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Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presenta-
tions, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically 
focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily 
affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal 
and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of 
gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that 
many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological 
development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mecha-
nisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review deline-
ates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing 
approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
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Abbreviations
AD  Autosomal dominant
ALS  Amyotrophic lateral sclerosis
AR  Autosomal recessive
ASO  Antisense oligonucleotide
BMD  Becker muscular dystrophy
CK  Creatine kinase
CMS  Congenital myasthenic syndromes
CMT  Charcot-Marie-Tooth
CSF  Cerebrospinal fluid
CNS  Central nervous system
DMD  Duchenne muscular dystrophy

ECM  Extracellular matrix
EMA  European Medicinal Agency
ER  Endoplasmic reticulum
FDA  US Food and Drug Administration
FSHD  Facioscapulohumeral muscular dystrophy
HMN  Hereditary motor neuropathy
HSAN  Hereditary sensory autonomic neuropathy
iPSC  Induced pluripotent stem cell
LGMD  Limb girdle muscular dystrophy
LoA  Loss of ambulation
NfL  Neurofilament light chain
NMJ  Neuromuscular junction
siRNA  Small interfering RNA
SMA  Spinal muscular atrophy
SMN  Survival motor neuron
UPR  Unfolded protein response

Introduction

Neuromuscular diseases comprise a spectrum of disorders 
affecting motor neurons in the spinal cord, sensory neurons 
in the dorsal root ganglia, peripheral nerves, neuromuscular 
junction and/or skeletal muscles. Cranial nerves (and their 
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nuclei) as well as components of the vegetative system can 
be also affected. These diseases mainly compromise motric-
ity and sensation and may be a consequence of many differ-
ent causes including acquired and genetic factors. While for 
most of the acquired neuromuscular diseases a progressive 
number of therapies have been discovered and are now used 
in clinical practice, there is still a significant unmet need 
for the development of curative treatments for inherited 
and degenerative forms. This landscape is rapidly changing 
though, with therapies already available in clinical practice 
and others under evaluation in clinical trials or preclinical 
studies.

The most compelling therapeutic approaches for inherited 
disorders can be delineated as follows (see also Fig. 1):

– Treatments designed to rectify genetic anomalies at the 
DNA level, including gene replacement, gene editing, 
and gene addition (i.e., the provision/upregulation of pro-
teins that compensate for the mutant gene); these can be 
termed “gene therapies”.

– Molecular therapies directed at modulating RNA tran-
scripts, such as the use of antisense oligonucleotides 
(ASO) or small molecules to promote alternative splicing 
or the implementation of double-stranded, small interfer-
ing RNA (siRNA) to suppress pathogenic variants that 
cause toxic gain of function.

– Infusion of progenitor cells (cell therapies) to replace or 
modulate the function of damaged cells, a strategy that 
is currently more suitable for skeletal muscle.

Fig. 1  Schematic representation of the therapeutic landscape appli-
cable to neuromuscular diseases, with a focus on gene and molecu-
lar therapies. Treatment strategies vary according to the underlying 
genetic defect, namely loss of function (LOF) or gain of function 
(GOF) mutations (depicted in the centre of the figure). A defec-
tive gene may be corrected at DNA level via gene editing/silencing 
obtained, for instance, using Crispr/Cas9 technology, with still impor-
tant concerns regarding possible off-target events. Alternatively, cod-
ing (c)DNA containing a tissue-specific promoter and a gene cassette 
encoding for a functional or surrogate protein can be delivered by 
viral vectors and be subsequently translated by the cell apparatus. The 
persistence of cDNA in time may vary according to cell type. Molec-
ular therapies can act at RNA level either by modulating splicing or 
by altering messenger (m)RNA transcription. The former strategy is 

usually obtained using antisense oligonucleotides (ASO) (A), as the 
ones developed for exon skipping in Duchenne muscular dystrophy or 
to counteract the splicing of exon 7 of the SMN2 gene in spinal mus-
cular atrophy. Of note, ASO can be conjugated with cell-penetrating 
peptides, fatty acids, or specific antibodies to increase their delivery 
to target organs, in order to augment efficacy while reducing potential 
side effects. The modulation of RNA transcription can be obtained 
by single-stranded ASO or by double stranded short interfering (si)
RNA. The latter can be either directly delivered to cells or processed 
from short/small hairpin (sh)RNA (B). Lastly, both gene and molec-
ular therapies can be delivered by different viral and non-viral vec-
tors (including nanoparticles and cells), which are being constantly 
improved
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– Interventions aimed at post-translational modifications 
of specific proteins, exemplified by post-translational 
glycosylation of α-dystroglycanopathies.

– Treatments targeting one or multiple downstream effects 
including inflammation, fibrosis, excessive reactive oxy-
gen species, membrane instability, protein aggregates 
accumulation etc.

Both gene and molecular therapies can be delivered 
by viral or non-viral vectors (such as lipid nanoparticles 

or engineered cell lines), each characterized by a specific 
profile of loading capacity, tissue trophism/specificity etc. 
Cellular therapy can be utilized both for its direct effects 
and as a carrier of therapeutic products.

In this review, we will describe the state of the art of 
the therapies for the most common forms of neuromus-
cular diseases that have been reported in the literature, 
excluding acquired and metabolic conditions. Main ongo-
ing clinical trials are reported in Table 1.

Table 1  Therapies for inherited neuromuscular disorders that have reached human application

Primary Target Disease Compound Mechanism of 
action

Delivery and 
dosing

Clinical trial/
status

Clinical trials regis-
try identifier

Gene therapies
 Gene replace-

ment
Brain and 

motor neuron
GAN scAAV9/JeT-

GAN
AAV9-deliv-

ered GAN
IT, single dose Phase I NCT02362438

Motor neuron SMA 1 Onasemnogene 
abeparvovec

AAV9-deliv-
ered SMN1

i.v., single dose EMA/FDA 
approval

Motor neuron SMARD/CMT IGHMBP2 AAV9-
delivered 
IGHMBP2

IT, single dose Phase I/II NCT05152823

Muscle X-MTM AT132 AAV8-deliv-
ered MTM1

i.v., single dose Phase I/II/III NCT03199469

Muscle LGMD2B/R2 SRP-6004 AAVrh74-
delivered 
DYSF

i.v., single dose Phase I NCT05906251

Muscle LGMD2D/R3 SRP-9004 AAVrh74-
delivered 
α-SG

i.v., single dose Phase I/IIA NCT01976091

Muscle LGMD2E/R4 SRP-9003 AAVrh74-
delivered 
β-SG

i.v., single dose Phase I/II/III NCT05876780

Muscle LGMD2C/R5 ATA-200 AAV8-deliv-
ered γ-SG

i.v., single dose Phase I/II NCT05973630

Muscle LGMD2I/ R9 GNT0006 AAV8-deliv-
ered FKRP

i.v., single dose Phase I/II NCT05224505

Muscle LGMD2I/ R9 LION-101 AAV-delivered 
FKRP

i.v., single dose Phase I/II NCT05230459

 Gene editing Liver ATTRv NTLA-2001 CRISPR/Cas9 
editing

i.v., single dose Phase I NCT04601051

 Gene addition Muscle DMD Delandistrogene 
moxeparvovec

AAVrh74-
delivered 
micro-dys

i.v., single dose FDA con-
ditional 
approval; 
Phase III

NCT05096221

Muscle DMD PF-06939926 AAV9-deliv-
ered mini-dys

i.v., single dose Phase III NCT03362502

Muscle DMD SGT-003 AAV9-deliv-
ered micro-
dys

i.v., single dose Phase I/II NCT06138639

Muscle DMD RGX-202 AAV8-deliv-
ered micro-
dys

i.v., single dose Phase I/II NCT05693142

Muscle DMD RAAVRH74.
MCK.
GALGT2

rAAVrh74-
delivered 
GALGT2 
gene

i.v., single dose Phase I/II NCT03333590
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Table 1  (continued)

Primary Target Disease Compound Mechanism of 
action

Delivery and 
dosing

Clinical trial/
status

Clinical trials regis-
try identifier

Molecular therapies
 RNA splicing 

modulation
Motor neuron SMA 1,2,3 Nusinersen ASO (SMN2) IT, every 4 m EMA/FDA 

approval
Motor neuron SMA 1,2,3 Risdiplam Small molecule 

(SMN2)
Oral, daily EMA/FDA 

approval
Muscle DMD Eteplirsen ASO, exon 51 

skipping
i.v., weekly FDA con-

ditional 
approval

Muscle DMD SRP-5051 ASO, exon 51 
skipping

i.v., monthly Phase III NCT04004065

Muscle DMD Casimersen ASO, exon 45 
skipping

i.v., weekly FDA con-
ditional 
approval

Muscle DMD Viltolarsen ASO, exon 53 
skipping

i.v., weekly FDA con-
ditional 
approval

Muscle DMD Golodirsen ASO, exon 53 
skipping

i.v., weekly FDA con-
ditional 
approval

Muscle DMD NS-089/NCNP-
02

ASO, exon 44 
skipping

i.v., weekly Phase III NCT05996003

Muscle DMD SCAAV9.
U7.ACCA 

U7-mediated 
exon 2 skip-
ping

i.v., single dose Phase I/II NCT04240314

Muscle DMD Dyne-251 ASO, exon 51 
skipping

i.v., monthly Phase I/II NCT05524883

Muscle DMD WVE-N531 ASO, exon 53 
skipping

i.v., every 2w Phase I/II NCT04906460

Muscle DMD AOC 1044 ASO, exon 44 
skipping

i.v. Phase I/II NCT05670730

Muscle DMD SQY51 ASO, exon 51 
skipping

i.v. Phase I/II NCT05753462

 RNA interfer-
ence

Motor neuron SOD1-ALS Tofersen ASO-mediated 
silencing

IT, every 2-4w EMA/FDA 
approval

NCT04856982/
NCT03070119

Motor neuron FUS-ALS ION363 (Jaci-
fusen)

ASO-mediated 
silencing

IT, every 4-12w Phase III NCT04768972

Muscle DMD Ataluren ASO-mediated 
silencing

Oral, daily EMA, con-
ditional 
approval

Muscle FSHD AOC 1020 ASO-mediated 
silencing

i.v. Phase I/II NCT05747924

Muscle DM1 DYNE-101 ASO- targeting 
DMPK

i.v. Phase I/II NCT05481879

Muscle DM1 AOC 1001-CS1 SiRNA- target-
ing DMPK

i.v., every 1.5 m Phase II NCT05479981

Liver ATTRv Patisiran ASO-mediated 
silencing

i.v., every 3 m EMA/FDA 
approval

Liver ATTRv Vutrisiran ASO-mediated 
silencing

s.c., every 3 m EMA/FDA 
approval

Liver ATTRv Inotersen ASO-mediated 
silencing

s.c., weekly EMA/FDA 
approval

Liver ATTRv Eplontersen ASO-mediated 
silencing

s.c., monthly Phase III NCT05071300
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Motor neuron disorders

Spinal muscular atrophy (SMA)

5q SMA is an AR neuromuscular disorder caused by muta-
tions in SMN1 gene leading to defective expression of the 
survival motor neuron (SMN) protein. SMN is a ubiqui-
tously expressed protein whose deficiency causes the abnor-
mal development and subsequent degeneration of alpha 
motor neurons in the spinal cord [1]. The clinical picture is 
characterized by progressive weakness and atrophy affect-
ing skeletal, respiratory, and bulbar muscles. The global 
prevalence is approximately 1:10.000 individuals, making 

SMA among the more frequent neuromuscular disorders. 
SMA encompasses a spectrum of severity, with its most 
severe form presenting in infancy and leading to significant 
disability and early mortality. Historically, SMA has been 
divided in different sub-types based on the age of onset and 
achievement of motor milestones [2]. SMA type 0 manifest 
antenatally, SMA type 1 between 0 and 6 months (patients 
never acquire the ability to sit), SMA type 2 between 7 and 
18 months (patients never acquire the ability to walk), SMA 
type 3 between 1.5 and 10 years (patients usually acquire 
the ability to walk which is later lost), and SMA type 4 in 
adulthood. The disease severity largely (but not exclusively) 
depends on the number of copies of a paralogue gene called 

Table 1  (continued)

