Lemma 2.24. The following diagram commutes and the horizontal map is an
isomorphism

K∗(V(A))
ι∗ ��

(ι22◦H)∗ ������������
K∗(AV(1)A)

(ι11◦φ)∗�������������

K∗(DX)

Proof. Since V(A) is a full corner in AV(1)A it is known that the inclusion
ι : V(A) → AV(1)A yields isomorphisms of K-groups, cf. e.g. [22, Proposition
B.5]. We claim that the map

M2(H(A)) �
(

a11 a12

a21 a22

)

Φ
−→
(

φ(V(a11)) 1 ⊗ a12

�(1 ⊗ a∗
21) a22

)

∈ DX ,
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where � : X → ˜X is the canonical antilinear isomorphism, is a homomor-
phism of C∗-algebras. Plainly, it is linear, ∗-preserving, and the reader easily
checks that Φ(ab) = Φ(a)Φ(b), for a = [aij ], b = [bij ] ∈ M2(H(A)), using the
following calculations

(1 ⊗ a12) · �(1 ⊗ b∗
21)x ⊗ y = Θ(1⊗a12),(1⊗b∗

21)
x ⊗ y = 1 ⊗ a12b21H(x)y

= V(a12b21)V(H(x)) ⊗ y = V(a12)V(b21)x ⊗ y

= φ(V(a12b21))(x ⊗ y),

φ(V(a11))(1 ⊗ b12) = V(a11) ⊗ b12 = 1 ⊗ a11b12,

�(1 ⊗ a∗
21) · (1 ⊗ b12) = 〈1 ⊗ a∗

21, 1 ⊗ b12〉A = a21H(1)b12 = a21b12.

This shows our claim. The following diagram commutes (it commutes on the
level of C∗-algebras)

K∗(V(A))
ι∗ ��

(ι11◦H)∗
��

K∗(AV(1)A)

(ι11◦φ)∗
��

K∗(M2(H(A)))
Φ∗ �� K∗(DX)

.

However, since for any C∗-algebra B the homomorphisms ιii : B → M2(B),
i = 1, 2, induce the same mappings on the level of K-theory, the mappings
(ι11 ◦ H)∗, (ι22 ◦ H)∗ : K∗(V(A)) → K∗(M2(H(A))) coincide. Moreover, by
the form of Φ we see that Φ ◦ ι22 ◦ H = ι22 ◦ H on V(A). Hence

(ι11 ◦ φ)∗ ◦ ι∗ = Φ∗ ◦ (ι11 ◦ H)∗ = Φ∗ ◦ (ι22 ◦ H)∗ = (ι22 ◦ H)∗. �

Using the above lemma we see that in sequence (1.5) we may replace
K∗(A〈X,X〉) = K∗(AV(1)A) with K∗(V(A)) and then X∗ turns into (ι22)−1

∗ ◦
(ι22 ◦ H)∗ = H∗. Hence we get the following version of Pimsner–Voiculescu
exact sequence, cf. [36,42].

Theorem 2.25. For any corner interaction (V,H) we have the following exact
sequence

K0(V(A))
ι∗−H∗

�� K0(A)
(iA)∗

�� K0(C∗(A,V,H))

��
K1(C∗(A,V,H))

��

K1(A)
(iA)∗�� K1(V(A))

ι∗−H∗��

.

3. Graph C∗-Algebras via Interactions

In this section we introduce and study properties of graph interactions. We
show that Theorem 2.20 applied to graph interactions is equivalent to the
Cuntz–Krieger uniqueness theorem and its consequences. We use Theorem
2.25 to calculate K-theory for graph algebras straight from the dynamics on
their AF-cores.
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3.1. Graph C∗-Algebra C∗(E) and its AF-Core

Throughout we let E = (E0, E1, r, s) to be a fixed finite directed graph. Thus
E0 is a set of vertices, E1 is a set of edges, r, s : E1 → E0 are range, source
maps, and we assume that both sets E0, E1 are finite. We write En, n > 0,
for the set of paths μ = μ1 . . . μn, μi ∈ E1, r(μi) = s(μi+1), i = 1, . . . , n − 1,
of length n. The maps r, s naturally extend to En, so that (E0, En, s, r) is
the graph, and s extends to the set E∞ of infinite paths μ = μ1μ2μ3 . . . . We
also put s(v) = r(v) = v for v ∈ E0. The elements of E0

sinks := E0 \ s(E1)
and respectively E0

sources := E0 \ r(E1) are called sinks and sources. We also
consider sets En

sinks = {μ ∈ En : r(μ) ∈ E0
sinks}, n ∈ N.

We adhere to conventions of [4,29]. In our setting a Cuntz–Krieger E-
family compose of non-zero pair-wise orthogonal projections {Pv : v ∈ E0}
and partial isometries {Se : e ∈ E1} satisfying

S∗
eSe = Pr(e) and Pv =

∑

e∈s−1(v)

SeS
∗
e for all v ∈ s(E1), e ∈ E1.

Having such a family we put Sμ := Sμ1Sμ2 · · · Sμn
for μ = μ1 . . . μn (Sμ �=

0 ⇒ μ ∈ En) and Sv := Pv for v ∈ E0. The above Cuntz–Krieger relations
extend to operators Sμ, see [29, Lemma 1.1], as follows

S∗
νSμ =

⎧

⎪

⎨

⎪

⎩

Sμ′ , if μ = νμ′, μ′ /∈ E0,

S∗
ν′ if ν = μν′, ν′ /∈ E0,

0 otherwise.

In particular, C∗({Pv : v ∈ E0} ∪ {Se : e ∈ E1}) is the closure of the
linear span of elements SμS∗

ν , μ ∈ En, ν ∈ Em, n,m ∈ N.
The graph C∗-algebra C∗(E) of E is a universal C∗-algebra generated

by a universal Cuntz–Krieger E-family {se : e ∈ E1}, {pv : v ∈ E0}. It is
equipped with the natural circle gauge action γ : T → AutC∗(E) established
by relations γλ(pv) = pv, γλ(se) = λse, for v ∈ E0, e ∈ E1, λ ∈ T. The fixed
point C∗-algebra for γ is called the core. It is an AF-algebra of the form

FE := span {sμs∗
ν : μ, ν ∈ En, n = 0, 1, . . . } .

