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Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of 
the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal 
information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and 
metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized 
as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Neverthe-
less, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating 
conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, 
promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Inter-
estingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin 
plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, 
despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized 
by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In 
this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high 
order brain processes.
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Introduction

In the central nervous system (CNS), oligodendrocytes 
(OLs) are responsible for the production and maintenance 
of the myelin sheath. OLs originate from oligodendrocyte 
precursor cells (OPCs), which arise in the embryonic (ven-
tral OPCs) and perinatal (dorsal OPCs) mouse telencepha-
lon in distinct successive waves [1, 2]. OPCs also persist 
as a major pool of progenitors in the adult brain long after 
oligodendrogenesis completion and promote remyelination 
when necessary [3–9]. However, OPCs should not be con-
strained to their OL progenitor function as they are arising 

as circuit regulators in the parenchyma with functions rang-
ing from neuronal migration to glial scar formation ([10] 
extensively reviews these non-canonical functions). Along 
the same line, an extensive body of evidence links OLs 
to a variety of roles such as energy metabolism, neuro-
protection, axonal maintenance and information process-
ing [11–14]. Although OLs and the myelin sheaths they 
generate are considered a single cellular entity, functional 
studies often discriminate between roles strictly related to 
the cells themselves and those specifically associated with 
myelin per se.

The myelin sheath is a highly specialized multilamellar 
membrane that wraps axons. Central myelin is structured 
by an ensemble of compact interconnected lamellae of 
membrane that contact the axon through terminal loops 
forming the axo-glial paranodal junction directly followed 
by the juxtaparanode located beneath the compacted mye-
lin of the internode [15, 16]. What we usually refer to as 
the myelin sheath is the single entity formed by the paran-
odes, juxtaparanodes and the internode (Fig. 1). Adjacent 
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myelin sheaths are separated by nodes of Ranvier (NORs) 
[17], unmyelinated regions where the nerve fiber is laid 
bare and frequently contacted by other glial cells includ-
ing astrocytes [18, 19], OPCs that contact both the node 
and paranodal myelin and whose role is yet to be resolved 
[20] and finally, microglia that could play a role in remy-
elination when myelin sheath integrity is impaired [21, 
22] (Fig. 1). Myelin’s high compartmentalization allows 
a distinctive sheath-axon interaction that serves various 
functional ends such as the distribution of glial metabo-
lites [16, 23]. In intimate relationship with the unmyeli-
nated segments or NORs, the myelin sheath enables action 
potential regeneration and propagation along fibers of vary-
ing lengths, resulting in saltatory conduction, an energy-, 
space- and time-saving phenomenon.

The function of myelin can be approached at two different 
levels: at the local level, which consists of insulating axons, 
supporting them and ensuring bidirectional axo-glial com-
munication, and at the global level, which orchestrates the 
interconnection of neuronal assemblies and the association 
of functional brain hubs for complex information processing. 
In this review, we will first introduce some general concepts 
about the role of myelin in action potential conduction and 
axonal metabolism (local level). Next, we will discuss how 
myelin partakes in cognitive processes and assess whether 
myelination might modulate neuronal network activity and 
cortical oscillations during the execution of these processes 
(global level). Finally, we will address the relevance of mye-
lin defects in neurodevelopmental disorders (NDDs) associ-
ated with cognitive deficiencies. 

Fig. 1  Myelin sheath, nodal 
architecture and axo-glial 
contacts. Axons bear multiple 
myelin sheaths originating from 
mature oligodendrocytes and 
consisting of the internode, jux-
taparanodes and the paranodes 
which directly flank the nodes 
of Ranvier (top). Sheath archi-
tecture plays a crucial role in the 
segregation of nodal proteins, 
especially voltage-gated  Na+ 
and  K+ channels, participating 
in the generation of a nodal 
structure that is essential to 
action potential conduction and 
maintenance. Finally, the NORs 
are also contacted by other 
glial cells such as astrocytes, 
microglia and OPCs (bottom). 
They constitute a dynamic 
region of the axolemma and a 
site of modulations that serve 
many functional and structural 
purposes
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Generalities on myelin in conduction 
and metabolic coupling