Primary Target Disease Compound Mechanism of 
action

Delivery and 
dosing

Clinical trial/
status

Clinical trials regis-
try identifier

Cell therapy Muscle DMD CAP-1002 Cardiosphere 
cells

i.v., every 3 m Phase III NCT05126758

Muscle DMD DMD06-Mab U7-mediated 
exon 51 skip-
ping

i.m Phase I 2023-000148-47

Other therapies Nerve CMT1A PXT3003 Enzymatic 
substrates

Oral Phase III NCT04762758

Nerve CMT2 SORD AT-007 Aldose reduc-
tase inhibitor

Oral Phase II/III NCT05397665

Muscle DMD Vamorolone Corticosteroid 
analogue

Oral, daily FDA approval 
and positive 
opinion by 
EMA

Muscle DMD ATL1102 ASO targeting 
CD49d

s.c., weekly Phase IIb NCT05938023

Muscle DMD RIMEPORIDE NHE-1 inhibi-
tor

Oral, daily Phase II

Muscle DMD Givinostat HDAC inhibitor Oral, daily Phase III NCT02851797
Muscle DMD TAS-205 HPGDS inhibi-

tor
Oral, daily Phase III NCT04587908/

jRCT2041200055
Muscle BMD Vamorolone Corticosteroid 

analogue
Oral, daily Phase II NCT05166109

Muscle BMD EDG-5506 Muscle 
membrane 
stabilizer

Oral, daily Phase II NCT05291091/
NCT06100887

Muscle FSHD Losmapimod MAPKs inhibi-
tor

Oral, daily Phase III NCT05397470/
NCT04004000

Muscle FSHD RO7204239 Anti-Myostatin 
Ab

s.c Phase II NCT05548556

Muscle DM1 Tideglusib GSK3 inhibitor Oral Phase II/III NCT05004129
Muscle LGMD2I-R9 Ribitol Enzymatic 

substrate
Oral, daily Phase III NCT05775848

Ab antibody, ALS amyotrophic lateral sclerosis, AAV adeno-associated virus, ASO antisense oligonucleotide, BMD Becker muscular dystrophy, 
CMT Charcot-Marie-Tooth, DMD Duchenne muscular dystrophy, DM1 myotonic dystrophy type 1, dys dystrophin, EMA European Medicines 
Agency, FDA Food and Drug Administration, FSHD facioscapulohumeral muscular dystrophy, GAN giant axonal neuropathy, HDAC Histone 
deacetylase, HPGDS hematopoietic prostaglandin D synthase, i.m. intramuscular, i.v. intravenous, IT intrathecal, MAPK mitogen-activated pro-
tein kinases, LGMD limb girdle muscular dystrophy, s.c. subcutaneous, SMA spinal muscular atrophy, SMARD spinal muscular atrophy with 
respiratory distress syndrome
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SMN2. SMN2 differs from SMN1 due to a single nucleotide 
variant that causes an abnormal splicing. This variant spe-
cifically produces the exclusion of exon 7, leading to the 
production of a truncated protein that is quickly degraded. 
Consequently, a single copy of the SMN2 gene typically 
generates only approximately 10% of the full-length SMN 
protein. Hence, a higher percentage of functional protein 
is produced in presence of a higher number of SMN2 cop-
ies, contributing to the partial amelioration of the clinical 
phenotype. Other exonic/intronic SMN2 variants that fur-
ther affecting splicing may explain the mismatch observed 
in some patients between the number of SMN2 copies and 
clinical severity [3].

Until few years ago the treatment of SMA was uniquely 
supportive, with limited beneficial effect achieved by the 
administration of β-adrenergic agonists in milder forms. 
However, the advances in the understanding of the underly-
ing molecular mechanisms led to the development of tar-
geted therapies, transforming the treatment landscape for 
this condition with 3 different compounds approved by US 
and European regulators (FDA and EMA) at the time of 
this review.

Gene therapies

Onasemnogene Abeparvovec (Zolgensma) was the first FDA 
and EMA-approved gene replacement therapy in the field 
of neuromuscular disorders. This involves a one-time intra-
venous infusion of a recombinant AAV9 virus containing 
a functional copy of the SMN1 gene and is indicated for 
patients affected by SMA type 1 (EMA). Zolgensma was 
first tested in an open-label, phase I clinical trial in a small 
cohort of early-onset patients and has shown remarkable effi-
cacy in prolonging survival and maintaining motor, bulbar 
and respiratory function [4]. Safety and efficacy findings 
were confirmed in larger cohort of patients and in real-world 
data [5]. Given the rapid deterioration of motor neuron, [1] it 
is not surprising that, in line with what observed with other 
compounds [6], the magnitude of the effect is greater when 
patients are treated in a pre-symptomatic stage [7, 8]. The 
main side effects of gene therapy are related to the immune 
reaction against the capsid. This is greater the higher the 
dose aministered. Elevated serum levels of liver enzymes 
may be observed after infusion but can be controlled by ster-
oid conditioning, as well transient platelet reduction. Throm-
botic microangiopathy has been anedoctally reported in real-
world observations. Weight-based dosing still poses safety 
considerations due to higher viral load in heavier patients. 
Thus, studies are ongoing to prove safety and efficacy in 
children up to 21 kg (NCT04851873) and intrathecal admin-
istration of the product is been explored as a way to deliver 
higher doses of the vector directly to the central nervous 
system (CNS) [9].

Molecular therapies

Both Nusinersen (intrathecal) and Risdiplam (oral) counter-
act the exclusion of exon 7 of SMN2 with different biological 
mechanisms [2]. Nusinersen (Spinraza; an ASO) achieved 
a significant milestone as the first drug to successfully com-
plete randomized sham-controlled clinical trials in early 
onset SMA cases, leading to its FDA approval in 2016 [10]. 
Subsequent real-world data and insights from early access 
programs have confirmed Nusinersen’s safety and efficacy 
across a more extensive patient population [11, 12]. Further-
more, ongoing research is exploring the potential benefits 
of higher-dose Nusinersen administration (NCT04089566). 
Risdiplam (Evrysdi, a small molecule) was approved in the 
USA for administration across the entire spectrum of SMA 
patients, and the indication is about to be extended prior 
to 2 months of age also in other countries. The initial trial 
(FIREFISH) demonstrated a significant increase in patient 
survival and function in symptomatic SMA type 1 patients 
[13, 14]. Subsequently, efficacy and safety were proven also 
in patients with SMA type 2 and non-ambulant SMA type 3 
(SUNFISH) aged between 2 and 25 years [15]. Importantly, 
Risdiplam exhibited a favourable safety profile and was 
well-tolerated in both trials. An open-label study designed 
to evaluate Risdiplam efficacy in pre-symptomatic patients 
under 6 weeks of age is ongoing (RAINBOWFISH) [16].

Other therapies

The use of β2adrenergic agonist (e.g., salbutamol/albuterol) 
may be considered in older patients affected by SMA type 
II and III, in view for its potential to increase SMN2 protein 
levels and beneficial effect on the neuromuscular junction 
[17, 18].

Therapeutic considerations

The development of new therapies has radically changed 
the prognosis of patients affected by SMA. However, new 
challenges are emerging. It is likely that new phenotypes 
will appear following the increased survival of patients 
belonging to the most severe end of the spectrum. Preclini-
cal studies showed that the lack of SMN protein exerts det-
rimental effects not only on motor neurons but also on other 
organs. The multisystem involvement in SMA in humans 
is still a matter of debate, [19] but this could theoretically 
indicate that a systemic drug should be preferable compared 
to a product which is administered intrathecally [20]. Gene 
therapy offers the advantage of a one-shot administration 
and systemic delivery, but its applicability at present is lim-
ited by dose-related side effects. While the use of combina-
tory strategies in under investigation (e.g., NCT05067790; 
NCT04488133), the choice of treatment is currently tailored 



Molecular mechanisms and therapeutic strategies for neuromuscular diseases  Page 7 of 34   198 

on individual bases and there is no clear evidence indicating 
a superiority of a therapy over another. Only a systematic 
collection of real-world data considering possible confound-
ing factors (e.g., genetics, definition of pre-symptomatic 
state etc.) will help improve the prescription of such treat-
ments and clarify whether some aspects (e.g., bulbar func-
tion) are differently addressed by these products. There 
is strong evidence of a greater effect achieved in patients 
treated before the onset of symptoms, hence advocating the 
implementation of newborn screening for SMA.

Amyotrophic lateral sclerosis (ALS)

ALS is an unrelenting disease marked by the degeneration of 
upper and lower motor neurons, leading to progressive mus-
cle paralysis and, ultimately, fatal respiratory failure within 
3–5 years [21]. Despite ALS being perceived as a monolithic 
entity, it represents a broad disease spectrum encompassing 
various clinical phenotypes likely caused by distinct patho-
genetic mechanisms, all converging on the common outcome 
of motor neuron degeneration. Furthermore, the coexistence 
of frontotemporal dementia (FTD) within this spectrum adds 
an additional layer of complexity underscoring the intricate 
relationship between motor neuron degeneration and cog-
nitive and behavioral changes. Over the past two decades, 
advancements in ALS genetics have witnessed exponential 
growth, providing robust insights into the underlying patho-
genesis of this condition charting the course for more precise 
and targeted treatment approaches.

The identification of the Cu/Zn superoxide dismutase 
type-1 (SOD1) gene as the first causative factor of ALS in 
1993 constituted a groundbreaking discovery in the genet-
ics of this disease [22]. Mutations in SOD1 account for 20% 
of familial ALS (fALS) cases and 1–2% of sporadic cases 
(sALS) [23]. The pathogenesis of the disease entails a gain-
of-neurotoxic function [24]. Mutations in the SOD1 gene 
cause an unstable, misfolded protein, resulting in intraneu-
ronal accumulation and cellular damage. Additionally, this 
misfolded protein could spread via a prion-like trans-neu-
ronal mechanism, leading to spatial dissemination inducing 
a relentless motoneuronal death [25].

Transactive response DNA-binding protein 43 (TDP-43), 
encoded by the TAR DNA-binding protein 43 (TARDBP) 
gene, is a multifunctional DNA/RNA binding protein. TDP-
43 is recognized for its role in overseeing RNA processes, 
encompassing RNA splicing, mRNA transport, translation, 
and the regulation of non-coding RNAs [26]. In 2006, TDP-
43 was identified as the main constituent of pathological 
cytoplasmic aggregates in ALS [27]. Following this discov-
ery, TARDBP gene was identified as causal factors in ALS, 
contributing to 4% of fALS cases and less than 1% of sALS 
cases [3]. The cytoplasmic accumulation of TDP-43 is asso-
ciated with a dual mechanism: the loss of TDP-43 function 

in the nucleus and the acquisition of toxic TDP-43 function 
in the cytoplasm, or a combination of both. Evidence from 
TARDBP knockout and TDP-43 overexpression models, 
have demonstrated that both TDP-43 deficiency and exces-
sive TDP-43 can serve as causative factors in ALS [28–30]. 
Hence, modulating TDP-43 expression and/or subcellular 
localization holds promise as a potential therapeutic strategy 
for TARDBP-ALS patients.

In 2009, pathogenic variants of the Fused in Sarcoma 
(FUS) gene, were identified as causative factors in ALS [31]. 
FUS mutations contribute to approximately 4% of fALS and 
a less than 1% of sALS [23]. These mutations exhibit an AD 
inheritance pattern and lead to a juvenile aggressive form of 
the disease. FUS is a widely expressed RNA-binding protein 
primarily located in the nucleus, where it plays roles in DNA 
repair and RNA metabolism [32]. While the exact patho-
genic mechanism of these mutations remains incompletely 
understood, there is substantial evidence supporting a toxic 
gain-of-function mechanism in FUS-ALS [33].

In 2011, the hexanucleotide GGG GCC  repeat expansion 
(HRE) within the first intron of the C9ORF72 gene was dis-
covered to be causative for ALS [34, 35]. The C9ORF72 
HRE is implicated in roughly 40% of fALS and 7% of sALS, 
although substantial variability exists among different popu-
lations [36]. The pathogenesis of C9ORF72-ALS, although 
not fully elucidated, is underpinned by a combination of gain 
and loss of function mechanisms, as supported by substantial 
evidence. The HRE is instrumental in giving rise to three 
distinct pathological hallmarks within C9ORF72-ALS [37]. 
Firstly, it disrupts transcription, leading to C9ORF72 haplo-
insufficiency, thereby compromising autophagic processes, 
deregulating autoimmunity, heightening cellular stress, and 
perturbing nucleocytoplasmic transport [38, 39]. Secondly, 
bidirectional transcription of the C9ORF72 HRE generates 
transcripts that accumulate within cellular nuclei, seques-
tering RNA-binding proteins and giving rise to RNA foci 
[40, 41]. Thirdly, both sense and antisense transcripts of 
the HRE can serve as templates for the repeat-associated 
non-AUG (RAN) translation, resulting in the production of 
toxic poly-dipeptides. These dipeptides, prone to aggrega-
tion, have been identified in the CNS of individuals with 
C9ORF72- ALS and showed toxicity in cells and animal 
models [42–46].

Gene therapies

CRISPR/Cas9 targeted the SOD1 gene in neonatal 
SOD1G93A mice using a modified AAV9 delivery system. 
Staphylococcus aureus-derived Cas9 and a single-guide 
RNA were administered through the facial vein, resulting 
in reduced SOD1 expression in the spinal cords. This inter-
vention increased motor neurons, delayed disease onset, and 
extended survival in transgenic mice [47]. Subsequently, 
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two studies reported similar reductions in SOD1 expression 
within the spinal cord and improved survival outcomes [48, 
49]. In a study exploring the safety profile and exploratory 
efficacy outcomes, it was shown that an AAV carrying a 
microRNA (miRNA) targeting SOD1 can suppress the 
expression of the mutated SOD1 gene in patients harboring 
SOD1 mutations [50]. A single intrathecal infusion of AAV 
encoding SOD1-targeting miRNA was given to two patients. 
One patient showed a temporary improvement in right leg 
strength and reduced SOD1 levels in CSF, while the other 
maintained stable scores on a composite measure of ALS 
function for 12 months. The effectiveness of CRISPR/Cas9 
in targeting (G4C2) repeat DNA or RNA has been recently 
proved [51]. These studies aimed to diminish the repetition 
of RNA transcription or mitigate the levels of RNA foci/
DPRs, respectively. It is worth noting that a primary limita-
tion of these investigations lies in the fact that the treatments 
were administered to mice at a young age before the onset of 
ALS symptoms. Consequently, it remains unclear how effec-
tive this treatment would be in older mice with manifested 
ALS symptoms. The use of gene editing techniques in ALS 
caused by the TARDBP and FUS genes has primarily been 
focused on enhancing the understanding of the pathogenetic 
mechanisms in cellular models, with limited therapeutic 
applicability data [52–54]. As is well-established, cognitive 
dysfunctions are observed in up to 50% of ALS patients, 
meeting diagnostic criteria for FTD in approximately 10% 
of cases (https:// doi. org/ 10. 1136/ jnnp- 2013- 307223). Conse-
quently, when identifying therapeutic molecular targets and 
devising delivery strategies, it is essential to recognize that 
ALS is not solely confined to motor neurons. Neglecting this 
broader involvement may restrict therapeutic efficacy to the 
motor aspects of the disease, potentially lacking an impact 
on cognitive impairments.

