
Vol.:(0123456789)

Cellular and Molecular Life Sciences          (2024) 81:184  
https://doi.org/10.1007/s00018-024-05199-y

REVIEW

The impact of nanomaterials on autophagy across health and disease 
conditions

Ida Florance1 · Marco Cordani2,3  · Parya Pashootan4 · Mohammad Amin Moosavi4 · Ali Zarrabi5,6,7 · 
Natarajan Chandrasekaran1

Received: 2 November 2023 / Revised: 1 March 2024 / Accepted: 3 March 2024 
© The Author(s) 2024

Abstract
Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress con-
ditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials 
(NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation 
at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance thera-
peutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened 
autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. 
Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. 
Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. 
This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status 
in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for 
application as early indicator of NM toxicity.
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Introduction

Autophagy is a naturally conserved self-degradative mecha-
nism responsible for the removal of damaged, abnormal, 
and long-lived cellular biomacromolecules and organelles 
[1]. Under physiological conditions, autophagy occurs at a 
basal rate, to constitutively regulate intracellular recycling of 
cell components [2]. Based on the pattern of cargo delivery 
into lysosomes, three forms of autophagy, including micro-
autophagy, chaperone-mediated autophagy (CMA), and 
macroautophagy, have been identified. In microautophagy, 
the target cellular contents are invaginated by the lysosomal 
membrane [3]. CMA is a highly specific type of autophagy 
that requires a KFERQ sequence in the target proteins. Pro-
teins with the consensus sequence are identified by a chaper-
one protein called HSC70 and are sequestered to the lysoso-
mal membrane [3]. The transport of cargo into the lysosomal 
lumen occurs via a lysosomal membrane receptor called 
LAMP-2A [4]. Macroautophagy, hereafter called autophagy, 
is a major type of autophagy predominantly used by the cells 
for the removal of cellular debris and damaged organelles 
[3]. This mechanism is initiated by the formation of unique 
double-membraned structures called autophagosomes that 

sequester and engulf target proteins called “cargo” and deliv-
ers them into lysosomes for degradation [5, 6].

This intricate process of cellular housekeeping, 
autophagy, sets the stage for understanding the impact of 
nanomaterials (NMs), as they interact with and influence 
these fundamental cellular activities. Due to unique phys-
icochemical properties of nanoparticles (NPs), including 
high surface area, high functionality, easy penetrating into 
cells and, they have attracted significant attention to be 
used in industry and medical applications. There are several 
approaches to synthesizing NMs which can take on a vari-
ety of morphologies, such as disks, cubes, rods and spheres 
[7]. Because of their smaller size, NMs are highly reactive 
chemically and are easily prone to aggregation and agglom-
eration [8]. Thus, surface modification is required to prevent 
agglomeration and enable surface functionalization tailored 
to specific applications. [9].

NMs are broadly classified into organic and inorganic 
types, with carbon-based NMs counted as a separate class 
due to their wide range of spectroscopy proprieties. Exam-
ples of carbon-based NMs include Carbon Nano Tubes 
(CNTs), nanocomposites, nanofibers, nanowires, quantum 
dots and dendrimers [10, 11]. nPs, on the other hand, are 
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NMs ubiquitously present in the environment and pose a 
major threat for both animal and human health. They can be 
synthesized for various applications or obtained from the 
fragmentation of larger plastics.

There are numerous reports on the role of NMs in modu-
lating autophagy. NMs-induced autophagy had been con-
sidered both as mechanism of nanotoxicity and as a defense 
mechanism against nanomaterial-induced toxicity [12]. Dis-
tinct from previous reviews, this manuscript not only offers 
a comprehensive exploration of the interaction of NMs with 
autophagy across therapeutic and environmental contexts 
but also delves into the state-of-the-art knowledge about the 
importance of autophagy flux or blockade in NP studies. 
For the first time, we deeply discuss the pro-death roles of 
autophagic NPs and its connection to regulated cell death 
(RCD), and offer new therapeutic applications of autophagic 
NPs, as controllable autophagic tools or as carriers for 
autophagy-modulating drugs. Our review uniquely synthe-
sizes these insights against the backdrop of recent significant 
reviews, providing a comprehensive view of the multifaceted 
roles of NMs in autophagy regulation. In this review, we dis-
cuss the contrasting roles of NMs in modulating autophagy 
in both therapeutic and environmental contexts, delving 
into the molecular mechanisms involved, potential health 
implications, and the broader significance of these interac-
tions in advancing our understanding of NM applications in 
biomedicine and environmental health.