Saltatory conduction has long been held as the main phe-
nomenon resulting from myelin sheath wrapping around 
electrically active axons [24, 25]. In electrophysiologi-
cal terms, myelin works such wonders by decreasing the 
capacitance of the axolemma while increasing resistance 
to ion flow. This achieves two important features: (1) con-
duction speed of action potentials is increased while (2) 
their electrical properties are maintained throughout the 
traveled distance. Beyond physical insulation of the axon, 
the segregation of crucial proteins by the various segments 
of the sheath directly impacts conduction. Voltage-gated 
 Na+ channels  (NaV channels) are exclusively stabilized 
at the NORs by the paranodal axo-glial junction [26, 27] 
(Fig. 1). In this small, well-defined region of the axon, 
an increase in membrane potential up to the threshold 
potential induces  NaV channels opening, generating the 
strong depolarization (or rising phase) characteristic of 
the action potential.  NaV channels are expressed through-
out the brain but their isoform combinations, density and 
pattern of expression differ in GABAergic interneurons as 
compared to glutamatergic neurons due to the morphologi-
cal and functional differences of these two populations. A 
significant distinction between the two cell types in the 
rodent cerebral cortex is that GABAergic interneurons 
primarily express  NaV1.1, while glutamatergic neurons 
predominantly express  NaV1.2 and  NaV1.6. Additional 
differences also emerge during development and vary 
across species [28, 29]. During action potential genera-
tion,  NaV channels rapidly inactivate allowing  K+ chan-
nels to repolarize the axon. Different voltage-gated  K+ 
channels as well as mechano- and thermo-sensitive  K+ 
channels, two-pore-domain potassium (K2P) channels, 
actively drive repolarization (or falling phase) at the nodes 
[30–32], wherein  Kv1 channels located in the juxtapara-
node contribute to the refractory period [33, 34] (Fig. 1). 
Similar to  NaV channels, the expression patterns of  K+ 
channels may vary depending on the developmental stage 
and specific cell types. While certain channels, such as 
 Kv1 and  Kv7, can be expressed on the axons of both gluta-
matergic and GABAergic neurons [34, 35],  Kv3 channels 
are particularly suited to supporting the high-frequency 
repetitive firing characteristic of GABAergic fast-spiking 
interneurons (although their expression is not solely asso-
ciated with this function) [36]. Regarding  K+ homeostasis, 
OL express inwardly rectifying  K+ channels  (Kir channels) 
actively participating in  K+ buffering and contributing to 
OL-axon metabolic coupling [37, 38]. They also drive the 
establishment of axolemma resting potential allowing OLs 
to indirectly adjust neuronal excitability, a phenomenon 

especially relevant in white matter tracts where astro-
cytes, the main actors of extracellular potassium uptake, 
have limited access to axons [39]. Beyond action potential 
propagation at the nodal axolemma, the myelin sheath also 
forms a singular structure with the insulated internodal 
axolemma and appears to generate potentials through the 
periaxonal and paranodal domains thus forming another 
axonal conducting pathway outside of NORs. This phe-
nomenon, termed “submyelin conduction”, could play a 
role in the spatiotemporal profile of action potential salta-
tion [40], further supporting the notion of an electrophysi-
ological coupling between the axon and its myelin sheaths.

As well as promoting fast conduction, myelin sheaths 
have emerged as a central component of axon metabolism 
[14]. Axonal access to energy-rich extracellular metabolites 
is limited by myelin insulation, so it is the myelin itself that 
has to supply the energy. Reminiscent of the astrocytic 
“lactate shuttle”, OLs transport lactate, a product of aerobic 
glycolysis, through the periaxonal space into the axon via 
a pair of specialized monocarboxylate transporters (glial 
MCT1 and axonal MCT2) allowing a myelin-axon metabolic 
crosstalk that is relevant in both health and disease [14, 41, 
42]. This axo-glial coupling is highly plastic and follows 
axon energy needs through the retroactive action of axons 
on their myelin sheath. Notably, neuronal activity probably 
increases glutamate levels in the periaxonal space and 
activates NMDA receptors expressed in the paranodal 
and internodal membranes of OLs, enabling them to 
tune their energy production to neuronal activation [43, 
44]. Beyond energy provision, myelinating cells secrete 
various neuroprotective and neuro-supportive factors into 
the periaxonal space. For instance, glutamate activation 
of glial NMDA receptors triggers the secretion by OLs of 
exosomes carrying specific protein and RNA cargos that 
are endocytosed by neurons, improving oxidative stress 
resistance and long-term axonal integrity maintenance [45, 
46]. Although the nature of these cargos and the signaling 
cascades they elicit in the axon remain largely unknown, 
some have been identified such as ferritin heavy chain 
(FTH1), a strong iron chelator protein that is secreted 
by OLs into the adjacent extracellular space to prevent 
ferroptosis, the accumulation of free iron ions that generates 
harmful oxidizing species [47]. Although the functional and 
metabolic coupling between myelin sheaths and axons is 
important for the dynamics of myelin-axon interactions, its 
significance goes far beyond local crosstalk, as it determines 
the action potential waveform and affects neuronal coding 
and activity in a network, ultimately influencing information 
processing in the brain. Over the last decade, myelin has 
emerged as an important component of plasticity, memory 
and learning, moving away from its primary function 
associated with the transmission and velocity of action 
potentials.
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Myelination heterogeneity in the cortex