Molecular therapies

Tofersen, an ASO, emerged as the foremost targeted thera-
peutic approach for SOD1-ALS [55, 56]. Administered 
intrathecally, Tofersen targets SOD1 mRNA, degrading it 
and reducing SOD1 protein synthesis. It demonstrated an 
extended survival in a SOD1-mutation rodent model com-
pared to the placebo-treated group [57]. Among SOD1-ALS 
patients, Tofersen reduced CSF SOD1 levels and achieved a 
significant decrease in plasma NfL levels. However, Tofer-
sen failed to achieve statistical significance in reducing the 
decline in ALS Functional Rating Scale—Revised score 
(ALSFRS-R), which was the primary clinical endpoint of 
the 28-week phase III trial (NCT02623699). In the 52-week 
open-label extension study, patients who received early 
treatment with Tofersen exhibited significantly less dete-
rioration in ALSFRS-R, respiratory function, grip strength, 
and patient-reported measures of quality of life compared to 

the placebo group. The limitations that may have led to an 
underestimation of the results could include the small sample 
size and the initiation of therapy at an advanced stage of the 
disease. In fact, studies are currently underway on presymp-
tomatic and early-stage patients. An alternative strategy for 
addressing the pathogenic gain-of-function associated with 
SOD1 in ALS involves the application of RNA interference 
(RNAi). This approach stands apart from ASOs due to the 
structural distinction of RNA molecules, characterized by 
their double-stranded nature. While double-stranded RNAs 
may exhibit enhanced resilience during delivery, their func-
tional activity necessitates sequential enzymatic processing 
stages, contrasting with ASOs that are single-stranded and 
readily capable of direct target binding [8]. In the course of 
the RNAi process, RNA molecules execute the degradation 
of mRNAs within the cytoplasm via engagement with the 
RNA-induced silencing complex (RISC), ultimately result-
ing in the suppression of gene expression [58]. Several stud-
ies have proved the effectiveness of RNAi strategy in SOD1 
animal models, such as delaying disease onset and increas-
ing survival [59–61].

ION363 (Jacifusen), an ASO, targets FUS intron 6 non-
allele-specifically. In FUS mouse models, ION363 halted 
disease progression compared to placebo. A 25-year-old 
FUS-ALS patient with the FUS p.P525L mutation received 
compassionate-use ION363 over 10 months, starting 6 
months after clinical onset when non-ambulatory and ven-
tilatory support was needed. She had monthly intrathecal 
infusions with good tolerance and no serious adverse events. 
Pre-treatment, she lost ~ 5 ALSFRS-R score points monthly, 
which significantly slowed during therapy. Unfortunately, 
she died a year after treatment due to worsening ventilatory 
and bulbar dysfunction. In 2021, a Phase III clinical trial 
(NCT04768972) started to assess whether ION363 offers 
any clinical benefit in mitigating disease progression in 
symptomatic FUS-ALS patients. These individuals undergo 
intrathecal injections every 4–12 weeks over a 61-week 
period, followed by injections every 12 weeks during the 
open-label extension treatment phase, with the study antici-
pated to conclude in 2024 [33].

As an indication of the complex pathogenesis of 
C9ORF72-ALS, several ASOs targeting specific gene 
transcripts, such as BIIB078 and WVE-004, have proven 
ineffective in phase II clinical trials. An additional study 
provided proof of concept in a single human subject, demon-
strating the efficacy and safety of intrathecal administration 
of Afinersen (ASO5-2) in suppressing C9orf72 transcripts. 
This intervention resulted in an impressive 80% reduction 
in poly-dipeptide levels, while the individual maintained 
functional stability over an 18-month observation period 
[62]. Other approaches, such as RNAi, small compounds 
targeting (G4C2) expansions, antibody immunization against 
DPRs, interference with cell-to-cell transmission, clearance 

https://doi.org/10.1136/jnnp-2013-307223
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strategies for toxic DPRs, and inhibition of DPR production, 
have shown promise in animal and cellular models. Yet, their 
clinical applicability remains unproven at this stage [63–66]

Cell therapies

Stem cell therapy, derived from various sources, shows 
promise in preserving motor units through mechanisms 
like neurotrophic support and modulation of excitotoxicity 
and neuroinflammation. Preclinical findings support this, 
and ongoing phase I and II clinical trials in ALS patients 
indicate positive results in safety and tolerability. However, 
substantial improvements for ALS patients necessitate con-
tinued collaboration between basic and clinical researchers 
[67, 68].

Other therapies

Several studies have highlighted a substantial activation 
of immunity cells such as macrophages, microglia, and T 
cells in ALS. However, it is plausible that this activation is 
a secondary epiphenomenon resulting from massive neuro-
degeneration of the motor system rather than a fundamen-
tal mechanism of the disease’s pathogenesis [69]. Several 
pharmacological approaches, encompassing complement 
inhibition, eosinophil and sphingosine-1-phosphate recep-
tor modulation, interleukin-2 receptor targeting, and diverse 
immunosuppressive regimens, as well as regulatory T-cell 
interventions, have been investigated in ALS trials, yet none 
have exhibited efficacy [70]. An exception is Masitinib, a 
tyrosine kinase inhibitor. Its mechanism involves targeting 
crucial pathways associated with neuroinflammation and 
immune response modulation. Encouraging results from a 
phase IIb/III clinical trial (NCT02588677) and subsequent 
investigations indicate a potential slowdown in disease 
progression among ALS patients as compared to placebo. 
Ongoing confirmatory study (NCT03127267) seeks to fur-
ther substantiate these findings [71, 72].

Other therapeutic approaches are aiming to target free 
radicals and alleviate oxidative damage in motor neurons. 
Nicotinamide Riboside and Pterostilbene exhibit potential 
in addressing oxidative stress-induced damage, leading 
to increased survival and amelioration of ALS associated 
neuromotor function loss in SOD1G93A transgenic mice. 
Notably, further investigation is underway, with ongoing 
recruitment NO-ALS trial (NCT05095571) to delve deeper 
into their efficacy and mechanisms of action. Furthermore, 
the MICABO-ALS trial (NCT04244630) is currently investi-
gating EH301, a combination of antioxidants (phase II). This 
trial aims to replicate previous positive findings showing 
substantial clinical improvement [73]. Intravenous Edara-
vone has been explored for its potential therapeutic efficacy 
in ALS. While the initial phase II trial showed positive 

results, these findings were not confirmed by the subsequent 
phase III study [74]. Nevertheless, a sub-analysis of efficacy 
targeting a specific subgroup of ALS patients demonstrated 
encouraging outcomes, which were considered adequate 
by regulatory authorities for the commercialization in ALS 
patients [74]. The approval of Edaravone prompted subse-
quent trial that verified the safety of the oral formulation, 
although efficacy data (NCT04569084) are pending [75]. 
Independent post-marketing studies have revealed divergent 
findings regarding the effectiveness of Edaravone, leading 
clinicians to express skepticism about the efficacy of this 
molecule [76–78].

The CENTAUR trial (NCT03127514) investigated 
Sodium Phenylbutyrate and Taurursodiol (AMX0035) for 
ALS. Taurursodiol enhances mitochondrial energy produc-
tion, while Sodium Phenylbutyrate alleviates endoplas-
mic reticulum stress by upregulating chaperone proteins. 
Although the phase II trial showed a modest reduction in 
ALSFRS-R, positive outcomes prompted the ongoing phase 
III trial, PHOENIX (NCT05021536), with results antici-
pated soon [79]. Preclinical evidence suggests that RIPK1 
plays a role in the progressive dysmyelination and axonal 
degeneration observed in ALS through the engagement of 
necroptotic machinery [80]. The ongoing phase II HIMA-
LAYA trial aims to elucidate the efficacy and safety of the 
SAR443820 molecule in inhibiting this pathway and slowing 
down ALS progression.

Inherited peripheral neuropathies (IPNs)

IPNs refer to a broad and heterogenous group of disorders 
characterized by a complex phenotype where the neuropathy 
is often one out of many different clinical manifestations 
[81, 82]. When the neuropathy is the predominant feature 
and both motor and sensory components are affected, it 
is usually referred as to Charcot-Marie-Tooth (CMT) dis-
ease, which also includes predominant motor forms (distal 
hereditary motor neuropathy, HMN, or distal spinal muscu-
lar atrophy, dSMA) [83] and predominant sensory neuropa-
thies (hereditary sensory autonomic neuropathy, HSAN). 
Although very heterogenous, three main phenotypes are 
distinguished in CMT according to clinical and neurophysi-
ological criteria: CMT1 or demyelinating forms, character-
ized by reduced motor conduction velocity at median nerves 
(MNCV) below 38 m/s as cut-off; CMT2 or axonal neu-
ropathies with almost normal MNCV values higher than 38 
m/s, but reduced compound motor action potential (CMAP). 
CMT neuropathies are now classified using an integration 
of clinical, neurophysiological, and genetic criteria. Of note, 
at least 120 responsible genes have been identified thus far, 
which encode a huge variety of proteins including struc-
tural proteins of the myelin, of the axonal cytoskeleton, 



 Z. A. Andrea et al.  198  Page 10 of 34

transcription factors, regulators of intracellular trafficking, 
of mitochondrial function, of protein synthesis or homeo-
stasis, and ion channels [84]. In the last three decades, in 
addition to advances in the clinical and genetic definition 
of the different forms, preclinical research has made signifi-
cant progresses with the generation and characterization of 
animal and cellular models established from human iPSCs, 
which have been instrumental to study pathogenetic mecha-
nisms and validate the effectiveness of therapeutic strategies 
[85–87]. Thus, even if no therapies are available to date for 
CMT patients, in the last few years numerous therapeutic 
strategies have been tested at preclinical level, some of 
which translated at clinical stage in phase 1–3 [85]. In this 
paragraph, we will provide an overview of these strategies 
and we will finally focus on the CMT1A neuropathy, due to 
the PMP22 gene duplication, the most frequent mutation in 
CMT that accounts for 50–60% of all CMTs.

Gene therapies

Gene replacement strategies have been tested at preclinical 
level for both demyelinating and axonal CMTs, where the 
genes of interest have been expressed using AAV9 [85, 88]. 
Following systemic delivery or via intracerebroventricu-
lar (i.c.v.) and intrathecal injections, the AAV9 serotype 
is mainly targeting neurons and axons. Schwann cells are 
reached at high efficiency if AAV9 particles are delivered via 
intranerve injection and with good efficiency using intrathe-
cal injection.

The X-linked CMT1X neuropathy represents the second 
most common CMT form and is the consequence of muta-
tions in the GJB1 gene, which encodes the CX32 (connexin 
32) protein [86]. CX32 is expressed by Schwann cells in 
the nerve as in other cells, where CX32 forms gap junc-
tion channels that allow fast communications of small mol-
ecules such as metabolites, ions and others across multiple 
layers of the Schwann cell plasma membrane. Both loss- and 
gain-of-function mutations have been reported for GJB1, 
but the majority are loss-of-function mutations, which are 
nicely modeled by the Cx32 KO mouse. Proof-of-princi-
ple of AAV9-mediated gene replacement therapy has been 
obtained by intrathecal injection of AAV9 expressing CX32 
under the Schwann cell specific promoter [89, 90].

AR CMT4J is due to the loss of the FIG4 phosphatase 
[91]. Delivery of FIG4 using i.c.v. injection at P1 (postnatal 
day 1) in the Plt (pale tremor) mouse model with complete 
loss of FIG4 resulted in a robust amelioration of the central 
and peripheral neuronal phenotype, which in this model is 
mainly neuronal [92].

Giant axonal neuropathy (GAN) is a very rare form of AR 
neuropathy caused by loss-of-function mutations in GAN1, 
which encodes an E3 ubiquitin ligase [87, 93]. GAN is char-
acterized by enlarged axons which are abnormally packed 

with microtubules and intermediate filaments. Preclinical 
studies demonstrated that AAV-mediated GAN1 delivery 
reverted the enlarged axon phenotype and a scAAV9/JeT-
GAN phase I/II clinical trial is ongoing for GAN with first 
patients already treated intrathecally (NCT02362438) [94].

Neurotrophin 3 (NT3) is one of the autocrine factors 
that Schwann cells secrete to survive and proliferate dur-
ing development [95]. Sahenk et al., hypothesized that sup-
plementation of exogenous NT3 could maintain terminal 
Schwann cells in a growth promoting state, thus overcom-
ing the loss of regeneration capacity following the chronic 
progression of the neuropathy [96]. Intramuscular delivery 
of scAAV1.tMCK.NT-3 in different models of demyeli-
nating or axonal CMT provided proof-of-principle of this 
approach that has been then translated in a phase I/IIa trial 
(NCT03520751).

AD CMT2D neuropathy is caused by heterozygous muta-
tions in GARS, which encodes the glycyl-tRNA synthase. 
In vitro and in vivo data suggest a gain-of-function mecha-
nism [87]. Morelli et al. provided evidence that RNAi spe-
cifically targeting GARS mutated alleles in different mouse 
models significantly ameliorated the axonal phenotype. 
RNAi was delivered in AAV9 particles either by i.c.v. or 
by intrathecal injection [97, 98]. Particularly for axonal/
neuronal phenotypes, pre-onset early treatment was more 
efficient than post-onset later treatments as expected.