We recall the standard Bratteli diagram for FE . For each vertex v and N ∈ N

we set

FN (v) := span
{

sμs∗
ν : μ, ν ∈ EN , r(μ) = r(ν) = v

}

,

which is a simple In factor with n = |{μ ∈ EN : r(μ) = v}| (if n = 0 we put
FN (v) := {0}). The spaces

FN :=
(

⊕ v/∈E0
sinks

FN (v)
)

⊕
(

⊕w∈E0
sinks

⊕N
i=0Fi(w)

)

, N ∈ N,

form an increasing family of finite-dimensional algebras, cf. e.g. [4], and

FE =
⋃

N∈N

FN . (3.1)

We denote by Λ(E) the corresponding Bratteli diagram for FE . If E has no
sinks we can view Λ(E) as an infinite vertical concatenation of E: on the
n-th level we have the vertices r(En), n ∈ N, and multiplicities are given by
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the number of edges with corresponding endings and sources. If E has sinks,
one has to attach to every sink on each level an infinite tail, so on the n-th
level of Λ(E) we have r(En) ∪

⋃N−1
k=0 {v(k) : v ∈ r(Ek

sinks)} and each v(k)

descends to v(k) with multiplicity one. We adopt the convention that if V is
a subset of E0 we treat it as a full subgraph of E and Λ(V ) stands for the
corresponding Bratteli diagram for FV . In particular, if V is hereditary, i.e.
s(e) ∈ V =⇒ r(e) ∈ V for all e ∈ E1, and saturated, i.e. every vertex which
feeds into V and only V is in V , then the subdiagram Λ(V ) of Λ(E) yields
an ideal in FE which is naturally identified with FV . In general, viewing
Λ(E) as an infinite directed graph the hereditary and saturated subgraphs
(subdiagrams) of Λ(E) correspond to ideals in FE , see [5, 3.3].

3.2. Interactions Arising from Graphs

For each vertex v ∈ E0 we let nv := |r−1(v)| be the number of the edges
received by v. We define an operator s in C∗(E) as the sum of the partial
isometries {se : e ∈ E1} ”averaged” on the spaces corresponding to projec-
tions {pv : v ∈ r(E0)} that are not sources:

s :=
∑

e∈E1

1
√

nr(e)
se =

∑

v∈r(E1)

1√
nv

∑

e∈r−1(v)

se. (3.2)

Since s∗s =
∑

v∈r(E1) pv is a projection the operator s is a partial isometry.
It is an isometry iff E has no sources. We use s to define

V(a) := sas∗, H(a) := s∗as, a ∈ C∗(E). (3.3)

Plainly, (V,H) is a corner interaction over C∗(E). Moreover, one sees that
V and H are unique bounded linear maps on C∗(E) satisfying the following
formulas

V
(

sμs∗
ν

)

=

{

1√
ns(μ)ns(ν)

∑

e,f∈E1 seμs∗
fν , ns(μ)ns(ν) �= 0,

0, ns(μ)ns(ν) = 0,
(3.4)

H
(

seμs∗
fν

)

=
1

√
ns(μ)ns(ν)

sμs∗
ν , H

(

pv

)

=

{
∑

e∈s−1(v)
pr(e)

nr(e)
, v /∈ E0

sinks,

0, v ∈ E0
sinks,

(3.5)

where μ ∈ En, ν ∈ Em, n,m ∈ N, e, f ∈ E1, v ∈ E0. It follows that V and H
preserve the core algebra FE . Hence (V,H) defines a corner interaction over
FE . We note, however, that V hardly ever preserves the canonical diagonal
algebra DE := span

{

sμs∗
μ : μ ∈ En, n ∈ N

}

⊂ FE .

Definition 3.1. We call the pair (V,H) of continuous linear maps on FE

satisfying (3.4), (3.5) a (corner) interaction of the graph E or simply a graph
interaction.

The following statement is one of the facts justifying the above defini-
tion.
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Proposition 3.2. We have a one-to-one correspondence between Cuntz–Krie-
ger E-families {Pv : v ∈ E0}, {Se : e ∈ E1} for E and faithful covariant rep-
resentations (π, S) of the graph interaction (V,H). It is given by the relations

S =
∑

e∈E1

1
√

nr(e)
Se, Pv = π(pv), Se = √

nr(e)π(ses
∗
e)S.

In particular, we have a gauge-invariant isomorphism C∗(E)∼=C∗(FE ,V,H).

Proof. A Cuntz–Krieger E-family {Pv : v ∈ E0}, {Se : e ∈ E1} yields a
representation π of C∗(E) which is well known to be faithful on FE . By the
definition of (V,H) the pair (π|FE

, S) where S := π(s) =
∑

e∈E1

1√
nr(e)

Se

is a covariant representation of (V,H). Conversely, let (π, S) be a faithful
representation of (V,H) and put Pv := π(pv) and Se := √

nr(e)π(ses
∗
e)S. We

claim that {Pv : v ∈ E0}, {Se : e ∈ E1} is a Cuntz–Krieger E-family such
that S =

∑

e∈E1

Se√
nr(e)

. Indeed, for e ∈ E1 we have

S∗
eSe = nr(e)π(pr(e))π(H(ses

∗
e))π(pr(e)) = π(pr(e)) = Pr(v),

and for v ∈ s(E1) we have
∑

e∈s−1(v)

SeS
∗
e =

∑

e∈s−1(v)

nr(e)π(ses
∗
e)π(V(1))π(ses

∗
e)

=
∑

e∈s−1(v),e1,e2∈E1

nr(e)√
nr(e1)nr(e2)

π(ses
∗
e(se1s

∗
e2

)ses
∗
e)

=
∑

e∈s−1(v)

π(ses
∗
e) = π(pv) = Pv.

Now note that S∗S = π(H(1))=
∑

v∈r(E1) π(pv) and thus S =
∑

e∈E1 Sπ(pv).
Moreover, for each v ∈ r(E1) we have

⎛

⎝

∑

e∈r−1(v)

π(ses
∗
e)

⎞

⎠Sπ(pv)S∗ =
∑

e∈r−1(v)

π(ses
∗
eV(pv))

=
∑

e,e1,e2∈r−1(v)

π(ses
∗
ese1s

∗
e2

)
nv

=
∑

e1,e2∈r−1(v)

π(se1s
∗
e2

)
nv

= π(V(pv))

= Sπ(pv)S∗.

Hence the final space of the partial isometry Sπ(pv) decomposes into the
orthogonal sum of ranges of the projections π(ses

∗
e), e ∈ r−1(v), and conse-

quently
∑

e∈E1

Se√
nr(e)

=
∑

e∈E1

π(ses
∗
e)Sπ(pr(e)) =

∑

v∈E0

∑

e∈r−1(v)

π(ses
∗
e)Sπ(pv) = S. �
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Remark 3.3. If E has no sources then s is an isometry and V is an injective
endomorphism with hereditary range. In this case C∗(E) coincides with vari-
ous crossed products by endomorphisms that involve isometries, cf. [2,11,35].
In particular, Proposition 3.2 has a nontrivial intersection with [19, Theorem
5.2] proved for locally finite graphs without sources.

Remark 3.4. The canonical completely positive map φE : C∗(E) → C∗(E)
is given by the formula

φE(x) =
∑

e∈E1

sexs∗
e.

This map (unlike V but like H) always preserves both FE and DE and the
pair (φE ,H) is a C∗-dynamical on DE , cf. Proposition 3.5 below. Moreover, if
E has no sinks the same relations as in Proposition 3.2 yield an isomorphism
between C∗(E) and the Exel’s crossed product DE �(φE ,H)N, see [7, Theorem
5.1]. The advantage of DE �(φE ,H) N over C∗(FE ,V,H) is that it starts from
a commutative C∗-algebra DE . The disadvantages are that the dynamics in
(φE ,H) is irreversible and involves two mappings (at least implicitly, see [26]),
while in essence (V,H) is a single map (recall Proposition 2.9) possessing a
natural generalized inverse.

