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Abstract. Suppose that d > 1 is an integer, € (0,d) is a fixed para-
meter and let I, be the fractional integral operator associated with
d-dimensional Walsh-Fourier series on [0,1)?. The paper contains the
proof of the sharp weak-type estimate

27 — 1
Hla(f)||Ld/(d*a)voc([0,1)d) < (zd—cx — 1)(2(1 — 1) ||f||L1([O,1)d)'

The proof rests on Bellman-function-type method: the above estimate
is deduced from the existence of a certain family of special functions.
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1. Introduction

Our motivation comes from the very natural question about sharp versions of
estimates for d-dimensional Walsh system. As evidenced in numerous papers,
such inequalities play an important role in many areas of mathematics, includ-
ing approximation theory, Fourier analysis, harmonic analysis and probabil-
ity theory. We refer the interested reader to the works [2,5,20,21,23,24] and
references therein.

Let us start with introducing the necessary background and notation.
We will work with functions defined on the unit cube [0,1)¢ in R?, equipped

with its dyadic sub-cubes, i.e., the sets of the form |4, 93tL) x [g2 a2£l)

on 2n
[%, “%f{l for some nonnegative integer n and some ap, as, ..., ag €
{0,1,...,2"™ — 1}. Recall that the Rademacher system {r,},>¢ of functions

on [0,1) is given by

rn(t) = sgn (sin(2" ).

Y Birkhauser
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Then {wy, }r,>0, the Walsh system on [0, 1), is defined as follows: wy = 1 and if
n is a positive integer with n = 2™ 4272+ .. 4+ 2™ and n1 > no > ... > ng,
then

W (t) = 1y ()1, () . 10, ().

The d-dimensional counterpart of the Walsh system is the collection of all
functions on [0,1)? which are of the form

r = (21,22,...,2q) — wj, (x1)wj, (x2) ... w;,(xaq),
where j1, j2, ..., jq are nonnegative integers.
Now, assume that f is an integrable function on the cube [0,1)%.
We define the associated rectangular partial sums of d-dimensional Walsh—
Fourier series by the formula
ni—1lng—1 ng—1 d
Sn17n2,--~7nd(f)($) = Z Z s Z f(jlan? v ajd) H Wy, (Ik)
J1=0 j2=0 Ja=0 k=1

Here x = (w1, 29,...,24) € [0,1)? and

) d
flrsizc i) = [ 5(0) []w s
k=1

[0,1)¢

is the (ji1,7j2,. .., Jqa)th Walsh—-Fourier coefficient of f. The relation between
the size of f and the behavior of the partial Sy .. n»(f) has gained a lot of
interest in the literature. For this and closely related topic, consult e.g. the
works of Goginava [5,6], Goginava and Weisz [7], Nagy [9], Simon [13,14] and
Weisz [21-23]. We will study this interplay from a slightly different point of
view. Given a parameter « € (0, d), consider the associated fractional integral
operator I, by

(oo}
I.f = Z2ika5k,k,...,k(f)'
k=0
This is the discrete and localized version of the usual fractional integral opera-
tor (Riesz potential) in R? (see Stein [17]). This object was studied by Watari
[20] (a convenient reference, which presents a probabilistic approach, is the
paper of Chao and Ombe [2]). For more recent works, we refer the interested
reader to the works of Lacey et. al. [8] and Cruz-Uribe and Moen [3]. The
arguments presented in these papers can be used to prove that the fractional
integral operator is bounded as an operator from L, ([0,1)?) to L,([0,1)%),
1 a

where 1 < p < d/a and % =5 d Furthermore, in the limit case p = 1,

q = d/(d — «), we have the weak-type estimate
IHaf [l Lo o,1y0) < CavallflLe(o,1)2)

where
Al Lo 0,0y = iuréAl{%‘ €0, 1) [f(z)] = A9
>

is the usual weak-type quasi-norm. This should be compared to the analogous
statements concerning the classical Riesz potentials on R?; see e.g. Stein [17].
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The principal purpose of the present paper is to derive the optimal value
of the weak type constant C 4. Here is the precise statement.

Theorem 1.1. For any 0 < a < d and any f € LP([0,1)%) we have

24 —1
||Iaf||Ld/(d*ﬂ)v0°([071)d) < (2d—a — 1)(2a — 1) ||f||L1([O,1)d)' (11)

The inequality is sharp for any o and d.