Other therapies

Drug-based strategies have been tested at preclinical level 
for both demyelinating and axonal CMTs. Accumulation 
of misfolded proteins and activation of stress response in 
Schwann cells is thought to be at the basis of different forms 
of demyelinating CMT, such as the AD CMT1E due to point 
mutations in the PMP22 gene and the AD CMT1B, associ-
ated with mutations in the MPZ (myelin protein zero) [86, 
99–101]. MPZ contributes to myelin compaction by form-
ing cis and trans interactions on different layers of Schwann 
cell plasma membrane [86]. Administration of curcumin to 
relevant mouse models for CMT1E and CMT1B has been 
found to alleviate cellular stress, decrease the UPR (unfolded 
protein response) and ultimately to reduce the severity of 
the neuropathy in these mice. A similar strategy is based 
on the administration of Sephin1/IFB-088, an inhibitor of 
GADD34, the phosphatase that activates translation by 
dephosphorylating the eIF2alpha translation initiator fac-
tor. In different CMT1B mouse models, IFB-088 treatment 
was able to improve the neuropathy by attenuating protein 
translation and alleviating cell stress [86, 102, 103].

The SORD (sorbitol dehydrogenase) gene is mutated in 
the AR CMT2 with predominant motor involvement [104]. 
When the SORD enzyme is lost, sorbitol accumulates in 
cells leading to toxicity. Aldose reductase is an enzyme 
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that produces sorbitol from glucose and its activity can be 
inhibited by already FDA-approved compounds that are now 
under investigation in clinical trials along with natural his-
tory studies [105].

Heterozygous mutations in the MFN2 gene (mitofusin 2) 
are associated with the axonal CMT2A neuropathy, which 
accounts for 20–30% of all axonal CMTs [106]. MFN2 is 
an outer mitochondrial membrane protein which medi-
ates fusion between mitochondria. MFN2 seems to be also 
involved in mitochondrial transport. In vitro and in vivo 
studies suggested that mitochondrial abnormalities can be 
reversed by stabilizing the interaction between the normal 
copies of MFN2 and MFN1, homologous to MFN2 but 
expressed at very low levels in axons. Small molecules have 
been developed as agonist of mitofusin function showing 
promising results in mutant mice [107, 108].

Acetylation of tubulin is known to stabilize axonal 
microtubule network thus facilitating anterograde transport. 
Decreased tubulin acetylation has been shown in several 
models of axonal CMT2 neuropathies, thus suggesting that 
this mechanism can represent a commonality across differ-
ent axonal forms independently on the specific pathogenetic 
mechanism [87]. Consistent with this, small molecules able 
to inhibit HDAC6 (histone deacetylase), an enzyme that dea-
cetylases alpha tubulin, ameliorate the neuropathic pheno-
type in different CMT2 mouse models [109, 110]. Another 
promising approach as unifying treatment strategy for differ-
ent axonal neuropathies consists in the drug-mediated inhi-
bition of SARM1 activity [111]. When axons are severed, 
SARM1 is activated and rapidly hydrolases NAD + provok-
ing a dramatic loss of ATP and mitochondrial dysfunction, 
leading to axonal degeneration. Mutant mice with loss of 
Sarm1 are protected from axon degeneration. Thus, inhi-
bition of SARM1 activity has been thought to prevent or 
reduce axonal degeneration also in CMTs. Small molecule 
inhibitors are under development with one promising candi-
date, DSRM-3716 able to prevent axonal degeneration after 
axotomy in sensory neurons established from human iPSCs 
[112].

The CMT1A neuropathy

CMT1A is a demyelinating generally slowly progressive 
neuropathy caused by 1.4 Mb duplication on chromosome 
17p11.2 encompassing the PMP22 gene, which encodes the 
peripheral myelin protein 22 (PMP22). As a consequence 
of an inequal crossing over event at the meiotic cell divi-
sion, CMT1A patients carry three copies of the PMP22 gene 
whereas the reciprocal event, the PMP22 gene deletion, is 
associated with the HNPP neuropathy (Hereditary liability 
to pressure palsies) [86, 113]. A gene dosage effect has been 
proposed at the basis of the CMT1A Schwann cell patho-
genesis. PMP22 proteins tends to misfold and aggregate and 

these events are physiologically resolved through the protea-
some. In CMT1A patient cells, this mechanism is less effi-
cient as proteasome is overwhelmed and blocked resulting 
in the activation of cell stress mechanisms. Animal models 
carrying several copies of PMP22 recapitulate proteostatic 
stress with PMP22 accumulation and have also highlighted a 
role for PMP22 in Schwann cell differentiation during early 
stages of postnatal nerve development. A consistent num-
ber of therapeutic strategies tested at the preclinical level 
are aimed at reducing PMP22 levels in CMT1A using gene 
therapy and gene editing approaches as well as drugs, which 
target responsive elements in the PMP22 promoter.

Gene therapy and molecular therapies to decrease PMP22 
expression

These strategies include ASO delivered subcutaneously; 
shRNA and miRNA expressed by AAV9 viral vectors 
delivered by intraneural injection and intrathecal injec-
tion, respectively; siRNA carried by squalene nanoparticles 
administered systemically and, finally, Crispr/Cas9 RNP 
(ribonucleoparticles) delivered by intraneural injection [85]. 
These approaches demonstrated efficacy in animal models, 
even if with some limitations due to the way of delivery 
and the translatability to CMT1A patients. How to control 
the degree of downregulation that could result in the HNPP 
phenotype remains to be assessed.

Other therapies to decrease PMP22 expression

Drug mediated approaches able to reduce PMP22 expression 
at preclinical level include onapristone treatment, an inhibi-
tor of progesterone which stimulates PMP22 gene expres-
sion and ascorbic acid, which inhibits adenylate cyclase and 
the production of cAMP, a potent PMP22 expression inducer 
[114]. Due to toxicity, onapristone has not been tested in 
clinical trials. Of note, ascorbic acid, which was able to ame-
liorate the neuropathic phenotype in animal models, was not 
efficient in modifying the disease in several clinical trials 
where ascorbic acid was administered at different dosages, 
for different periods and in pediatric as well as adult cohorts 
of CMT1A patients [115–118].

Strategies to improve proteostasis

Other strategies are aimed at resolving proteostatic stress 
in Schwann cells [85]. These include Rapamycin, a known 
mTORC1 pathway inhibitor and autophagy activator with 
the aim of improving the clearance of aggregates in glial 
cells. Others are aimed at increasing the expression of 
chaperons that can improve the cytosolic trafficking of the 
PMP22 protein by using HSP90 inhibitors, a chaperon which 
stabilizes misfolded aggregated proteins. Finally, curcumin 
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and Sephin1/IFB-088 have been tested in CMT1A cells as 
PMP22 aggregates can elicit UPR.

Other approaches

Inhibitors of HDAC6 have been tested at preclinical level 
also for CMT1A with the aim of delaying axonal degen-
eration that is the consequence of demyelination [119]. In 
CMT1A, the P2X7 channel is overactivated resulting in 
increased calcium level in Schwann cells leading to demyeli-
nation. Antagonist of P2X7 have been tested in cellular and 
animal models with improvement in myelination, but clinical 
trials were not envisaged due to toxicity of these compounds 
[120]. NRG1 (Neuregulin) type III on the axonal surface is 
one of the main signals regulating myelination in the PNS 
[121]. It has been hypothesized that overexpression of NRG1 
type III can be beneficial for those CMT characterized by 
decreased myelination and demyelination, such as CMT1A 
and CMT1B, whereas this signal can be decreased in those 
characterized by excessive aberrant myelin such as auto-
somal recessive CMT4B and CMT4H [85]. Of particular 
relevance is the PTX3003 that is a combination of different 
compounds including baclofen, a GABA receptor agonist 
which reduces PMP22 expression; naltrexone, believed to 
potentiate baclofen activity, and D-sorbitol, a metabolite 
involved in the polyol pathway thought to stabilize misfolded 
protein [122, 123]. This combination was selected using a 
system biology approach by screening repurposed drugs 
promoting differentiation and decreasing PMP22 expres-
sion. A phase 2 study confirmed safety and tolerability of 
PXT3003 and showed improvement of CMT Neuropathy 
Score (CMTNS) and the Overall Neuropathy Limitations 
Scale (ONLS) using the highest dose for longer treatment 
period. A phase III clinical trial is ongoing to assess efficacy 
in CMT1A patients (NCT04762758).

Hereditary transthyretin amyloidosis (hATTR)

Hereditary amyloidosis resulting from mutations in the 
TTR gene (hATTR) is a rare, progressively debilitating, 
and potentially life-threatening autosomal dominant multi-
system disorder [124]. This condition results from the sys-
temic accumulation of misfolded transthyretin, a transport 
protein for thyroxine and retinol. Clinical presentations vary, 
often showing initial symptoms related to peripheral nervous 
system involvement, such as small fiber neuropathy, auto-
nomic dysfunction, and peripheral polyneuropathy. This 
diverse spectrum in hATTR underlines its complexity, not 
entirely explained by genetic diversity alone, despite some 
genotype–phenotype correlation [124, 125]. The most preva-
lent mutation worldwide, p.Val50Met, can manifest as either 
early-onset small fiber and autonomic involvement or late-
onset “classic” peripheral polyneuropathy, primarily due to 

large fibers degeneration coexisting with cardiac amyloid 
deposition, typically remaining subclinical. Conversely, 
p.Val142Ile is the most frequent mutation in the US and is 
distinguished by its early and prominent cardiac manifesta-
tions. More than 120 pathogenic TTR mutations have been 
documented, each associated with a subtly distinct pattern 
of disease onset, symptoms, and progression.

TTR is a homotetrameric protein, with each monomeric 
unit being encoded by a small four exon gene. Each mono-
meric unit consists of 127 amino acid protein arranged in 
eight anti-parallel β-sheets. This characteristic structural 
arrangement partially accounts for the heightened amy-
loidogenic potential exhibited by this protein. Mutations 
within the TTR gene result in destabilization of the native 
tetrameric structure. Consequently, misfolded subunits tend 
to self-assemble into amyloid fibrils, which subsequently 
accumulate within various tissues, ultimately culminating 
in the development of disease. The deposition of amyloid 
derived from TTR in the peripheral nervous system appears 
to initiate at the level of sympathetic and dorsal root gan-
glia (DRGs) [126]. Over time, this deposition propagates 
along the course of the nerves [127]. However, the pre-
cise mechanisms underpinning neurodegeneration remain 
uncertain. Notably, direct mechanical influences contribute 
to the pathogenesis, particularly in early-onset patients and 
instances of localized nerve compression (e.g., the median 
nerve at the carpal tunnel or the ulnar nerve at the cubital 
tunnel). Conversely, in late-onset forms, neuroinflammatory 
and neurotoxic effects attributed to TTR aggregates play a 
pivotal role, as substantiated by in vitro studies [128].

Therapeutic strategies revolve around reducing the syn-
thesis of mutant TTR, enhancing its stability to prevent 
misfolding and deposition, eliminating already deposited 
amyloid fibrils, or altering the defective gene entirely. A 
significant milestone in the management of hATTR was the 
advent of liver transplantation, which was first successfully 
performed in 1990. Subsequently, numerous patients have 
undergone this procedure, resulting in disease stabilization 
in many cases [129].

Gene therapies

NTLA-2001 is an in-vivo gene editing drug based on the 
clustered regularly interspaced short palindromic repeats and 
CRISPR-Cas9 system [130]. It is administered by intravenous 
infusion and comprises lipid nanoparticles containing mRNA 
for Cas9 protein and a single guide RNA targeting TTR. 
After hepatic uptake and translation, Cas9 binds to the guide 
RNA and forms a ribonucleoprotein that mediates a double 
strand DNA break in the TTR gene. Endogenous DNA repair 
mechanisms introduce insertions or deletions in the open read-
ing frame, leading to frameshift mutations that prevent TTR 
synthesis. In a pivotal phase I study, a single administration 
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showed dose-dependent reduction (up to 87% decrease) in 
serum TTR levels 28 days after infusion.

Molecular therapies

In 2018 Patisiran and Inotersen were approved by regulatory 
agencies for the treatment of hATTR. Patisiran is a double-
stranded siRNA delivered intravenously via lipid nanoparti-
cles, enhancing hepatic uptake. Inside hepatocytes, it targets 
both wild type and mutant TTR mRNA, inducing their degra-
dation and inhibiting hepatic synthesis [131]. Inotersen, on the 
other hand, is a single-stranded ASOs administered subcutane-
ously. Following administration, it exhibits widespread tissue 
distribution, with notably high concentrations in the kidneys 
and liver. In hepatocytes, it interacts with nucleic TTR pre-
mRNA, leading to degradation mediated by Ribonuclease H. 
Both drugs have demonstrated remarkable efficacy in reduc-
ing serum TTR levels and have proven effective in stabilizing 
disease progression [132, 133]. Similarly, Vutrisiran was the 
last siRNA-based drug to receive approval for the treatment of 
hATTR [134]. A phase III trial assessing the effectiveness of 
Eplontersen, a subcutaneously administered ligand-conjugated 
antisense drug designed to enhance hepatocyte uptake, has 
recently achieved its co-primary and secondary outcomes, and 
awaits results publication [135].