A natural question to ask is when the graph interaction (V,H) is a C∗-
dynamical system. It is somewhat surprising that this holds only if (V,H) is
a part of a group interaction. We take up the rest of this subsection to clarify
this issue in detail. To this end we will use a partially-stochastic matrix
P = [pv,w] arising from the adjacency matrix AE = [AE(v, w)]v,w∈E0 of the
graph E. Namely, we let

pv,w :=

{

AE(v,w)
nw

, AE(v, w) �= 0,

0, AE(v, w) = 0,
(3.6)

where AE(v, w) = |{e ∈ E1 : s(e) = v, r(e) = w}|. By a partially-stochastic
matrix we mean a non-negative matrix in which each non-zero column sums
up to one.

Proposition 3.5. Let s be the operator given by (3.2) and let n ≥ 1. The
following conditions are equivalent:

(i) (Vn,Hn) is an interaction over FE,
(ii) (φn

E ,Hn) is a C∗-dynamical system on DE,
(iii) operator sn is a partial isometry,
(iv) nth power of the matrix P = {pv,w}v,w∈E0 is partially-stochastic,
(v) for any μ ∈ En and ν ∈ Ek, k < n, such that r(μ) = r(ν) we have

s(ν) /∈ E0
sources.

Proof. (i) ⇔ (iii). As Vn(·) = sn(·)s∗n and Hn(·) = s∗n(·)sn one readily
checks that (iii) implies (i), and if we assume (i) then sn is a partial isometry
because Hn(1) is a projection by Lemma 2.5.
(iii) ⇔ (iv). Operator sn is a partial isometry iff Hn(1) is a projection. Since
H(pv) =

∑

w∈E0 pv,wpw, cf. (3.5), we get
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Hn(1) =
∑

v0,...,vn∈E0

pv0,v1 · pv1,v2 · . . . · pvn−1,vn
pvn

=
∑

v,w∈E0

p(n)
v,wpw

where Pn = {p
(n)
v,w}v,w∈E0 stands for the nth power of P . By the orthogonality

of projections pw, it follows that Hn(1) is a projection iff
∑

v∈E0 p
(n)
v,w ∈ {0, 1}

for all w ∈ E0, that is iff Pn is partially-stochastic.
(ii) ⇔ (iv). We know that φE : DE → DE is an endomorphism and H is

its transfer operator. Moreover, it is a straight forward fact that an iteration
of an endomorphism and its transfer operator gives again an endomorphism
and its transfer operator. Thus (φn

E ,Hn) is a C∗-dynamical system iff the
transfer operator Hn is regular, that is iff φn

E(Hn(1)) = φn
E(1). However, as

φn
E(Hn(1)) =

∑

v,w∈E0

p(n)
v,wφn

E(pw) =
∑

v∈E0,μ∈En

p
(n)
v,r(μ)sμs∗

μ

and φn
E(1) =

∑

μ∈En sμs∗
μ we see that φn

E(Hn(1)) = φn
E(1) if and only if

Pn = {p
(n)
v,w}v,w∈E0 is partially-stochastic.

(iv) ⇒ (v). Assume that (v) is not true, that is let μ ∈ En and ν ∈
Ek, k < n, be such that r(μ) = r(ν) and s(ν) ∈ E0

sources. Notice that the
condition

∑

v∈E0 p
(n)
v,w > 0 is equivalent to existence of η ∈ En such that w =

r(μ). Hence putting w := r(μ) = r(ν) and v0 := s(ν) we have
∑

v∈E0 p
(n)
v,w > 0

and p
(k)
v0,w > 0. Then

∑

v∈E0 p
(n−k)
v,v0 = 0 (because v0 ∈ E0

sources) and therefore

0 <
∑

v∈E0

p(n)
v,w =

∑

v∈E0,

vn−k∈E0\{v0}

p(n−k)
v,vn−k

p(k)
vn−k,w ≤

∑

vn−k∈E0\{v0}
p(k)

vn−k,w < 1,

that is Pn is not partially-stochastic.
(v) ⇒ (iv). Suppose that

∑

v∈E0 p
(n)
v,w > 0. By our assumption for each

0 < k < n the condition p
(n−k)
vk,w �= 0 implies that vk /∈ E0

sources. However,
relation vk /∈ E0

sources is equivalent to
∑

vk−1∈E0 p
(1)
vk−1,vk = 1 (because P is

partially-stochastic). Therefore proceeding inductively for k = 1, 2, 3 . . . , n−1
we get
∑

v∈E0

p(n)
v,w =

∑

v0,v1∈E0

p(1)
v0,v1

p(n−1)
v1,w =

∑

v1∈E0

p(n−1)
v1,w = · · · =

∑

vn−1∈E0

p(1)
vn−1,w = 1.

�

Example. It follows from Proposition 3.5 that if we consider a graph interac-
tion (V,H) arising from the following graph

�

v0

�

w1
. . .

. . .

�

wn−1

�

vn−1

�

vn

�

v1

�����
�

� ������

�

�

then (V,H) has the property that its kth power (Vk,Hk), for k > 1, is an
interaction unless k = n. Hence by considering a disjoint sum of graphs of
the above form one can obtain a graph interaction with an arbitrary finite
distribution of powers not being interactions.
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In our specific situation of graph interactions we may prolong the list
of equivalent conditions in Proposition 2.8 as follows.

Corollary 3.6. Let (V,H) be the interaction associated to the graph E. The
following conditions are equivalent:

(i) (V,H) is a C∗-dynamical system,
(ii) (Vn,Hn) is an interaction for all n ∈ N,
(iii) (φn

E ,Hn) is a C∗-dynamical system for all n ∈ N,
(iv) operator s given by (3.2) is a power partial isometry,
(v) every power of the matrix P = {pv,w}v,w∈E0 is partially-stochastic,
(vi) every two paths in E that have the same length and the same ending

either both starts in sources or not in sources.

Proof. Item (vi) holds if and only if item (v) in Proposition 3.5 holds for
all n ∈ N. Hence by Proposition 3.5 we get the equivalence between all the
items from (ii) to (vi) in the present assertion. Furthermore, we recall that
H(1) = s∗s =

∑

v∈r(E1) pv, and item (i) is equivalent to H(1) being a central
element in FE , see Proposition 2.8. Hence the equivalence (i) ⇔ (vi) follows
from the relations

H(1)sμs∗
ν =

{

0, if s(μ) /∈ r(E1)
sμs∗

ν , otherwise
, sμs∗

νH(1)=

{

0, if s(ν) /∈ r(E1)
sμs∗

ν , otherwise
,

which hold for all μ, ν ∈ En, n ∈ N. �
A natural question to ask is when H is multiplicative. We rush to say

that it is hardly the case.

Proposition 3.7. The pair (H,V), where (V,H) is the interaction of E, is a
C∗-dynamical system if and only if the mapping r : E1 → E0 is injective.

