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Abstract
The epigenome—the chemical modifications and chromatin-related packaging of the genome—enables the same genetic 
template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific 
function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the 
interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely 
installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in 
human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight 
by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in 
both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into 
pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. 
Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate 
tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput 
DNA methylome association studies, as well as insights into ageing-related diseases from biological ‘clocks’ constructed 
by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic 
and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further 
potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with 
it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
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Introduction

Our ability to associate human genetic variation with com-
mon disease susceptibility has been revolutionised since 
the initial completion of the human genome project. This 
breakthrough was enabled by the stepwise technologi-
cal and methodological progress of high throughput Sin-
gle Nucleotide Polymorphism (SNP) arrays, HapMap 
informed common Linkage Disequilibrium (LD), and ever-
expanding deeply-phenotyped human datasets. This has 
bought us to the substantial power of the present biobank 
era (e.g., UK Biobank, FinnGen, NIH All of US, etc.) [1]. 
Today more than ~ 562 k disease associations are listed in 

the NHGRI-EBI Genome-Wide Association Study (GWAS) 
Catalog (December 2023) [2].

Despite this success, significant hurdles are still faced 
in moving from the identified common variant association 
to a potential pathogenic effector gene [3]. This is princi-
pally because ~ 88.5% of NHGRI-EBI GWAS variants are 
non-coding [4] and are typically in high LD with numerous 
other co-inherited variants, any of which may be the critical 
cis-regulatory variant(s) influencing a downstream effector 
target gene(s). The integration of cell or tissue-specific epi-
genomic data with these initial GWAS findings is a highly 
informative step in achieving functional understanding [5]. It 
expedites a narrowing of the focus to those variants residing 
within disease-relevant tissue regulatory elements [6] and 
pinpoints the more likely causal genetic variant(s).

This review will illustrate the current successes that have 
so far arisen though integrative analysis of the epigenome 
but also the immense potential these data bring for molec-
ular insights in disease mechanisms as well as clinically 
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actionable biomarkers. In summary, this overview firstly 
describes the functional apparatus of the epigenome. This 
includes histones, their post-translational modifications as 
well as amino acid sequence variants, and DNA modifica-
tions. It then discusses the integration of these multiple 
levels of the functional epigenome. The latent regulatory 
role of transposable elements, comprising half of the human 
genome, is surveyed, along with the full range of potential 
genetic variation, and how this can impact on the measured 
epigenome. Epigenomic association studies with common 
disease and their complex interpretation are then discussed 
in detail. The novel epigenomic insights into ageing are con-
sidered, including epigenetic analysis of disease-risk through 
ageing-related changes, as well as quantifying accrued envi-
ronmental exposures. Finally, the significant therapeutic 
potential of epigenome-modifying drugs is briefly explored.

The epigenome is a co‑ordinated 
multi‑layered apparatus

The epigenome is a cell‑type specific blueprint

The epigenome comprises the packing and chemical modi-
fications of the genome that influence and inform cell-type 
specific activity. Whilst all nucleated cells in the human 
body possess the same genome—except for diversity 
components of the adaptive immune system and sporadic 
ageing-related or malignant somatic mutation—the cell-
type specific epigenomic blueprint enables or informs on 
specialised cellular programmes. Thus, each cell, and more 
broadly organ system, can perform its unique role so that the 
body can work synergistically together. Epigenetics itself 
can be defined on a conceptual level as molecular gene activ-
ity marks inherited through mitosis or more generally as 
a systemic persistence of cell-type through genome-wide 
regulatory networks [7]. An operational understanding of the 
epigenetic process can be broken down into three compo-
nents: the action of an ‘epigenator’, or environmental factor; 
an ‘initiator’ such as a specific transcription factor (TF) and/
or non-coding RNA (ncRNA), as a sequence locator; and 
finally, a ‘maintainer’ such as the epigenetic marks described 
below, including DNA methylation or specific histone post-
translational modifications (PTMs) [8].

The histone code informs on cell‑specific 
functionality

A major component of the epigenomic apparatus is the 
histone proteins that the DNA is entwined around—with 
the unit of a nucleosome containing an octamer of these 
proteins wrapping ~ 147 base-pairs (bp) of DNA. These 
form the fundamental components of the complex and 

dynamic macromolecular structure termed chromatin 
[9]. The histone proteins (two of H2A, H2B, H3, and H4) 
also possess protruding tails that are targets for numerous 
PTMs. Additionally, linker histones (H1) bind the entranc-
ing and exiting DNA from the nucleosome, thereby influ-
encing stability [10]. The tail PTMs can be deciphered as 
indicators of functional activity, termed the Histone Code 
[11]. Additions include acetylation (ac), phosphorylation 
(ph), methylation (me), and ubiquitination (ub) [12]. Fur-
ther low abundance long-chain acetylation modifications 
involve crotonylation, lactylation, and succinylation [9]. 
Modifications of these tails, both causal and consequen-
tial, reinforce the local transcriptional state, either through 
recruiting or repelling specific transcription factors (TFs) 
or chromatin proteins [9]. Furthermore, by affecting the 
octamer dynamics, chromatin modifications can influence 
DNA unwrapping and sliding [13].

The canonical PTMs mostly occur on the tail of the His-
tone 3 protein at Lysine residues (K) and their identifica-
tion can infer the location of gene promoters (H3K4me3), 
enhancers (H3K4me1), and the activation of both these 
functional units with co-occurring H3K27ac. Transcribed 
genic regions are marked by H3K36me3. Repressed het-
erochromatic genomic locations are either indicated by 
H3K9me3, for permanently condensed constitutive loci 
found in repetitive, satellite and centromeric regions [14]), 
or H3K27me3, for facultative reversibly condensed loci 
[15]). In combination these marks are powerfully inform-
ative, enabling machine learning (ML) algorithms (e.g., 
ChromHMM [16], Segway [17, 18], Epilogos [19]) to pre-
dict tissue-specific functional units of the genome. This 
genomic annotation is termed Chromatin Segmentation 
(Fig. 1a).

However, these canonical changes are merely the tip of 
the iceberg, with further complexity entwined in modula-
tions not only occurring in the terminal tails (e.g., in H3, 
the amino acids numbered 1–44) but also within the globu-
lar core (H3 amino acids 45–135) of all the nucleosomal 
histones [9]. Acetylation within the globular domain is 
also indicative of activity (e.g., H3K64ac and H3K122ac) 
[20]. This acetyl modification is observed to destabilise the 
nucleosome, as H3K64 is positioned on the lateral surface 
of the histone octamer where the DNA and histone inter-
act strongly [21]. Furthermore, numerous additional novel 
PTMs have been recently described, including an intrigu-
ing potential metabolic role for histone lactylation [22], 
as well as the brain-related neurotransmitter-based modi-
fications dopaminylation [23] and serotonylation [24]. 
This discovery of the interplay between these bioactive 
monoamines and the epigenome brings further fascinating 
complexity to chromatin-regulatory and neurotransmitter 
networks [25].
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Histone variants have distinct roles 
in both physiology and pathology

Multiple copies of each canonical histone gene exist (H2A, 
H2B, H3, H4 and linker H1), along with genes that have 
diverged slightly or moderately in amino acid sequence to 
encode different ‘variants’, as well as non-functional pseu-
dogenes of both canonical and variant versions. Encapsulat-
ing all these possibilities, the HUGO Gene Nomenclature 
Committee (HGNC) database includes a total of 118 in the 
histone gene group [26]. The canonical genes reside largely 
in one major cluster (chromosome 6p22), with the remainder 
found in three minor clusters (1q21, 1q42, 12p12), which 
also include some of the variant forms. The remainder of the 
variants are spread across the genome. A critical difference 
between canonical and variant histones is in expression dur-
ing the cell cycle, as the former are replication-coupled, or 
dependent, being synthesised during S-phase, while the lat-
ter are replication-independent [27]. Additionally, the canon-
ical forms do not possess intronic sequence or poly (A) tails, 
in contrast to most of the variant genes [26]. These variants 
occur in all histone protein families, with, for example, the 
discovery of the role of the H4.G variant in ribosomal tran-
scription [28]. These substitutions, along with the other epi-
genomic mechanisms, influence nucleosomal activity [27].

Linker histone H1 bind to specific sites influenced by 
GC nucleotide content and is the most diverse with 11 vari-
ants, with H1.2 favouring exons and high GC whilst, in 
contrast, H1.3 resides in introns with relatively lower GC 
[29]. H1 variants modulate RNA Pol II elongation and sub-
sequently affect splicing. In humans, six major variations of 

Histone 2A exist, with the canonical H2A alongside H2A.X, 
H2A.Z, macroH2A and two testis-specific variants H2A.B 
and H2A.P [30]. The well-studied H2A.Z differs in amino 
acid sequence from the canonical form crucially within the 
C-terminal tail, increasing DNA accessibility [31]. This 
variant plays numerous roles, including gene regulation 
via an influence on initiation and termination, modulating 
transcriptional efficiency, as well as chromosome segrega-
tion and repair processes [32]. Many pathological roles are 
also observed. These include further subtle H2A.Z subtype 
substitutions implicated in cranio-facial developmental 
disorders [33], as well as interplay with PTMs, as H2A.Z 
acetylation can drive the creation of neo-enhancers, e.g., in 
prostate cancer [34].

H3 variants have a dynamic role in the cell-cycle [35]. 
The two major variants are termed H3.1 and H3.3, which 
display a strong difference between replication timing, with 
the former enriched at inactive, late-replicating regions 
and the latter in early replicating sites in active chromatin 
[36]. This H3.3 variant performs a critical role in develop-
ment and reproduction [37]. However, as it accumulates in 
post-mitotic cells, its influence on the histone methylation 
landscape is implicated in ageing-related alterations of the 
epigenome. H3.3 is mutated in numerous human diseases, 
with mouse knockout models demonstrating important roles 
in chromatin organization and genomic stability [38].

The term ‘oncohistone’ describes the occurrence of fre-
quent somatic mutations in certain histone genes that act 
as malignant drivers [39]. These have been identified in 
H3 variants at Lysine 27 or Glycine 34 (e.g., H3.1K27M, 
H3.2K27M, H3.3K27M, and H3.3G34R/V) in paediatric 
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Fig. 1   A Chromatin Segmentation. Multiple assessed histone modi-
fications are used to predict the chromatin state via ChromHMM 
(ENCODE 18-state, data from Roadmap Epigenomics, https://​egg2.​
wustl.​edu/). B The Epigenome. The epigenome consists of histone 

modifications as well as DNA modifications. Epigenomic readers, 
writers and erasers are required to precisely co-ordinate the epig-
enomic machinery (Figure from Berjawi & Bell [55])
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gliomas, with the differing mutants having specific onco-
genic characteristics, regarding their age of onset, ana-
tomical, and clinical features [40]. These mutated histones 
have high genetic penetrance and are proposed to promote 
tumour-genesis through their abrogation of key regulatory 
PTMs, leading to a misregulation of the epigenome and tran-
scriptome [39]. Furthermore, vaccines against oncogenic 
substitutions are being developed, including a H3K27M-
target for diffuse midline glioma in adults [41]. De novo mis-
sense variants within histones also are enriched for devel-
opmental disorders, with, for example, multiple mutations 
implicated in H4 genes in neurodevelopmental syndromes 
[42].

DNA modifications are robust and stable marks

The direct chemical additions to DNA predominantly occur 
at cytosine bases in vertebrate genomes [43]. Almost all 
these modified bases are followed by a guanine in the 5′–3′ 
direction and thereby assemble as a CpG (cytosine—phos-
phodiester bond—guanine) base sequence on the same 
strand. This CpG dinucleotide through its ability to be epi-
genetically modified functions as a genome-wide signalling 
module [44]. The major epigenetic change occurring here is 
the addition of a methyl group to the 5th carbon of the cyto-
sine (5mC) termed DNA methylation (DNAm) [45]. This 
is through a strong covalent bond and contributes to these 
marks’ robustness and stability even in long-term sample 
storage [46].

Additional rarer modifications also exist at CpGs, and 
these occur through the oxidative action of the TET (ten-
eleven translocation methylcytosine dioxygenase) enzyme 
[47]. It drives the process of active removal of 5mC, ini-
tially to hydroxymethylcytosine (5hmC), which may pos-
sess a signalling role itself [48], and then on to formyl-(5fC) 
and subsequently carboxyl-methylcytosine (5caC). This last 
modification is then removed by the action of the TDG (Thy-
mine-DNA glycosylase) enzyme, returning the cytosine base 
to the unmodified state [49].