Other therapies

Doxycycline and tauroursodeoxycholic acid have been used 
off-label in hATTR based on preclinical evidence suggesting 
nonspecific anti-amyloid properties [136]. Removal of already 
deposited amyloid is an appealing approach, especially in the 
context of cardiomyopathy, and is being investigated with 
two monoclonal antibodies (NNC6019–0001 and NI006) that 
showed promising results in preclinical studies and phase I 
trials [137]. Diflunisal, a Non-Steroidal Anti-Inflammatory 
Drug, has found utility as an off-label treatment for TTR amy-
loidosis. Its application stems from its in-vitro capacity to sta-
bilize TTR tetramers, thereby impeding the dissociation of 
misfolded subunits and the formation of amyloid aggregates 
[138]. A groundbreaking development was the approval of 
the first disease-specific drug, Tafamidis, by EMA in 2011, 
followed by its approval by the U.S. FDA in 2019. Tafamidis 
exerts its therapeutic effect by binding to one of the two thy-
roxine-binding sites of the TTR tetramer, thereby stabilizing 
the properly folded protein and preventing dissociation and 
amyloid fibril formation [139].

Congenital myasthenic syndromes (CMS)

CMS are a group of neuromuscular disorders caused by patho-
genic variants in genes encoding for proteins that are essential 
for the functioning of neuromuscular junction (NMJ) trans-
mission. The proteins involved in CMS are usually clustered 
according to their localization, namely pre-synaptic, synaptic 
and post-synaptic; several different pathways are involved. 
These include (a) axonal transport (b) synthesis, recycling, 
storage and exocytosis of acetylcholine (ACh), (c) mainte-
nance of the transmission between pre and post synaptic struc-
tures, (d) mutations within the muscle acetylcholine receptor 
(AChR), (e) maintenance of AchR clustering and stability of 
the synaptic cleft, (f) and protein glycosylation [140].

CMS usually present at birth or during early childhood, 
but adult-onset CMS mimicking acquired myasthenia gravis 
can be observed. The distinguishing features of CMS include 
exercise intolerance, fatigability, muscle weakness, and low 
muscle tone. Some patients may display myopathic features. 
Additionally, individuals may experience drooping eyelids 
(ptosis) with or without ophthalmoparesis, as well as respira-
tory and speech-related symptoms, joint stiffness (contrac-
tures), and abnormal spine curvature [141]. In rare instances, 
dysmorphic features may be present, and certain genes have 
been linked to CNS traits, like intellectual disability and sei-
zures, or involvement of other organs [142]. At present, there 
is no curative treatment for CMS and no gene or molecular 
therapy have achieved human application. AAV-mediated gene 
replacement for DOK7-related CMS was beneficial in mice, 
but drug-development is still at preclinical stage [143].

Other therapies

Treatment of CMS is currently aimed at alleviating symptoms. 
Acetylcholinesterase inhibitors are the most commonly used 
alone or in combination with 3,4-diaminopyridine (3,4-DAP), 
which increases Ach in the synaptic cleft acting at a pre-syn-
aptic level via potassium channel blockage, or β-receptor ago-
nists (ephedrine, salbutamol), which were shown to ameliorate 
the structure of the synaptic cleft [144]. In slow-channel CMS, 
namely those linked to specific mutations in AChR subunits, 
as well as in ColQ and DOK7 related CMS, pyridostigmine 
should be avoided and salbutamol could be considered. Fluox-
etine and quinidine have been used in slow-channel CMS 
[145].
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Muscular dystrophies

Dystrophinopathies

Dystrophinopathies are a spectrum of X-linked neuro-
muscular conditions caused by pathogenic variants in the 
DMD gene. This encodes for dystrophin, a protein with a 
structural role anchoring the actin cytoskeleton to the sar-
colemma along with other proteins that together form the 
dystrophin-associated protein complex (DAPC). Duchenne 
muscular dystrophy (DMD) constitutes the most severe 
end of the spectrum, while Becker muscular dystrophy 
(BMD is a milder disease form with later onset and slower 
progression. Moreover, mutations in the DMD gene occa-
sionally cause isolated X-linked cardiomyopathy [146] or 
may manifest in symptomatic female carriers [147]. DMD 
is the most common form of muscular dystrophy affect-
ing around 20 per 100.000 live male births, [148] while 
the prevalence of BMD is fewer than 8 cases per 100.000 
[149]. The primary effect caused by the lack of the dystro-
phin protein in skeletal and cardiac muscles is progressive 
muscle degeneration and necrosis, which is reflected in 
the changes observed on muscle histology. Disruption or 
disassembly of the DAPC results in a cascade of conse-
quences that profoundly impact muscle cell functionality 
and are likely to act in parallel to generate muscle dam-
age. These comprise susceptibility to muscle stress, NOS-
dependent functional ischemia, increased reactive oxygen 
species production (ROS), calcium overload, mitochon-
drial dysfunction, inflammation, fibrosis, and inability to 
properly regenerate muscle [150].

Despite the early appearance of muscle weakness, 
affected boys can slowly acquire new motor skills up to 
the age of 7 years. Afterwards, the disease displays a pro-
gressive weakening of skeletal, respiratory, and cardiac 
muscles. In the absence of treatment, loss of ambulation 
(LoA) occurs by a median age of 10–12 years in “typi-
cal” DMD boys [151–154]. Thanks to the development 
of guidelines for care and management [155–157], the 
early initiation of corticosteroids (CS) treatment, and 
the optimal management of cardiopulmonary function, 
patients with DMD can now survive beyond their forties 
[158–161]. However, premature death may still occur dur-
ing adolescence or early adulthood due to cardiac failure, 
fatal arrythmias, respiratory failure, and fractures-induced 
fat emboli. With the improvement of respiratory care, car-
diac failure remains the leading cause of mortality in the 
older patients. At present there is no curative treatment for 
the disease. Dystrophinopathies are caused by a wide array 
of different type of mutations [162]. Deletions are the most 
common molecular defect (68–77%) [163, 164], followed 
by point mutations, duplications (11–13%) [163–166], 

and small rearrangements. While there is no clear cor-
relation between the size of the deletion and the resultant 
clinical phenotype, the DMD vs BMD form can largely 
be predicted based on the “reading frame rule”: a severe, 
DMD phenotype is associated in ~ 90% of cases with out-
of-frame pathogenic variants that induce a frameshift in 
the protein-coding sequence resulting in unstable RNA 
and subsequent nearly complete absence of dystrophin 
expression in muscles [163, 167]. By contrast, the pres-
ence of residual, smaller but functional dystrophin proteins 
resulting from in-frame deletions or duplications located 
in the middle of the gene and containing crucial domains 
can partially rescue the phenotype, hence being associated 
with BMD. The understanding of the genetic of Dystrophi-
nopathies posed the basis for the development of several 
therapeutic strategies.

Gene therapies

Although the prospect of a non-mutation-specific therapy 
is intriguing, the large size of the DMD gene represents 
a major obstacle for currently used viral vectors, such as 
AAV (loading capacity < 4.7Kb) and lentiviruses (loading 
capacity up < 10kb). To overcome such limitations, different 
companies and labs developed micro or mini-dystrophins, 
which are truncated dystrophins lacking at least part of the 
central rod but designed to keep essential domains such as 
N-Term and Cysteine rich domain. A key point is that the 
large central rod domain is particularly resilient to large in-
frame deletions, as demonstrated by mildly-affected patients 
harboring large in-frame deletions affecting up to 46% of 
the coding sequence [168]. The deeper understanding of the 
structure and role of dystrophin itself (e.g., nitric oxide and 
microtubule binding, protein stability etc.) helped imple-
ment the quality of these products, which are currently under 
investigation in Phase I/II trials. AAV serotypes 1, 6, 8, 9, 
rh10, and rh74 were found to have tropism for skeletal mus-
cle and heart. FDA recently approved the first systemically 
delivered, AAVrh74-mediated delivery of a 138kDa micro-
dystrophin in pediatric patients with 4 to 5 years of age. The 
main side effects of AAV gene therapy are linked to immu-
nogenicity. Of note, these were not limited to the immune 
response generally expected in patients receiving AAV 
treatment (e.g., elevation of liver enzymes). Serious, T-cell 
mediated reactions observed in 5 patients treated with differ-
ent micro-dystrophin constructs and vectors (i.e., AAV9 and 
AAV rh74) suggest that the presence of mutations excluding 
exons coding for Hinge 1, (considered essential for the cor-
rect localization of dystrophin to the sarcolemma) and the 
first spectrin-like repeat domains, which are present in all 
the constructs but missing in these patients, likely provoked 
immune reactions against these nonself epitopes [169]. Fol-
lowing these observations, inclusion criteria for trials were 
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amended. Additional concerns related to gene therapy are 
related to a) the ability of dystrophin constructs that are 
smaller than those observed in mild BMD cases and lack 
specific subdomains to fully fulfil their biomolecular role, 
b) the ability to transfect cardiac myocytes, c) the dilution 
in time of the product due to the limited efficacy of AAV 
vectors to target the stem cells reservoir [170].

Molecular therapies

Exon-skipping is a therapeutic strategy that employs ASO 
to induce alternative splicing, thereby bypassing mutated 
exons. This process aims to restore the reading frame of 
the dystrophin gene, effectively converting a DMD muta-
tion into a BMD mutation. It has been estimated that 
exon skipping approaches might be applicable to 55% of 
DMD-causing mutations and 80% of DMD-causing dele-
tions [171]. Various exon-skipping products have been 
developed, including 2′-O-methyl-modified RNA, phos-
phorodiamidate morpholino oligomers (PMO), and tricy-
cloDNA antisense molecules. PMOs are uncharged com-
pounds that pose challenges for in vitro cell introduction but 
exhibit high levels of systemic delivery and efficient exon 
skipping within dystrophic muscle tissue. To enhance cel-
lular uptake, PMOs have been initially improved through 
conjugation with arginine-rich cell-penetrating peptides, 
resulting in peptide phosphorodiamidate morpholino oli-
gomers (PPMOs). The safety profile of PMOs and PPMOs 
has generally been favourable. However, despite the appeal 
and applicability of exon-skipping techniques and the con-
ditional approval of four ASOs, concerns persist regarding 
their delivery efficiency. Consequently, certain companies 
have developed PPMOs conjugated with fatty acid binders or 
specific antibodies (or antibody fragments, Fabs), to further 
enhance muscle penetration. Furthermore, there is ongo-
ing exploration of multi-exon skipping to treat a broader 
patient population and ensure that the resultant transcript 
contains in-phase spectrin repeats. At present, the FDA 
has conditionally approved exon-skipping products target-
ing exons 51 (Eteplirsen), 53 (Vitolarsen and Golodirsen), 
and 45 (Casimersen) [172, 173]. These approvals have been 
granted based on observed changes in dystrophin expres-
sion in muscle tissue, while the full correlation with clinical 
benefits is still undergoing evaluation. Of note, a combined 
strategy using an AAV9 vector expressing U7 small nuclear 
RNAs has been explored to deliver targeted exon skipping 
in patient with exon-2 duplication [174, 175].

Around 10%–15% of patients with DMD have a nonsense 
mutation that induces a premature termination codon (PTC) 
in the mRNA, causing the ribosome to terminate translation 
and failing to synthesize the remainder of the protein. Ata-
luren (Translarna TM) was developed as a potentially safer 
alternative compared to other drug to induce stop codon 

read-through [176]. Due to the limitations of its efficacy 
data, EMA recommended the retraction of its approval, 
while real world data from registries may suggest a delay 
in LoA.

Cell‑based therapies

Cell-based therapeutic approaches were initially explored 
to introduce full-length dystrophin into muscle tissues. 
However, significant challenges, primarily related to safety 
concerns and the limited distribution of cells following sys-
temic administration, have yet to be fully addressed. Mul-
tiple cell types with multilineage or pluripotent potential 
have been investigated, including satellite cells (myoblasts), 
hematopoietic-derived cells, pericytes, and mesenchymal 
stem cells [177, 178]. Given the complexities associated 
with achieving satisfactory integration into affected mus-
cles, current research in cell-based therapies is focusing on 
harnessing secondary effects rather than primarily rescuing 
muscle integrity. For instance, engineered mesangioblasts 
hold promise to facilitate exon skipping without the neces-
sity for repeated infusions [179].

Cardiosphere-derived cells are believed to exert immu-
nomodulatory, antifibrotic, and regenerative effects in indi-
viduals with dystrophinopathy and heart failure through 
the secretion of exosomes containing bioactive cargo. The 
HOPE-2 trial (NCT03406780) is a multicentre, double-
blind, placebo-controlled Phase II clinical trial involving 
the repeated intravenous administration of CDCs. In a small 
subset of non-ambulatory patients, preliminary results sug-
gest the ability to attenuate the progression of upper limb 
and cardiac impairment [180].

Other therapies

The cornerstone of DMD treatment is represented by the 
use of corticosteroids (CS). Although the first trials date 
back almost 50 years [181], only in the last two decades 
solid scientific evidence was gathered to build strong recom-
mendation on their use and provide information of strengths 
and limitations of different dose regimens [182]. The pre-
cise mechanisms of CS effect remain unclear, but postu-
lated actions encompass membrane stabilization, increase in 
total muscle mass and strength, stimulation of insulin-like 
growth factors, enhanced myoblast proliferation, reduced 
fibrosis, and attenuated inflammatory responses. Different 
regimes (daily vs intermittent) can be selected to balance 
efficacy with numerous side effects, but everyday admin-
istration yields higher results in terms of preservation of 
muscle function [183]. Treatment is usually started around 
4–5 years of age and should be continued even after the loss 
of ambulation, due to potential beneficial effect on the pres-
ervation of upper limbs strength, cardiorespiratory function, 
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and survival [152, 184–186]. There is strong evidence that 
CS can delay LoA by 2–4 years [151, 187]. A longer pres-
ervation of ambulation also results in later onset of both 
respiratory insufficiency and severe scoliosis [188]. Despite 
the beneficial for slowing disease progression, CS treatment 
is associated with a range of side effects that require care-
ful monitoring and management. Vamolorone is a molecule 
that has been developed to reduce the burden of CS treat-
ment. While retaining anti-inflammatory properties, this was 
designed to have fewer side effects compared to traditional 
CS used in DMD. The molecule showed promising results 
indicating an improved safety profile in terms of bone and 
growth-related morbidities and was recently recommended 
for marketing authorization by the EMA [189].