Proof. By Proposition 2.8 multiplicativity of H is equivalent to V(1) being a
central element in FE . If r : E1 → E0 is injective, then FE = DE is commuta-
tive and (H,V) is a C∗-dynamical system because V(1) ∈ FE . Conversely, let
us assume that the projection V(1) = ss∗ =

∑

v∈r(E1)
1

nv

∑

e,f∈r−1(v) ses
∗
f is

central in FE and let g, h ∈ E1 be such that r(g) = r(h) = v. Since

V(1)sgs
∗
h =

1
nv

∑

e∈r−1(v)

ses
∗
h, and sgs

∗
hV(1) =

1
nv

∑

f∈r−1(v)

sgs
∗
f

we have
∑

e∈r−1(v) ses
∗
h =

∑

f∈r−1(v) sgs
∗
f , which implies g = h. Hence r :

E1 → E0 is injective. �
3.3. Dynamical Systems Dual to Graph Interactions

Let (V,H) be the interaction of the graph E. We obtain a satisfactory pic-
ture of the system dual to (V,H) using a Markov shift (ΩE , σE) dual to the
commutative system (DE , φE). Namely, we put ΩE =

⋃∞
N=0 EN

sinks ∪E∞ and
let σE : ΩE \ E0

sinks → {μ ∈ ΩE : s(μ) /∈ E0
sources} be the shift defined by

the formula

σE(μ) =

{

μ2μ3 . . . if μ = μ1μ2 . . . ∈
⋃∞

N=2 EN
sinks ∪ E∞

r(μ) if μ ∈ E1
sinks.
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There is a natural ‘product’ topology on ΩE with the basis formed by the
cylinder sets Uν = {νμ : νμ ∈ ΩE}, ν ∈ En, n ∈ N. Equipped with this
topology ΩE is a compact Hausdorff space and σE is a local homeomorphism
whose both domain and codomain are clopen. Moreover, the standard ar-
gument, cf. e.g. [20, Lemma 3.2], shows that sνs∗

ν 
→ χUν
, ν ∈ En, n ∈ N,

establishes an isomorphism DE
∼= C(ΩE) which intertwines φE : DE → DE

with the operator of composition with σE .
Let us consider the relation of ‘eventual equality’ defined on ΩE as

follows:

μ ∼ ν
def⇐⇒

{

ν, μ ∈ E∞ and μNμN+1 . . . = νNνN+1 . . . for some N ∈ N,

ν, μ ∈ EN
sinks for some N ∈ N and r(μN ) = r(νN ).

Plainly, ∼ is an equivalence relation. We denote by [μ] the equivalence class
of μ ∈ ΩE , and view ΩE/ ∼ as a topological space equipped with the quotient
topology.

Lemma 3.8. The quotient map q : ΩE 
→ ΩE/ ∼ is open and the sets

Uv,n := {[μ] : ∃η∈Ek,k∈N s(η) = v, r(η) = μn+k}, v ∈ r(En), n ∈ N, (3.7)

form a basis for the quotient topology of ΩE/ ∼. Moreover, the formula

[σE ][μ] := [σE(μ)] (3.8)

defines a partial homeomorphism of ΩE/∼with natural domain and codomain:
{

[μ] : μ ∈ ΩE \ E0
sinks

}

=
⋃

v∈E0\E0
sinks

Uv,0,

{

[μ] ∈ ΩE : s(μ) /∈ E0
sources

}

=
⋃

v∈E0\E0
sources

Uv,0.

Proof. A moment of thought yields that if ν ∈ En is such that r(ν) = v, then
q(Uν) = Uv,n. In particular, one sees that

q−1(Uv,n) = {μ ∈ ΩE : ∃η∈Ek,k∈N s(η) = v, r(η) = μn+k}

=
⋃

k∈N

⋃

η∈Ek,
s(η)=v

⋃

ν∈En+k

r(ν)=r(η)

Uν ,

which means that Uv,n is open in ΩE/ ∼. We conclude that (3.7) defines a
basis for the topology of ΩE/ ∼ and q is an open map.

Now, it is straightforward to check that (3.8) gives a well defined map-
ping whose domain and codomain are open sets of the form described in the
assertion. The map [σE ] is invertible as for μ ∈ ΩE such that s(μ) /∈ E0

sources

its inverse can be described by the formula

[σE ]−1[μ] = [eμ] for an arbitrary edge e ∈ E1 such that r(e) = s(μ),

where eμ := e when μ ∈ E0
sinks is a vertex. Since [σE ](Uv,n+1) = Uv,n and

[σE ]−1(Uv,n) = Uv,n+1 for v ∈ En, n ∈ N, we see that [σE ] is a partial
homeomorphism. �
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We show that the quotient partial reversible dynamical system (ΩE/ ∼
, [σE ]) embeds as a dense subsystem into (̂FE , ̂V). Under this embedding the
relation ∼ coincides with the unitary equivalence of GNS-representations as-
sociated to pure extensions of the pure states of DE = C(ΩE). More precisely,
for any path μ ∈ ΩE the formula

ωμ(sνs∗
η) =

{

1 ν = η = μ1 . . . μn

0 otherwise
, for ν, η ∈ En, n ∈ N, (3.9)

determines a pure state ωμ : FE → C (a pure extension of the point evaluation
δμ acting on DE = C(ΩE)). Indeed, the functional ωμ is a pure state on each
Fk, k ∈ N, and thus it is also a pure state on FE =

⋃

k∈N
Fk, cf. e.g. [5, 4.16].

We denote by πμ the GNS-representation associated to ωμ and take up the
rest of the subsection to prove the following

Theorem 3.9. (Partial homeomorphism dual to a graph interaction) Under
the above notation [μ] 
→ πμ is a topological embedding of ΩE/ ∼ as a dense
subset into ̂FE. This embedding intertwines [σE ] and ̂V. Accordingly, the space
̂FE admits the following decomposition into disjoint sets

̂FE =
∞
⋃

N=0

̂GN ∪ ̂G∞

where the sets ̂GN = {πμ : [μ] ∈ EN
sinks/ ∼} are open discrete and ̂G∞ =

{πμ : [μ] ∈ E∞/ ∼} is a closed subset of ̂FE. The set

Δ = ̂FE \ ̂G0

is the domain of ̂V, and ̂V is uniquely determined by the formula
̂V(πμ) = πσE(μ), μ ∈ ΩE \ E0

sinks.

In particular, πμ ∈ ̂V(Δ), for μ ∈ EN
sinks, iff there is ν ∈ EN+1

sinks such that
r(μ) = r(ν), and then ̂H(πμ) = πν . Similarly, πμ ∈ ̂V(Δ), for μ ∈ E∞, iff
there is ν ∼ μ such that s(ν) is not a source, and then for any ν0 ∈ E1 such
that ν0ν1ν2 . . . ∈ E∞ we have ̂H(πμ) = πν0ν1ν2,....

Remark 3.10. One may verify that if we put

A := span
({

pv : v ∈ E0
sinks

}

∪
{

ses
∗
e : e ∈ E1

}) ∼= C
|E0

sinks|+|E1|,

then H preserves A and the smallest C∗-algebra containing A and invariant
under V is FE . In this sense H : FE → FE is a natural dilation of the
positive linear map H : A → A. This explains the similarity of assertions in
Theorem 3.9 and in [24, Theorem 3.5]; both of these results describe dual
partial homeomorphisms obtained in the process of dilations. The essential
difference is that a dilation of a multiplicative map on a commutative algebra
always leads a commutative C∗-algebra, cf. [24,27], while a stochastic factor
manifested by a lack of multiplicativity of the initial mapping inevitably leads
to noncommutative objects after a dilation. Significantly, our dual picture of
the graph interaction ‘collapses’ to the non Hausdorff quotient similar to that
of Penrose tilings [8, 3.2].
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We start by noting that the infinite direct sum ⊕∞
N=0 ⊕w∈E0

sinks
FN (w)

yields an ideal Isinks in FE generated by the projections pw, w ∈ E0
sinks. We

rewrite it in the form

Isinks =
⊕

N∈N

GN , where GN :=
(

⊕w∈E0
sinks

FN (w)
)

.