The proof of the above statement will exploit an enhancement of the so-
called Bellman function method. This technique originates from the theory
of stochastic optimal control, and its connection with other areas of mathe-
matics was firstly observed by Burkholder in [1], who studied certain sharp
inequalities for martingale transforms. Since then, the method has been inten-
sively developed in the subsequent works of Burkholder and his students (a
convenient reference on the subject is the monograph [12] by the author).
Furthermore, in the late 1990s, Nazarov, Treil and Volberg [10,11] showed
that the method can be exploited in a much wider analytic context. Since
the seminal papers, the technique has been used in numerous settings: see
e.g. [4,15,16,18,19] and references therein.

Roughly speaking, the Bellman function method enables to deduce a
given inequality from the existence of a certain special function, which enjoys
some majorization and convexity-type properties. It turns out that in the
study of (1.1), one needs an appropriate extension of the method. More pre-
cisely, the weak-type inequality will be deduced from the existence of a certain
family of special functions. As we hope, this novel modification can be used
in the investigation of other related estimates which arise naturally in the
area.

A few words about the organization of the paper are in order. The special
functions are introduced and studied in the next section. Then, in Section 3,
we show how to exploit their properties to obtain the inequality (1.1). The
final part of the paper contains the construction of certain extremal functions
on [0,1)?, which show that for each a and d, the constant C,_ 4 cannot be
improved.

2. A Special Function and its Properties

As announced in the previous section, the proof of (1.1) will depend heavily
on the existence of certain special functions. Given a nonnegative integer n,
consider By, : {(x,y) : y > 27" > 0} — [0, 1] given by the formula

(24 — 1)z~ (n+Da /=)

Bn(l", y) = (2d _ 1)3?2_("+1)O‘ i (1 _ y>(2d—a _ 1)

if y <1, and By, (z,y) = 1 otherwise.
The key convexity-type property of the family {B,,},>0 is described in
the following statement.
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Lemma 2.1. Letn > 1 be a fixed integer and fix x, y satisfying 0 < 27" < y.

Then for any numbers hy, ha, ..., hg € [—x, (24 —1)x] satisfying Ziil hy =0
we have
24

By-i(z,y) Z (@ + g,y + 27" hy,). (2.1)

If y > 1, then the above estimate is obvious, since the left-hand side
is equal to 1, while all the summands appearing on the left are at most 1.
Therefore, we may assume that y < 1. We consider two cases.

Proof of (2.1) for y+27"*(2% — 1)z < 1. Then we have y + hy < 1 for all
k. Consider the function

£(h) == Bp(x 4+ h,y+27"h), he[-z,2%—1)z].

Let us show that the graph of ¢ lies below the line segment joining (—z, &(—x))
and ((2¢ — 1)z, £((2? — 1)z)). Since the point

(0, Bnoi(z,9)) = (1 =279 - (=2, €(=2)) + 277 (27 = D, £((2¢ - 1))
lies on the segment, this will immediately yield (2.1).
To prove the above statement, it suffices to prove the following:
(a) The left-sided derivative ¢’'((2¢ — 1)z) is larger or equal to the slope of
the segment.
(b) We have ¢”’(h) > 0 for h close to —zx.
(¢) The derivative £’ changes its sign at most once.

We start with the property (a). Since {(—x) = 0, the slope of the segment
joining (—z,&(—)) and ((2¢ — 1)z, £((24 — 1)z)) equals

£ - 1))
24y
1 (24 — 1)24=(n+Day e
T 2dg {(2‘1 —1)2d-(ntDag 4 (1 —y — 2-ne(2d — 1)g)(24 — 1)}

On the other hand, some tedious, but straightforward calculations show that
the left-sided derivative of £ at (29 — 1)z is equal to

d (2d _ 1)2d—(n+1)ax a/(d—a)
d—« |:(2d — 1)2d*(”+1)f1x +(1—y—2ne(2d —1)z) (24— — 1):|

y (2d _ 1)2—(71,4-1)04(2(1—04 _ 1)(1 —y+ Q—nax) .
[(2¢ — 1)2d-(+Dag 4 (1 — y — 2770 (24 — 1)g)(24- — 1)]