Autophagy‑regulating pathways

As a highly regulated cellular process, autophagy activa-
tion results from the integration of several signaling path-
ways. Mammalian target of rapamycin (mTOR) is a serine/
threonine kinase that plays a crucial role in the regulation 
of cellular metabolism and growth [13]. It is also a key 
regulator of autophagy, serving as a negative regulator of 
the process. Under nutrient-rich conditions, mTOR com-
plex 1 (mTORC1) is activated and promotes the inhibitory 
phosphorylation of ULK1 (unc-51 like autophagy activating 
kinase 1), a protein that plays a crucial role in the initiation 
of autophagy [14]. However, when nutrient levels are low, 
mTORC1 activity is inhibited, leading to activation of ULK1 
and initiation of autophagy [15]. The importance of mTOR 
is extensively demonstrated that a number of pharmacologi-
cal inhibitors have been developed to activate autophagy for 
therapeutic purposes in a number of morbidities [16].

AMP-activated protein kinase (AMPK) is another master 
regulator of autophagy in response to low energy status in 
the cell [17]. In conditions of energy deprivation, AMPK 
is activated by the increased AMP/ATP ratio, which pro-
motes the activation of autophagy to generate ATP via the 
recycling of cellular components. Notably, AMPK acts as 

antagonist to mTOR activity since it can directly phospho-
rylate and activate ULK1 complex, leading the formation 
of the isolation membrane, the first step in autophagosome 
biogenesis [14] AMPK also activates autophagy through the 
phosphorylation and inactivation of the mammalian class 
III phosphatidylinositol-3-kinase (PI3K) complex, which 
is a negative regulator of autophagy [18]. This inactivation 
leads to the dephosphorylation and activation of BECN1 
(Beclin-1), a critical component of the autophagy initiation 
complex [19]. The main mechanisms regulating mTOR and 
AMPK axis are reported in Fig. 1.

Overall, both mTOR and AMPK processes play a critical 
role in coordinating cellular energy status and metabolism 
with autophagy to maintain cellular homeostasis. However, 
it is important to note that their role is complex and context-
dependent, and its regulation of autophagy is also influenced 
by other signaling pathways and cellular conditions [20]. In 
this regard, autophagy can be activated by several physiolog-
ical and pathological conditions. During physiological con-
ditions like starvation and nutrient deprivation, cells tend to 
catabolize the damaged components thereby generating sub-
strates for sustained ATP production [21]. While autophagy 
is activated during physiological stressful conditions such as 
starvation [22], hypoxia [23] 23 and infection [25] to sustain 
cell survival and homeostasis, pathological conditions like 
neurodegenerative diseases and cancers require inhibition 
of autophagy to overcome cytoprotective roles of autophagy 
and promote disease pathogenesis [26]. For instance, in 
Alzheimer's disease, impaired autophagy contributes to the 
accumulation of β-amyloid plaques and neurofibrillary tan-
gles in the brain [27]. In muscular dystrophies, defective 
autophagy results in the accumulation of dysfunctional mito-
chondria and impaired muscle regeneration [28]. However, 
autophagy has a double-faced role during cancer. Whereas 
inhibition of autophagy activity is required to promote can-
cer formation by increasing oncogene-induced tumorigen-
esis and DNA damage accumulation, an increased level of 
autophagy maintains formed cancer cells survival and con-
tributes to drug resistance [29, 30]. Therefore, autophagy 
can plays either pro-death or pro-survival roles in human 
diseases so that both its inhibition and activation may have 
therapeutic values for patients [31, 32].