Plainly, FN (w) �= {0} for w ∈ E0
sinks iff there is μ ∈ EN

sinks such that
r(μ) = w and then (since FN (w) is a finite factor) πμ is a unique up to unitary
equivalence irreducible representation of FE such that ker πμ ∩FN (w) = {0}.
Consequently, we see that

̂Isinks =
∞
⋃

N=0

̂GN � πμ 
−→ [μ] ∈
∞
⋃

N=0

EN
sinks/ ∼

establishes a homeomorphism between the corresponding discrete spaces. The
complement of ̂Isinks =

⋃∞
N=0

̂GN in ̂FE is a closed set which we identify in
a usual way with the spectrum of the quotient algebra

G∞ := FE/Isinks.

We will describe a dense subset of ̂G∞ exploiting the fact that states ωμ

arising from μ ∈ E∞ can be viewed as analogs of Glimm’s product states for
UHF-algebras, cf. e.g. [37, 6.5].

Lemma 3.11. For infinite paths μ, ν ∈ E∞ the representations πμ and πν are
unitarily equivalent if and only if μ ∼ ν. In particular, [μ] 
→ πμ is a well
defined embedding of E∞/ ∼ into ̂G∞.

Proof. We mimic the proof of the corresponding result for UHF-algebras,
cf. [37, 6.5.6]. Note that if (μN+1, μN+2, . . .) = (νN+1, νN+2, . . .), then both
sμ1...μN

s∗
μ1...μN

and sν1,...,νN
s∗

ν1,...,νN
are in FN (v) where v = r(μN ) and since

FN (v) ∼= Mn(C) there is a unitary u ∈ FN (v) such that ωμ(a) = ων(u∗au)
for a ∈ FN (v). Then automatically ωμ(a) = ων(u∗au) for all a ∈ FE and
hence πμ

∼= πν . Conversely, suppose that πμ
∼= πν , then, cf. [37, 3.13.4],

there is a unitary u ∈ FE such that ωμ(a) = ων(u∗au) for all a ∈ FE . For
sufficiently large n there is x ∈ Fn with ‖u − x‖ < 1

2 and ‖x‖ ≤ 1. To get
the contradiction we assume that μk �= νk for some k > n. The element
a := sμ1...μk

s∗
μ1...μk

∈ Fk commutes with all the elements from Fn. Indeed, if
b = sαs∗

β ∈ Fn, α, β ∈ En, then either sαfs∗
βf = 0 for all f ∈ Ek−n and then

ab = ba = 0 or b =
∑

f∈Ek−n sαfs∗
βf and then ab = sαμn+1...μk

s∗
βμn+1...μk

=
ba. From this it also follows that ων(ab) = 0 for all b ∈ Fn. Accordingly,
ων(x∗ax) = ων(ax∗x) = 0 and since ‖(u∗ − x∗)au‖ = ‖x∗a(u − x)‖ < 1/2 we
get

1 > ων((u∗ − x∗)au) + ων(x∗a(u − x)) = ων(u∗au) − ων(x∗ax) = ωμ(a) = 1,

an absurd. �

Remark 3.12. The C∗-algebra G∞ is a graph algebra arising from a graph
which has no sinks. Indeed, the saturation E0

sinks of E0
sinks (the minimal
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saturated set containing E0
sinks) is the hereditary and saturated set corre-

sponding to the ideal Isinks in FE . Hence Isinks = FE0
sinks

and

G∞ ∼= FE0
sinkless

where E0
sinkless := E0 \ E0

sinks.

Let us now treat μ ∈ E∞ as the full subdiagram of the Bratelli diagram
Λ(E) where the only vertex on the nth level is r(μn). Similarly, we treat
μ ∈ EN

sinks as the full subdiagram of Λ(E) where on the nth level for n ≤ N

is r(μn) and for n > N is r(μ)(N), cf. notation in Sect. 3.1. For any μ ∈ ΩE

we denote by W (μ) the full subdiagram of Λ(E) consisting of all ancestors
of the base vertices of μ ⊂ Λ(E).

Lemma 3.13. For any μ ∈ ΩE the Bratteli subdiagram Λ(ker πμ) of Λ(E)
corresponding to ker πμ is Λ(E) \ W (μ).

Proof. The assertion follows immediately from the form of primitive ideal
subdiagrams, see [5, 3.8], definition (3.9) of ωμ and the fact that kerπμ is the
largest ideal contained in kerωμ. �

Lemma 3.14. The mapping [μ] 
→ πμ ∈ ̂FE is a homeomorphism from ΩE/ ∼
onto its image.

Proof. We already know that [μ] 
→ πμ is injective and restricts to homeo-
morphism between discrete spaces (ΩE \ E∞)/ ∼ and ̂FE \ ̂G∞. Hence it
suffices to prove that [μ] 
→ πμ is continuous and open when considered as a
mapping from E∞/ ∼ onto {πμ : [μ] ∈ E∞/ ∼} ⊂ ̂G∞. To this end, we may
assume that E has no sinks, cf. Remark 3.12. Suppose then that E has no
sinks.

Any open set in ̂FE is of the form ̂J = {π ∈ ̂FE : ker π � J} = {π ∈
̂FE : Λ(J) \ Λ(ker π) �= ∅} where J is an ideal in FE or equivalently Λ(J) is
a hereditary and saturated subdiagram of Λ(E). It follows that if we denote
by Λv,n the smallest hereditary and saturated subdiagram of Λ(E) which on
the nth level contains vertex v, then the sets

̂Jv,n :=
{

π ∈ ̂FE : Λv,n \ Λ(ker π) �= ∅
}

, v ∈ E0, n ∈ N,

form a basis for the topology of ̂FE . Moreover, in view of Lemma 3.13, defi-
nitions of Λv,n, W (μ) and form of Uv,n, see (3.7), the preimage of ̂Jv,n under
the map [μ] 
→ πμ is {[μ] ∈ ΩE/ ∼: Λv,n ∩ W (μ) �= ∅} = {[μ] ∈ ΩE :
∃ν∈Ek,k∈N s(ν) = v, r(ν) = μn+k} = Uv,n.

Thus, in view of Lemma 3.8, we see that [μ] 
→ πμ establishes one-to-one
correspondence between the topological bases for its domain and codomain
and hence is a homeomorphism onto codomain. �

Now, to obtain Theorem 3.9 we only need the following

Lemma 3.15. The mapping [μ] 
→ πμ ∈ ̂FE intertwines [σE ] and ̂V.