The cortex contains a patchwork of differentially myelinated 
axons belonging to both glutamatergic and GABAergic neu-
rons. Presence and extent of myelination relies in part on 
axon diameter, as OLs tend to extensively myelinate larger 
axons [48, 49]. However, complex patterns of myelination 
are also present in sub-diameter threshold axons while some 
axons with the required diameter are discontinuously myeli-
nated or not myelinated at all. Beyond axonal diameter, other 
factors could be driving myelination heterogeneity, notably 

in gray matter: OL intrinsic properties [50], axonal permis-
sive cues [51] and somatodendritic repulsive cues [52], neu-
ronal activity [53–58], as well as localization and cell type 
[59, 60]. Comparing GABAergic and glutamatergic neurons 
has revealed compelling differences in myelin content and 
patterns. On one hand, high throughput electron microscopy 
that individually traces pyramidal cell proximal axons in 
the mouse somatosensory cortex uncovered a myelin gra-
dient, with deep layer (V/VI) pyramidal cells displaying a 
higher myelin coverage compared to superficial layer (II/
III) pyramidal neurons. Furthermore, superficial layer 

Fig. 2  Summary of myelination effects at cellular, network and 
cognitive levels. A Myelination patterns (myelin in red) of pyrami-
dal neurons (pyr, purple) and PV interneurons (PV, blue) are differ-
ent in the cortex, probably including the mPFC (right). It has been 
shown that myelination can affect the excitation-inhibition balance 
(left, [65]). However, it is unknown how myelination heterogeneity 
impacts conduction and synaptic transmission. IL and PL: infralim-
bic and prelimbic regions of the mPFC; ACC: anterior cingulate. B 

Myelin may adjust the synchrony between neuronal ensembles of two 
distant brain regions (right). The synchrony of local (intracortical) 
and inter-regional neuronal networks generates brain oscillations at 
different frequencies such as gamma and theta, respectively (left). C 
Myelin appears to be important for the proper performance of cogni-
tive tasks such as social interactions. Behavioural performance also 
highly depends on brain oscillations which, in turn, are influenced by 
myelination
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pyramidal cells display a distinct longitudinal myelin pattern 
with myelin sheaths being separated by long unmyelinated 
gaps (much longer than NORs) (Fig. 2A, right; [60]). On 
the other hand, a vast majority of myelinated gray matter 
GABAergic axons belong to parvalbumin-expressing neu-
rons (PV interneurons) [59, 61, 62]. Moreover, the extent 
of PV interneuron myelination appears to be proportionally 
scaled to the overall myelin content across different corti-
cal areas [63]. PV interneuron myelin topography is dic-
tated by axonal diameter and interbranch distances in both 
human and rodent neocortex [64]. However, this myelination 
is limited to the proximal part of the axon (< 3%), so that 
most of the axon is free of myelin [59], suggesting the exist-
ence of other subtle interactions between OLs and specific 
axonal regions (Fig. 1A, right). As PV interneurons have 
only short local projections, their myelination was at first 
quite puzzling but has since been shown to serve a cardinal 
role in their functional maturation. Indeed, an early disrup-
tion of PV interneuron-OPC synapses results in a dysmyeli-
nation and an abnormal proximal axon morphology. These 
defects are associated with a decrease of their high firing 
frequency and a disturbance of their synaptic connectivity 
that reduces the inhibitory drive of the somatosensory cor-
tex, particularly in layer IV [65]. Furthermore, impairing 
myelination early in development (as early as postnatal day 
21 in mice) reduces their autaptic responses, i.e. a reduction 
in functional GABAergic synapses of the PV interneuron 
onto itself. In turn, this absence of autaptic control results 
in an exacerbated excitability of PV interneurons, which 
become unable to sustain optimal high frequency firing rates 
[66]. Another compelling function of PV interneuron myelin 
sheaths is the clustering of mitochondria and thus the fine 
tuning of metabolic requirements during axonal activation 
[67]. Interestingly, other GABAergic neuron subtypes such 
as a fraction of somatostatin (SST)-expressing interneurons 
and, to a much lesser extent, vasoactive intestinal peptide 
(VIP)-expressing interneurons have myelin sheaths with 
layer-specific arrangements [63, 68, 69]. However, the func-
tional and structural significance of this myelination, some-
times limited to a single internode per axon, remains largely 
unexplored, pointing to avenues for further investigation. 
Nevertheless, it has recently been reported that a myelin 
loss in SST interneurons in the hippocampus can be associ-
ated with a reduction in their firing frequency [69]. Finally, 
comparisons between seven different GABAergic and gluta-
matergic neurons show significant variations in their myeli-
nation patterns, with PV interneurons and thalamocortical 
axons exhibiting higher myelination probabilities [63]. The 
cell identity, the axon diameter and the axonal degree of 
branching (collateral formation) dictate the myelin profile 
along axons belonging to distinct neuronal subtypes [63, 64].