Further, entry of foreign particles triggers autophagy which 
in response acts as a first line of defense [33]. Nevertheless, 
it is possible that the autophagy activated in response to the 
entry of foreign particles or by the foreign particles can be 
both pro-survival and pro-death [34]. However, this relies on 
the surface interactive properties of the particle. Contrastingly, 
foreign particles can also impair autophagy flux. Inhibited 
and impaired autophagy can be activated or enhanced using 
autophagy inducers. Similarly, autophagy inhibitors can be 
used to counteract over-activated autophagy. As mentioned 
previously, impaired autophagy is associated with several 
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metabolic disorders and diseases [35, 36]. Consequently, drugs 
that target these conditions are being developed to induce 
autophagy, either directly or indirectly. Moreover, autophagy 
induction is also a direct therapeutic strategy for several dis-
ease conditions [37]. Phytocompounds, their synthetic ana-
logs and chemical compounds, have been reported to modulate 
autophagy [38–41]. Notably, natural compounds have been 
shown to influence autophagy, with significant implications for 
the treatment of conditions such as stroke [42]. NMs, particles 
or constituents ranging from 1 to 100 nm (nm) in at least one 
dimension [10], have recently gained a lot of interest for their 
potential application in several fields, including for the treat-
ment of cancer and other diseases [43, 44]. It has been reported 
that several NMs can modulate autophagy from synthesized 
NPs to nPs found in the environment [45, 46]. By identifying 
the ability of NMs to regulate autophagy, researchers may dis-
cover powerful modulators of this cellular process.

Nanomaterials and their applications 
in therapeutics

Nanoscale materials possess unique properties and behav-
ioural features including large surface area to volume ratio, 
and optical, electrical and/or magnetic properties which 
attribute to their medical applications, to prevent, diagnose, 

monitor and treat diseases when used directly or merged/
added to a pre-existing product [47].

Therapeutic NPs are broadly classified into two types: 
nanocrystalline and nanostructured. Nanostructured materi-
als are further classified into lipid-based, polymeric and non-
polymeric structures [48]. Nanogels, micelles, nanoparticles, 
drug conjugates, protein nanoparticles and dendrimers are 
examples of polymeric NMs [49, 50] Similarly, quantum 
dots, metallic nanoparticles, carbon nanotubes, silica-based 
particles and nanodiamonds are examples of non-polymeric 
structures [51]. Solid-lipid nanoparticles, nanostructured 
lipid carriers and liposomes are categorized under lipid-
based NMs [52, 53]. Therapeutic agents that are crystalline 
in nature are used in combination to form nanocrystalline 
particles and are used for several clinical applications [50]. 
Grapefruit-derived nanovectors (GNVs) are nanoparticles 
synthesized from grapefruit-derived lipids. They are devel-
oped to transport chemotherapeutic agents like siRNA, DNA 
and other proteins to different cells [54]. Further, hyaluronic 
acid-chitosan based nanocomposite hydrogels had been 
developed for photothermal chemotherapy against cancers 
[55].

Inorganic nanoparticles like Zinc oxide (ZnO NPs), silver 
nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) are 
majorly exploited for treatment of cancers and anti-angi-
ogenic effects. For example, modified AuNPs have been 

Fig. 1  Autophagy and nutrient availability. Nutrients availability differentially regulates mTOR and AMPK signaling pathways which interact in 
a complex interplay
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recently employed to overcome pancreatic cancer chemore-
sistance to Gemcitabine [56]. Similarly, Ag NPs and ZnO 
NPs have been extensively reported for their antibacterial 
activity [57, 58]. Additionally, fullerene derived NPs were 
reported to have free radical scavenging activity [59]. In 
wound healing, nanoparticles with anti-bactericidal proper-
ties are desirable. In such cases, nanoparticles like Ag NPs, 
Cu NPs and ZnO NPs are predominantly used for their anti-
microbial and anti-bactericidal properties [60]. Recently, 
self-powered and implantable ZnO nanowire-based elec-
tronic skin had been developed to monitor skin health trans-
dermal [61]. Electrospun nanofibers are effectively used in 
wound dressing as they regulate wound humidity [62]. Fur-
ther, carbon dots were considered as potential nanostructures 
to target RNA (nucleic acid) and capsid proteins of SARS‐
CoV‐2 using photodynamic therapy [63]. In addition, carbon 
nanotubes have been employed in drug delivery, treatment 
of neurodegenerative diseases, tissue regeneration, infec-
tion therapy, DNA delivery for gene therapy and anti-tumor 
immunotherapy [64].

Interestingly, nPs have also been used as therapeutic 
agents. For example, sodium polystyrene sulfonate remains 
the current treatment option to decrease serum potassium 
levels and clinically manage hyperkalemia [65]. Besides 
being therapeutic agents by themselves, NMs are mostly 
known for their application as careers of drugs and nano-
vehicles and vectors [66].