Proof. To see that ̂V(FE) = {π ∈ ̂FE : π(V(1)) �= 0} coincides with Δ =
̂FE \ ̂G0 let π ∈ ̂FE and note that

π(V(1)) = 0 ⇐⇒ ∀v∈s(E1) π(pv) = 0 ⇐⇒ ∃w∈E0
sinks

π ∼= πw.
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Furthermore, by (3.4) and (3.5), we have

V(FN (v)) = V(1)FN+1(v)V(1), H(FN+1(v)) = FN (v), N ∈ N, (3.10)

and H(F0(v)) ⊂
∑

w∈r(s−1(v)) F0(w). In particular, for μ ∈ EN
sinks, N > 0,

we have πμ ∈ Δ and

(πμ ◦ V)(FN−1(w)) = πμ(V(1)FN (w)V(1)) �= 0.

Hence ̂V(πμ) ∼= πσE(μ). Let us now fix μ = μ1μ2μ3 . . . ∈ E∞. Let Hμ be the
Hilbert space and ξμ ∈ Hμ the cyclic vector associated to the pure state ωμ

via GNS-construction. For ν, η ∈ En, using (3.4) and (3.9), we get

ωμ(V(sνs∗
η)) =

⎧

⎨

⎩

1√
ns(ν)ns(η)

∑

e,f∈E1
ωμ(seνs∗

fη), ns(ν)ns(η) �= 0,

0, ns(ν)ns(η) = 0,

=

{

1
nr(μ1)

, ν = η = μ2 . . . μn+1

0 otherwise

=
1

nr(μ1)
ωσE(μ)(sνs∗

η).

It follows that ωμ ◦ V = 1
nr(μ1)

ωσE(μ) and therefore ̂V(πμ) ∼= πσE(μ), cf. [37,
Corollary 3.3.8]. �

3.4. Topological Freeness of Graph Interactions

We will now use Theorem 3.9 to identify the relevant properties of the partial
homeomorphism ̂V dual to the graph interaction (V,H). We recall that the
condition (L) introduced in [29] requires that every loop in E has an exit. For
convenience, by loops we will mean simple loops, that is paths μ = μ1 . . . μn

such that s(μ1) = r(μn) and s(μ1) �= r(μk) for k = 1, . . . , n − 1. A loop μ is
said to have an exit if there is an edge e such that s(e) = s(μi) and e �= μi

for some i = 1, . . . , n.

Proposition 3.16. Suppose that every loop in E has an exit. Then every open
set intersecting ̂G∞ contains infinitely many non-periodic points for ̂V and
if E has no sinks the number of this non-periodic points is uncountable. In
particular, ̂V is topologically free.

Proof. By Theorem 3.9 and Lemma 3.8 it suffices to consider the dynamical
system (ΩE/ ∼, [σE ]) and an open set of the form

Un,v = {[μ] : ∃η∈Ek,k∈N s(η) = v, r(η) = μn+k}

which contains [μ] for μ = μ1μ2 . . . ∈ E∞. Since E is finite there must be a
vertex v which appears as a base point of μ infinitely many times. Namely,
there exists an increasing sequence {nk}k∈N ⊂ N such that r(μnk

) = v for all
k ∈ N. Moreover, since every loop in E has an exit, the vertex v has to be
connected either to a sink or to a vertex lying on two different loops. Let us
consider these two cases:
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1. Suppose ν is a finite path such that v = s(ν) and w := r(ν) ∈ E0
sinks.

Consider the family of finite, and hence non-periodic, paths

μ(nk) := μ1 . . . μnk
ν ∈ E

n+|ν|
sinks , k ∈ N.

Plainly, all except finitely many of elements [μ(nk)] belong to Un,v (and
they are all different).

2. Suppose ν is a finite path such that v = s(ν) and the vertex w :=
r(ν) is a base point for two different loops μ0 and μ1. We put με =
με1με2με3 . . . ∈ E∞ for ε = {εi}∞

i=1 ∈ {0, 1}N\{0}. Since there is an
uncountable number of non-periodic sequences in {0, 1}N\{0} which pair-
wisely do not eventually coincide the paths με corresponding to these
sequences give rise to the uncountable family of non-periodic elements
[με] in ΩE/ ∼. Moreover, one readily sees that for sufficiently large nk

all the equivalent classes of paths

μ(ε) := μ1 . . . μnk
νμε ∈ E∞, ε = {εi}∞

i=1 ∈ {0, 1}N\{0}

belong to Un,v. This proves our assertion. �

Example. In the case C∗(E) = On is the Cuntz algebra, that is when E is
the graph with a single vertex and n edges, n ≥ 2, then FE is an UHF-
algebra and the states ωμ are simply Glimm’s product states. In particular,
it is well known that Prim (FE) = {0} and ̂FE is uncountable, cf. [37, 6.5.6].
Hence, on one hand the Rieffel homeomorphism given by the imprimitivity
FE-bimodule X = FEsFE associated with the graph interaction (V,H) is the
identity on Prim (FE). Thereby it is not topologically free ([28, Theorem 6.5]
can not be applied). On the other hand, we have just shown that ̂FE contains
uncountably many non-periodic points for X -Ind = ̂V−1, cf. Proposition 2.19,
and hence it is topologically free.

Suppose now that μ is a loop in E. Let μ∞ ∈ E∞ be the path obtained
by the infinite concatenation of μ. Then Λ(E) \W (μ∞) is a Bratteli diagram
for a primitive ideal in FE , which we denote by Iμ. In other words, see Lemma
3.13, we have

Iμ = ker πμ∞

where πμ∞ is the irreducible representation associated to μ∞.

Proposition 3.17. If the loop μ has no exits, then up to unitary equivalence
πμ∞ is the only representation of FE whose kernel is Iμ and the singleton
{πμ∞} is an open set in ̂FE.

Proof. The quotient FE/Iμ is an AF-algebra with the diagram W (μ∞). The
path μ∞ treated as a subdiagram of W (μ∞) is hereditary and its saturation
μ∞ yields an ideal K in FE/Iμ. Since μ∞ has no exits, K is isomorphic to
the ideal of compact operators K(H) on a separable Hilbert space H (finite
or infinite dimensional). Therefore every faithful irreducible representation of
FE/Iμ is unitarily equivalent to the representation given by the isomorphism
K ∼= K(H) ⊂ B(H). This shows that πμ∞ is determined by its kernel. More-
over, since W (μ∞) contains all its ancestors, the subdiagram μ∞ is hereditary
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and saturated not only in W (μ∞) but also in Λ(E). Therefore we let now K
stand for the ideal in FE , corresponding to μ∞. Let P ∈ Prim (FE). As K
is simple P � K implies K ∩ P = {0}. By the form of W (μ∞) and hered-
itariness of Λ(P ), K ∩ P = {0} implies Λ(P ) ⊂ Λ(FE) \ W (μ∞) = Λ(Iμ).
However, if P ⊂ Iμ, we must have P = Iμ because no part of Λ(Iμ) is not
connected to W (μ∞) (consult the form of diagrams of primitive ideals [5,
3.8]). Concluding, we get

{P ∈ Prim (FE) : P � K} = {P ∈ Prim (FE) : K ∩ P = {0}} = {Iμ},

which means that {Iμ} is open in Prim (FE). Accordingly, {πμ∞} is open in
̂FE . �

We have the following characterization of minimality of ̂V.