Therefore, the assertion of (a) is equivalent to

1< d (247 —1)(1 — y + 27 ")
“d—a (2d — 1)2d7(”+1)0‘1‘ —+ (1 —y— 27na(2d o l)x)(zd,a — 1)7

or, after some manipulations,

(d—a)(2% —1)29= Doy < (1 — y + 27m) (297 — 1).
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However, we have 1 —y > 27"(2% — 1)z (this is the assumption under which
we work: see the beginning of the proof). Therefore, we will be done if we
show that

(d—a)(2¢ - 1)2d_("+1)ax < a2t oy (2972 1),
or, equivalently,
1 -9« 2d—a _9—«
<
o) - d
This follows directly from the estimate d > a.
We turn our attention to (b) and (c). First write

d/(d—a) _na —a d/(d—«
() = 2d 1 L T2 e - M /(d=a)
20 1 M+ 2-ma(1 — 2-0)]y

= C[L+ g()]V =),
where M = (2¢ — 1)z2~ (D ¢ (1 —¢)(2%-> — 1). Therefore,

5//(11) _ Cda (1 + g(h))(rofd)/(dfa) |:

Q@
d— d—a
However, we derive that

A 27) (M —27"(1 — 27%)x)

(¢ (W) + (1 + g(h»g"(m} |

/
h
g (M +2-na(1—2-a)h)2

and

g//(h) _ . 2—2na(1 _ 2—&)2(M _ 2—na(1 _ 2—a)$) .

(M 4+ 2-na(1 — 2=%)h)3
Consequently, the sign of ¢’ (h) is that of
- (M -2l = 27%)z) — 227" (1 — 27%)(z + h).

-«
Now both (b) and (c¢) follow at once, since M > 27"*(1 — 27%*)z and the
above expression is a decreasing linear function of h. O

Proof of (2.1) for y+27"*(2¢ — 1)z > 1. As previously, put
&(h) :== Bp(x + h,y +27"%h), he€[-z, (2% - 1)z].

That is,

(24 = 1)(z + h)2-(+De A/(d=e)

)= @ oD e+ (1—y 2 e — 1)
if h < (1 —y)2™, and &(h) = 1 otherwise. The argument is a slight
modification of that used above. First, let us show that the graph of &
lies below the line passing through the points (—z,&{(—x)) = (—z,0) and
(1 =y)2m>, &((1—y)2")) = ((1—y)2"*,1). The slope of the line is positive,
so the majorization is obvious on [(1 — )27, (2¢ — 1)z]. Thus, it suffices to
focus on the interval [—z, (1 — y)2"%], for which it is enough to show that
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(a) The left-sided derivative &'((1 — y)2"*) is larger or equal to the slope of
the line.

(b) We have £ (h) > 0 for h close to —z.

(¢) The derivative £’ changes its sign at most once on (—z, (1 — y)2"*).

Actually, the conditions (b) and (c¢) are proved by repeating the calcula-
tions from in the previous case, word-by-word (the formula for £(h) for
h € [—z,(1 — y)2"] is the same). To show (a), we derive that the slope
of the line is (z + (1 — y)2"*)~!, while the left-sided derivative is given by

d (24 — 2%)
d—a (21—1)(z+ (1 —y)2me)

Therefore, the assertion of (a) can be rewritten as
2d — 20 241
> i
d—a — d
which follows directly from the estimate 0 < a < d. This implies the
majorization of the graph of £ To complete the proof, we will show
that the point (0, B,_1(z,y)) lies above the line joining (—z,&(—=z)) and
((1 —y)2m>,£((1 — y)2™*). This amounts to saying that B,_i(z,y) is not
smaller than
(1 —y)2ne T T
— () + ——————¢((1 —y)2"Y) = —————.
a:+(1—y)2na§( ) m+(1_y)2na§(( y)2") T (=g

Now, the substitution w := (1 — y)2"*/x turns the desired inequality into

2d-o _ 1

d/(d-a)

However, the right-hand side is a convex function of w, and both sides are
equal if w = 0 or w = 2¢—1. It remains to note that 0 < (1—y)2"%/z < 241
(the left estimate is trivial, the right follows from the assumption under which
we work: see the beginning of the proof). 0

We conclude this section by the following simple statement.

Lemma 2.2. (i) If n is a nonnegative integer and (x,y) lies in the domain of
(i) We have

2d -1 d/(d—a)
By(z,x) < <2d — 2a> g/(d=e), (2.2)

Proof. (i) This follows directly from the definition.
(ii) We have
(24 —1)27 24 -1
< z,
20— — 1 4 g(1—272) = 2¢d — 20

which is the claim. O

(Boa,a)) )/ =
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3. Proof of (1.1)

For any n > 0, let F,, denote the o-algebra generated by all dyadic subcubes
of [0,1)? which are of measure 27 "%, It is convenient to split the reasoning
into several separate parts.