While NMs have shown immense promise in a range 
of therapeutic applications, from targeted drug delivery to 
novel treatments for various diseases, they also present new 
avenues to address existing challenges in pharmacology. 
Although many anti-cancer and anti-tumor drugs that are 
hydrophobic, they face limitations in clinical applications 
due to their solubility and metabolism in biological systems. 
Recent advancements in nanotechnology have improved 
nano-drug delivery systems that can overcome such chal-
lenges including non-targeted cytotoxicity [67]. However, 
some anti-tumor drugs can induce mild autophagy, which 
may promote tumor cell survival, and are prone to rapid 
clearance by macrophages. Nanocomposites can increase 
drug accumulation in tumor cells and prevent multi-drug 
resistance [68], but overcoming this resistance through this 
approach remains a challenge.

Environmental and health concerns 
of nanomaterials

NMs have become an integral part of our daily lives, and 
exposure to them has become unavoidable. The unceasing 
use of synthetic nanoparticles has resulted in their increased 
release into environmental media such as air, water, and soil 
[69]. NMs can be released into the environment during the 

production of nano-based raw materials, the use of products 
made of NMs, and during the disposal of such products [70].

The form of materials encountered by humans and the 
environment remains a decisive factor while assessing the 
environmental risks associated with NMs. Similarly, the 
behavior of NMs released into the environment is a major 
concern. Additionally, environmental risks associated with 
NMs are also linked to their properties, such as stability, 
shelf-life, solubility in water and body fluids, ability to 
agglomerate, tendency to interact with other nanoparticles, 
chemicals, and surfaces. Owing to their active surfaces, 
NMs can mobilize pollutants and pose a significant threat 
to groundwater. Similarly, their smaller size can lead to dis-
tribution in the air [71, 72].

In contrast, highly stable NMs can remain unaffected in 
the environment and ultimately reach biological systems, 
accumulating there [73]. Furthermore, NMs released into 
the environment can undergo surface modification caused 
by several environmental factors. However, it is unclear to 
what extent changes in morphology and surface properties 
can affect the toxicological properties of NMs. For example, 
polystyrene NPs were reported to impair lipid metabolism in 
macrophages without having a direct impact on the viability 
of cells [74]. NMs made of basic materials that are soluble 
tend to lose their nanostructure post entry into biological 
fluids [75, 76]. NMs undergoing changes in kinetics could 
also exert nano-specific toxicity [77].

Autophagic interventions in the uptake 
of NPs, NMs and nPs

Autophagy plays a vital role in cellular responses against 
NMs and nPs exposure [78]. Whether it promotes survival or 
death largely depends on the type of NP or nP and the sever-
ity and timing of exposure [12]. While some NMs might 
be seen as foreign entities by cells, others, especially those 
supported by intracellular macromolecules, can be challeng-
ing for cells to recognize and process [12]. Activation of 
autophagy is a major cellular response against NP and nP 
entry [79]. For NMs that have entered the cell, the endo-
lysosomal pathway tries to clear them [80]. However, nPs 
can also accumulate within autophagosomes, indicating the 
key role of autophagy in their clearance [79]. On the thera-
peutic side, this can pose a challenge, as autophagosomes 
might engulf NMs before they exert their therapeutic effects, 
making conditions that compromise autophagy more favora-
ble for therapeutic outcomes [81].

Micro and nanoplastics enter biological systems through 
ingestion, inhalation, and skin contact [82]. NMs mainly 
enter cells via endocytosis, with other non-endocytic path-
ways also playing a role [83, 84] Autophagy can impact this 
uptake both directly and indirectly. For instance, when nPs 
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are coated with serum proteins from FBS, autophagy can 
be compromised in macrophages [85]. Conversely, when 
autophagy is inhibited, there can be an enhancement in nPs 
uptake through phagocytosis [86]. While nanotechnology 
offers promising therapeutic interventions, our ecosystem 
faces contamination from micro and nanoplastics. Under-
standing autophagy as a cellular response to nanomaterial 
exposure and as a potential mechanism for nanomaterial-
based therapies is crucial. Bridging the gap between envi-
ronmental NMs and therapeutic ones requires a deeper 
exploration of autophagy. Continued research into the effects 
of nanoscale and submicron plastics on cellular processes 
and internal organs is vital, as is the development of NMs 
that can efficiently modulate the autophagy pathway for 
future treatments and clinical trials.