The classical understanding of the addition of methyla-
tion to DNA is that the de novo enzymes DNMT3A and 
DNMT3B enable both strands to be simultaneously modi-
fied to 5mC and the maintenance enzyme, DNMT1, through 
the ability to recognise the single stranded hemimethylated 
CpGs post replication, recreates the symmetrical methyl-
ated palindromic CpG [50]. Lack of DNMT1 action through 
rounds of replication thereby leads to passive demethylation 
by dilution. A DNMT2 enzyme is also present in humans, 
however, its target is exclusively the methylation of trans-
fer RNA (tRNA) [50]. The gene bodies of expressed genes 
possess significant DNAm. DNMT3B facilitates this tar-
geting of transcribed regions of the genome via its PWWP 
domain, which interacts with SETD2-mediated H3K36me3 

also co-localised to these genic regions [51]. This interplay 
illustrates the co-ordinated nature of both the chromatin 
and DNA based epigenome [52]. An additional enzyme 
DNMT3L, a truncated non-active methyltransferase, due to 
the lack of the functional catalytic domain, acts as an activity 
cofactor for DNMT3A, forming a heterotetrameric complex 
[50]. The distinct maintenance and de novo roles of DNMT 
types 1 and 3 do, however, erode to a certain extent in vivo 
with the observation that localised DNMT3 is also required 
for the maintenance of DNAm at imprinted and repetitive 
loci [53].

Although rare, non-CpG cytosine methylation also 
occurs, observed in developmental, germ cells, as well as 
neuronal tissues, where the scale of epigenomic complexity 
is still undefined [54]. The level of non-CpG methylation is 
correlated with the level of expression of de novo DNMT3 
enzymes. Whilst these epigenomic writers possess a strong 
template preference for CpG, with persistent action they 
will then subsequently methylate CpAs followed by CpTs, 
as observed in non-dividing neurons [56]. This signature in 
non-replicating cells is consistent with a lack of a known 
maintenance mechanism through replication for non-CpG 
methylation, as the structure of DNMT1 enforces a strong 
preference for hemimethylated CpG dinucleotide action only 
[57].

Mutation of epigenomic machinery genes leads 
to significant pathology

Alongside the DNMT and TET enzymes, described above, 
vital in constructing the observed DNA methylome, numer-
ous core families of PTM enzyme writers (e.g., lysine meth-
yltransferases, KMTs; lysine acetyltransferases, KATs) and 
erasers (e.g., lysine demethylases, KDMs; histone deacety-
lases, HDACs) also exist. Therefore, these writers, and erasers, 
along with additional readers and remodellers, are critical to 
the operation of the cellular epigenomic apparatus (Fig. 1b). 
Mutation of these critical genes leads to monogenic disorders, 
termed the Mendelian Disorders of the Epigenetic Machin-
ery (MDEM) [58]. MDEMs are enriched for developmental 
disorders [59], particularly neurological phenotypes, but are 
also observed as well as oncogenic drivers [60]. For instance, 
a high mutation rate was recently identified in the mamma-
lian SWI/SNF ATP-dependent chromatin remodelling family 
of genes in neurodevelopmental disorders and these cluster 
within key structural domains [61]. Further exploration of the 
abrogation of these critical MDEM genes has brought novel 
molecular insights into specific epigenetic modifications, 
including observed phenotype convergence [62]. Ageing-
related somatic mutations in the epigenetic DNA methylome 
machinery, specifically DNMT3A and TET2, are observed to 
be strong drivers of ageing-related clonal haematopoiesis [63]. 
These clonal expansions of mutated blood cell lineages are a 
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risk factor for malignant transformation over several years, 
with a ~ 10-fold relative-risk increase for myelodysplastic 
syndrome, acute myeloid leukaemia, myeloproliferative neo-
plasms, and certain lymphomas.

Functional tissue and cell‑type regulomes have 
been derived from the construction of epigenomic 
reference maps

Second generation Illumina short-read sequencing (2nd Gen-
seq) accelerated the epigenomic era by enabling the whole 
genome base pair resolution assessment of histone PTMs, 
DNAm, transcription factor (TF) binding, and chromatin 
accessibility [64]. The first DNA methylome, i.e., DNAm at 
genome-wide level, using whole genome bisulphite sequenc-
ing (WGBS) was published in 2009 [65]. The surveying of 
the canonical epigenomic state of specific cell-types has 
progressed significantly through multinational consortium 
endeavours—beginning with the ENCODE project [66] in 
cell line data, and then the Roadmap Epigenomics [67] in 
tissue samples, as well as more specialised accomplishments 
in the haematopoietic system via the Blueprint Consortium 
[68] and the brain via PsychEncode [69]. The International 
Human Epigenome Consortium (IHEC) portal provides 
access for  ~ 7.5 k hg38 publicly available datasets (https://​
epige​nomes​portal.​ca/​ihec/) [70].

The haploid DNA methylome is now estimated 
to comprise ~ 33.9 million CpGs

Long read single molecule or third generation sequencing 
technology, (e.g., Oxford Nanopore, ONT; and PacBio HiFi; 
3rd Gen-seq) can assess both sequence and DNA modifica-
tion directly. A recent telomere-to-telomere genome assem-
bly (T2T-CH13 cell-line) derived from a duplicated haploid 
hydatidiform mole with a 46, XX karyotype has allowed 
analysis of a further ~ 8% of the human genome [71]. With 
the ability to traverse of centromeric monomers and other 
repetitive elements, and with the recent T2T addition of 
chromosome Y, this has brought the haploid estimate of 
CpGs up from ~ 28–30 million to ~ 33.9 million (T2T-
CHM13v2.0) [72–74]. Additionally, realigning to this T2T 
assembly also increased the number of chromatin ChIP-seq 
peaks from ENCODE, mostly H3K9me3, located in peri/
centromeric satellite constitutive heterochromatin, but to a 
lesser extent also facultative heterochromatic H3K27me3 
loci.

DNAm variability is tissue‑specific and is not focused 
in CpG dense ‘CpG islands’

The advent of large scale epigenomic datasets has bought 
new insights beyond the single gene cancer and imprinted 

loci research that was the focus of previous decades. These 
prior targeted studies, due to the methodologies available, 
had primarily analysed the CpG dense regions, termed ‘CpG 
islands’ (CGI), observed to occur at ~ 70% of vertebrate pro-
moters [75]. CGIs are ~ 1–2 kb in size [76] and possess a 
CpG density as percentage of sequence ranging from ~ 12% 
up to over 30% (i.e., 100% = 50 CpGs dinucleotides per 
100 bp) [77]. These clustered ‘island’ outliers only com-
prise ~ 7% of the total set of CpGs (UCSC CGI definition) 
[78]. They protrude sporadically amidst the mostly sparsely 
spread ‘open sea’ CpGs. CGIs act as a platform for transcrip-
tion [79], facilitating this process, although the majority of 
CGI are unmethylated independent of their transcriptional 
activity [80]. However, within CGI themselves there is a 
further correlation in DNAm level, with higher CpG den-
sity CGI promoters remaining consistently unmethylated 
and comparatively lower CGI promoters being those that 
are more likely to be targeted to gain methylation [75], such 
that these ‘weaker’ CGI are predisposed to acquire DNAm 
during differentiation [80].

The baseline template for the state of the DNA methyl-
ome is therefore CpG density, with most CpGs at low den-
sity and methylated, whilst conversely the clustered ‘islands’ 
remain unmethylated [81]. Longstanding estimates have 
stated ~ 70–80% of all CpGs in the genome are methylated 
[82]. Analysis of 42 Roadmap WGBS across 32 cell and tis-
sue-types supported this, identifying that the vast majority of 
CpGs were static and highly methylated, with only ~ 21.8% 
CpGs being ‘dynamic’ with DNAm changes of ≥ 30% in 
autosomes [83]. A further evaluation in the human body 
DNA methylome analysis of 36 WGBS DNA methylomes 
across 18 tissue-types from 4 individuals arrived at a simi-
lar estimate of ~ 15.4% of CpGs changing by ≥ 30% between 
tissues [84].

With CGIs themselves being consistently unmethylated 
across all tissues, except for specific outliers, it is the regions 
that surround them, termed CGI ‘shores’ (± 2 kb), where 
significant DNAm variability is observed, and this also cor-
relates with gene expression [83, 85, 86]. These surrounding 
regions are the CpG density transition zones between islands 
(> 12% CpG density) out to the genome average ‘open sea’ 
regions (~ 2%). Additionally, CGI ‘shelves’ are delimited 
as the regions just beyond shores, 2–4 kb either side of the 
islands. Distinctly visible in WGBS data is the tidal nature 
of DNAm in cellular differentiation. Hypermethylation pro-
gresses inwards reducing the width of the unmethylated pro-
portion of these shores and then island edges, with outgoing 
hypomethylation having the opposite effect [87] (Fig. 2a). 
Though, a further subtlety beyond simple designated CGI 
shore regions was proposed by the human body DNA 
methylomes analysis, with the strongest negative correla-
tion with gene expression localised to be specifically in the 
downstream mid-shore region ~ 0.3 kb and spreading as far 

https://epigenomesportal.ca/ihec/
https://epigenomesportal.ca/ihec/


	 C. G. Bell   178   Page 6 of 29

as 8 kb intragenically [84]. Induction of DNAm via a Zinc 
Finger (ZF) with a tethered methylating DNMT3A enzyme 
in an experimental model has further illustrated the com-
plexity of the DNAm-transcription relationship with highly 
context specific promoter effects [88]. Classic promoter 
DNAm-coupled repression was observed, as well as sup-
porting previous data that ejection of methylation-sensitive 
TFs, such as NRF1 [89] contributes to repression. However, 
this study also detected DNAm leading to the upregulation 
of genes enriched for methylation-sensitive transcriptional 
repressors in their promoters. Recent synthetic models mod-
ulating CpG density and methylation state support a strong 
correlation between silencing and high CpG content, but 
also indicate potential sequence resolution intricacies with 
certain CpGs disproportionally controlling silencing [90]. It 
has also been recognised that CGI promoters can influence 

transcription through a CGCG tetranucleotide motif asso-
ciated with highly expressed genes that binds the BANP 
(BTG3-associated nuclear protein) TF [91]. A further novel 
role of CGIs was recently discovered, where binding by the 
protein complex SET1 protects genic transcripts from pre-
mature termination [92].

Observed co‑ordination between CpG island (CGIs) 
sequence and chromatin state

The multiple layers of the epigenome and DNA sequence 
are an intricately interconnected and co-ordinated system 
[52]. Illustrating this, chromatin modifying factors contain-
ing a ZF-CxxC domain, such as CXXC1 (Cfp1), an essential 
component of the SET1A/B H3K4 histone methyltransferase 
complex, are recruited to unmethylated CpG motif clusters 

Fig. 2   A CpG Island Shore Erosion and Accretion. DNA methylation 
gain at CpG islands commonly occurs from the outer shores inwards, 
eroding the shore’s relative hypomethylation state. The inverse 
occurs when DNA methylation is lost, leading to shore accretion as 
the hypomethylation spreads out. B Genetic—Epigenetic Interre-
lationship. Obligatory epigenetic states can be directly predicted by 
genotype  (e.g., C & T examples here). Facilitated states enable epi-
genetic variation associated with one genotype, but not the other. 

Pure epigenetic variation is under no genetic control (Adapted from 
Richards [155]). C Human Genome Dinucleotide Frequencies (T2T-
CHM13v2.0). A significant depletion in CpG dinucleotides (in red) 
is observed due to their DNA methylation-associated hypermutability. 
D. CpG-SNPs. Compared with their genome average (~ 31.1%), CpG-
SNPs are enriched to reside within TF motifs that modify TF bind-
ing and lead to allele-specific DNase-I Hypersensitivity Sites (DHSs) 
(~ 54.1%) [167]
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[93]. This recruitment results in the trimethylated chromatin 
signature, H3K4me3, which is strongly associated with CGI 
gene promoters and aids transcription [92] as well as Pol 
II pause release [94]. This role of clustered unmethylated 
CpGs attracting CXXC1 means dramatic human-specific 
increases in CpG density can predict loci with human-spe-
cific H3K4me3 peaks [95]. Furthermore, the CpG density 
of a CGI promoter is indicative of its functional importance, 
with higher density CGIs significantly more likely to be 
serving loss-of-function (LoF) intolerant genes [96].