Considering the instability of the muscle membrane in 
DMD, an innovative therapeutic approach may involve the 
utilization of synthetic block copolymers as membrane stabi-
lizing agents. This strategy aims to mitigate muscle damage 
by directly enhancing the stability of the dystrophin-defi-
cient muscle membrane. Promising preclinical findings are 
paving the way for clinical trials involving the administration 
of P188 (NCT03558958).

Lastly, the role of Givinostat, a histone deacetylase 
inhibitor with potential anti-inflammatory activity, is being 
explored in Phase III trial (NCT02851797) and is being con-
sidered for the treatment of BMD.

Among products that failed to demonstrate a clinical 
benefit there are anti-oxidant (Idebenone—Sideros trial), 
anti-inflammatory molecule targeting the NF-κB pathway 
(Edasalonexent—PolarisDMD Trial), [190] anti-fibrotic 
monoclonal antibodies (Pamrevlumab—Fibrogen), and the 
repurposed drug tamoxifen (TAMDMD—NCT03354039). 
Myostatin inhibitors were thought to be a good candidate 
given potential to increase muscle bulk and counteract 
fibrosis. However, all the trials in human failed, possibly 
due to pre-existing downregulation of myostatin pathways 
observed in patients affected by neuromuscular disorders 
[191]. Upregulation of utrophin, a structural and functional 
paralog of dystrophin encoded by the UTRN gene that is 
activated in the absence of dystrophin, has been explored in 
preclinical models. So far, no products have been translated 
to humans and concerns remain regarding its potential effec-
tiveness, given the lack of important domains.

Facioscapulohumeral muscular dystrophy (FSHD)

FSHD is one of the most common inherited muscular dis-
eases, with an estimated incidence of 5–12 affected indi-
viduals per 100,000 in the population [192]. Named for its 
distinctive muscle involvement pattern, FSHD commonly 
manifests with facial, scapular girdle, and proximal upper 
limb muscle impairment, marked by noticeable asymme-
try. While most patients experience a gradual progression 

of muscle weakness over time, approximately 20% of 
patients exhibit a severe, disabling phenotype necessitat-
ing wheelchair use [193, 194]. The inheritance pattern is 
AD; however, the disease displays incomplete penetrance, 
and phenotypic variability and severity can be substan-
tial both among family members and within individual 
patients. This phenotypic and penetrance heterogeneity is 
linked to genetic and epigenetic factors [195–197].

The pivotal chromosomal locus in the pathogenesis of 
FSHD is the D4Z4 macrosatellite tandem repeat array situ-
ated in the subtelomeric region of the long arm of chromo-
some 4 (4q35). In the somatic cells of healthy individuals, 
this region is transcriptionally repressed [198, 199]. Under 
normal conditions, this region consists of 10 to 100 tan-
dem repeat units, each measuring 3.3 kb [198]. Each of 
these repeats contains a retrogene housing the full open 
reading frame of double homeobox 4 (DUX4) [198, 200, 
201]. The distal sequence of the D4Z4 region exhibits two 
sequence variants, denoted as 4qA and 4qB, with the key 
distinction being the exclusive presence of a polyadenyla-
tion signal (PAS) in the 4qA variant [202]. The pathoge-
netic mechanism underlying FSHD1, the most common 
form of the disease, involves a de-repression of the DUX4 
gene [194]. This occurs due to a deletion/contraction of 
the repeat units within D4Z4, typically ranging from 1 to 9 
repeats, in the presence of the permissive 4qA allele [198, 
199]. The contraction induces a partial loss of methylation 
within the D4Z4 region, resulting in chromatin relaxation 
and facilitating the transcription of DUX4. The presence 
of the PAS contributes to maintaining the stability of 
DUX4 mRNA and, consequently, its expression in muscle 
cells. The triggering of DUX4 expression in experimen-
tal settings, either through overexpression or inducible 
methods, has been shown to induce cytotoxic effects in 
diverse somatic cell types. However, the principal pathway 
governing DUX4-induced cytotoxicity remains uncertain 
[203, 204]. FSHD2 accounts for approximately 5% of 
patients with the phenotype and is characterized by the 
presence of an allele within the normal range of D4Z4 
repeat units. However, the de-repression of DUX4 is facili-
tated by the presence of mutations in certain chromatin 
repressor genes, including SMCHD1 (in 85% of cases), 
DNMT3B, and LRIF1 [205–207]. In this intricate context, 
many factors come into play, including D4Z4 repeat units, 
DNA methylation, mutations in SMCHD1, chromatin 
remodeling proteins and epigenetic factors, which influ-
ence the FSHD phenotype and progression of the disease.

Despite significant advancements in understanding the 
underlying mechanisms of the disease, there are currently 
no specific therapies for FSHD. To mitigate disease pro-
gression, rehabilitative physical activities are recommended, 
along with the use of orthoses aimed at improving patient 
functionality [194].
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Gene therapy

Silencing of DUX4 through a CRISPR technology can be 
achieved essentially by two approaches: 1) editing (CRIS-
PRe), which utilizes a functional Cas9 to alter the genomic 
sequence, and 2) inhibition (CRISPRi), which uses an 
enzymatically inactive “dead” Cas9 (dCas9) fused to a 
transcriptional or chromatin repressor. CRISPRi would have 
advantages on CRISPRe in FSHD, as it does not damage the 
genome and has limited off target effects being a repressor 
of regions that we would like to keep silent.

Since 2016, a pioneering study showcased the viability 
of utilizing the CRISPR/dCas9 technology as transcrip-
tional inhibitor to specifically target the Krüppel-associated 
box (KRAB) zinc finger proteins and other transcriptional 
repressors at the D4Z4 locus. This approach effectively 
reduced the transcription of DUX4 in myocytes, offering 
early evidence of the potential of CRISPR/dCas9 in modu-
lating the expression of key genes implicated in FSHD 
[208]. Subsequently, further gene editing approaches have 
been applied in vitro, focusing on inhibiting the transcription 
of DUX4 exon 3 PAS, although with unsatisfactory results 
[209]. The failure of this approach is due to the identification 
of an additional PAS, located upstream, responsible for the 
residual DUX4 transcript. Consequently, the subsequent suc-
cessful steps have been directed towards a multifunctional 
approach, combining direct targeting of the DUX4 PAS and 
utilizing the dCas9-KRAB inhibitor to restore the hetero-
chromatin state at the D4Z4 locus [209]. In an independent 
investigation, the adenine base editor system was employed 
alongside Cas9-nickase to instigate an AT to CG conversion 
within the DUX4 PAS in immortalized myoblasts derived 
from FSHD1 and FSHD2 patients. This method success-
fully induced mutations in the PAS, thereby preventing 
the expression of DUX4 [210]. In a recent study, a novel 
strategy was employed to target loci within repeats, which 
posed technical challenges due to the presence of multiple 
CRISPR–Cas9 binding sites and the potential for generating 
off-target effects through multiple DNA breaks [211]. The 
authors generated and optimized miniaturized cassette to 
be effectively packed in AAV vectors and to drive a muscle-
specific expression of a smaller dCas9 orthologue targeting 
different epigenetic regulators of DUX4 expression. This 
innovative approach demonstrated efficacy in reinstating the 
epigenetic (permanent) repression of DUX4 with minimal 
impact on neighboring D4Z4 repeats or predicted off-target 
genes [211]. Furthermore, the method successfully achieved 
DUX4 repression and targeted gene modulation in a FSHD 
transgenic mouse model, albeit with a modest effect. In con-
clusion, while gene therapy holds promise for addressing the 
molecular intricacies of FSHD and has shown encouraging 
preclinical results, extensive research is essential to over-
come delivery challenges, improve targeting specificity, and 

optimize treatment efficacy before its widespread clinical 
application.

Molecular therapies

Several recent studies have demonstrated the potential thera-
peutic application of ASO in the treatment of FSHD, by 
reducing the transcription of DUX4 and consequently its 
expression in muscle tissue. Compared to mice treated with 
a placebo, those treated with ASO exhibited improvements 
in muscle histology, reduced fibrosis and inflammation, as 
well as enhanced motor performance [212–216]. Similarly, 
the intramuscular delivery of miR-405 using a AAV vector 
in mice co-transduced with AAV-DUX4 has proven effec-
tive. This method successfully diminished DUX4 protein 
concentration and mitigated DUX4-induced muscle pathol-
ogy by directing the DUX4 mRNA transcript towards deg-
radation [217, 218]. Oligonucleotides designed to specifi-
cally target the antisense sequence at the 5ʹ end of U7 small 
nuclear RNAs, integral components of the small nuclear 
ribonucleoprotein complex crucial for the 3ʹ end process-
ing of histone pre-mRNAs, were engineered to selectively 
interfere with the maturation of DUX4 pre-mRNA. Applica-
tion of this modified agent resulted in a substantial reduc-
tion in DUX4 transcript levels within FSHD muscle cells. 
An additional advantage of this approach, in comparison to 
conventional ASOs and RNAi-based therapies, lies in the 
sustained activity of the redirected small nuclear ribonucleo-
protein complex targeting DUX4 [219]. The FORTITUDE 
trial (NCT05747924), a Phase I/II study, was designed to 
explore both the safety and the efficacy of AOC 1020. AOC 
1020 is an innovative antibody-oligonucleotide conjugate, 
incorporating a DUX4-targeting siRNA linked to a human-
ized antibody directed against transferrin receptor 1, opti-
mizing its delivery to muscle tissues. The trial is actively 
recruiting patients with FSHD1 or FSHD2.

A last alternative approach is to block DUX4 recruit-
ment of histone acetyltransferases p300 and CREB bind-
ing proteins to its target foci to avoid gene expression and 
DUX4-downstream cascade. This can be reached with p300 
specific inhibitors (small molecules) or decoy DUX4 bind-
ing sites, which sequester endogenous DUX4 and prevent it 
from binding to and activating its target genes.

Other therapies

Albuterol, a β2 Adrenergic agonist, has shown beneficial 
effects on muscle mass and volume in placebo-controlled 
studies conducted in the early 2000s, despite not demon-
strating efficacy on the primary outcome [220–222]. It was 
subsequently shown that the effect of β2 Adrenergic agonists 
might not be confined to their trophic effect on muscle but 
could involve a repressive mechanism on DUX4. Additional 
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molecules that have demonstrated in preclinical studies a 
repressive effect on the DUX4 gene include the inhibitors 
of the Mitogen-Activated Protein Kinase (MAPK) family, 
particularly the p38 and p38β isoforms [223, 224]. Eighty 
patients were therefore enrolled in the placebo-controlled 
REDUX4 phase 2b trial (NCT04003974). Losmapimod, 
a p38 inhibitor, was administered orally for 48 weeks. 
Although the molecule fell short of achieving the primary 
outcome, which aimed to demonstrate a reduction in DUX4 
expression in muscle biopsies, it did reveal notable differ-
ences compared to the placebo-treated group across various 
secondary clinical and muscle MRI endpoints. No safety 
concerns were identified during the clinical trial [225]. The 
REACH study (NCT05397470), a placebo-controlled phase 
3 trial, is currently ongoing. The enrollment of the planned 
260 patients has been completed, but the results are not yet 
available. Finally, some evidence suggests additional targ-
etable pathways to reduce DUX4 transcription, such as the 
inhibition of bromodomain-containing protein 4 (BRD4), or 
the regulation of Matrin 3 (MATR3) [226]. However, studies 
in FSHD animal models are not yet available. MANOEU-
VRE (NCT05548556) is a placebo-controlled Phase II trial 
investigating GYM329, an anti-myostatin antibody specifi-
cally designed to target skeletal muscles with the potential to 
enhance their size and growth. The trial is actively enrolling 
[227].

Limb girdle muscular dystrophies (LGMD)

Recognized in 1954 as a separate entity, LGMD identifies 
patients showing onset of muscular dystrophy within the 
third decade of life, with weakness and atrophy predomi-
nantly in the proximal muscles at four limbs, sparing of 
facial muscles, and progressive course. The disease can be 
inherited as AD or AR, and the number of genes involved 
has been progressively raised until the number of 39, while 
a recent ENMC workshop revised this classification and the 
nomenclature [228]. To be considered a form of LGMD the 
condition must be described in at least two unrelated families 
with affected individuals achieving independent walking, 
elevated serum creatine kinase (CK), showing degenerative 
changes on muscle imaging, and have dystrophic changes 
on muscle histology. Albeit a similar clinical phenotype, 
LGMDs do not share a common pathological mechanism 
that would distinguish them from other forms of muscular 
dystrophy. Moreover, while some genes encode for proteins 
involved in the transmembrane connection of the muscle 
cytoskeleton to extracellular matrix, other have completely 
different molecular mechanism thus impeding at present a 
common unifying therapeutic strategy. The most frequent 
forms are related to mutations in gene CAPN, DYSF, ANO5 
and FKRP, while in pediatric patients are mainly involved 

genes causing sarcoglycanopathies, dystroglycanopathies, 
calpainopathies.