Autophagy modulating effects of NPs: 
autophagy flux or blockade

Nanomaterials as inducers of autophagy flux

Induction or blockade of autophagy flux is defined by 
the increase and decrease in autophagic degradation 
activity [87]. NPs have an intrinsic ability to regulate 
the autophagy pathway at various stages, making them 

potential candidates for inducing autophagy (Fig. 2). In 
polymeric NPs, such as PLGA NPs, which are taken up 
and degraded by lysosomes, an increase of acidification 
in lysosomes is occurred, leading to the induction of 
autophagic flux along with a decrease of SQSTM1/p62 
[88, 89].

A wide variety of NPs, including QDs, alumina NPs, 
zinc oxide NPs, Au NPs 22 nm, silica NPs,  TiO2 NPs, 
CNTs and ultra-small super paramagnetic iron oxide 
(USPION) NPs, also induce autophagy flux at least in part 
by the inhibition of MTOR signaling pathway or by induc-
ing the expression and/or phosphorylation of autophagy-
related and BCL2-family proteins involved in autophagy 
[90, 91]. ROS production by NPs may also play a role in 
autophagy induction [92].

Fullerenes, CuO,  TiO2, Nitrogen-doped  TiO2, cerium 
dioxide, iron oxide and neodymium(III) oxide (Nd2O3) 
NPs increase autophagy flux via ROS production or other 
mechanisms that exerting significant cytotoxic effect on 
breast, cervix and lung cancer cells [93, 94]. In addition, 
photoactivation of graphene QDs and N-TiO2 NPs can 
induce consolable autophagy flux in cancer cells [95, 96]. 
The autophagic effects of NPs are dependent on their size 
and physico-chemical characteristics. For example, CdSe 
QDs with a size larger than InGa QDs, provoke a stronger 
autophagy flux [97].

Fig. 2  Schematic representation of potential modulatory effects of NMs on autophagy pathway
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Nanomaterials as blockers of autophagy flux

As mentioned previously, NPs block autophagy flux pre-
dominantly due to lysosome impairment resulting from the 
accumulation of NPs in lysosomes. This can be either due 
to lysosome overload, altered lysosomal pH and structural 
impairment in lysosomes. For example, exposure to silica 
 (SiO2) NPs impaired the degradative function of lysosomes 
by increasing lysosome membrane permeabilization (LMP) 
blocking the autophagy flux on hepatocytes [98]. Similar 
effects were observed by AuNPs but were dependent on the 
size. AuNPs of size 50 nm was readily internalized by cells, 
caused lysosome alkalization eventually resulting in block-
ade of autophagy flux [99].

Cationic NPs, such as cationic dendrimers (G5) [100], 
result in the accumulation of protons and subsequently 
impairment of lysosomes and autophagy [101]. Similarly, 
Au NPs alkalinize the lysosome and block autophagy 
through the impairment of its fusion with autophagosomes 
[102]. Other NPs such as  Fe3O4 NPs [103], ZnO NPs [104], 
 TiO2 [105], CNT [106] and polystyrene NPs [107] are able 
to block autophagy through an enhance at intracellular 
ROS level and interfering with autophagosome trafficking 
resulted from disruption of microtubules and actin polymeri-
zation [108]. Autophagy can also block following ER stress. 
Treatment of macrophages with magnetic iron oxide NP 
(M-FeNP) caused ER damage and blocked the autophagy 
flux further leading to increased ER stress [109]. Therefore, 
to avoid misinterpretation of autophagic effects of NP on 
cells, it is critical to distinguish between autophagosome 
accumulation resulting from induction of autophagy flux as 
opposed to the blockade of autophagic flux [87].