Distal cis‑regulatory elements (CREs) can be 
detected by reduced DNAm levels

Distal cis-regulatory elements (CREs) can be detected with 
WGBS data through discrete and more subtle reductions 
in DNAm level. Low methylation regions (LMRs) averag-
ing ~ 30% DNAm and possessing above genome baseline 
CpG densities of ~ 2.5–5%, are enriched for the enhancer 
locating H3K4me1 mark, as well as the active chromatin 
signature of H3K27ac [97]. These loci also display increased 
levels of the enhancer-associated active protein p300, as well 
as TET1 and its product 5hmC [97]. The binding of cell-type 
specific TFs to these regions can lead to a loss of DNAm. 
These regions have also been termed hypomethylated 
regions (HMRs) [87], alongside concomitant cell-type spe-
cific H3K27ac enhancer signatures [98]. The loss of DNAm 
is proposed to occur after nucleosome repositioning [98]. 
In terms of distal CREs or enhancers, the regulatory role 
of DNAm is proposed to be highly context dependent [99]. 
Deciphering this cis-regulatory code is now being aided by 
ML and large-scale functional assays [100].

DNAm directly influences transcription factor 
binding

Recent evidence indicates that the major repressive mech-
anism on DNAm-sensitive TFs is principally through the 
direct inhibition of methylation-sensitive TFs by DNAm, 
rather than indirectly through the action of methyl-CpG-
binding domain (MBD) proteins [101]. However, other TFs 
may instead be influenced by chromatin state. The TF and 
tumour suppressor p53 (TP53), a pioneering factor, is not 
inhibited by DNAm, but instead is restricted by its co-factor 
Trim24, which itself binds to unmethylated H3K4 [102]. 
Therefore, the methylation of H3K4, found in accessible 
chromatin, disables this chromatin-sensitive cofactor and 
subsequently the p53 TF from occupying this locus. Experi-
ments in mouse stem cells support the premise that both 
levels of epigenomic activity are important, in that the inhi-
bition of histone deacetylation complexes (HDACs) as well 
as the inhibition of DNAm led to an additive widespread 
increase in active chromatin [103].

The DNAm influence in transcription factor bindings 
sites is not always repressive

Whilst the classical interpretation is that DNAm is deemed 
to be repressive for TF binding within CREs, this picture 
is considerably more complex. As indicated, a portion of 
mammalian TFs are insensitive to repressive epigenetic 
marks and can bind inaccessible chromatin enabling subse-
quent downstream activity [104]. Furthermore, a systemic 
analysis of the direct relationship between DNAm and 542 
specific human TFs, identified that ~ 60% bound to one or 
more TFBS where CpG methylation was influential [105]. 
Approximately 26.8% of TFs possess at least one CpG with 
their binding motif [106]. Whilst some classes of TF were 
inhibited by DNAm, others, especially those with critical 
roles in embryonic and organismal development, showed a 
preference for binding to templates containing methylated 
CpGs. This latter grouping included the Yamanaka pluripo-
tency factor Oct4, binding a mCpG TFBS motif [107] and, 
additionally it has been proposed to exhibit a preference for 
5hmC [108]. Although Oct4 is not exclusive to this motif, as 
it recognises other TFBSs that do not contain a CpG [106].

In-vivo analysis identified NRF1 to be a highly DNAm 
sensitive TF [89]. Furthermore, TF sensitivity to DNAm 
can be positionally dependent on the specific location of the 
mCpGs within the TFBS motifs [106]. Alongside this is an 
emerging model where certain TFs bind to mCpG contain-
ing motifs and induce demethylation through the action of 
TET [106].

Partially methylated domains (PMDs) contribute 
to the observed global hypomethylation 
in the cancer DNA methylome

The higher resolution data possible with WGBS DNA meth-
ylomes has also revealed larger scale reductions in DNAm 
in specific biological context termed Partially Methylated 
Domains (PMDs). These include the placenta [109], can-
cer cells [110] and cell line culture [111]. Individually they 
have a mean size ~ 150 kb but can comprise sizeable por-
tions (20–40%) of the genome [112]. They occur in lam-
ina-associated, late-replicating regions. The DNAm loss is 
contributed to by reduced propensity to maintain DNAm at 
sparse CpGs, particularly within a specific nucleotide con-
text, termed ‘solo-WCGW’, where W represents weak A or 
T flanking bases [113]. This loss of methylation in these 
late replicating regions tracks mitotic turnover and is termed 
a ‘hypoClock’ [114]. Of note, critical ‘escapee’ genes are 
observed that can exist within these regions but avoid their 
neighbouring epigenetic effects [115]. Furthermore, these 
PMDs are observed to regain DNAm when reprogrammed 
to a pluripotent state [116].
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Integration of epigenomic data with GWAS 
findings

Chromatin segmentation identifies pathologically 
relevant Cis regulatory elements (CREs)

Epigenomic analysis, including Chromatin Segmenta-
tion, enables the identification of cell-type specific CREs, 
including promoters, enhancers, and insulators. CREs 
comprise the binding sites for regulatory factors, such as 
TFs, that initiate and maintain transcription [117]. Deci-
phering the gene regulatory code that enables CRE activity 
involves examining how TFs bind to Transcription Factor 
Binding Site (TFBS) motifs with variable efficiently, co-
operating with mediating co-factors, as well as the inter-
play with chromatin state and nuclear organisation [118]. 
The construction of a cell-type specific ‘regulome’ though 
chromatin segmentation by the combined analysis of the 
epigenome (chromatin PTMs, DNAm, ATAC, DNase-I 
hypersensitivity sites/DHS) [119] enables integration and 
interpretation of GWAS signals in the pathogenically rel-
evant tissue. For example, the formulation of a pancreatic 
beta cell regulome is highly relevant for Type 2 Diabetes 
(T2D) GWAS evaluation [120].

Epigenomic integration and interpretation of GWAS 
signals

Non-coding variants contribute most of the common 
genetic susceptibility, for example in cardiovascular dis-
ease, this is estimated to be ~ 90% [121]. Causal GWAS 
variants are proposed to subtly modulate regulation of 
CREs. However, the identification of the target effector 
gene(s) of a disease implicated CRE is a difficult process 
and numerous evolving methods have been implemented 
and continue to evolve including EpiMap [19], ABC [122], 
and the ENCODE-rE2G methodology [123], etc. Data 
from the pathogenicity relevant tissue is paramount in this 
process. Chromatin conformation experiments have been 
employed, such as promoter-capture Hi-C, whereby poten-
tial distal CRE loci that interact with specific protein cod-
ing gene promoters are identified [124]. Recently, the com-
bination of statistical fine-mapping and Roadmap-derived 
chromatin segmentation as well as promoter-capture Hi-C 
across the range of blood pressure-related tissues enabled 
the identification of numerous novel effector genes for this 
common disease [125].

The EpiMap analysis in the Roadmap consortium data-
set across 33 tissue categories identified candidate CRE 
loci where the active H3K27ac mark was present and this 
quantitatively correlated with a target gene’s expression 

within 1 Mb [19]. From the 18-state chromatin segmenta-
tion, the five enhancer categories (G1, G2, A1, A2, and 
Wk) were intersected with DHS data to define high-reso-
lution active-enhancer regions. Active enhancer marks that 
correlate with gene activity levels defined tissue-specific 
enhancer-gene modules and were then employed to iden-
tify potential GWAS effector target genes. The Activity-
By-Contact (ABC) model prediction is calculated on the 
strength of enhancer activity and the frequency of the 
contact with gene promoter considering all the elements 
within 5 Mb of the gene [122]. This is informed by contact 
data, in this case via CRISPRi-FlowFISH that perturbs and 
assesses enhancers through CRISPR inhibition (CRISPRi), 
RNA fluorescence in situ hybridization and flow cytometry 
[122].

The gLink scores methodology was constructed start-
ing with GTEx tissue data profiled across three tissue types 
(heart, muscle, lung) for the active chromatin mark H3K27ac 
to define Active Regulatory Elements (AREs) [126]. Geneti-
cally influenced AREs were identified indicating ~ 130 k 
haQTLs (histone acetylate QTLs). Identified GWAS-
haQTL-colocalised gAREs and ARE-gene linking scores 
were constructed via multiple strategies, including impact 
on expression in the same tissue as well as proximity to 
an eQTL, shared genetic regulation between expression and 
AREs, and also utilising previous EpiMap or ABC scores. 
This prioritisation relies on interindividual genetic varia-
tion, not the inter-tissue activity variation as with EpiMap. 
Of note is that in identifying cell-specific function, bulk 
haQTLs were found to have advantages over bulk eQTLs. 
This was proposed to be due to the expression effect poten-
tially only manifesting under disease conditions and/or cell 
types, as opposed to the potentially persistent permissive 
regulatory signal [126].

A heritability informed investigation of available GWAS 
SNP-to-Gene (S2G) methods including seven previous S2G 
approaches was constructed as a combined S2G (cS2G) 
linking strategy [127]. Through linear combinations of 
individual linking scores, this concluded that the combined 
framework could double the success of any individual meth-
odology. Subsequently, to foster further understanding of 
the human enhancer to promoter relationship, sequence 
compatibility of CREs was assessed through enhancer by 
promoter self-transcribing active regulatory region sequenc-
ing (ExP STARR-seq) [128]. This concluded that in contrast 
to housekeeping genes, whose promoters were less reactive, 
variability expressed genes responded strongly to enhancers. 
The enhancers themselves had similar activity on promot-
ers but could combine multiplicatively thereby increasing 
transcription. The Polygenic Priority Score (PoPS) to pri-
oritise protein-coding effector genes was also recently pro-
posed [129]. It is informed by cell-type-specific expression 
data along with biological pathways and protein–protein 



Epigenomic insights into common human disease pathology﻿	 Page 9 of 29    178 

interactions. This method was successfully used to classify 
gene–trait pairs across > 100 complex traits and successfully 
recapitulated known findings.

The most recent prediction is the ENCODE-rE2G meth-
odology [123]. This was constructed by using ENCODE 
data comprising > 13 million enhancer-promoter interac-
tions from 352 cell types and tissues, chromatin segmenta-
tion and 3D contact data as well as CRISPR perturbation 
experiments, fine-mapped eQTLs and GWAS SNP data. 
This analysis has provided a human genome encyclopaedia 
of enhancer-gene regulatory interactions. Additionally, char-
acteristics found to be important, were again promoter class 
(ubiquitous housekeeping or variably expressed) as well as 
enhancer-enhancer synergy. Moving forward, computational 
methods, as opposed to experimental data, will be increas-
ingly used to predict effectors, such as neural network Deep 
Learning (DL) for de novo prediction of cell-type-specific 
chromatin organization [130], or DL for TF binding predic-
tion [131].

Single‑cell analysis is increasingly used to identify 
cell‑specific CREs

CREs categorisation is also gaining traction through single-
cell (sc) analysis [132]. This includes scDNAm via droplet-
based bisulphite (BS)-converted DNA [133] (microfluidic 
Drop-BS) [133]. For example, a scDNAm human brain 
analysis [134] utilised methylation barcodes (scMCodes) to 
identify human brain cell types alongside sc-ATAC-seq for 
cell type specific functional interpretation [135]. Additional 
advances include the analysis of non-coding variants at scale 
by single-cell CRISPR screens [136].

The epigenome of the repetitive human 
genome

Transposable elements (TEs) can modulate the state 
of the surrounding epigenome as well as function 
as CREs

Transposable elements (TEs) are estimated from the recent 
T2T-CH13 assembly to comprise 53.9% of the human 
genome [71]. DNAm is a fundamental mechanism in 
repressing the aberrant function of these sequences [137]. 
Furthermore, these repeats can disseminate their epigenomic 
state to the surrounding genomic region, with evidence for 
modulation of nearby gene transcription from various TE 
classes, including Alu elements [138], SVAs [139], and 
LINE1s (L1s) [140], as detailed below.

Inserted TEs can be co-opted into functional CREs [117]. 
They can act as promoters, enhancers, and silencers, as well 
influencing 3D genomic architecture through, for example, 

short-interspersed element (SINE)-derived CTCF sites 
[141]. TEs that reside intronically are shown to be enriched 
as tissue-specific enhancers [142].

Approximately a quarter of all CpGs (~ 7.5 M) reside 
within the ~ 1.2 M Alu elements, a ~ 300 bp sized primate-
specific SINE [143]. Alus comprise ~ 10.1% of the human 
genome (T2T) [144]. Numerous TFBSs reside within its 
sequence context [145] and this element is observed to have 
enhancer potential [146], with epigenetic de-repression 
influencing nearby gene expression [138, 147]. De novo 
insertion of Alu elements is significant in several develop-
mental disorders [143]. Additionally, population polymor-
phic Alus are enriched within GWAS loci, with examples 
identified that are in strong LD with the GWAS led SNP 
[148]. Alu elements are predominantly methylated across 
all normal tissues, with estimates of ~ 1–4% unmethylated 
Alus, (1.0–1.6% in the blood), and only ~ 0.3% consistently 
unmethylated across all samples [149]. In cancer cells they 
are more resistant to hypomethylation, compared to other 
repetitive elements, implying strong pressure to maintain 
their epigenetic state [149]. When loss of DNA methylation 
does occur, it is preferentially from its 5′ and 3′ ends [150].