Proposition 3.18. The map V 
→ F̂Λ(V ) is a one-to-one correspondence be-
tween the hereditary saturated subsets of E0 and ̂V-invariant open subsets of
̂FE. In particular, ̂V is minimal if and only if there are no nontrivial heredi-
tary saturated subsets of E0.

Proof. Recall that for a hereditary and saturated subset V of E0 we treat
Λ(V ) as a subdiagram of Λ(E) where on the nth level we have (r(En)∩V )∪
⋃N−1

k=0 {v(k) : v ∈ r(Ek
sinks) ∩ V }. Now, using condition (iii) of Lemma 2.22

and relations (3.10) one readily see that the open set ̂I for an ideal I in FE

is ̂V-invariant if and only if the corresponding Bratteli diagram for I is of the
form Λ(V ) where V ⊂ E0 is hereditary and saturated. �

Combining the above results we not only characterize freeness and topo-
logical freeness of (̂FE , ̂V) but also spot out an interesting dichotomy con-
cerning its core subsystem ( ̂G∞, ̂V), cf. Remark 3.20 below.

Theorem 3.19. Let (̂FE , ̂V) be a partial homeomorphism dual to the graph
interaction (V,H). We have the following dynamical dichotomy:

(a) either every open set intersecting ̂G∞ contains infinitely many nonperi-
odic points for ̂V; this holds if every loop in E has an exit, or

(b) there are ̂V-periodic orbits O = {πμ∞ , πσE(μ∞) . . . , πσn−1
E (μ∞)} in ̂G∞

forming open discrete sets in ̂FE; they correspond to loops without
exits μ.
In particular,

(I) ̂V is topologically free if and only if every loop in E has an exit (satisfies
condition (L)),

(II) ̂V is free if and only if every loop has an exit connected to this loop
(satisfies the so-called condition (K) introduced in [30], see also [4]).

Proof. In view of Propositions 3.16, 3.17 only item (II) requires a comment.
By Proposition 3.18 every closed ̂V-invariant set is of the form ̂FE \ ̂FV =
F̂E\V for a hereditary and saturated subset V ⊂ E0. Hence ̂V is free if and
only if every loop outside a hereditary saturated set V has an exit outside
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V . The latter condition is clearly equivalent to the condition that every loop
has an exit connected to this loop, cf. [4, page 318]. �

Remark 3.20. Since E is finite, by [29, Theorem 3.9], C∗(E) is purely infinite
in the sens of [29,31] if and only if E has no sinks and every loop in E
has an exit. In view of Proposition 3.16 we conclude that C∗(E) is purely
infinite if and only if every nonempty open set in ̂FE contains uncountable
number of nonperiodic points for ̂V. In particular, every ̂V-periodic orbit
O = {πμ∞ , πσE(μ∞) . . . , πσn−1

E (μ∞)} yields a gauge invariant ideal JO in C∗(E)
(generated by

⋂

π∈̂FE\O
ker π) which is not purely infinite. Indeed, if v = s(μ)

is the source of a loop μ which has no exit, then pvC∗(E)pv = pvJOpv =
C∗(sμ) ∼= C(T) because sμ is a unitary in C∗(sμ) with the full spectrum, cf.
[29, proof of Theorem 2.4].

Concluding, we deduce from our general results for corner interactions
the following fundamental classic results for graph algebras, cf. [4,29,30,39].

Corollary 3.21. Consider the graph C∗-algebra C∗(E) of the finite directed
graph E.

(i) If every loop in E has an exit, then any Cuntz–Krieger E-family {Pv :
v ∈ E0}, {Se : e ∈ E1} generates a C∗-algebra isomorphic to C∗(E),
via se 
→ Se, pv 
→ Pv, e ∈ E1, v ∈ E0.

(ii) If every loop in E has an exit connected to this loop, then there is a lattice
isomorphism between hereditary saturated subsets of E0 and ideals in
C∗(E), given by V 
→ JV , where JV is an ideal generated by pv, v ∈ V .

(iii) If every loop in E has an exit and E has no nontrivial hereditary satu-
rated sets, then C∗(E) is simple.

Proof. Apply Propositions 3.2, 3.18 and Theorems 2.20, 3.19. �

3.5. K-Theory

We now turn to description of K-groups for C∗(E). As K1 groups for AF-
algebras are trivial, using Pimsner–Voiculescu sequence from Theorem 2.25
applied to the graph interaction (V,H) associated to E we have

K1(C∗(E)) ∼= ker(ι∗ − H∗),
K0(C∗(E)) ∼= coker(ι∗ − H∗) = K0(FE)/ im(ι∗ − H∗)

where (ι∗ − H∗) : K0(V(FE)) → K0(FE). Hence to calculate the K-groups
for C∗(E) we need to identify ker(ι∗ − H∗) and coker(ι∗ − H∗). We do it in
two steps.

Proposition 3.22. (K0-partial automorphism induced by a graph interaction)
The group K0(FE) is the universal abelian group 〈V 〉 generated by the set
V := {v(N) : v ∈ r(EN ), N ∈ N} of ‘endings of finite paths’, subject to
relations

v(N) =
∑

s(e)=v

r(e)(N+1) for all v ∈ r(EN ) \ E0
sinks. (3.11)
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In particular, the subgroup generated by v(N) ∈ V , v ∈ E0
sinks, N ∈ N,

in K0(FE) is free abelian. The groups K0(V(A)) and K0(H(A)) embed into
K0(FE) and we have

K0(V(FE)) =
〈

V \
{

v(0) : v ∈ E0
sinks

}〉

,

K0(H(FE)) =
〈{

v(N) ∈ V : v(N+1) ∈ V
}〉

.

The isomorphism H∗ : K0(V(A)) → K0(H(A)) is determined by

H∗
(

v(N+1)
)

= v(N), N ∈ N. (3.12)

Proof. We identify v(N) with the K0-group element [sμs∗
μ] where μ ∈ EN

and v = r(μ). It follows from (3.1) that the group K0(FE) is the inductive
limit lim−→(K0(FN ), iNE ) where

K0(FN ) ∼=
⊕

v∈r(EN )\E0
sinks

Zv(N) ⊕
⊕

k=0,...,N

⊕

v∈r(Ek)∩E0
sinks

Zv(k).

Under the above isomorphisms, the bonding maps iNE : K0(FN )→K0(FN+1),
N ∈ N, are given on generators by the formula

iNE (v(N)) =

{

∑

s(e)=v r(e)(N+1), v /∈ E0
sinks

v(N), v ∈ E0
sinks,

v ∈ r(EN ).