We would like to highlight two important ideas: (1) 
although white matter myelin has been extensively studied 

both in health and disease, we should exert caution when 
extending such findings to gray matter myelination which is 
protracted, sparse and, as shown above, has topographical 
and functional complexities less found in white matter tracts 
[70] and (2) OL lineage cells heterogeneity (thoroughly 
reviewed in [71]) could be an active driver of myelination 
heterogeneity and should be considered in future studies.

Myelin in cognitive processing

Myelin establishment and cognitive development

Myelination in the CNS happens in a specific spatial and 
temporal order in both humans and rodents, and remains 
plastic and adaptive throughout life [72]. Myelin maturation 
in the brain progresses in a protracted fashion, from caudal 
to rostral, so that the prefrontal cortex (PFC) in both 
humans and rodents is still undergoing myelination well 
into early adulthood [73–78]. It is thus tempting to parallel 
this “late” maturation of the PFC in terms of myelination 
with the establishment of higher cognitive functions such 
as self-identity, social and emotional regulation, memory, 
adaptive responsiveness and predictive decision making 
[54, 79, 80]. In fact, correlation between white matter 
changes and cognitive function over the course of human 
life establishes a link between myelin development and 
cognitive development. Longitudinal brain imaging studies 
have shown that white matter volume—reflecting the myelin 
content and axonal caliber [81]—has a linear increase 
throughout childhood and adolescence ([82] reviews 
such findings while discussing various myelin imaging 
techniques and their shortcomings). As first reported by 
fractional anisotropy, a measure of white matter volume 
in diffusion tensor imaging (DTI), an increase of myelin 
thickness in frontal white matter positively correlates with 
increased working memory scope in children [83]. This was 
further confirmed by probing working memory through 
the maturation of fronto-parietal and fronto-striatal white 
matter tracts from childhood to early adulthood which 
revealed that proper myelination of these tracts predicts 
future working memory capacity [84, 85]. In terms of social-
emotional skills in humans, a recent study on children aged 
0 to 36 months positively correlates myelination expansion 
in regions of the “social brain”, such as the medial PFC 
(mPFC), with social-emotional development [86]. Similarly, 
in mice sociability is related to myelination of the mPFC 
as shown by the deleterious effects of social isolation 
immediately after weaning on both adult mPFC function 
and myelination [87]. During development, exposure to 
an early stress caused by maternal separation induces a 
premature differentiation of OLs in the mPFC along with 
emotional and object recognition impairments in the adult 
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that can be rescued by the chemogenetic activation of mPFC 
neurons during the two first weeks of life [88]. As for other 
mPFC-related behavioral outputs, studying myelin signals 
in adolescent healthy subjects offers a more complete (and 
complex) parallel between myelin content in both gray and 
white matter with compulsive and impulsive behaviors [89]. 
The expression of both behaviors was positively correlated 
with reduced myelin signals in frontal areas such as the 
lateral and medial PFC [90]. Interestingly, the correlation 
was more pronounced for gray matter regions, further 
supporting the notion of discreet differences in myelination 
development and macrostructure between gray and white 
matter areas.

Myelination is therefore a long-lasting process that 
represents a perfect “substrate” for the maturation and 
adaptability of cognitive processes. However, although 
myelination and cognitive development correlate, the 
underlying mechanisms that link these two processes are 
not yet fully understood. Among many of the possible 
mechanisms, early neuron-OL interactions may play a 
decisive role in both developmental myelination and neuronal 
maturation. In the developing neocortex, OPCs receive 
transient synaptic inputs from GABAergic interneurons, 
mainly PV interneurons, that disappear in juvenile mice [91, 
92]. The genetic inactivation of these neuro-glial synapses 
at an early stage of postnatal development does not have a 
major impact on OPC proliferation and differentiation, but 
leads to significant defects in interneuron myelination and 
in the maturation of cortical inhibitory circuits, affecting 
sensory discrimination [62, 65]. Furthermore, early 
 GABAB receptor-mediated signaling onto OPCs induces 
the apoptosis of interneurons via the cytokine TWEAK 
pathway, resulting in proper PV interneuron cell density and 
myelination in the adult [93]. The specific ablation of these 
receptors in OPCs is associated with an excitation-inhibition 
imbalance in the mPFC and severe social behavior defects 
[93]. These studies highlight an important role of early 
interneuron-OPC communication in the establishment of 
cortical inhibitory circuits and cognitive function (Fig. 2A).