Except for physical therapy and prevention of cardiomyo-
pathy, there is no treatment at present for any LGMD. Pred-
nisone has been sporadically used mainly in sarcoglycano-
pathies, which are characterized by consistent inflammatory 
infiltrates in muscles [229]. Accordingly, recent preclinical 
findings showed that intermittent prednisone dosing reduced 
muscle damage and fibro-inflammatory infiltration in murine 
models of dysferlin and γ-sarcoglycan LGMD [230]. A sub-
sequent exploratory study on 19 LGMD patients (includ-
ing CAPN3, DYSF, SGCG, SGCB, SGCD, FKRP, TTN, and 
ANO5) receiving once-weekly prednisone at 0.75–1 mg/Kg 
for 24 weeks resulted safe and showed reduction of CK lev-
els and a trend in improvement of motor performances [231].

Gene therapies

Preclinical studies have shown significant results in the use 
of recombinant AAV-mediated delivery of small size LGDM 
genes in rodents. Most results were observed for sarcoglycan 
genes. The rAAVrh74 vector containing a codon-optimized 
human SGCG  transgene showed significant protein expres-
sion in skeletal muscle and heart of Sgcg-null mice, along 
with improvement of muscle histology, muscle force and 
motor functions [232]. Similarly, Sgca-null mice treated 
with the full-length human SGCA  driven by the same vector 
(and a muscle-specific promoter) showed robust expression 
of the protein in the sarcolemma, improved the histopathol-
ogy of limb and diaphragm muscles, and ameliorated motor 
functions and CK levels [233]. A similar strategy with the 
single stranded AAVrh74.tMCK.hCAPN3 transgene was 
effective in reverting the phenotype of the Capn3-null mice, 
[234] without the cardiotoxicity observed in previous treat-
ment protocols [235]. Also FKRP mouse models were ame-
liorated by AAV9 delivery of mouse/human FKRP, includ-
ing glycosylation of α-dystroglycan in heart and skeletal 
muscle, muscle histology and motor functions [236, 237]. 
However, a study posed the attention of possible muscle 
toxicity of FKRP overexpression [238]. Recently developed 
new optimized construct for FKRP with untranslated region 
(UTR) modifications and miniaturized muscle CK enhancer/
promoter was delivered with AAV6, AAV9 and AAVMYO1 
vectors showing good efficiency on the dystrophic pheno-
type (AAV6) and no toxicity (AAV9/AAVMYO1) on muscle 
phenotype [239].

Larger gene as DYSF has been instead delivered by dual-
AAV system with overlapping cDNA sequences [240]. 
Results in mice showed some mitigation of the disease 
although data did not reach significance and the number of 
transduced myofibers was estimated at 35%.

In human, isolated limb infusion gene transfer has been 
performed with the scAAVrh74.tMCK.hSGCA construct in 
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SCGA  patients through the femoral artery with the dosage of 
1 or 3 ×  1012 vg/kg/limb. Ambulant patients showed modest 
α-sarcoglycan protein expression in muscle and conflicting 
functional outcomes [241]. Clinical studies with systemic 
delivery of FKRP, SGCA  and SGCB, DYSF are ongoing.

Molecular therapies

Exon skipping through ASOs has been considered a useful 
mechanism also to treat LGMD. Proof of principle stud-
ies have been performed in ad-hoc generated mouse models 
such as SGCG , [242] or using patient-derived human cell 
lines, including patient carrying mutation causing SGCG  
[243]or DYSF LGMD [244]. Exon skipping strategy has 
been also proven for other LGMD mouse models, such as 
DYSF, [245] and SGCG  [246].

Cell‑based therapies

Cell therapy studies for LGMD are limited to experimental 
models. While transplantation of healthy myoblasts showed 
significant number of dysferlin positive myofibers in Dysf-
null mice, [247] these cells did not migrate far from their 
injection site, thus several injections per muscle would be 
necessary, making this approach not feasible. Again, the 
most significative result is related to the use of mesoangio-
blast stem cells in the Sgca-null mice. Parental administra-
tion of congenic healthy stem cells resulted in significant 
amelioration of skeletal muscle histology, motor function 
and re-expression of the missing α-sarcoglycan protein 
[248].

Other strategies

A number of molecules have been tested in preclinical 
models of LGMD, some of them showing amelioration of 
the phenotype. Dysf-deficient mice displayed reduction of 
muscle fat infiltration by Ezetimibe treatment, a cholesterol 
reducing drug [249]. Similarly, recombinant human galec-
tin-1improved muscle repair and function and reduced the 
inflammatory milieu when administered to Dysf-deficient 
mice [250]. Interesting results were obtained by six months 
administration of ribitol in mouse mutants for FKRP [251]. 
Ribitol is an important constituent for the functional matura-
tion of α-dystroglycan and matriglycan impaired in FKRP 
disease. Results showed significant rescue in the functions of 
skeletal, respiratory, and cardiac muscles in a dose-depend-
ent manner. Ribitol administration has been also used to 
ameliorate gene-therapy results in preclinical studies [252]. 
Molecules tested in clinical trials in humans did not show 
significant results so far, including the myostatin inhibitor 
domagrozumab recently reported in phase Ib/IIa, open-label 
study in FKRP patients [253].

Congenital muscular dystrophies (CMDs)

CMDs comprise a heterogeneous group of genetic disorders 
primarily affecting the skeletal muscle and often associated 
with multisystem features [254]. The clinical picture is char-
acterized by hypotonia and muscle weakness leading to a 
delay or arrest in the attainment of gross motor milestones; 
symptoms occur before the achievement of independent 
ambulation. Such definition provides a pragmatic bound-
ary with LGMD, with many genes that are allelic for both 
conditions. The severity of muscle involvement is variable, 
but muscle biopsy usually displays dystrophic features and 
CK are more commonly elevated [255]. A classification 
of CMDs based on the localization of the protein defects 
defines a) CMDs related to defective structural proteins 
of the basal membrane or extracellular matrix (ECM), b) 
CMDs related to primary defects in dystroglycan (DG) or 
α-dystroglycan glycosylation, c) CMD related to defects 
in proteins of the edoplasmic reticulum (ER), d) CMDs 
related to defects in proteins of the nuclear envelope, and 
e) a wider group including newly recognized forms asso-
ciated with proteins implicated in ER—Golgi trafficking, 
disorders affecting mitochondrial and lysosomal morphol-
ogy and function, and muscular dystrophies with multisys-
tem involvement and neurodegeneration [256]. With more 
than 35 genes identified so far, the overall prevalence of 
CMDs is 0.6–0.9 per 100.000 [257–259]. The most common 
forms are dystroglycanopathies (DGP; 12–25%), Collagen 
6 related disorders (COL6-RD) (12–19%), laminin-alpha 
2 related dystrophies (LAMA2-RD; 10–37%), and seleno-
protein N related myopathy (SEPN1-RM; 11.65%). Due to 
a founder mutation, Fukuyama CMD (FCMD) is the most 
common form in Japan [260–262].

At present, treatment for CMDs is supportive and no drug 
is approved. In following section, we will offer a summary of 
the most promising therapeutic approaches getting closer to 
clinical application. A detailed review of all forms of CMDs, 
treatment strategies was recently published [256].

Gene therapies

The replacement of a defective gene is seen as the optimal 
strategy for many AR disorders. In CMDs however, this is 
not always feasible due to the large size of genes exceeding 
the loading capacity of currently used AAV vectors (i.e., 
LAMA2 and COL6A3). Replacement is also not an option 
when disease mechanism derives from toxic gain of function 
mutations. At present, there are only two Phase I/II trials 
evaluating the efficacy of gene therapy in patients harbour-
ing mutations in FKRP (causing both DGP and LGMDR9), 
although these are exclusively recruiting individuals with 
a LGMD phenotype (NCT05224505 and NCT05230459). 
In general, dystroglycanopathies pose several challenges to 
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treatment. For instance, while pre-clinical studies suggested 
that the overexpression of the glycotransferase encoded by 
LARGE1 could enhance α-DG glycosylation also when the 
defect resided in other genes (POMT1 and POMGNT1), 
[263], such change was not observed in presence of other 
genetic defects. Moreover, there are concerns regarding the 
potential toxic effect of α-DG hyper-glycosylation [264]. 
Finally, CNS plays a pivotal role in numerous dystrogly-
canopathies, and the prospect of therapeutic interventions 
administered post-development yielding a favorable impact 
on this aspect appears unlikely [265, 266].

Gene addition is seen as a possible strategy for LAMA2-
RD. LAMA2-RD arises from pathogenic variants in the gene 
encoding the alpha-2 subunit of Laminin-211 (Lm-211), also 
known as merosin [267]. In patients with Lm-211 deficiency, 
upregulated laminin isoforms Lm-411 and Lm-511, sharing 
beta and gamma chains but with different alpha chains, are 
insufficient substitutes due to limitations in integrin-binding, 
poor alpha-DG binding affinity, and lack of the LN domain 
essential for polymerization. Strategies to overcome these 
constraints include Miniagrin, enhancing laminin binding 
to alpha-DG, and LN-domain nidogen-1 (αLNNd), enabling 
polymerization of alpha LN domain-lacking laminins. Co-
expression of these molecules in animal models yielded 
promising results, restoring basement membrane stability 
and enhancing muscle function [268–271]. Of note, both 
products can be loaded to AAV vectors, hence raising hope 
for translation to humans.

The upregulation of laminin-alpha1-containing isoform 
Lm-111, which shares homology with Laminin-alpha2, has 
also shown potential in rescuing muscle and nerve phe-
notypes. However, challenges remain, as Lm-111 is only 
expressed during embryonic life, and gene size constraints 
limit its use in AAV vectors. Alternatives involve delivering 
exogenous human recombinant Lm-111 through infusions, 
with some concerns regarding dosing, biodistribution, and 
human toxicity. Lastly, another elegant approach is achieving 
CRISPR-dCas9-mediated upregulation of Lm-111, although 
feasibility in human remains a concern [272–274].

Molecular therapies

The modulation of gene expression through the utilization of 
ASO or RNAi represents a promising approach for address-
ing dominant negative and gain-of-function mutations. This 
approach holds relevance in those severe cases of COL6-
RD caused by autosomal dominant mutations that usually 
locate close to the N-terminal region, including a recurrent 
deep intronic pathogenic variant in intron 11 of COL6A1 
[275–278]. Since haploinsufficiency does not cause disease, 
a knock-down of the gene is considered safe.

In LMNA-RD, mutant lamins exert a dual negative 
impact: aberrant nuclear localization and diminished lamin 

levels. The precise mechanisms through which these abnor-
malities lead to muscle disease remain incompletely under-
stood. Since most cases arise from toxic gain-of-function 
mutations, several research groups are actively developing 
therapeutic approaches to silence these toxic mutants. Such 
strategies involve siRNA or genome editing techniques, such 
as CRISPR/Cas9. In theory, a combined approach target-
ing the silencing or knock-down of abnormal transcripts 
while simultaneously replacing the defective gene could 
be employed. However, the optimal threshold of lamin A/C 
expression remains a subject of investigation, as both exces-
sive and insufficient expression can detrimentally affect mus-
cle cells.

Lastly, in the case of FCMD, a remarkable 80% of Japa-
nese patients share a distinctive founder mutation that dis-
rupts mRNA splicing, resulting in an aberrant protein with 
atypical amino acid composition at the C-terminus. This 
leads to abnormal protein localization from the Golgi appa-
ratus to the endoplasmic reticulum (ER). Given the nature of 
this genetic defect, ASOs designed to target splicing modu-
lating regions hold promise as a mutation-specific therapeu-
tic strategy for FCMD [279].

Other strategies

Investigational products aimed at common pathogenic path-
ways hold the theoretical advantage of their applicability in 
more than one condition. Based on pre-clinical data sug-
gesting a role of proapoptotic pathways in the generation of 
damage in LAMA2-RD and a beneficial effect observed in 
mice after the administration of the inhibitor of the Siah1-
mediated nuclear translocation of GAPDH (named Omi-
gapil), a 12-weeks, phase 1 clinical trial was completed in 
2019 (NCT01805024) on patients affected by LAMA2-RD 
and COL6-RD [267]. While the compound was safe and 
well-tolerated, follow-up was too short to provide informa-
tion regarding its efficacy. The development of the product 
in CMD was however discontinued.

A recently discovered important stage in the synthesis of 
the ligand-binding section of α-DG involves the addition of 
a tandem ribitol 5-phosphate (Rbo5P) structure to the sugar 
chain of α-DG [280]. This process is facilitated by ISPD 
and two Rbo5P transferases. The use of ribitol has demon-
strated benefits in preclinical models and could potentially 
serve as a therapeutic avenue for patients carrying patho-
genic variants in ISPD, FKTN, and FKRP [266]. A Phase III 
Placebo-controlled study aims to assess the effectiveness and 
safety of BBP-418 (Ribitol) in individuals diagnosed with 
LGMD2I (FKRP) is ongoing (NCT05775848).

Considering the presumed antioxidative and anti-ER 
stress properties associated with SEPN1, ER stress inhibi-
tors have been explored as a potential treatment for SEPN1-
RM. A preliminary clinical trial utilizing N-acetylcysteine 
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was concluded in 2020 (NCT02505087), but the outcomes 
are not yet available.