SVAs are a composite ~ 2 kb element containing a SINE, 
a variable number tandem repeat (VNTR), and an Alu ele-
ment [151]. They arose ~ 25 million years ago (MYA), are 
hominid-specific (i.e., the existent and extinct great apes), 
and although only comprising ~ 0.15% of the human genome 
(T2T) [144], with ~ 3700 copies [139], have had a dispropor-
tionate influence in human genome evolution [152]. They 
are frequently co-opted into regulatory roles in the human 
genome [139]. In a great ape comparison, humans show a 
strong enrichment for CpGs that are human-specific within 
SVAs [153].

LINE1s (L1s) are larger ~ 6 kb, accounting for ~ 16.8% 
of the human genome (T2T), and by contrast with Alus and 
SVAs are autonomous in their ability to transcribe them-
selves, although if they become inactive through 5′ trun-
cation their CpG content reduces rapidly over time [144]. 
L1s are associated with tissue-specific regulatory elements 
[154]. Increased gene body methylation, through DNAm of 
intronic L1s is correlated with transcriptionally active genes. 
As well L1 insertions have been observed to spread DNAm 
to proximal upstream regions [140].

Genetic influence on the epigenome

Genetic variation in epigenome can drive or enable 
epigenetic function

Genetic influence on the epigenome can be defined into 
three categories, pure, facilitated, and obligatory (Fig. 2b) 
[155], This concept needs careful consideration with respect 
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to all the methodologies used to assess the epigenome. 
‘Pure’ epigenomic variation is under no genetic influence 
and could represent the variation between an active and 
dormant enhancer with the former possessing significant 
H3K27 acetylation from the latter. A genetically ‘facili-
tated’ enhancer could be present due to sequence variation 
that constructs a motif for an enhancer-activating TF on one 
allele that is not present on the converse allele. An ‘obliga-
tory’ enhancer could be present due to a portion of active 
regulatory sequence that is present on one allelic back-
ground and completely deleted on another. Therefore, all 
the quantitative sequencing approaches that depended on 
fragment enrichment, such as ChIP-seq, MeDIP-seq, etc., 
will strongly detect obligatory epigenetic states in any dif-
ferential analysis.

Both obligatory and facilitated genetically epigenetic 
changes can be misinterpreted as pure epigenetic changes. 
This can be starkly illustrated by the early observations that 
proposed that imprinting abnormalities were a common 
occurrence in cancer genomes, such as the loss of IGF2 
imprinting as a potential biomarker of colorectal cancer risk 
[156]. However, more nuanced recent analysis has identified 
that the abnormal methylation profiles at these imprinted dif-
ferentially DNA methylated regions (DMRs) were not pure 
epigenetic changes but driven by underlying copy-number 
aberrations [157].

Genomic sequence constructs the DNA methylome 
template and contributes to allele‑specific variation

The interplay between genome and epigenome is com-
plex process that is location, time, and cell-type depend-
ent. Allele-specific expression (ASE) is influenced by both 
genomic and/or epigenomic variation [158]. The widespread 
influence of allele-specific DNAm (ASM) was first docu-
mented in 2010 [159], with the strong contribution of CpG-
SNPs to this phenomenon also acknowledged at this time 
[160], as well as the first recognition of DNAm differences 
between risk and non-risk haplotypes within a GWAS loci 
[161]. Allelic variation in the DNA methylome and chro-
matin PTM landscape has been explored in the reference 
epigenomic maps [162]. Whilst, as detailed, CpG density 
indicates broadly the baseline state of the DNA methylome, 
and CpG density of a locus is fundamental in the inter-
pretation of the potential role of DNAm [163], additional 
sequence differences can contribute to the next level of epi-
genetic variation. Within CpG dense regions, methylation 
determining regions (MDRs) indicate specific TFBSs, such 
as SP1, CTCF, and members of the RFX family, that when 
mutated lead to an increase in DNAm [164]. Further allelic 
effects through the modulation in the gradient of change in 
CpG density will influence the local DNAm state. Inserted 
CpGs influence the regional DNAm state, as can be observed 

through the impact of a CpG dense L1 element acting as a 
hypomethylated CGI. This insertion will lead to a gradually 
reduced hypomethylation in the surrounding ‘sloping shore’ 
region [165]. These density effects are also apparent between 
neighbouring CGI within 3 kb of each other. The influence 
of CpG dense polymorphic TEs therefore can contribute to 
considerable allelic variation in DNAm.

Short Tandem Repeats (STRs, or microsatellites) are 
seen to influence the local DNAm state, with the classic 
pathological example of the hypermethylated expanded 
CGG trinucleotide repeat in the 5′UTR of FMR1 repressing 
transcription in Fragile X syndrome (FXS, MIM: 300624). 
Approximately ~ 11.8 k STRs affecting the local DNAm state 
have been observed with ~ 12% of these influencing nearby 
gene expression [166]. Significant variation in DNAm 
between GWAS risk and non-risk disease-associated hap-
lotypes is implicated to be driven by population variation 
in STRs [167]. STRs can also act as ‘rheostats’, particularly 
if they include methylatable CpGs, and tune the local TF 
concentration [168]. This genetically driven trait-associated 
DNAm variation can also be due to polymorphic CNVs, 
Indels, as well as clustered in-phase CpG-SNPs [167]. These 
variants can also impact on chromatin enrichment analyses, 
such as ChIP-seq as well. Structural variants can influence 
the promoter-enhancer connections by modulating 3D inter-
actions [169]. Extensive differences in chromatin confor-
mation between heterozygous loci were recently recognised 
with allele-specific topologically associated domains (TADs) 
contributing to allele-specific expression [170]. Population 
level integration of regulatory and sequence data is currently 
lacking, as even small scale haplotypic analyses of multi-
tissue personal epigenomes indicate (e.g., EN-TEx resource 
in four individuals) [171]. Larger scale single tissue analy-
sis in peripheral blood has further indicated this population 
variability in the epigenome, e.g. analysis in > 3000 DNA 
methylomes via the antibody enrichment based MeDIP-seq 
method identified 7173 Haplotype Specific DNAm (HSM) 
peaks that differed between GWAS disease or trait risk and 
non-risk haplotypes [167]. Of these peaks, ~ 37% overlapped 
non-SNP variants (CNVs, STRs, Indels) and comparison 
across chromatin segmentation for six core ENCODE tissues 
revealed ~ 10% coincided with enhancer signal. A recent 
analysis of population variability of VNTRs in regard to 
phenotypes identified 4968 significant VNTRs [172] and 
143 of these intersect with HSM peaks.

CpG dinucleotides are depleted genome‑wide 
and enriched as CpG‑SNPs

The CpG nucleotide, the major template for vertebrate 
DNAm, is depleted to ~ one quarter of its expected fre-
quency [64]. This is due to the hypermutability of meth-
ylated cytosines, as the spontaneous deamination of 5mC 



Epigenomic insights into common human disease pathology﻿	 Page 11 of 29    178 

occurs at ~ 14-fold greater rate than other single nucleotide 
substitutions in humans [173]. This mutational strength is 
starkly apparent when compared to the inverse dinucleo-
tide GpC, which not being a direct target for methylation 
occurs almost four times more frequently than CpGs (T2T 
CHM13v2.0: CpGs ~ 33.9 M, GpCs ~ 128.9 M, Fig. 2c). 
Thus, the methylation state of the germline cells (sperm 
[174] and ovum [175]) is a critical factor in this mutational 
force. Approximately 30% of all common SNPs reside 
within a CpG [167], deaminating to YpG (Y = Pyrimidine: 
C or T) or CpR (R = Purine: G or A) dinucleotides. This 
mutational change is also observed to create TFBSs at a 
high frequency, including those for key TFs such as Oct4, 
NANOG, and c-Myc [176]. However, as high CpG dense 
promoter regions also remain largely unmethylated in ger-
mline tissues, they consequently mutate at a lower rate [75].

Analysis of active open chromatin across multiple tis-
sues via DHSs has revealed that TFs occupy regions of 
DNA that are hypermutable and that CpG dinucleotides 
are strong drivers of this focused genetic diversity [177]. 
Furthermore, consistent with this, CpG-SNPs are  enriched 
to be SNPs that modify TF binding and lead to allele-spe-
cific DHS [167] (54.1% cf. their genome average of 31.1%, 
Fig. 2d). This mutational tendency within activity regulatory 
loci, seen across mammals, supports the hypothesis that the 
genome is primed for regulatory evolution [177].

Solving the ‘Missing Regulation’ of GWAS signals 
will require population scale epigenomic maps

Expression Quantitative Trait Loci (eQTLs), where gene 
expression is associated with a SNP’s genotype status, 
offer a straightforward interpretation of gene-regulatory 
mechanisms in non-coding GWAS findings. Their poten-
tial is implied when the tagging SNP and eQTL are in 
high LD with each other. However, the utility of eQTLs 
has undergone a substantial recent reappraisal. This is 
due to the observation, with now the wealth of data from 
large-scale GWAS and resources, such as GTEx, that their 
pathogenic attribution for GWAS signals is only relatively 
small [178]. An interpretation of this lack of pathogenicity, 
informed by evolutionary biology, is that common genetic 
variants correlated with a large change in expression are 
likely only to be observed in non-critical genes [178]. More 
broadly, a substantial portion of ‘missing regulation’ is now 
documented in GWAS interpretative studies, due to unre-
solved mechanisms [179]. This has also been attributed to 
context dependence, non-linear and non-homeostatic gene-
expression relationships, as well as ancestry related vari-
ation [180]. Moreover, a further under-estimated factor is 
the impact of population obligatory and facilitative genetic 
variation on the regulatory epigenome due to inadequate 
population diversity in currently available datasets [181]. 

The current epigenomic reference maps are derived from 
sub-optimal cell-line data or very small numbers of tissue 
samples, especially in comparison with the contemporary 
power of genetic datasets.

Array analysis confirms that the genetic influence 
on the DNA methylome is extensive

DNAm QTLs (mQTLs) are loci where variation in genetic 
sequence is correlated with variation of specific cytosine 
DNAm levels. These are predominantly proximal, cis acting, 
but can also be distal or even act in trans. These mQTL, as 
well as haplotype-dependent allele-specific DNA methyla-
tion (hap-ASM; also termed HSM) are used in GWAS inte-
grative interpretative analyses [182]. These studies through 
the overlap of DNAm variation and CTCF insulator loci 
have highlighted the role of allele-specific CTCF in potential 
population-specific 3D interaction [167, 182].

In terms of mQTLs themselves, an early integrative anal-
ysis explored ~ 3800 individuals from a Dutch Biobank with 
genotype (~ 5.2 M SNPs), RNA-seq and DNAm 450 k array 
data [183]. This study identified that of the tested ~ 405 k 
CpGs, ~ 34% were under the influence of cis-mQTLs 
(~ 140 k CpGs). The median distance for this cis-acting SNP 
from the CpG was ~ 10 kb but peaked strongly around the 
site of the CpG itself. Of these mQTLs, 1.6 and 0.9% were 
mixed cis- and trans- or only trans-mQTLs, respectively. 
For each genetically influenced CpG, up to 16 independent 
cis-mQTL SNPs could identified. Approximately 12 k CpGs 
correlated with the expression of ~ 3800 genes in cis (expres-
sion quantitative trait DNAm loci: eQTMs) and this was 
mostly, but not exclusively, a negative DNAm correlation 
with expression (~ 70%). Investigating ~ 1900 GWAS disease 
or trait-associated SNPs determined these affect the DNAm 
of ~ 10 k CpG sites in trans. Variants were identified that 
were both cis-eQTLs for TFs as well as being trans-mQTLs 
for CpGs within the bindings site of these TFs, including 
CTCF, NFKB1, and NKX2-3.

This substantial influence of genetics on DNAm was fur-
ther reinforced with another analysis in blood (n =  ~ 4700), 
which identified ~ 4.7 M non-independent SNPs from 
a genetic array of ~ 8.5 M SNPs as being cis-mQTLs 
for ~ 120 k from ~ 415 k CpGs (~ 29%) [184].