Diving deeper into specific examples, various nano-
particles have shown distinct mechanisms in influencing 
autophagy flux. For example, silver nanoparticles (AgNPs) 
have been shown to induce cytotoxicity both in vitro and 
in vivo by inhibiting the fusion of autophagosome and lyso-
some [110]. While the use of autophagy inhibitors along 
with nanoparticles has been an effective approach to treat 
cancers, Fe2O3@DMSA, a carboxy-functional iron oxide 
nanoparticle was reported to display anti-tumor effects alone 
without addition of autophagy inhibitors. The underlying 
mechanism of inhibitory effect of nanoparticle on hepatoma 
growth was the blockade of the fusion of autophagosome and 
lysosome [111]. Moreover, exposure to carbon black nano-
particles during pregnancy exacerbated lung fibrosis induced 
by bleomycin in offspring via inhibition of autophagy, which 
was mediated by LKB1-AMPK-ULK1 axis [81]. Excessive 
accumulation of autophagosomes resulting from blockade in 
autophagy flux was observed to be mediated by disruption 
of cytoskeleton in lung cells treated with Graphite carbon 
nanofibers (GCNF) [112]. Further, decreased mitochondrial 
activity and membrane integrity was induced by SiNPs in 

HUVECs with subsequent activation of mitophagy [113]. 
In addition, exposure of cancer cells to polyethyleneimine 
(PEI)-coated iron oxide NPs (IONPs) resulted in higher 
uptake and increased ROS production eventually inducing 
apoptosis through inhibition of autophagy [114]. Although 
NMs have shown a beneficial role in autophagy inhibition 
for the treatment of tumors, understanding how to mitigate 
damage to normal cells by controlling the level of autophagy 
induced by these NMs remains a critical area of research. In 
contrast, the cytotoxic effects and mechanisms of cell death 
induced by micro- and nanoplastics exposure depend on 
their size, shape, surface charge, and chemistry, underscor-
ing the complexity of interactions between NMs and biologi-
cal systems. For instance, polystyrene nPs of size 100 nm 
were reported to impair autophagic flux in HUVECs [115]. 
Furthermore, the inhibitory effect of polystyrene nanoplas-
tics (PS-nPs) on autophagic flux was reported to decrease 
when PS-nPs were interacted with proteins present in fetal 
bovine serum (FBS). However, the cytotoxic effect of PS-
nPs reappeared after the protein corona was degraded in lys-
osomes. [85]. Figure 2 demonstrates the possible induction 
or inhibition effect of NMs on the autophagy process.

In primary human nasal epithelial cells polystyrene nPs 
with size 50 and 500 nm were reported to result in increased 
expression of autophagy markers, LC3 II and P62 when 
treated with or without chloroquine (a late-stage inhibi-
tor of autophagy). This is due to the impaired clearance of 
autophagosomes resulting from impaired autophagic flux. 
The autophagy marker LC3 II co-localized with fluores-
cence labelled nPs in cytoplasmic regions [116]. Addition-
ally, mice exposed to 100 mg/kg of PS particles displayed 
interrupted degradation of autophagic substrates [117]. The 
interference of accumulated PS particles was confirmed by 
the colocalization of autophagy markers LC3 II and P62 in 
mouse embryonic fibroblasts [118]. However, the potential 
of secondary microplastics to inhibit autophagy has not been 
extensively studied. Furthermore, research on the impact 
of secondary microplastics on human and environmental 
health is still insufficient. Nevertheless, primary microplas-
tics with definite shape and size have been well explored for 
their impact on human health the understanding of which is 
important to study the toxic effects of secondary microplas-
tics. Effects of nanoparticles on modulation of autophagy 
are listed in Table 1.