This immediately implies the first part of the assertion.
Since H(FE) = H(1)FEH(1) is the closure of

⋃

N∈N
H(1)FNH(1) and

the group K0(H(1)FNH(1)) embeds into K0(FN ) we see by continuity pf
K0 that K0(H(FE)) embeds into K0(FE) = 〈V 〉. Moreover, as H(1) =
∑

v∈r(E1) pv we get

H(1)FN (v)H(1) �= {0} ⇐⇒ FN+1(v) �= {0} ⇐⇒ v(N+1) ∈ V,

whence K0(H(FE)) identifies with 〈{v(N) ∈ V : v(N+1) ∈ V }〉.
Similarly, taking into account that V(1)=

∑

v∈r(E1)
1

nv

∑

e,f∈r−1(v) ses
∗
f

we infer that V(1)FN (v)V(1) �= {0} for all v ∈ E0 and N > 0, and V(1)F0(v)
V(1) �= {0} if and only if v /∈ E0

sinks. Thus we may identify K0(V(FE)) with
〈V \ {v(0) : v ∈ Esinks}〉. Now (3.12) follows from (3.5). Note that (3.12)
determines H∗, as for v ∈ E0 \ E0

sinks, using only (3.11) and (3.12) we have
H∗(v(0)) = H∗(

∑

s(e)=v r(e)(1)) =
∑

s(e)=v r(e)(0). �

We let Z(E0 \ E0
sinks) and ZE0 denote the free abelian groups on free

generators E0 \ E0
sinks and E0, respectively. We consider the group homo-

morphism ΔE : Z(E0 \ E0
sinks) → ZE0 defined on generators as

ΔE(v) = v −
∑

s(e)=v

r(e).

The following lemma can be viewed as a counterpart of Lemmas 3.3,
3.4 in [40]. Nevertheless, it is a slightly different statement.
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Lemma 3.23. We have isomorphisms

ker(ι∗ − H∗) ∼= ker(ΔE), coker(ι∗ − H∗) ∼= coker(ΔE),

which are given on generators by

ker ΔE � v
i(0)
−→ v(0) ∈ ker(ι∗ − H∗),

ZE0/ im(ΔE) � [v]
j(0)


−→ [v(0)] ∈ K0(FE)/ im(ι∗ − H∗).

Proof. Suppose a =
∑

v∈E0\E0
sinks

avv ∈ Z(E0 \ E0
sinks). Then by (3.11),

(3.12) we have

(ι∗ − H∗)(i(0)(a)) =
∑

v∈E0\E0
sinks

avv(0) −
∑

v∈E0\E0
sinks

av

∑

s(e)=v

r(e)(0)

= i(0)(ΔE(a)).

Accordingly, a ∈ ker ΔE implies i(0)(a) ∈ ker(ι∗ − H∗) and hence i(0) is well
defined. Clearly i(0) is injective. To show that it is surjective note that

x =
∑

v∈r(EN )\E0
sinks

xvv
(N) +

∑

k=1,...,N

∑

v∈r(Ek)∩E0
sinks

x(k)
v v(k) (3.13)

is a general form of an element in K0(V(A)) and assume x is in ker(ι∗ −H∗).
The relation x = H∗(x) implies that the coefficients corresponding to sinks
in the expansion (3.13) are zero. Thus x = Hn

∗ (x) =
∑

v∈E0\E0
sinks

xvv
(0) =

i(0)(a) where a :=
∑

v∈E0\E0
sinks

xvv is in ker ΔE because i(0)(a) = x =
H∗(x) = H∗(i(0)(a)) = i(0)(ΔE(a)). Hence i(0) is an isomorphism.

Since i(0) intertwines ΔE and (ι∗ − H∗) we see that j(0) is well defined.
To show that j(0) is surjective, let y = x+

∑

v∈E0
sinks

x
(0)
v v(0) where x is given

by (3.13) [this is a general form of an element in K0(FE)]. Observe that as
x − H∗(x) ∈ im(ι∗ − H∗) the element y has the same class in coker(ι∗ − H∗)
as

H∗(x) +
∑

v∈E0
sinks

x(0)
v v(0) = z +

∑

k=0,1

∑

v∈r(Ek)∩E0
sinks

x(k)
v v(0)

where z =
∑

v∈r(EN )\E0
sinks

xvv
(N−1)+

∑

k=2,...,N

∑

v∈r(Ek)∩E0
sinks

x
(k)
v v(k−1)

is in K0(V(A)). Applying the above argument to z and proceeding in this way
N times we get that y is in the same class in coker(ι∗ − H∗) as

∑

v∈r(EN )\E0
sinks

xvv
(0) +

∑

k=0,1,...,N

∑

v∈r(Ek)∩E0
sinks

x(k)
v v(0).

Hence

y = j(0)

⎛

⎝

∑

v∈r(EN )\E0
sinks

xv[v] +
∑

k=0,1,...,N

∑

v∈r(Ek)∩E0
sinks

x(k)
v [v]

⎞

⎠ .

The proof of injectivity of j(0) is slightly more complicated. Let us consider
a =

∑

v∈E0 avv ∈ ZE0 such that i0(a) ∈ im(ι∗−H∗). Then i0(a) = x−H∗(x)
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for an element x of the form (3.13), and hence

i0(a) =
∑

v∈r(EN )\E0
sinks

xv

⎛

⎝v(N) −
∑

s(e)=v

r(e)(N)

⎞

⎠

+
∑

k=1,...,N

∑

v∈r(Ek)∩E0
sinks

x(k)
v

(

v(k) − v(k−1)
)

.

On the other hand, applying N -times relation (3.11) to i0(a) =
∑

v∈E0 avv(0)

we get

i0(a) =
∑

μ∈EN

as(μ)v
(N)
r(μ) +

∑

k=0,...,N

∑

μ∈Ek
sinks

as(μ)v
(k)
r(μ).

Comparing coefficients in the above two formulas one can see that

av =
∑

r(e)=v

xs(e) +
∑

k=1,...,N

∑

μ∈Ek,r(μ)=v

as(μ) for v ∈ E0
sinks (3.14)

(in particular av = 0 for v ∈ E0
sinks \ r(E1)), and

∑

μ∈EN ,r(μ)=v

as(μ) = xv −
∑

r(e)=v

xs(e), for v ∈ r(EN ) \ E0
sinks. (3.15)

We define an element of Z(E0 \ E0
sinks) by

b :=
∑

v∈r(EN )\E0
sinks

xvv +
∑

k=0,...,N−1

∑

μ∈Ek\Ek
sinks

as(μ)r(μ).

Using (3.14) and (3.15), in the third equality below, we obtain

ΔEb = b −
∑

v∈r(EN )

⎛

⎝

∑

r(e)=v

xs(e)

⎞

⎠ v −
∑

μ∈Ek,k=1,...,N

as(μ)r(μ)

=
∑

v∈r(EN )\E0
sinks

⎛

⎝xv −
∑

r(e)=v

xs(e) −
∑

μ∈EN ,r(μ)=v

as(μ)

⎞

⎠ v

+
∑

v∈E0\E0
sinks

av−
∑

v∈E0
sinks

⎛

⎝

∑

r(e)=v

xs(e)+
∑

k=1,...,N

∑

μ∈Ek,r(μ)=v

as(μ)

⎞

⎠ v

= 0 +
∑

v∈E0\E0
sinks

avv +
∑

v∈E0
sinks

avv = a. �

Corollary 3.24. (cf. Theorem 3.2 in [40]) We have isomorphisms

K0(C∗(E)) ∼= ker(ΔE), K1(C∗(E)) ∼= coker(ΔE).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution, and reproduction in any
medium, provided the original author(s) and the source are credited.
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