A meta-analysis for mQTLs in blood derived DNAm with 
the 450 k DNAm array, incorporating 36 studies, includ-
ing the above Dutch cohort, was performed in 2020 [185]. 
This consolidated on ~ 420 k CpGs analysed in ~ 32.8 k sam-
ples and using LD clumping identified > 270 k independent 
mQTLs with now ~ 45% of the array probes identified as 
being under genetic influence (~ 190 k CpGs). Whilst ~ 248 k 
independent cis-mQTL were identified, the increase in 
power was even more stark for the trans analysis, with now 
23 k trans-mQTLs (~ 8.5%). Strict statistical thresholds were 
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required in these analyses, i.e., p < 1 × 10–8 and 1 × 10–14 for 
cis- and trans-mQTL analysis, respectively. Therefore, it is 
highly probable that with further increases in power, these 
DNAm array by genotype studies will identify the vast 
majority of the assayed CpGs to be under some level of 
genetic influence.

A multiple tissue analysis was performed in the Geno-
type-Tissue Expression (GTEx) dataset, benefiting from 
analysis across 9 tissues, with ~ 1 k samples analysed in 424 
human subjects. Although there are power constraint con-
siderations, due to both smaller and variable numbers across 
the samples, this analysis identified ~ 286 k CpG mQTLs 
for > 750 k CpGs from the EPIC v1 (850 k) DNAm array, 
but with only ~ 5% indicating some tissue specificity [186]. 
An African American analysis also further supported the 
substantial genetic influence with ~ 4.5 M non-independ-
ent cis-acting mQTLs on ~ 321 k CpGs from the EPIC v1 
DNAm array identified, with these mQTLs also peaking 
sharply around the CpG site [187].

A smaller study but in isolated primary monocytes 
directly explored population differences in DNAm between 
European and African individuals (n = 156) [188]. Most of 
these ancestry-related differences (~ 70%) were identified to 
be driven by nearby differences in sequence variation (i.e., 
cis-mQTLs). Furthermore, a role for DNAm in immune 
response regulation was observed with immune stimula-
tion leading to epigenetic changes that associated with the 
expression of 230 genes. These eQTMs were themselves 
strongly enriched for genetic control (OR ~ 33.2). Addi-
tionally, the effect of the trans-master regulator CTCF was 
observed through SNP rs7203742 to influence the DNAm 
of 30 distant CpGs.

The influence of population genetic variation 
on the DNA methylome is still underestimated, 
but all cannot be a priori assumed functional

A recent study jointly analysed seven multi-omic layers 
via blood-related QTLs, e.g., eQTL, mQTL, caQTL (chro-
matin accessibility, i.e., ATAC), hQTL (histone PTMs), 
sQTL (splicing), apaQTL (alternative polyadenylation), 
and pQTL (protein) with summary GWAS data for 50 
traits (n = ~21–766 k) [189]. DNAm associations were 
observed to be comparatively more frequent than other lay-
ers. Using windows of 2 Mb centred on the trait-associated 
independent SNPs and the 7 layers of multi-omic data (n 
= 0.1–32 k), ~ 50% of these GWAS signals shared at least 
one QTL. This comprised of ~ 39% that had a DNAm asso-
ciation, twice that of eQTLs at ~ 20% and only 3.4% for 
pQTL. Furthermore, this was in a restricted array dataset 
of only ~ 91 k CpGs for DNAm. Loci with multiple shared 
QTLs have stronger regulatory potential and a priori 
assumption of function, particularly for individual mQTL 

results requires caution. mQTL driven CpGs are proposed 
to be in loci that are under less evolutionary or functional 
constraint in comparison to constituently hypomethylated 
CGI loci [190].

The extensive and replicable genetic influence on 
DNAm, therefore, needs careful consideration, as larger 
and meta-analysed datasets are now being evaluated. The 
functional informativeness of mQTLs needs to be balanced 
by their ubiquity and mechanism of detection. Therefore, 
a recontextualization of the functional implications of 
mQTLs is needed in the same light as has occurred for 
eQTL [180]. This is for three major reasons, firstly, the 
scale of the number of potential mQTLs needs to be fully 
acknowledged beyond the narrowly focused, albeit robust, 
array CpGs. The 450 k and EPIC v1 platform analyses 
have estimated that ~ 34–45% of the CpGs on these arrays 
are under genetic influence [185, 191]. These arrays at 
maximum are only assessing ~ 3% of the CpGs in the 
DNA methylome, although this selection is functionally 
enriched. If these levels are extrapolated out to the rest 
of the genome, > 10 M CpGs at least are under genetic 
influence. This underestimation of population genetic vari-
ation’s ability to shape the DNA methylome also needs 
to acknowledge that array results are excluding or do not 
assay the many obligatory or potential facilitative DNAm 
differences that are driven by larger genetic variants 
(CNVs, STRs) or compound haplotypic effects [167, 192]. 
So, due to these ubiquitous genetic influences, the inter-
pretation of the likelihood of substantial functional impact 
for an individual CpG or mQTL must be circumspect and 
bear in mind the sizeable non-assessed DNA methylome.

Secondly, equal caution is needed in the correlation 
of DNAm to gene expression beyond a mere statistical 
association with any gene within a defined large window, 
e.g., 1 Mb. This is the same restraint as needed for SNP 
to gene associations, in that the simple assumption that 
the nearest gene is not always implicated. The a priori 
likelihood of a mQTL influencing expression, i.e., that its 
associated CpG is a quantitative trait methylation locus, 
eQTM, needs to be considered. Regional DNAm changes 
have increased likely function compared to an individual 
CpGs. Also, further support is needed that the correct tar-
get gene been identified, i.e., is the co-location of this CpG 
within this gene’s promoter, or tissue-specific enhancer 
from chromatin segmentation data, and if the latter, is 
there supportive interaction data with this distal CRE and 
the appropriate promoter from Hi-C data. Furthermore, 
whilst statistically significant, the direction of effect may 
not be biologically correct, as even within CGI promot-
ers classic hypermethylation is not always associated with 
reduced expression [88]. Also, proposed changes in gene 
body methylation influencing expression need functional 
data to support them.
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Thirdly, multiple variants can be in LD with a GWAS 
SNP, and all of these can influence the DNAm of multiple 
CpGs, as mQTLs, through both biological (obligatory and 
facilitative) and technical effects (e.g., see DNAm array 
influences below). However, the significant correlation 
between the GWAS-SNP and DNAm does not demonstrate 
that this is in fact the functional mechanism, as this requires 
experimental evidence, such as CRISPRi or CRISPR-acti-
vation (CRISPRa) in the appropriate pathogenic tissue and/
or stimulated state.

Mendelian randomization for the functional 
exploration of DNAm

As one method to assess function, the impact of DNAm 
was quantified on gene expression in multiple complex traits 
through a multivariable Mendelian randomization (MVMR) 
framework [193]. This was performed by integrating eQTL 
and mQTL and the role of cis transcripts in mediating a 
DNAm to complex trait causal relationship. The DNAm of 
the PARK7 promoter CpG, cg10385390, through its influ-
ence on reducing expression was found to increase the risk 
for inflammatory bowel disease. Also, this study identified 
DNAm of cg13428477 increased PDIA5 expression and this 
was associated with increased platelet count. PDIA5 also 
contains an intragenic HSM [167] associated with the over-
lapping GWAS lead SNP, rs3792366.

Genetic influences on active and repressive 
chromatin peaks are also abundant

Genetic influence on histone PTMs have also been explored, 
as in the previously described GTEx H3K27ac hQTL analy-
sis [126], although these analyses are impeded numbers wise 
by the requirement for tissue samples for ChIP or similar 
method. An additional analysis for genetically associated 
H3K4me1, H3K4me3, and H3K27ac peaks (hQTLs), both 
local (± 2 kb of peak boundaries) and distal (< 2 Mb) was 
performed in 75 lymphoblastoid cell lines [194]. This study 
identified ~ 22 k (H3K4me1), ~ 14 k (H3K27ac), ~ 9.5 k 
(H3K4me3) hQTLs and that these were enriched for 
SNPs associated with autoimmune diseases. Integration of 
H3K27ac peaks from an SLE case control lymphoblastoid 
dataset with GWAS data, identified acetylation was enriched 
on disease-risk haplotypes that influenced local gene tran-
scription [195]. The Blueprint consortium analysis in three 
major blood cell types (CD14+ monocytes; CD16+ neutro-
phils; and naive CD4+ T cells) identified that ~ 43.3% of 
eQTL sentinel variants were also associated with H3K4me1 
or H3K27ac hQTLs (i.e., identical or in high LD, r2 ≥ 0.8) 
[68].

Epigenome‑wide association studies (EWAS)

Analysis of the DNA methylome for association 
with complex traits

The inherent stability of DNAm has empowered Epige-
nome-wide Association Studies (EWAS) at scale. This 
DNA methylome analysis aims to identify specific Dif-
ferentially DNA methylated Positions or Cytosines (DMP/
Cs) related to a trait or phenotype. As well, clustered co-
directional variation in CpGs can be statistically defined as 
DMRs, and these, as mentioned, due their increased poten-
tial for regulatory effect, are enriched for function [83].

DNAm array analyses have enabled 
a population‑scale assessment of the DNA 
methylome

Genome-wide DNAm arrays, whilst assessing a compara-
tively limited number of the total CpGs in the genome (i.e., 
Illumina EPIC v2.0 935 k, ~ 3%) still maintain two critical 
advantages over WGBS and, thereby, continue to perform 
an extremely useful role for the epigenomics field. Firstly, 
a known set of CpGs, present on the array, will be consist-
ently assayed and, secondly, highly robust, and equivalent 
data is obtained for these CpGs with this methodology. 
These two factors have enabled high-throughput analysis 
of large-scale epidemiological DNA datasets. The preci-
sion of these DNAm array data, estimated to be equivalent 
to ~ 100X sequencing depth [196], has supported multiple 
EWAS analyses [197, 198], the novel discovery of a pan-
tissue DNAm ‘clock’ and the subsequent research into 
phenotypic or ‘biological’ DNAm ‘clocks’ [199] (detailed 
further below), as well as the construction of predictors of 
plasma protein levels, termed ‘EpiScores’ [200].

Significantly higher read depth requirements are needed 
for the quantitative assessment of DNAm in comparison 
to genomic sequencing, which by contrast is generally 
focused on the germline identification of only three dis-
crete categories: common homozygote, heterozygote, rare 
homozygote. Whilst the initial coverage level of 30X for 
2nd Gen-seq was recommended for the NIH Roadmap 
Epigenomics Project, this was subsequently recognised as 
inadequate, with WGBS saturation analysis experiments 
estimating a minimum of 85X is required for DMC call-
ing [201]. Targeted DNAm sequencing approaches aim for 
substantially deeper resolution (e.g., 100X [202], 300X 
[203], etc.). Furthermore, in contrast to the array data, 
2nd Gen-seq suffers from stochastic coverage across all 
the CpGs in the genome. Therefore, individual CpGs will 
vary drastically away from the quoted mean or median 
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coverage, and this increases or decreases the quality of 
result for that specific CpG in that specific sample. Con-
sequently, whilst DNAm trait estimators and clocks can be 
constructed via WGBS, their portability from the initial 
findings is limited due to this inability to cover the same 
CpGs in subsequent analyses with reliable data. WGBS 
analyses, in fact, often end up covering a vastly smaller 
number of CpGs than the total DNA methylome, once even 
moderate coverage thresholds are employed across all the 
samples of a particular analysis, and this smaller ‘well-
covered’ set will differ even in technical replicates.

Hence the epigenomics community has continued to use 
and benefit from DNAm array technology, and the release of 
a mouse [204] and an updated human array EPIC v2 (935 k) 
[205] in the last 2 years attest to the continued enthusiasm 
for this platform. A high-throughput screening DNAm 
human array is also in the pipeline for future release.