Nanostructures as carriers 
for autophagy‑modulating drugs

In many drug-delivery studies, biocompatible NMs have 
been developed and optimized as an approach to enhance 
the active or passive targeting, cellular uptake, systemic 
circulation of the nanocarriers, and in general the antican-
cer efficacy of anti-cancer drugs, including Rapamycin, 
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Everolimus, and Dactolisib [154–156]. The same logic goes 
for the nanomaterial-mediated delivery of autophagy modu-
lating drugs which may target different key elements in the 
process of autophagy including the mTOR kinase and autol-
ysosomes. In fact, autophagy modulator drugs are currently 
considered as a promising approach to treat cancer in com-
bination therapies [157]. For example, a thermo-responsive 
nanocomposite gel provided the vehicle for sustainable drug 
delivery of two autophagy promoting drugs, paclitaxel and 
temozolomide, and resulted in synergistic antiproliferative 
autophagy induction both in vitro and in vivo [158]. The 
encapsulation of 3-methyladenine (3-MA), a well-known 
PI3K inhibitor in nano-sized zeolitic imidazolate framework 
crystals has also been studied [159]. These metal–organic 
framework nanoparticles were proved to be efficient drug 
delivery vehicles that enhanced the cellular uptake and 
blockade of  autophagosome formation in HeLa cells. 
Another compound with autophagy modulating properties 
is the anti-malaria and anti-rheumatoid drug, chloroquine, 
which has been used in clinical trials for solid tumours 
[160]. This FDA approved autophagy blocker is a lysoso-
mal lumen alkalizers that mediates lysosomal dysfunction, 
impaired degradation of the cargo, and therefore induces 
block of autophagic flux [161]. A multifunctional delivery 
system was designed for a pH-responsive targeted delivery 
for chloroquine diphosphate, a chloroquine derivative as 
an autophagy blocker [162]. The zinc-based metal–organic 
framework body was presented as a carrier encapsulating the 
anti-cancer drug, while folic acid and polyethylene glycol 
(PEG) coated on the surface worked as targeting and stabil-
ity improving agents. Nanostructure-based strategies are for 
multifunctional and synergist approach in cancer therapy, 
however, the pharmacokinetics, biodistribution, and toxico-
logical patterns of such innovative tools should be taken into 
account before reaching final clinical stages [163].

Autophagy‑modulating nanomaterials in clinical 
practice

Autophagy is a process that is involved in a variety of dis-
eases, and researchers have been working to translate find-
ings from the lab to clinical practice. As described previ-
ously, the use of NMs carrying drugs or other compounds 
with the potential to modulate autophagy has been widely 
explored as therapeutic approach in in vitro and in vivo 
models. In addition, several nanomedicines carrying drugs 
inducing autophagy [164–169] have been evaluated in 
clinical trials, including MM-398 (Irinotecan liposome 
injection), CRLX101 (Ceramide nanoliposome injection), 
MBG453 (Anti-TIM-3 antibody nanobody), Cytodrox (Nano 
Doxorubicin), Abraxane (NanoAlbumin-bound Paclitaxel), 
and SC-01 (Nanoliposomal C6-ceramide).

A phase I clinical trial evaluated MM-398 in patients 
with advanced solid tumors, and the results showed that the 
drug had a favorable safety profile and antitumor activity 
[170]. In a phase III clinical trial (NAPOLI-1), MM-398 in 
combination with 5-fluorouracil and leucovorin significantly 
improved overall survival in patients with metastatic pancre-
atic cancer who had previously received gemcitabine-based 
therapy [171]. A phase II clinical trial evaluated CRLX101 
in patients with advanced non-small cell lung cancer, and 
the results showed that the drug had a favorable safety pro-
file and antitumor activity [172]. In a phase I clinical trial, 
MBG453 demonstrated antitumor activity and a favorable 
safety profile in patients with advanced solid tumors [173]. 
A phase II clinical trial is ongoing to evaluate the safety and 
efficacy of MBG453 in combination with a PD-1 inhibitor. 
Cytodrox has been evaluated in several clinical trials for 
the treatment of various types of cancer, including breast 
cancer, ovarian cancer, and leukemia [174]. Abraxane has 
been approved for the treatment of several types of cancer 
and has been designed to enhance drug delivery and reduce 
toxicity compared to the free drug [175–177]. SC-01 has 
been evaluated in a phase I clinical trial in patients with 
advanced solid tumors, and the results showed that the drug 
had a favorable safety profile and demonstrated preliminary 
antitumor activity [178]. SC-01 is being developed by Sphe-
rium Biomed. Other examples of approved clinical trials 
involving drugs modulating autophagy and nanoparticle are 
reported in Fig. 3.

In the context of cancer treatment, the dual role of nano-
material-induced autophagy is highlighted by the work of 
Shi et al. [90]. They developed a biomimetic nanoformula-
tion that co-encapsulates Oxaliplatin (OXA)/hydroxychloro-
quine (HCQ) a well-known autophagy inhibitor. The nano-
formulation specifically inhibits autophagy, reducing tumor 
cell migration in vitro and decreasing tumor metastasis 
in vivo, making it a promising strategy for clinical therapy 
of hepatocellular carcinoma [91].

This wealth of clinical trial data underscores the trans-
formative potential of autophagy-modulating NMs in 
clinical practice, opening new horizons for innovative and 
effective treatments in the battle against various diseases, 
particularly cancer.