Experience‑driven myelin plasticity

Beyond development, myelin remodeling has now emerged 
as one of the main drivers of plasticity in the brain. Myelin 
establishment during critical periods of early postnatal life is 
indeed paramount but not immutable, as OLs drive different 
myelination patterns in response to neuronal activity and 
experience throughout an individual’s life, thus driving a 
dynamic and adaptive remodeling of neuronal circuits [94, 
95].

Motor learning has been extensively used as a straightfor-
ward tool to question myelin remodeling in the adult brain. 
In a first study on new motor skills acquisition in the rodent, 

Magnetic Resonance Imaging (MRI) fractional anisotropy 
revealed that motor training induces structural changes in the 
white matter of the motor cortex, and these positively cor-
related with the rate of learning [96]. Preventing new myelin 
formation in the young adult (P60 and P90) by inhibiting 
new OLs production directly hinders new motor skill learn-
ing [97]. Myelin plasticity concerns motor axons activated 
by learning and proceeds in distinct steps. Amidst learning, 
pre-existing myelin sheaths retract, generating a new pattern 
of intermittent myelination. After the learning phase, new 
myelin sheaths are added to cover large unmyelinated gaps 
on the axolemma, forming regions of continuous myelina-
tion [98].

Recent data on other brain areas involving higher 
cognitive processing and memory also reveal that myelin 
plasticity is necessary for proper behavioral performances 
and outcomes. For instance, spatial memory consolidation 
during a Morris water maze task, resulting from a complex 
dialogue between PFC areas, such as the anterior cingulate 
cortex (ACC), and the hippocampus is altered when de novo 
myelination is prevented in the adult [99]. Along the same 
line, fear learning and working memory tasks (radial arm 
maze) appear to increase OPC proliferation and myelination 
in the mPFC and ACC, respectively [100, 101], while 
inhibition of myelin formation impairs fear memory recall 
[101]. Another study has reported that the deletion of the 
transcription factor Olig2 in OPCs inhibits myelination, 
thereby impairing spatial memory in young adult mice 
[102]. In another register, prolonged social isolation in the 
adult specifically induces a decrease in myelin thickness 
and nuclear heterochromatin in mPFC together with a 
social defeat phenotype, while social re-integration for 
four weeks resulted in a recovery of myelin transcripts and 
social interaction behavior [103]. Moreover, social isolation 
in juvenile animals drives a hypomyelination phenotype 
that can be reversed in the adult by re-socialization with 
socially housed mice, but not socially isolated mice [87, 
104], further supporting a role of myelin in driving social 
behavior adaptability. Myelination also affects synaptic 
transmission and the excitation-inhibition balance [65, 105, 
106], thus having a potential impact on cortical oscillations 
and cognition (Fig. 2; see next section).

Cognitive processing in the adult brain thus most probably 
relies on the interplay of existing myelin modifications 
in response to neuronal activity as well as new myelin 
formation. In turn, myelination will adjust conduction 
velocity resulting in differential spike-timings that could 
underlie dynamic neuronal processing [65, 98, 107–109]. 
It should be noted, however, that these modifications 
may involve subtle mechanisms that go beyond a simple 
increase or decrease in the amount of myelin, as they may 
primarily produce a marked change in the length of NORs. 
Such a change has been observed in the adult mouse brain 
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following a repetitive transcranial magnetic stimulation 
or the execution of 8-arm radial arm maze task [110]. It 
should also be considered that it is difficult to disentangle 
the molecular and cellular pathways as well as the exact 
role of each player of the myelination process (OPC, OL or 
myelin) in the observed neuronal and cognitive processing 
alterations and that further investigation is needed.

Brain oscillations, myelin and cognition

The cerebral cortex exhibits sustained activity, characterized 
by rhythms or oscillations spanning a wide frequency 
range from 0.05  Hz to 500  Hz [111]. Each frequency 
band can be modulated differently by cognitive processes. 
Slow oscillations (0.05 Hz to 30 Hz) involve coordinated 
activity of widespread neuronal ensembles, while high-
frequency oscillations (30–500 Hz), like gamma oscillations 
(30–90 Hz), are more localized and crucial for information 
coding (Fig. 2B, left). In particular, gamma oscillations arise 
from fast synchronization of excitatory neuronal activity, 
modulated to a large extent by PV interneurons, acting as a 
pacemaker to time network discharges [111–113]. Despite 
variations in brain size across species, gamma rhythms 
maintain a consistent frequency range and are modulated by 
cognitive mechanisms such as attention, working memory, 
cognitive flexibility and social cognition (Fig. 2B and C; 
[114]). Furthermore, different rhythms can interact, as in 
the phase-amplitude coupling observed between theta and 
gamma rhythms which has an impact on cognitive functions 
like working memory [115].