Delineating six classes of genetic influence on DNA 
methylation array analysis

For DNAm array-based analysis the considerable influ-
ence of genetics affecting the DNAm quantification either 
strongly or subtly can be broken down into six major 
classes (Fig. 3): (A) Direct biological—due to genetic 
mutation of the CpG dinucleotide itself, i.e., an allelic 
discordance with the CpG present on one allele and not 
the other, commonly a SNP within the CpG site (a CpG-
SNP). This will present with an extreme trimodal DNAm 
pattern, if the CpG is fully methylated (i.e., ~ 0, 50, 100%); 
(B) Probe technical—due to genetic variation most likely 
directly under the array probe (a 50 bp complementary 
sequence) that reduces the likelihood of binding of the 
probe to that specific allele. In this case, there is under-
representation of the DNAm measure of this non-binding 
allele and if there is actual biological variation in the 
DNAm state between alleles then this will be reduced or 
missed completely; (C) Regional biological—these are 
genetic cis-effects that vary between haplotypic states, for 
example, if the assayed CpG is (i) proximal to polymorphic 
TFBS that influences DNAm state of a CGI (MDRs [164]), 
(ii) a polymorphic heavily methylated repetitive element 
that influences the DNAm of the locus making the CpG 
prone to be slightly more methylated, or (iii) polymorphic 
CpGs in phase that influence the local neighbourhood CpG 
density. Any SNP in strong LD with any of these genetic 
factors, such as the inclusion of this repetitive element 
on this haplotype, would be observed to be a mQTL; (D) 
Multimapping Genomic Technical—due to the ability of 
the probe sequence to bind to more than one unique region 
of the genome. The resultant assayed CpG will be an aver-
age of these multiple locations. This DNAm average will 
depend on the likelihood of binding to the sequences and 

regional properties of the various loci as well as potential 
stochastic binding effects; (E) Multimapping allelic vari-
ation biological—if the probe resides within a region that 
exhibits an unknown CNV, the DNAm signal will not only 
increase in intensity [206], but will also be the average of 
the CNV methylation states. Consequently, any disparity 
in the DNAm between the copies will be an influence; and 
finally, F) Genetic trans biological—trans effects on the 
locus, e.g., the assessed CpG is within or near a TFBS that 
via the action of a TF binding changes the local DNAm. 
If the expression of this TF is itself under genetic influ-
ence by a SNP, then this SNP will be a trans-mQTL for 
the assayed CpG.

Loci can be under the influence of a number of these con-
tributing genetic factors to a lesser or greater degree, and in 
powerful DNAm studies some of these more subtle effects 
will become consistent enough above technical noise to be 
readily detected by the highly accurate array technology. 
This multitude of genetic effects contribute to the strong 
population influences observed on DNAm data [208].

Heterogeneous DNAm signals can be deconvoluted 
in cellular fractions

DNAm data, due to its cell-type specificity, provides infor-
mation on the constituent cell types present within a het-
erogeneous sample. As blood-derived DNA is representa-
tive of the various leukocytes present when the DNA was 
extracted, this allows cell-type deconvolution to be per-
formed utilising leukocyte subtype-specific DMCs [209]. 
Multiple tissue-type algorithms have been constructed to 
assess the proportion, cellular infiltration, or contamination 
of samples. These are highly informative for interpreting the 
resultant measured DNAm variation [210]. A more special-
ised higher resolution of cell type may be required in some 
cases and this deconvolution can bring further insights into 
pathogenic processes, e.g., the macrophage subtypes M0, 
M1, etc. [211].

However, these increasingly detailed epigenomic data 
do add further complexity, as the definition of cell type is 
not yet fixed. An evolutionary stance is proposed as a tool 
to help in the definition of cell type identity and with this 
the concept of a cell’s ‘core regulatory complex’ (CoRC) 
of transcription factors [212]. Also, whilst there is a clear 
mechanism for DNAm mitotic inheritance to maintain the 
cellular epigenomic signature, for chromatin PTMs this 
is only most strongly supported for repressive signatures, 
such as H3K9 methylation, and to date this has only been 
observed in yeast models [213]. Although, recycled parental 
histones are observed to remain close to their genomic loca-
tion through DNA replication, potentially hinting at transfer 
of this epigenetic information [214].



Epigenomic insights into common human disease pathology﻿	 Page 15 of 29    178 

Robust and replicated DNAm associations have 
been identified for common diseases

EWAS via DNAm arrays (or DNAm wide association 
study: MWAS) have been highly successful with > 1000 
studies detailing numerous associations listed on the 
EWAS Atlas [215]. The first studies were performed 
by 27  k arrays [216, 217] and have subsequently 

progressed with the technology updates. Robust statis-
tical thresholds have been proposed for the array plat-
forms (e.g., p < 9 × 10–8 for EPIC v1) as well as study size 
impacts on power (e.g., n ~ 1 k samples) [218]. Most analy-
ses have employed peripheral blood-derived DNA due to 
its availability, and as such many of these findings are 
biomarker associations, having not been performed in the 
appropriate pathogenic tissue for the disease or trait. For 

Fig. 3   Genetic influence on DNA methylation assessment. A Direct 
Biological. A CpG-SNP leads to the loss of DNA methylation abil-
ity at the interrogated cytosine. B Direct Technical. A genetic vari-
ant residing under the CpG probe interferes with binding. C Regional 
Biological. Cis-effects due to genetic variation (Repeat Elements, 
Methylation Determining Regions/MDRs, CpG density). CGI = CpG 

Island. D Multimapping Genomic Technical. CpG probe binds inad-
vertently to multiple locations. E Multimapping Genomic Biological. 
CpG probe binds to multiple sites due to CNV encapsulating interro-
gated CpG. F. Trans effects. Genetic variation modulates the expres-
sion of distal TFs influencing their binding to the interrogated locus 
(Adapted from [207])
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example, consistent blood DNAm associations with the 
obesity phenotype of BMI include many overlapping find-
ings for components of the metabolic syndrome, compris-
ing hyperlipidaemia, hyperglycaemia, and inflammatory 
measures [207]. These epigenetically derived data are still 
physiologically informative, as a blood DNAm estimator 
of BMI, constructed by elastic net regression, was able to 
calculate ~ 32% of the variance in BMI and this measure 
was better than actual BMI in predicting poorer meta-
bolic health [219]. Previous comparisons between DNAm 
predicted and genetic polygenic risk scores (PRS) have 
shown that these are essentially independent and additive 
in nature, e.g., for BMI predictors: DNAm 12.5%, PRS 
10.1%, and combined 19.7%. However, this is starkly dif-
ferent for smoking where almost all the strong predictive 
power is via DNAm at ~ 60.9%, with PRS only 2.8%, and 
combined at 61.4% [220]. DNAm associations have been 
recently formulated into DNAm profile scores (MPS) in a 
similar fashion to PRS [221]. Further supporting the inter-
connected nature of blood DNAm adiposity predictors, six 
body-fat-related traits were evaluated and these DNAm 
correlations were observed to be of greater magnitude 
than their genetic counterparts [222]. Furthermore, a small 
number of 8 CpGs correlated with sex-specific BMI. The 
dramatic physiological intervention of bariatric surgery 
has been explored epigenetically in 40 severely obese indi-
viduals before and 1-year post-surgery, with 4857 DMCs 
identified in peripheral blood. Of these ~ 51% were directly 
attributable to the change in BMI observed [223].

A peripheral blood T2D meta-analysis performed in five 
European cohorts identified 76 CpG sites associated with 
incident T2D from 1250 cases and 1950 controls, with 64 
of these then replicated in a South Asian Indian population 
[224]. This included DNAm associations within ABCG1, 
TXNIP, SREBF1 and CPT1A. As with the BMI findings, 
many of these are overlapping metabolic syndrome pheno-
types, including hyperlipidaemia, hypertension, and obe-
sity. In fact, these results were primarily driven by BMI, 
with 33 CpGs directly associated, and after adjustment 
for this phenotype, only four CpGs remained significant. 
This reduced to three after an adjustment for smoking sta-
tus. These four included the two most significant CpGs, 
TXNIP (cg19693031), previously associated with sustained 
hyperglycaemia [225], and ABCG1 (cg06500161), with 
multiple metabolic associations [207], as well as CFL2 
(cg21234053), although this has been associated with mater-
nal smoking previously [226]. However, further DMCs were 
still able to be identified in a recent US study in African- 
and European-Americans with seven novel findings in the 
former and three in the latter [227]. Intriguing functional 
insights into the long-term effects of hyperglycaemia have 
identified glucose increasing the post-translational modifi-
cation, O-GlcNAcylation at S878, of DNMT1, inhibiting 

this maintenance enzyme in the liver, leading to downstream 
alterations of the epigenome [228].

Cardiovascular disease (CVD) traits have been explored 
via EWAS, such as ischaemic stroke [229]. In the Framing-
ham Study, biomarkers of CVD were identified through ML 
by combining DNAm and RNA data in a decision tree, light 
gradient-boosting machine (LightGBM) [230]. These were 
subsequently confirmed in isolated monocytes. Bespoke 
predictors for specific diseases are likely to be superior to 
more generalised phenotypic measures [231] and for CVD, 
a DNAm-based composite predictive biomarker, DNAm-
CVDscore, was built from an Italian cohort for short-term 
CVD events [232]. This was then validated in four further 
European cohorts. This score included DNAm estimators 
calculated from ML elastic net regression for the contribu-
tory disease-related factors of BMI, blood pressure, fasting 
glucose, insulin, cholesterol, triglycerides, and coagulation. 
This DNAmCVDscore outperformed the SCORE2 clinical 
algorithm that measures 10-year CVD risk. Additionally, a 
myocardial infarction (MI) blood DNAm predictor was con-
structed in ~ 11.5 k coronary heart disease (CHD) free indi-
viduals across nine studies (US and EU) under the umbrella 
of the CHARGE consortium [233]. 52 CpGs were associ-
ated with future MI risk, and these were noted to include 
those residing in genic loci involved in calcium regulation 
(ATP2B2, CASR, GUCA1B, and HPCAL1).

Respiratory studies have included asthma EWAS, iden-
tifying, as predicted, signals strongly driven by an increase 
in eosinophils [234]. Functional exploration in primary air-
way epithelial cell cultures of the functional effect of type 2 
cytokine IL-13, a key mediator of allergic airway diseases, 
identified induction of widespread and long-lasting changes 
to the airway epithelial DNA methylome [235]. Recent work 
has explored Idiopathic Pulmonary Fibrosis (IPF) through a 
high-resolution EWAS, involving a myeloid-specific decon-
volution of the pathogenic cell-type, the airway macrophage 
[211]. Another study evaluated DNAm derived from nasal 
brushing, identifying that only three CpGs were needed for a 
strong predictor of childhood allergy diagnosis [236]. These 
changes were associated with an influx of T cells and mac-
rophages, indicative of allergic inflammation.

The direct analysis of neurological disease is clearly lim-
ited by the confines of the brain, however, any surrogate 
biomarkers for Alzheimer’s or Parkinson’s disease or other 
disorders that can be identified would have substantial clini-
cal utility. Post-mortem analyses have been performed to 
give potential insights into disease pathogenesis, with, for 
example, a meta-EWAS across the cortex for Alzheimer’s 
disease identifying ~ 1.5 k DNAm changes associated with 
Braak stage and 220 cross-cortex DMCs with neuropathol-
ogy [237]. A frontal cortex EWAS has identified specific 
DNAm changes for dementia with Lewy bodies, revealing 
novel pathways involved in this disorder [238].
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Array analysis of the blood DNA methylome can 
identify the prevalence of multiple common 
diseases in combination

The ability to assess disease risk across a whole combination 
of illnesses through blood based DNAm array (EPIC v1) 
EWAS was assessed in ~ 18 k individuals from the Genera-
tion Scotland cohort [239]. Cross-sectional prevalence of 
14 common diseases identified 69 DMCs (58 novel) asso-
ciations for breast cancer (10), chronic kidney disease (1), 
ischemic heart disease (6), and T2D (52). The longitudinal 
incidence of 19 disease states identified 64 DMCs (56 novel) 
that associated with the incidence of Chronic Obstructive 
Pulmonary Disease (6) and T2D (58). However, replica-
tion of previous studies was lower than expected, indicating 
that increased consensus is needed for future large biobank 
analyses regarding statistical rigour, phenotypic definitions, 
as well as reporting standards [239].

A powerful meta-analysis across ~ 22 k individuals with 
Illumina DNAm array data explored the subtle shifts in 12 
leukocyte cell blood types and their association with expo-
sures, phenotypes, and disease [240]. A validated leukocyte 
reference was constructed using flow-cytometric count and 
sorted cell WGBS data. Differing leucocyte proportions 
were associated with age and sex, as well as smoking and 
obesity. Independently of major epidemiological risk fac-
tors, follow-up data identified that an increase in naïve CD4+ 
T-cells correlated with reduced risk of all-cause mortality.