Myotonic dystrophies

This is a dominant inherited, multi-systemic, disease due to 
the expansion of the CTG triplet repeat in the DMPK gene 
for type 1 myotonic dystrophy (DM1) and the CCTG-tetra-
nucleotide sequence in the CNBP gene for the DM2. DM1 is 
characterized by weakness in facial and distal limb muscles 
plus myotonia, while DM2 mainly affects proximal limb 
muscles and myotonia is often less evident. DM1, and in 
general with lower frequency and severity in DM2, also can 
present with non-muscular signs and symptoms including 
cognitive impairment, cataract, insulin resistance, infertility 
and endocrine dysfunction, cardiac arrhythmia, sleep disor-
ders and hypersomnia, and dysphagia. While DM1 onset can 
be at any age, including neonatal and infancy (more severe 
forms), DM2 onset is only in adulthood [281, 282].

In both cases, the gene expansion has deleterious down-
stream effects in many different cells of the body, thus 
explaining the multi-organ disease. This mechanism is 
clear and well documented for DM1, while it is still not 
completely understood for DM2. In DM1, the production of 
an abnormal RNA (CUG repeats of abnormal DMPK tran-
scripts) accumulates in the nucleus (RNA foci) and disrupts 
normal cellular function with a gain-of-function mecha-
nism [283]. RNA foci dysregulate essential proteins, such 
as Muscleblind-like 1 and 2 (MBNL1/2) factors and CUGBP 
Elav-Like Family Member 1 (CUGBP1 or CELF1). The dys-
regulation of MBNL1/2 and CELF1 is responsible for the 
spliceopathy, that is the changes in the alternative splicing 
of hundreds of genes thus explaining the multisystemic char-
acteristic of DM1 symptoms. Accordingly, animal models 
with long CTG repeat expansions replicate the disease [284]. 
Recently, miRNA dysregulation was suggested to contribute 
to MBNL1/2 protein depletion, as well as the dysregulation 
of other signaling pathways such as AKT, AMP-activated 
protein kinase (AMPK), and glycogen synthase kinase 3 beta 
(GSK3β) [285].

At present, the only treatments available for DM1 and 
DM2 are related to prevent myotonia with anti-epileptic 
drugs or the more effective mexiletine, an antiarrhythmic 
molecule blocking sodium channels [286]. This molecule 
is currently used in clinical practice as was shown to sig-
nificantly reduce the frequency and severity of myotonia 
[287], but did not provide benefit in 6-min walk distance 
after 6 months of treatment [288]. Mexiletine has also 
shown the ability to downregulate DMPK mRNA levels, 
suggesting additional function in DM1 [289]. Although the 
use of Modafinil to treat hypersomnia in DM1 patients was 
not found to be effective [290], there is general consensus 

between experts suggesting that this drug can be useful in 
selected patients [291]. Other available treatments are related 
to the development of specific symptoms in the different tar-
get organs, and thus aimed at controlling cardiac, endocrine 
(e.g., hyperglycemia), and gastrointestinal manifestations.

Drugs directed against the pathogenesis of the disease 
are under development. A few different approaches have 
been developed to excise, block the expression, or modify 
the instability of CTG repeats with the intent to specifically 
target the mutant allele, its RNA product, or its downstream 
signaling pathways.

Gene therapies

Gene editing is the mechanism of choice to target and 
delete the expanded (toxic) repeats. The advantage of this 
approach is that the DM1 mutation can be eliminated from 
the genomic DNA, preventing the toxic downstream effects. 
Several nucleases were tested to induce double-strand breaks 
in in vitro and small animal models showing variable results 
[292]. Better results were observed with the CRISPR/Cas9 
technology to excise DM1 expansion in mouse models, 
[293] or patient-derived myoblasts, fibroblasts or IPS cells; 
reviewed in [294]. Tissue-specific and time restricted Cas9 
activity will constitute a promising tool for reducing the risk 
of unintended genomic effects still limiting this technology.

Molecular therapies

ASOs have been designed with two different aims: (1) to 
block MBNL1 interaction by binding to CUG repeats or 
(2) to induce the degradation of CUG-expansion-containing 
DMPK mRNA, as the stabilization of the repeat to postpone 
the onset or slow the progression of the disease. Different 
types of ASO have been tested in human cells or animal 
models with interesting results in the last years. For exam-
ple, already in 2011 Nakamori et al. showed that CAG-repeat 
ASO that bind CUG-expanded RNA was able to suppress 
the expansion instability in DM1 models [295]. Many sub-
sequent preclinical studies were performed and have been 
recently reviewed [296]. A similar strategy to target CUG 
expansion was achieved with RNA-i by siRNA or miRNA 
delivered by viral vectors [297, 298].

An alternative way to tackle MBNL1 sequestration is to 
use an engineered RNA binding domain of the protein itself 
as a decoy for CUG-expansion to reverse the toxicity of the 
mutant transcripts [299].

Clinical trials in human have been performed or are ongo-
ing for both ASOs and RNA-interference strategy. Recently, 
a phase I/IIa trial with the ASO Baliforsen showed that the 
drug was generally well tolerated but with low efficacy 
[300], probably due to low muscle drug concentration, as 
generally observed for other ASOs in DMD. Even in this 
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case, new strategies to increase ASO concentration in mus-
cles, such as conjugation with specific antibodies, fatty acids 
or proteins, are under evaluation in clinical studies.

Cellular therapies

Cell therapy studies in DM1 are a few. One potential limit 
might be the observation that donor-derived engrafted cells 
(nuclei) acquire toxic RNA foci containing MBLN1 seques-
tration and abnormal alternative splicing. This suggests that 
toxic CUG repeat-containing RNA may exit the endogenous 
nucleus and traffic to other nuclei in the syncytial myofiber, 
thus exerting pathological effects [301].

Other strategies

Many molecules have been or are being tested for DM1 
including new and repurposing drugs [302]. Among oth-
ers, some have reached clinical evaluation and are briefly 
described below. Metformin, a biguanide antidiabetic drug, 
was shown to rescue multiple aspects of DM1. Metformin 
can correct DM1-related alternative splicing defects, alle-
viates muscle cell senescence and mitochondrial dysfunc-
tion, reduces the risk of developing cancer and improves 
mobility in DM1 treated patients [302]. A phase II clinical 
trial showed the efficacy of metformin on mobility in 40 
patients with DM1 [298], while a larger study is on-going. 
Erithromycin, as the prototype of small molecules to inhibit 
the interaction between MBNL1 and CUG expansions has 
been successfully used in vitro and in mouse models of DM1 
[303]. A clinical study in DM1 patients is ongoing. Preclini-
cal studies with GSK3β inhibitors, such as lithium and Tide-
glusib gave positive results [304, 305]. Tideglusib was also 
tested in congenital and childhood-onset DM1 patients in a 
phase II study: the drug was safe and showed some improve-
ment in neuromuscular and cognitive symptoms [306].

Congenital myopathies (CM)

CM are a heterogeneous group of genetic disorders usu-
ally characterized by congenital hypotonia and weakness 
that typically exhibit stable or slowly progressive clinical 
course. Of note, the clinical spectrum ranges from milder 
forms (mainly with childhood but also adult onset) to severe 
neonatal cases, with involvement of skeletal, extraocular, 
respiratory, and bulbar muscles leading to severe disability 
and early death. Cardiac involvement is observed only in 
patients harbouring mutations in specific genes (e.g., TTN, 
MYH7). CMs have been historically defined by the histo-
pathological findings described on muscle biopsy. The most 
common categories are (a) congenital myopathies with cores 
(central core or multi-minicore), (b) nemaline myopathies 

(defined by the presence of distinct rod-like inclusions called 
nemaline bodies), (c) and centronuclear myopathies. His-
torical classifications also included Congenital fibre type 
disproportion and Myosin storage myopathy [307]. Collec-
tively, CM have a prevalence of 1:26.000 [308, 309] and 
up to 30 causative genes identified so far. Importantly, not 
only mutations in different genes can cause the same mus-
cle pathologies, but mutations within the same gene can 
cause different clinical and histopathological findings. The 
pathophysiological mechanisms underlying CMs are mainly 
related to excitation–contraction coupling, intracellular cal-
cium homeostasis, membrane trafficking and remodelling, 
and sarcomeric filament assembly and interaction [310]. To 
date, no approved treatment exists for CMs but there is hope 
for patients coming from both symptomatic and targeted 
strategies [311, 312].

Gene therapies

X-linked myotubular myopathy (XLMTM) is a rare mono-
genic disease due to mutations in the MTM1 gene that 
cause centronuclear myopathy. The clinical spectrum is 
wide including symptomatic female carriers, but 80% of 
male individuals manifest with a severe clinical phenotype. 
This presentation is characterized by significant prenatal 
and neonatal features, including polyhydramnios, reduced 
foetal motility, neonatal muscular weakness, hypotonia, and 
respiratory insufficiency. Motor developmental milestones 
are markedly delayed, and most affected individuals do not 
attain independent ambulation. Weakness often involving 
facial and extraocular muscles is severe. Respiratory com-
promise is nearly universal, with the majority of affected 
individuals necessitating continuous ventilatory support. 
Based on successful preclinical studies [313], a phase I/II 
open-label, ascending-dose study was performed to evaluate 
AT132, an AAV8-delivered gene therapy (NCT03199469). 
While preliminary data suggested potential clinical benefit 
on both motor and respiratory function [314], the study was 
halted for the death of 4 patients with ongoing severe chole-
static liver dysfunction [311]. Cholestasis was then recog-
nized as an important feature of the disease and studies are 
ongoing to establish how to improve safety [315].

Molecular therapies

Within the group of centronuclear myopathies, MTM1, 
DNM2 and BIN1 are interconnected due to the role they 
play in membrane trafficking. Preclinical studies showed that 
the downregulation of DNM2, whose levels are increased 
also in BIN1 and MTM1-related centronuclear myopathies, 
resulted in clinical and histological improvements [311, 
316]. Based on these findings, a phase I/II, dose escalation 
trial testing the molecule DYN101 (an ASO directed against 
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human DNM2 RNA), was performed on patients affected by 
XLMTM and DNM2 centronuclear myopathies. However, 
the trial was stopped due to safety issues. Alternative strate-
gies (such as AAV-delivered shRNA or CRISPR/Cas) have 
been explored in mice [317, 318]. An further approach that 
prompted positive results in murine models of MTM1 and 
DNM2 related CM was the upregulation of amphiphysin 2 
(encoded by BIN1), which is a negative regulator of DNM2 
[319].

Other therapies

Another therapeutic strategy with potential benefit on 
multiple conditions is the use of a repurposed drug called 
Tamoxifen. Its beneficial effect on muscle function was 
demonstrated in preclinical models of BIN1, DNM2 and 
MTM1 related centronuclear myopathies [320, 321]. The 
TAM4MTM, a phase I/II double-blinded study to determine 
the safety and efficacy of tamoxifen therapy for XLMTM is 
currently ongoing (NCT04915846).

RYR1-related myopathies, allelic to the malignant 
hyperthermia susceptibility (MHS) trait, are caused by both 
autosomal dominant (milder) and recessive forms. Mutants 
in RYR1, encoding for the type 1 ryanodine receptor (an 
intracellular calcium release channel), cause abnormal sar-
coplasmic reticulum calcium leak and increased activity of 
calcium-activated proteases. Hence, molecules aimed at sta-
bilizing have been tested in preclinical models, [322] and 
in a Phase 1 clinical trial (NCT04141670). On the other 
hand, the use of the antioxidant N-acetylcysteine failed to 
meet primary endpoints in a trial conducted on patients har-
bouring RYR1 mutants (NCT02362425). Results on patients 
affected by SEPN1 related myopathies (which span from 
multi-minicore CM to rigid spine CMD) are still pending 
(NCT NCT02505087).

Lastly, there is evidence that in some patients with con-
firmed CM a transmission defects in the neuromuscular 
junction can be present [323]. Interestingly, whilst CM and 
CMS are distinct groups of disorders, there are in some cases 
overlapping clinical features, such as fatigable muscle weak-
ness. Features suggestive of NMJ abnormalities include, 
alone or in combination, positive response to AChE inhibi-
tors, abnormal repetitive nerve stimulation and increased 
jitter on single fibre electromyography [324–328]. Of note, 
long term anti-cholinesterase treatment has been shown to 
detrimentally affect end-plate structures and neuromuscular 
transmission; in CMS patients harbouring AChR mutants the 
initial beneficial treatment effects of AChE inhibitors can 
diminish over time. The addition of β2-adrenergic agonists 
to anti-cholinesterase treatment has been shown to rescue 
the loss of postsynaptic folding caused by long-term pyri-
dostigmine treatment in AChR deficient mice [144]. Ben-
eficial effects of a combinatory treatment, whether linked 

to the above mechanism or to the anabolic effects exerted 
by β2-adrenergic agonists, have been demonstrated in CMS 
patients with AChR deficiency [329], and in anecdotical CM 
cases, even in the absence of clear neurophysiology abnor-
malities [326].

Summary and conclusions

Although significant therapeutic results in neuromuscular 
disorders are still limited to SMA and hATTR neuropathies, 
a relevant number of molecules and products are under eval-
uation in preclinical and clinical studies for the whole spec-
trum of genetic neuromuscular disorders. The paradigm that 
genetic disorders are untreatable conditions has therefore 
dramatically changed, suggesting that in few years we will 
likely have numerous drugs available for various forms of 
inherited neuromuscular diseases. However, several issues 
persist. The efficient delivery of products to the precise cell 
compartment, including effective targeting of stem cells, still 
presents significant challenges. Moreover, it’s important to 
note that gene transfer might not always be feasible, particu-
larly for extremely large genes, when utilizing AAV vec-
tors due to the limited cargo capacity of this vector. Finally, 
advanced tools such as gene editing still maintain off-target 
toxic effects that limit their application.
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