As mentioned before, myelin plasticity, as another 
form of activity-dependent plasticity, is relevant not 
only to nervous system development but also to complex 
information processing tasks. By its capacity to speed 
up action potentials and mediate proper spike-timing, 
it has been widely assumed that myelin influences the 
synchronization of neuronal ensembles in the brain 
(Fig. 2B, right). On a broader scale, myelin architecture in 
humans correlates strongly with functional connectivity 
mediated by neuronal oscillations in the beta and low-
gamma bands, reinforcing the idea of a close relationship 
between myelination and specific functional networks [116]. 
However, despite emerging evidence for the role of myelin 
in cognitive processes involving coupling and synchrony, 
only few studies have attempted to disentangle its impact 
on the generation and maintenance of brain oscillations. 
Nevertheless, myelin plasticity offers a mechanism for 
modifying conduction delays in an activity-dependent 
manner, potentially optimizing rhythmic activity in the 
brain [109]. Mathematical modeling and simulations 
have addressed this question and proposed that myelin 
facilitates the synchronization of axon spikes coming 

from distant populations of neurons whose activity is 
correlated [117]. The model predicts that myelin plasticity 
in response to local action potentials of myelinated axons 
adjusts the spike temporal dispersion that occurs across 
these individual axons, thereby optimizing the precision 
of axonal discharges and promoting synchrony. Although 
this work supports a role for myelin in the generation of 
cortical oscillations, the mechanism linking myelination 
and neuronal synchronization is probably more complex. 
In  vivo analyses of the auditory system revealed that 
dysmyelination resulted in expected conduction delays 
and desynchronization of inputs, along with a potential 
misdistribution of axonal channel proteins at NORs. 
Interestingly, it was shown in the same study that 
OL-dependent metabolic deficits, independently of myelin 
content and other significant structural alterations in the 
axon, also disrupted the temporal precision of neuronal 
spikes, akin to those observed in dysmyelinated mice [12]. 
This suggests the necessity of axoglial metabolic support for 
temporal auditory processing. Moreover, the heterogeneity 
of myelination patterns, which is patchy in pyramidal cells 
[60] and restricted to the proximal part of the axon in PV 
cells of the cortex (Fig. 2A, right; [59]), probably has an 
impact on axonal conduction and needs to be taken into 
account. In another experimental study using a cuprizone-
induced demyelination mouse model, Dubey et al., assessed 
the role of myelin in the generation of oscillations in the 
primary somatosensory cortex [106]. They observed that 
demyelination selectively amplifies theta power during 
periods of quiet wakefulness (but not active states) and 
proposed that this effect was caused, at least in part, by 
a decrease in the excitability of PV interneurons and fast 
GABAergic transmission. Furthermore, during the in vivo 
optogenetic stimulation of PV interneurons at a low gamma 
frequency of 30 Hz, local field potential recordings revealed 
that this stimulation entertains an oscillatory activity 
at this frequency in control mice. However, following 
demyelination, the same optogenetic stimulation did not 
modulate or maintain the gamma rhythm. By simultaneously 
recording the ACC region and the hippocampus immediately 
after contextual fear conditioning, Steadman et al. show that 
the coupling between spindle oscillations in the prefrontal 
cortex and sharp wave ripple oscillations in the hippocampus 
was increased in controls but unchanged in mice with a 
disrupted oligodendrogenesis [99]. These results indicate 
that the production of new OLs is required for learning-
induced increases in coordinated hippocampal-cortical 
activity. However, this effect is probably not due to myelin 
deficiencies since it occurs just after training.

Despite sparse studies on the role of OLs and myelin 
in the synchronization of neuronal networks and brain 
rhythms, how myelin influences different brain oscillations 
during behavior, especially during cognitive processes, is 
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largely underexplored. Local in vivo electrophysiological 
recordings in behaving mice with genetically determined 
or induced alterations in myelination would be necessary 
to unravel how myelin is involved in behaviorally modu-
lated cortical rhythms. The detection and quantification of 
brain oscillations is an advanced field of neuroscience that 
allows multiple brain areas to be recorded simultaneously, 
in some cases using more than a thousand electrodes, while 
the animal performs a cognitive task. This type of studies 
represents a major challenge and a future line of research in 
the field of myelin.

Myelin in neurodevelopmental diseases 
(NDDs)

As an early onset phenomenon with a protracted evolution 
throughout life, myelination has emerged as a potential 
key player in NDDs, disorders that have their onset during 
childhood and adolescence. These two critical periods 
of development represent sensitive time windows for 
environmentally induced modifications and damage to 
central myelin structure and functions. Here we discuss 
the involvement of myelin in Autism Spectrum Disorders 
(ASD) and schizophrenia, two major NDDs characterized 
by overlapping symptoms such as communication difficulties 
and social withdrawal.