Histone tail modification association studies have 
also been performed for common diseases

EWAS using chromatin PTMs, for example, Histone Acet-
ylation-wide association studies (HAWAS) interrogating 
H3K27ac peaks, have been performed, but in a much more 
limited scale, to date, due to the issues of retaining robust 
chromatin data. These have included a HAWAS for autism 
spectrum disorder (ASD) in 257 post-mortem case–control 
samples that identified ~ 5 k CREs associated with diagno-
sis [241]. A similar HAWAS for Alzheimer’s Disease in 
47 post-mortem entorhinal cortex samples identified ~ 4 k 
differential peaks [242]. An HAWAS in immune cells for 
Mycobacterium tuberculosis infection identified > 2 k CREs 
in a small discovery set of Singapore Chinese (n = 46), with 
replication across populations in South Africans, where the 
fold-change direction was concordant for 86%. As previ-
ously discussed, these sequencing-based enrichment analy-
ses performed in population-based samples need to clearly 
delineate between signals that are driven genetically from 
pure epigenetic variation, particularly due to the potential 
impact of population variation in CNVs, Indels and STRs. 
Exploring SNP genetically driven peaks, the ASD HAWAS 
identified ~ 2 k haQTLs within the general population [241].

The ageing epigenome

The DNA methylome changes over a lifetime 
with both stochastic and consistent components

Ageing is an obvious but significant risk factor in ageing-
related diseases. The biological ageing mechanism itself 
is extremely rigidly controlled, as no extreme outliers of 
distinct species expectations have ever been observed. 
Understanding the molecular drivers of ageing may how-
ever bring novel insights into the pathogenesis of ageing-
related diseases, and epigenetic changes are recognised as 
one of the hallmarks of the ageing process [243]. Ageing 
changes in the epigenome were first documented in salmon 
in the 1960’s [244]. The epigenomic landscape is thought 
to deteriorate over time in a process termed ‘epigenetic 
drift’. A landmark study for this model was the identifi-
cation that even comparing between monozygotic (MZ) 
twins, de facto genetic clones, a DNAm assay increasingly 
diverged with age [245]. The advent of high resolution 
and high throughput DNAm arrays then enabled further 
intricacies to be discovered. Ageing-related increases in 
DNAm were found to be enriched in promoters of poly-
comb group target genes [246], as well as in bivalent 
domains that possess both active (H3K4me3) and repres-
sive chromatin (H3K27me3), which are frequently found 
in developmental gene promoters [247]. These promot-
ers possessing age-related DMRs also commonly become 
hypermethylated in cancer [248].

Of note as well, this ageing-related DNAm promoter 
hypermethylation, as in the case of the ZNF577 promoter 
[248], which has also been observed in cancer, may also 
be reflective of the detection of the altered epigenetic 
state of low-level somatic clones. This ZNF577 promoter 
hypermethylation has also been observed with the ageing-
related polycythaemia vera (PCV) JAK2 V617F pathogno-
monic mutation [249].

As previously mentioned, mitotic rate is a driving factor 
in hypomethylation due to inconsistencies in the fidelity 
of the remethylation process, with late-replicating sparse 
WCGW CpGs particularly venerable [113]. Ageing-related 
loss of DNAm also occurs within TEs subfamilies. These 
may contain lineage-specific TFBSs, leading to alternate 
lineages become active and subsequently this ageing-
related loss of lineage maintenance may predispose to 
malignancy [250]. DNAm changes may also modulate 
TE roles in chromatin organisation and heterochromatin 
homeostasis [141].

Early replicating regions of the cancer epigenome are 
seen to be prone to hypermethylation [251], and in paral-
lel an ageing-related enrichment for hypermethylation is 
seen in the early replicating, as well as highly transcribed, 
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tRNA loci [252]. This DNAm change was observed for 
certain tRNA copies, and in further parallels, this isolated 
tRNA hypermethylation has also been seen in the cancer 
methylome, with subsequent functional effects on tRNA 
transcription [253].

The influence of local CpG density on ageing was fur-
ther explored in a peripheral blood longitudinal analysis of 
450 k DNAm array data, with ~ 346 k robust CpGs evalu-
ated, in ~ 600 elderly samples (67–80 years) [254]. Ageing 
changes were detected in > 50% of CpGs. These were not 
driven by major cell type variation and were most strongly 
evident at ~ 8 k CpGs residing within low CpG density and 
heterochromatic loci. These cytosines lack the reinforcement 
in DNAm state provided by neighbouring CpGs that aids 
DNMT efficiency [255] A quarter of these (~ 1.5 k) were 
under strong genetic polymorphism influence by variants 
that altered the CpG density of the region and/or bases adja-
cent to CpGs [254]. DNAm ageing trajectories were more 
variable at low CpG density regions with increased variable 
changes in DNAm with age in older adults (> 65 years), but 
a directional loss of DNAm across the midlife age range 
(≤ 65 years). By contrast, dense CpGs can recruit CXXC 
proteins (including H3K4 methylators: CFP1, MLL1, 
MLL2, and DNA demethylase: TET2) that more strongly 
reinforce their low DNAm status [254].

DNAm ‘clocks’ are influenced by immunosenescence, 
but also capture ageing‑related stochastic changes 
within different genomic functional units

As mentioned above, DNAm arrays expediated the discov-
ery of DNAm ageing ‘clocks’, with the paradigm shift com-
ing from a pan-tissue clock that was able to be constructed, 
using the same CpGs that worked across different tissues 
[256]. Therefore, this implied that epigenetic signals existed 
beyond those driven by recognised ageing-related tissue-
specific cellular proportional changes, as well as the random 
processes associated with drift. A consistency existed in the 
directionality of DNAm changes within certain genomic 
units, which occurred steadily enough across cell-types that 
it could estimate age within ± 3 years [257]. Furthermore, in 
this error, a component of ‘biological age’ was captured, as 
positive epigenetic ‘age acceleration’ correlated positively 
with morbidity and mortality [258]. Whilst later dissec-
tion of this effect has identified that a small fraction can be 
contributed to changes in rare cell types, since the training 
set was predominantly blood derived and as well that blood 
cells infiltrate many tissues. Furthermore, cellular compo-
sitions themselves are also related to mortality [240, 259]. 
Immunosenescent T cells (CD8+CD28−), and in general the 
activation of T cell and NK cells [260] may contribute to 
this observation. Although, the pan-tissue concept is still 
valid [257]. However, it should also be noted that these few 

hundred CpGs present within the defined Horvath clock 
(353 CpGs) are not extraordinary in themselves, but merely 
good representatives that work well together to capture the 
directional changes that occur stochastically within different 
genomic units. Other sets of CpGs can be selected that can 
equally capture these changes [261]. Clock CpGs are well 
represented in CpG dense functional loci [231]. They are 
capturing the multiple systemic ageing processes, estimated 
to comprise at least twelve distinct modules [262].

A recent analysis of immune epigenetic ageing across 
six major purified immune cell types (naive B, naive CD4+ 
and CD8+ T cells, granulocytes, monocytes, and NK cells) 
via EPIC v1 DNAm arrays identified only a small, although 
statistically enriched fraction was consistent across all 
cell types [263]. However, whilst benefiting from isolated 
cell-type analysis, the sample size was only 55 (ranging 
22–83 years). Of interest are those consistent changes that 
were able to be identified, such as in promoter region of 
RCAN1 and KLF14, although most changes that were shared 
across all cell types were moderate. Though, ELOVL2, pre-
viously identified as a strong outlier of cross tissue ageing-
related hypermethylation [264] was also supported in this 
analysis. Opposing changes were also seen in differing cell 
types, for example, T cell specific differences in a BCL11B 
gene body CpG (cg27123256), increased DNAm with age in 
naive CD4+ T cells and decreased in non-T, and a FAM19A1 
gene body CpG (cg03530364) increased DNAm in non-T 
cells but decreased in CD4+ T cells. Increased variability at 
certain CpGs has also been observed previously with age, 
and was proposed to be associated with fundamental ageing 
pathways [265].

DNAm ‘clocks’ are predictors of chronological 
as well as phenotypic biological age associated 
with ageing‑related diseases

Once it was recognised that aspects of ‘biological’ age 
could be captured by DNAm clocks, efforts then focused 
on improving this measure, leading to the construction of 
‘phenotypic’ clocks. Firstly, the PhenoAge clock comprised 
DNAm surrogates of the NHANES PhenoAge biochemi-
cal and haematological data, including albumin, creatinine, 
glucose, C-reactive protein (CRP), lymphocyte percent, 
mean red cell volume, red cell distribution width, alkaline 
phosphatase, white blood cell count and age [266]. Follow-
ing this, the GrimAge clock was constructed using DNAm 
estimates of seven plasma protein levels: adrenomedullin 
levels, beta‐2 microglobulin, cystatin C, growth differentia-
tion factor 15, leptin, tissue inhibitor metalloproteinase 1, 
plasminogen activation inhibitor 1 (PAI-1), plus crucially 
a quantitative smoking estimate (PackYears) as well as a 
DNAm age estimate [199]. This clock possessed the best 
prediction, at that time, of future cancer or cardiovascular 
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disease as well as mortality [267]. This was recently updated 
to GrimAge2, with the addition of the long-term glycaemic 
control measure haemoglobin A1c (HbA1c) and inflamma-
tion with CRP [268]. A further expansion on this is ‘bAge’ 
from the Generation Scotland dataset, that incorporates the 
GrimAge measures with age and sex plus 109 EpiScores for 
ageing-related plasma proteins [269].

DNAm clocks have been correlated with a plethora of 
ageing-related diseases [257]. For example, an analysis of 
future T2D risk with GrimAge clock in the CARDIA study 
(n =  ~ 1 k) revealed that in obese individuals a positively 
accelerated GrimAge was associated with an odd ratio 
of ~ 2.57 for the 10-year risk of developing T2D [270].

The environmental influence on epigenome

The tobacco DNAm biomarker hints at substantial 
potential to quantitate external exposures

The analysis of the epigenome has been postulated as a 
molecular measure to quantitate non-genetic environmen-
tal influences on disease [271]. The standout signature in 
peripheral blood DNAm of tobacco smoke intake and/or 
exposure levels strongly indicated this potential [272]. This 
signal is robustly observed between discordant MZ twins 
[273]. Hypomethylation of the top CpG, AHRR cg05575921, 
is a predictive biomarker of future lung cancer [274], with 
even proposed utility in population lung cancer screening 
[275].

Whilst the tobacco-associated DNAm changes are one 
of the strongest effects that can be observed from periph-
eral blood, they do in fact vary across specific blood-cell 
subtypes and are an excellent example of how cellular het-
erogeneity influences the epigenetic signal. These DNAm 
signatures are influenced in tandem by the leukocyte pro-
portional changes as well as intracellular DNAm changes. 
For example, the AHRR cg05575921 signal is more strongly 
represented in the myeloid lineage, which itself increases in 
proportion due to smoking [276]. Thus, this combined effect 
leads to this specific DNAm biomarker being so prominent. 
By contrast, the tobacco-related hypomethylation of GPR15 
cg19859270 is lymphocyte specific [277]. Furthermore, 
regarding cellular proportions, smokers are observed to have 
a 7.2% reduction in naïve B cells (CD19+) [278].

DNA methylation associations with pollutant 
exposures may bring novel insights to disease 
aetiology

The influence of long-term ambient air pollution exposure 
(1-year average home outdoor concentrations) on athero-
sclerosis was explored via EWAS. This was performed in 

CD14+ monocytes, a cell-type critical in atherosclerosis 
pathology, via fine particulate matter collectively termed 
PM2.5 and Oxides of nitrogen (NOX) in the Multi-Ethnic 
Study of Atherosclerosis (MESA) study (n ~ 1.2 k) [279]. 
This identified four DMRs for PM2.5 in or near to SDHAP3, 
ZFP57, HOXA5, and PRM1, and two DMRs for NOX also 
at SDHAP3 and ZFP57. The HOXA5 DMR was associ-
ated with monocyte expression of HOXA5, HOXA9, and 
HOXA10. These epigenetic changes may be insightful as to 
how air pollution contributes to cardiovascular disease risk.

Associations of annual ambient PM2.5 components have 
also been explored with DNAm phenotypic clocks [280]. 
An analysis in ~ 700 elderly men identified PhenoAge clock 
acceleration measured against a 1-year moving average from 
a local air-quality monitor. The difference between the inter-
quartile range (IQR) in PM2.5 levels led to an increase of 
0.16 years in DNAm PhenoAge acceleration. Of note, an 
analysis of the contributing chemical components of PM2.5, 
identified that a similar IQR increase in specifically the 
lead or calcium component caused an even larger increase 
of 1.45 and 0.62 years in DNAm PhenoAge acceleration, 
respectively.