Step 1. Some reductions. By a straightforward approximation argument, it
is enough to prove the weak-type estimate for functions which are simple.
Here by simplicity we mean that f is measurable with respect to some
Fn (that is, the corresponding sequence (Syn,.. n(f))n>0 stabilizes after a
finite number of steps). Introduce the difference operators (D, ),>0 given by

Do(f) = So,0,...0(f) and
Dn(f) = Snm..n(f) = Sn-1n-1,.m1(f), n=1,2,....

Note that for any n > 0 and any atom A of F,, we have the equality

/Dn+1(f)(:z:)d:z: —0. (3.1)
A

To see this, note that by the very definition, D,, 1 f(z) is a linear combination
of the products Hi:1 wj, (z1) such that at least one of j;’s is equal to n + 1.
The corresponding Walsh function wyj, , integrated over a dyadic interval of
length 27", gives 0 and hence (3.1) follows. In the probabilistic language, (3.1)
means that (Sy.n,.. n(f))n>0, considered as a sequence of random variables
(on the probability space ([0,1)?, B([0,1)%),]-])), is a martingale with respect
to the dyadic filtration (F,),>0. As an immediate consequence, we see that
it suffices to show (1.1) for nonnegative functions only. Indeed, the passage
from f to |f| does not affect the L'-norm; on the other hand, for any n > 0
we have

|Sn,n,..-,n(f)| = |E(f|‘7:n)| < E(|f||*7:n) = Sn,n,-u,n(‘ﬂ)a

so [1a(f)| < La(|f]) and hence [|[1o(f)||zae(o,1¢) < [La([fDILa((0,1)2)-
Thus, from now on, we assume that f > 0.

Step 2. An alternative definition of I,(f). It will be convenient to express
the integral fractional operator in terms of the difference sequence. Namely,
note that

Ia(f) - 22_7“1577,,11 ..... n(f)
n=0

= > 2 D(f) = (1 =277 Y 27 D(f),
n=0 k=0 k=0

after the change of the order of summation. In what follows, we will use the
notation
n

Jn = Sn,n,...,n(f) = ZDk(f)v gn = szlka(f)’ n > 0. (3.2)
k=0

k=0
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Note that both (f,)n>0, (gn)n>0 are simple: for sufficiently large n we have
fo=fand g, = (1 —27*)1,(f). We conclude this part by proving that for
any n > 0 we have

n > 27" f (3-3)

This follows from an easy induction. Indeed, for n = 0 we have gy = fj; now,
assuming that the bound holds true for n, we derive that

In+1 = Gn + dgnJrl Z 2_nafn + 2_(n+1)adfn+1 Z 2_(n+1)afn+1

Step 3. The use of functions By, n > 0. We will prove the following statement:
forn >0,

/ Bo(fals), gu(s))ds < /A&Hmﬂﬁm@ymuwnm. (3.4)

[0,1)¢ [0,1)¢

Note that the above formula makes sense: by (3.3), the pair (f,,gn) takes
values in the domain of B,,.

To show (3.4), fix an atom A of F,. Both f,, and g,, are F,-measurable,
and hence constant on A: denote the corresponding values by x and y,
respectively. On the other hand, let A;, As, ..., Aga be the pairwise dis-
joint atoms of F,41 contained in A. Then D,,;(f) is constant on each A;;
put hj = Dyy1(f)|a,. We have z +hj = fula, >0, so

hj > —x for all j. (3.5)

Furthermore, (3.1) implies that

2d
> hi=0, (3.6)
k=1
which, combined with (3.5), yields
hj==> hy<(2"=1)a (3.7)
k#j
Thus the assumptions of Lemma 2.1 are satisfied and (2.1) gives
2d

B (.Z' y fell deBn+l x+hkay+2 nahk)
k=1

which is equivalent to

/mmwmmmmz/mﬂmﬂ@ﬁﬁmm&
A

A
It remains to sum over all A to obtain (3.4).