Autism spectrum disorders

As a classic example of NDD etiology, consisting of a mix 
of genetic and environmental risk factors, an accumulating 
body of evidence demonstrates that myelin deficits underlie 
altered communication between major brain hubs in ASD 
individuals [118]. As demonstrated by MRI and DTI, 
white matter disruptions are widespread in children and 
adolescents with ASD [119–121]. Intriguingly, the white 
matter of autistic patients is overgrown during the first two 
years of life, but tends to be smaller than controls as they 
age [122]. These observations in humans were recently 
confirmed and termed “precocious myelination” in a murine 
model of ASD (BTBR mice) in which the number of OLs 
and myelin content in the frontal brain of neonatal pups was 
increased [123]. This accelerated postnatal development 
of the brain in ASD patients that tends to normalize and 
worsen with age might be more nuanced for gray matter 
myelination. It has been shown using T1w and T2w MRI 
that the overall spatial patterns of intracortical myelin 
distribution are similar between ASD children, aged 1.5 to 
and 5.5 years old, compared to typically developing children, 
but the age-related increase in intracortical myelination is 
impaired in ASD children [124]. At the cellular level, OPCs 
cultured from a mouse model of ASD  (Ptenm3m4) have an 

enhanced proliferation rate and a premature maturation 
onto OLs [125]. This maturation defect does not lead 
in vivo to a greater number of OLs in the adult, as these 
cells die by apoptosis and produce abnormal myelin which 
fails to ensheath axons [125]. In another mouse model of 
ASD induced by the prenatal exposure to valproic acid, OL 
density and myelin content is decreased in adult mice in 
some of the main brain regions linked to social behavior, 
such as the mPFC, pyriform cortex and basolateral amygdala 
[126]. Integrated transcriptomic analyses of both ASD 
mouse models and ASD patients tissues further stress OL 
gene dysregulation and myelination defects across species, 
as a highlight in both syndromic and idiopathic ASD [127, 
128]. Another area of interest concerns myelin proteins 
such as MBP, that has been put forward as targeted by an 
abnormal autoimmune reaction in the ASD brain [129]. 
However, while molecular and cellular alterations in 
OL biology and myelination are a hallmark of ASD, it is 
unknown whether these are responsible for social behavior 
deficits in the disease. Interestingly, frontal cortex myelin 
thickness reduction has been associated with a murine 
model of Williams syndrome (WS), a non-canonical NDD 
characterized by hypersociability [130], proving that 
conflicting behaviors, hypersociability in WS compared 
to hyposociability in ASD, can arise from similar myelin 
abnormalities (hypomyelination), further stressing the 
complex etiology and symptomatology of such diseases.

These studies in ASD have singled out myelin and 
myelinating cells as potential therapeutical targets in a 
few preclinical studies. Promyelinating compounds such 
as clemastine -which promotes OPC differentiation into 
OLs and has been studied as a promyelinating agent in 
other myelin-related disorders such multiple sclerosis 
[131]- appear to rescue the cellular, structural and 
behavioral phenotype of the ASD mouse model of Pitt-
Hopkins syndrome [132], opening new and exciting areas 
of investigation for future therapies. Furthermore, in a 
mouse model of perinatal hypoxia (a condition commonly 
associated with ASD in humans), which exhibits significant 
myelination impairments, early environmental enrichment 
was also shown to selectively promote endogenous myelin 
regeneration and functional recovery in the developing white 
matter [133]. Therefore, an alternative therapeutic strategy 
to improve myelination and white matter dysfunction might 
lie in early behavioral intervention and environmental 
enrichment.