Arsenic exposure at low exposure levels in water and 
food is related to multiple health outcomes, including car-
diovascular disease (CVD) and hypertension [281]. It can 
also induce epigenetic modifications in experimental expo-
sure models. A prospective EWAS was performed in ~ 2.3 k 
American Indians with blood DNAm data analysed with 
urinary arsenic species, measured by high-performance liq-
uid chromatography and plasma mass spectrometry. Arse-
nic-associated DMCs at 20 and 13 CpGs were associated 
with CVD incidence and mortality, respectively. Functional 
models of arsenic-induced atherosclerosis also support the 
hypothesis that diabetes and redox signalling are involved 
in its pathogenesis [281]. Arsenic exposure also leads to 
phenotypic DNAm clock age acceleration [282].

There is clear utility in these exposure DNAm biomarkers 
for epidemiological measures [283], but additionally func-
tional insights may also be possible in appropriate patho-
genic tissue through delineation of how the DNAm measures 
are being influenced by cellular subtype proportions, DNA 
sequence, and TF binding [284].

Advancing analysis of the DNA methylome

Epigenomic analysis will be advanced 
with increasing direct long read DNA data

The analysis by single-molecule or 3rd Gen-seq technolo-
gies, such as ONT and PacBio, is enabling substantial novel 
insights by the generation of direct genetic and DNA modi-
fication long read data [285]. These methods are bringing 
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new knowledge to well-studied epigenetic phenomenon, 
with ONT analysis detecting 42 novel imprinted DMRs 
in the human genome [286], as well as enabling improved 
assessment of skewing in X‑chromosome inactivation (XCI) 
[287], respectively. Inaccessible regions of the genome, such 
as centromeres, have now been able to be surveyed for their 
DNA modification state [72].

Additionally, improvements in accuracy and in the abil-
ity to scale up ONT long-read analysis will aid large-scale 
haplotypic integrative analyses, by incorporating SNP, 
InDel, CNV, STR, and Structural Variant (SV) assessment 
in tandem with DNA modifications [288]. This will sup-
port deeper evaluation and regulatory understanding of the 
substantial common disease related HSM already observed 
[167]. CpG-SNPs are obligatory mQTLs and common CpG-
SNPs are excluded by design from DNAm arrays, or those 
inadvertently included are routinely removed from analysis. 
However, when multiple CpG-SNPs are in phase these can 
contribute strong population DMR effects [167]. A recent 
Human Genome Structural Variation Consortium (HGSVC) 
analysis of 32 human genomes by a combination of long-
read PacBio and Strand-Seq was evaluated for SVs in LD 
with GWAS SNP and identified 4677 unique trait-associated 
SVs [289].

Long reads also enable methodologies, such as nucleo-
some occupancy and methylome sequencing (NOMe–seq), 
to determine the long-range phasing of dynamic, tissue-
specific, and allele-specific regulation on identified disease-
related haplotypes [290]. In this analysis, accessible DNA is 
marked by a recombinant DNA methyltransferase (M.CviPI) 
for GpCs not endogenous CpGs. The integration of long read 
data is starting to rectify the weaknesses of array focused 
as well as short-read 2nd Gen-seq analyses and enable a 
more nuanced evaluation of haplotypic genetic and epige-
netic effects. Furthermore, previously unrecognised subtle 
patterns are now visible in these single molecular resolu-
tion data, with nucleosome periodicity clearly signalled in 
DNAm, and contributing to DNAm heterogeneity in bulk 
analyses [291].

DNA methylome data will dramatically increase 
with the shift to 3rd generation sequencing

Whilst rare imprinting disorders and monogenic diseases, 
such as FXS, have been longstanding clinical genetic pathol-
ogy tests requiring DNAm analysis, additional risk factors 
for common disease will be recognised with the increased 
availability of DNA modification data. This will arise as 
the large biobank datasets, as well as pilot neonatal whole 
genome sequencing currently being embedded, in future 
likely shift to direct molecule 3rd Gen-seq technologies. 
Furthermore, the availably of this scale of data will stimu-
late improved statistical approaches for assessing variation 

in the DNA methylome, such as novel Bayesian methods 
[292, 293].

Real‑time DNAm diagnostic utility for CNS tumours

DNAm dysregulation is routinely observed during tumour 
development. These changes can be used to profile as well 
as pinpoint therapeutic vulnerabilities through the identifi-
cation of druggable targets for sites with cis acting aberrant 
DNAm [294]. There is immense diagnostic potential through 
the precision provided by epigenomic assessment of tumour 
biopsies and in the determination of cancer of unknown pri-
mary [295]. Through the implementation of a ML random 
forest algorithm, a DNAm-based classifier was devised for 
the ~ 100 central nervous system tumour types [296]. A pro-
spective evaluation of this diagnostic tool found that in ~ 1 k 
samples, ~ 15% were histologically ambiguous but that a 
classification based on DNAm was possible. For ~ 12%, a 
change in diagnosis was called, and for ~ 93% of these dis-
cordance calls, after retrospective assessment with addi-
tional histological and genomic analysis, the DNAm tool 
was deemed to be correct. This DNAm classifier was sub-
sequently used successfully for rapid assessment via ONT, 
enabling intra-operative surgical decisions, clearly indicat-
ing the increasing clinical utility of epigenomic analysis for 
pathological diagnosis [297].

A potential DNAm biomarker predicts acute 
lymphoblastic leukaemia risk from birth

Analysis of the DNA methylome by Illumina EPIC v1 
DNAm array derived from the archived neonatal blood spots 
from MZ twins discordant for paediatric acute lymphoblas-
tic leukaemia (ALL) (n = 41 pairs) revealed 240 DMCs and 
10 DMRs consistently associated with ALL risk [298]. The 
top four DMCs were validated by methylation-specific drop-
let digital PCR, with a region overlapping TRIM39-RPP21 
being most significant. These changes may be a potential 
biomarker of future ALL risk with a predisposed epigenome 
already present at birth.

Clinical utility of EpiScores

The quantitative EpiScores for internal circulating plasma 
proteins [200] potentially benefit from being more accu-
rate measures of long-term trends, with, for example, the 
DNAm estimator for CRP outperforming serum levels as a 
biomarker of chronic inflammation in relation to brain age-
ing [299].

A composite predictor from 45 DNAm EpiScores for car-
diovascular disease was successful in CVD risk evaluation 
independent of the clinical prediction algorithm (ASSIGN) 
and cardiac troponin I levels [300]. Similarly, EpiScores 
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were effective for T2D 10-year incidence prediction beyond 
standard risk factors [301].

Additional DNAm clinical utility can come from assess-
ing therapeutic decision making and pharmacological moni-
toring. An exemplar of this is monitoring the response to 
dexamethasone, due to its immunosuppressive potential, in 
glioma treatment. A neutrophil dexamethasone DNAm index 
(NDMI) was constructed that was a more precise monitor 
than blood analysis for glucocorticoid response in glioma 
survival [302].

Therapeutic modulation of the epigenome 
through epidrugs

Epidrugs are providing novel therapeutic avenues 
with considerable potential

The successful therapeutic targeting of  the cancer epig-
enome through the broad DNMT inhibitor (DNMTi) Azac-
itidine was first introduced in 2004 for the treatment of 
myelodysplastic syndrome [303]. This cytidine analogue 
leads to global DNAm reduction, including the removal of 
hypermethylation at tumour suppressor genes, with addi-
tional indirect effects mediated by reprogramming, and, 
furthermore, due to direct incorporation into DNA, is cyto-
toxic [303]. Other reprogrammers, such as Histone Dea-
cetylate Inhibitors (HDACi), EZH2 inhibitors (EZH2i), and 
inhibitors of BET (BETi) binding to acetylated histones, 
also found subsequent success as oncological therapeutics, 
with multiple proposed actions including induction of cell 
cycle arrest and repression of accelerated cell growth. This 
applicability of these epigenomic modifiers was made clear 
through the large-scale cancer sequencing projects that iden-
tified that mutations in the epigenomic machinery were fre-
quent, as with developmental orders, with ~ 50% of human 
cancers possessing mutations in chromatin organisation 
enzymes [303]. However, modulation of the epigenome has 
considerable potential for non-malignant diseases as well, 
with potential for BETi and HDACi in vascular inflamma-
tion and atherosclerosis, respectively [55]. The wide-rang-
ing therapeutic possibilities of H3K27 demethylase inhibi-
tors involve KDM6A/B inhibition as an anti-inflammatory 
mechanism for autoimmune and inflammatory disorders, as 
well as an immunopathological suppressant for infectious 
pathogens [304]. Additionally, the exciting future potential 
beyond these broad modulators is precise genomic targeting 
of epigenomic activators or inhibitors, through CRISPRa or 
CRISPRi, respectively [305]. The tethering of epigenomic 
writers or eraser enzymes to an inactive Cas9 with guide 
RNA enables locus targeting of CREs to modulate gene 
expression levels [306]. Functional screens can also ben-
efit greatly from this technology, for example, by targeting 

specific promoters within a gene to identify the critical 
pathogenic isoform [307]. The ability to target specific 
alleles through placing SNPs within the guide RNA has also 
enabled ASM CRISPRi targeting with a 5–10-fold allelic 
enrichment in DNAm [308]. Of note, recent experimental 
evidence has shown that changes introduced to haematopoi-
etic stem cells through experimental CRISPRi manipulation 
were maintained, propagated, and skewed the lineage devel-
opment of the descendants of these cells [309].

To date, the experimental in vivo delivery of CRISPRa/i 
has employed recombinant adeno-associated viral (rAAV) 
vectors, which benefit from low immunogenicity and high 
transduction efficiency [310]. However, due to size con-
straints, the more effective activators have required dual 
AAV vector approaches to encode the entire module, 
although these were efficient for local tissue organ-specific 
effects. Potential improvements could include the investiga-
tion of co-packaging of multiple AAVs into extracellular 
vesicles [311] as well as the use of lentiviral vectors for their 
increased capacity, although with the trade-off of increased 
immunogenic activity and reduced barrier crossing and 
diffusion ability [310]. Notwithstanding these issues, the 
success so far with these initial forays, hint at the immense 
future therapeutic potential of these precise epigenomic 
manipulators.

Conclusion

Epigenomic analysis is now integral to pathological 
diagnostic advances

New insights are forthcoming from combining current 
diagnostic modalities with multi-omic layers, for example, 
spatially resolved epigenomics through ATAC profiling in 
tissue sections, with barcoded solid-phase capture [312]. It is 
also clear that the current rapid improvements in single mol-
ecule long-read sequencing technologies are now starting 
to deliver on their potential [285], directly analysing DNA 
as well as RNA modifications [313]. Furthermore, system-
atic perturbation experiments of CREs, such as enhancers, 
will substantially improve our functional understanding of 
the genome [314]. Methods to deal with the sparsity of sin-
gle cell data will also continue to improve the information 
acquired at this resolution [315]. Additionally, the power of 
all this generated ‘big data’ will be utilised by ML and AI 
for further breakthroughs, with epigenomic data increasingly 
providing a substantial component for these analyses.

Epigenomic maps of human health and disease are being 
accumulated, bringing insights to the huge resources now 
available from robust GWAS findings. However, increased 
population variation of these epigenomic datasets is needed 
[181], particularly for understanding the obligatory and 
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facilitative nature of genetic variation’s influence on the 
epigenome.

Epigenetic biomarkers have the potential to be informa-
tive across the breath of clinical applications, for not only 
cancer, but also other disorders. This includes diagno-
sis and pathological classification, prognosis, recurrence 
detection, residual disease, treatment choice and response 
assessment, population screening, as well as risk stratifi-
cation [316]. Insights can be gathered from primary tissue 
biopsies, involving fresh frozen, or Formalin-Fixed Paraffin-
Embedded (FFPE) samples, but also derived from cell-free 
DNA (cfDNA). These ‘liquid biopsy’ cfDNAm analyses can 
determine the tissue of origin of unknown primary cancers 
[317], but also assess disease risk, such as pre-eclampsia 
[318], and specific organ damage, including cardiomyocyte 
death [319]. Epigenomic biomarkers in surrogate tissues, 
epidemiologically associated with risk, e.g., tobacco DNAm 
biomarkers, can also be evaluated, e.g., from blood, sputum, 
buccal cells, stool, and urine [320]. The plasticity of epige-
netic modifications as well as the enriched mutation burden 
of epigenomic machinery genes has brought a major focus 
on epidrugs in drug development [316].

In conclusion, epigenomic analysis and diagnostics firstly 
enable precise molecular understanding of the functional 
changes of the epigenome in disease. Secondly, using this 
knowledge can inform the creation of novel sequence-
specific regulatory epigenomic therapeutics. Thus, these 
two facets of epigenomic medicine will lead to substantial 
improvements in human health.
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