Step 4. Proof of (1.1). Recall that by simplicity of g, there is n such that
gn = (1=27)1,(f). Now, all that is left is to use Lemma 2.2. Using the first
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part, then (3.4) and finally the second part of that lemma, we obtain

/X{ufz—a)fu(f)zl}dt‘f: /X{gn(szl}ds
[0,1)4 [0,1)4

< / B (fa(5),gn(s))ds

[0,1)4

< [ Botfals) n(s)ds
[0,1)d
d/(d—a)
<(2=2) I
2d _ 9« L ([0,1)4)"
Here in the last passage we have exploited the fact that fy is identically
f1| 21 (j0,1)2) on [0,1)%. Now apply the above estimate to the function (1 —

=1 f/X\ and multiply both sides by A\#/(d=a) ‘Taking the supremum over
A on the left completes the proof of (1.1).

Remark 3.1. An important observation is in order. Namely, it is possible to
base the above reasoning on one special function B only, instead of the whole
family (Bj)n>0. Indeed, as one easily verifies, we have the equality

Bn(xay) = B(anax’y% (38)

where B : {(x,y) : y > x > 0} — [0,1] is given by

(Qdfoz _ 2704)% d/(d—a)

B(%y) = |:(2d—a — Q_Q)x + (1 _ y)(Qd—a _ 1)

ify <1, and B(z,y) = 1 otherwise. Then the main inequality (2.1) takes the
following more natural form in terms of B:

2d

B(2%z,y) 2dZB:c+hk,y+hk)

fo0<z<y 0< x4+ hy <y+ hg and Zizlhk = 0. The reason why
we have decided to present the more complicated approach using the whole
family (B,,)n>0 is that the above argumentation can be used for general
problems, in which the special functions do not enjoy any scaling property of
the type (3.8). Furthermore, the technicalities arising in both settings are of
comparable complexity and the reduction (3.8) does not really simplify the
calculations.

4. Sharpness

Now we will construct appropriate extremal example. Let d > 1, N > 1 be
fixed integers and consider the function f = x[g2-~)x[0,2-¥)x...x[0,2-~) On
[0, 1)?. Furthermore, for any 0 <n < N, put A4, =[0,27") x [0,27") x ... x
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[0,27™). Then for each such n, A, is the unique atom of F,, containing Ay,
and therefore

_ |An| _ o(n—N)d
provided z € A,, and S, ... nf(x) = 0 elsewhere; furthermore, we have
Snm,..;nf = SN N, .Nf = f for n > N. These facts can be deduced directly
from the very definition of S, ... n, or, alternatively, follow from the martin-
gale interpretation of the sequence (Sy ... nf)n>0, mentioned in the previous
section. Using the above formulas for Sy, ,,, .. »f, we see that if 2 € Ay, then

I 22—7“,!5”% ,nf 22—na+(n N)d+ Z g—na
n=0

n=N+1
o(N+1)(d=a) _ 1  9=(N+1a
=2 et e
Consequently,
—Nd 2Dz 3 | g (NHDe d—a)/d
||Ia(f)||Ld/(d—a),oc([0’1)d) > (2 : 2d—a _1 1—2—« ) |AN|( )/
£l L (o,1)9) - | AN
B 27N(d70¢)(2(N+1)(d70c) _ 1) N 9—«a
B 2d—er 1 1—2-o

However, the integer N was arbitrary; letting N — oo, we see that the latter

expression converges to
2d-« P 24 —1
pia 1 1-2a (2a_1)@a 1)

This shows that the constant in (1.1) is indeed the best possible.

Acknowledgements

The author would like to thank the referee for the careful reading of the
paper and helpful suggestions, which in particular led to Remark 3.1 above.
The results were obtained when the author was visiting Purdue Univer-
sity, USA. The research was supported in part by the NCN grant DEC-
2012/05/B/ST1/00412.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution, and reproduction in any
medium, provided the original author(s) and the source are credited.

References
[1] Burkholder, D.L.: Boundary value problems and sharp inequalities for martin-
gale transforms. Ann. Probab. 12, 647-702 (1984)

[2] Chao, J.-A., Ombe, H.: Commutators on dyadic martingales. Proc. Japan
Acad. Ser. A 61, 35-38 (1985)



Vol. 78 (2014) Fractional Integral Operator 599

[3] Cruz-Uribe, D., Moen, K.: A fractional Muckenhoupt—-Wheeden theorem and
its consequences. Integr. Equ. Oper. Theory 76, 421-446 (2013)