Schizophrenia

Schizophrenia (SCZ) onset coincides with adolescence 
and early adulthood, but its origins can be traced back 
to earlier stages of development as some cognitive 
impairments, depression and negative symptoms can 
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occur during childhood [134]. Many studies suggest that 
myelin alterations are as prevalent in this disease as they 
are in ASD. Although the neurobiological mechanisms 
underlying SCZ are not fully understood, it has been 
proposed that genetic and environmental risk factors 
during the perinatal period, either in utero or in infancy, 
contributes to neurodevelopmental abnormalities that may 
lead to impaired myelination in the adult brain [135]. The 
use of myelinating cells and myelin as a prism to look at this 
disorder is compelling because myelination is a protracted 
developmental process in most of the brain regions found to 
be dysfunctional in SCZ [80, 135]. Myelination impairments 
during development have been considered to result in a 
defective maturation of neuronal networks connectivity (the 
‘dysconnectivity’ hypothesis), which could explain some of 
the varying cognitive symptoms in SCZ patients, including 
impaired cognitive flexibility [136–139]. Similarly to ASD, 
imaging studies questioning the structural integrity of white 
matter and the inter-connectivity of various brain regions 
have provided a better understanding of structural insults 
in SCZ patients [80]. Although most of the metrics used 
in imaging can be related to various structural components 
of white matter (axon diameter, fiber density, myelination), 
foundational work investigating both total and frontal white 
matter regions suggested an overall hypomyelination of 
the corpus callosum in human SCZ patients [140]. These 
findings were corroborated by post-mortem analyses of 
the anterior frontal cortex which showed a reduction in 
the expression of the two OL-associated proteins, MAG 
and CNPase, in SCZ patients [140]. It was subsequently 
observed that frontal white matter is indeed recurrently 
defective in chronic patients [141–143]. On the other hand, 
a recent study focusing on gray matter highlights more 
complex changes with some regions exhibiting higher and 
others lower myelin content in first-episode treatment-naïve 
SCZ patients [144].

Recent genetic, epigenetic and biochemical analyses 
have corroborated OL dysfunction and abnormal 
expression of myelin-related genes and proteins [145, 
146] as well as a decrease in the density of OLs in layer 
V of the PFC in SCZ patients [147]. As compared to 
normal OPC numbers, a reduction in OL density hints 
at a differentiation impairment of OPCs in the PFC of 
these patients [148]. Moreover, SCZ-like behaviors in 
juvenile mice such as impaired sociability can be elicited 
via a DNA hypermethylation, a hallmark risk factor of 
SCZ, that targets genes related to OL lineage cells [149]. 
Overall, dysfunctional OL lineage cells could explain, to 
some extent, myelination insult of SCZ patients although 
many interrogations remain as to the origins of such 
disorders and their temporal unfolding, ultimately asking 
if dysmyelination is a cause or a result of SCZ [135, 142]. 
An important point of discord from human studies is the 

difficulty of untangling the mesh of possible myelin insults 
as studies include a heterogenous population of patients: 
chronic patients that have been medicated for years, 
first episode patients naïve for any treatment, high risk 
patients, familial genetic risk patients. They are usually 
age and gender matched with the controls but might still 
account for slight contradictory results. A standardization 
of patient cohorts is needed to confirm previous results 
and produce finer insight in the investigations. Although 
further research is needed on this regard, a recent report 
demonstrated that specific mutations in chondroitin 
sulfate proteoglycan 4 (CSPG4/NG2), a hallmark protein 
of OPCs, exhibited familial segregation in SCZ patients 
having significant abnormal white matter integrity [150], 
a finding in favor of a direct role of OL lineage cells in 
this disease.

All these studies stress the role of myelin in connecting 
functional hubs for the synchronization of distant neuronal 
ensembles and the production of optimal behavioral 
responses to a changing environment. Brain connectivity 
analyses indeed indicate that long-range connectivity is 
usually impaired in SCZ. Along with white matter integrity 
impairments, another substantial evidence supports a causal 
role of local GABAergic interneuron dysfunction in linking 
cortical circuit and behavioral deficits in this disorder 
[151]. Several reports have found that alterations in local 
oscillations, mainly gamma oscillations, occur during 
performance of cognitive control tasks [151–153]. As 
previously mentioned, synchronization of cortical networks 
in the gamma band frequency is modulated to a large extent 
by the activity of PV interneurons, which provide robust 
perisomatic inhibitory control of glutamatergic neurons 
[154, 155]. This probably explains why dysfunctions in PV 
interneurons and gamma oscillations have been associated 
with cognitive deficits characteristic of SCZ [151, 156, 157]. 
Interestingly, myelination defects occurred specifically in 
PV interneurons of the mPFC in a rat model displaying 
schizophrenia-like behaviours [158]. Considering these 
findings, the high levels of myelination of PV interneurons 
and the early and reciprocal interactions between cortical 
PV interneurons and OPCs, it might be possible that 
impairments in PV interneuron myelination compromise 
the integrity of precisely timed action potentials and local 
synchronization [159, 160]. An interesting line of study 
in the field of myelin will be to investigate whether PV 
interneuron and OL lineage abnormalities can synergize to 
increase the risk of developing NDDs.

Much like in ASD, myelination could be a potential 
biological target in SCZ. In this line, pro-myelinating 
drugs could be evaluated, for example, as precognitive 
interventions in first-episode patients. Antipsychotic 
drugs that could act on OL dysfunction by potentiating 
their differentiation and maturation, such as the NMDA 
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receptor ligand D-serine, and lithium [161] are another 
area of excitement in terms of SCZ treatment, just like we 
previously discussed with promyelinating compounds as 
possible therapies for ASD.
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