[4] Dragicevié, O., Volberg, A.: Linear dimension-free estimates in the embedding
theorem for Schrédinger operators. J. Lond. Math. Soc. 85, 191-222 (2012)

[5] Goginava, U.: Marcinkiewicz-Fejer means of d-dimensional Walsh—Fourier
series. J. Math. Anal. Appl. 307, 206-218 (2005)

[6] Goginava, U.: The weak type inequality for the maximal operator of the
Marcinkiewicz-Fejér means of the two-dimensional Walsh—Fourier series. J.
Approx. Theory 154, 161-180 (2008)

[7] Goginava, U., Weisz, F.: Maximal operator of the Fejér means of triangular par-
tial sums of two-dimensional Walsh—Fourier series. Georgian Math. J. 19, 101—
115 (2012)

[8] Lacey, M.T., Moen, K., Pérez, C., Torres, R.H.: Sharp weighted bounds for
fractional integral operators. J. Funct. Anal. 259, 1073-1097 (2010)

[9] Nagy, K.: Some convergence properties of the Walsh-Kaczmarz system with
respect to the Marcinkiewicz means. Rend. Mat. 76, 503-516 (2005)

[10] Nazarov, F.L., Treil, S.R.: The hunt for a Bellman function: applications to

estimates for singular integral operators and to other classical problems of
harmonic analysis. St. Petersburg Math. J. 8, 721-824 (1997)

[11] Nazarov, F.L., Treil, S.R., Volberg, A.: The Bellman functions and two-weight
inequalities for Haar multipliers. J. Am. Math. Soc. 12, 909-928 (1999)

[12] Osekowski, A.: Sharp martingale and semimartingale inequalities. Monografie
Matematyczne, vol. 72. Birkhduser, Basel (2012)

[13] Simon, P.: Cesaro summability with respect to two-parameter Walsh system.
Monatsh. Math. 131, 321-334 (2000)

[14] Simon, P.: Cesaro means of Vilenkin-Fourier series. Publ. Math. Debrecen 59,
203-219 (2001)

[15] Slavin, L., Stokolos, A., Vasyunin, V.: Monge-Ampeére equations and Bellman
functions: The dyadic maximal operator. C. R. Acad. Sci. Paris Ser. I 346, 585—
588 (2008)

[16] Slavin, L., Vasyunin, V.: Sharp results in the integral-form John—Nirenberg
inequality. Trans. Am. Math. Soc. 363, 4135-4169 (2011)

[17] Stein, E.M.: Singular Integrals and Differentiability Properties of Func-
tions. Princeton University Press, Princeton (1970)

[18] Vasyunin, V.: The exact constant in the inverse Holder inequality for Muck-
enhoupt weights (Russian). Algebra i Analiz 15, 73-117 (2003); translation in
St. Petersburg Math. J. 15, 49-79 (2004)

[19] Vasyunin, V., Volberg, A.: Monge-Ampére equation and Bellman optimization
of Carleson Embedding Theorems. Linear and Complex Analysis. Am. Math.
Soc. Transl. (2), vol. 226, pp. 195-238 (2009)

[20] Watari, C.: Multipliers for Walsh Fourier series. Tohoku Math. J. 16, 239-
251 (1964)

[21] Weisz, F.: Cesaro summability of two-dimensional Walsh-Fourier series. Trans.
Am. Math. Soc. 348, 2169-2181 (1996)

[22] Weisz, F.: Cesaro summability of one and two-dimensional Walsh-Fourier
series. Anal. Math. 22, 229242 (1996)



600 A. Osekowski IEOT

[23] Weisz, F.: Summability of Multi-Dimensional Fourier Series and Hardy Spaces.
Math. Appl. Kluwer Academic, Dordrecht 2002

ygmund, A.: Trigonometric Series, vol. 2. Cambride University Press, London
24| 7 d, A.: Tri ic Seri 1. 2. Cambride Uni ity P Lond
(1968)

Adam Osegkowski ()
Department of Mathematics
Informatics and Mechanics
University of Warsaw
Banacha 2

02-097 Warsaw

Poland

e-mail: ados@mimuw.edu.pl

Received: September 29, 2013.
Revised: December 1, 2013.



	Sharp Weak Type Inequality for Fractional Integral Operators Associated with d-Dimensional Walsh--Fourier Series
	Abstract
	1. Introduction
	2. A Special Function and its Properties
	3. Proof of (1.1)
	4. Sharpness
	Acknowledgements
	Open Access
	References