Nanomaterials induce pro‑survival 
or pro‑death autophagy?

NMs can be considered a unique class of autophagy modula-
tors, and in many cases, NMs-induced autophagy promotes 
cell death [179]. Impaired autophagy can be an indicator 
of pathogenesis of diseases [180, 181]. Generally, cells 
treat NPs as particulate pathogens and make an attempt to 
degrade them. It is challenging to determinate the cell fate 
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based on activation of autophagy that occurs at the initial 
stage post uptake of NPs. However, NPs are engulfed by 
autophagosomes [130, 182], which is influenced by factors 
such as the size and concentration of NPs entering the cell.

Importantly, different concentrations of a same NP 
may induce both pr-survival and pro-death pathways. 
For instance, an autophagy-dependent differentiation or 
autophagy-associated cell death is triggered by low (10 μg/
mL) and high (100 μg/mL) concentrations of photoactivated 
N-TiO2 NPs in leukemia K562 cells [96]. Mitophagy, the 
degradation of damaged mitochondria through autophagy) 
has been reported as a cytoprotective mechanism against 
CuO NP-induced cytotoxicity [183].

The pro-death roles of autophagy may be related to the 
direct induction of autophagic cell death or autophagy may 
contribute to the induction of other regulated cell death 
(RCD) pathways, such as apoptosis, necroptosis, ferroptosis 
and cuproptosis [87, 184, 185]. Indeed, NPs may potentially 
trigger different forms of RCD [186]. For instance, CuO and 
TiO2 NP NPs activate ERK-dependent autophagic cell death 

through triggering ROS [187], while other reports suggest 
that cytotoxic mechanisms of CuO NPs may resulted from a 
crosstalk between apoptosis and autophagy [96, 188].—Such 
cell death mechanisms, however, can be targeted in therapy 
for apoptosis-resistant cells where cell death is restored upon 
triggering the autophagy-dependent apoptosis pathway [189, 
190].Therapying this content, a natural nanocarrier apofer-
ritin encapsulated in a Cu(II) complex showed cell death 
autophagy-dependent apoptosis as a sign of cytotoxicity 
toward various drug resistant cancer cell lines [191]. Other 
less conventional pathways of RCD can be triggered along 
with autophagic flux. For example, Gupta et al. showed that 
induction of mitophagy as well as oxidative and proteotoxic 
stresses by CuO NPs led to the induction of cuproptosis, 
a form of RCD that triggered by the accumulation of Cu 
in mitochondria [192].In addition, iron oxide NPs can be 
inducers of autophagy-dependent ferroptosis, a form of RCD 
that is driven by iron-dependent phospholipid peroxidation 
through the activation of autophagy machinery [193]. In this 
case, ultrasmall iron oxide (USIO) NPs have been applied 

Fig. 3  Approved trials with NMs as drug carriers. NMs carrying anti-
cancer drugs based on autophagy modulation have been employed for 
the treatment of cancer. Here, examples of approved trials involving 

bioactive molecules at different clinical phases are reported. This fig-
ure was created using Biorender.com
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for glioblastoma cells to induce ferroptosis via a Beclin1/
ATG5-dependent autophagy pathway by increasing the 
intracellular iron level, catalysing Fenton reaction, generat-
ing ROS and lipid peroxidation [194].

PAMAM nanoparticles promoted autophagy mediated 
cell death causing acute lung injury via Akt-TSC2-mTOR 
signaling [195]. Similarly, autophagy mediated by PAMAM 
dendrimers was reported to cause neuronal cell death [196]. 
In addition to endo-lysosomal pathways, NMs are also 
engulfed within autophagosomes and are degraded through 
auto-lysosomal pathway [197]. Autophagy mediated by 
iron oxide nanoparticles is often pro-death [109], and silica 
nanoparticles disrupted endothelial cell homeostasis, leading 
to impaired angiogenesis by elevating autophagic activity 
[198]. Excess autophagy was reported to be the underlying 
mechanism in MWCNTs induced neurotoxicity [199]. Many 
NMs have the potential to be used as anticancer agents and 
the cytotoxic effects exerted by NMs towards cancer cells 
remains the treatment strategy for cancers. Furthermore, 
modulation of autophagy using autophagy modulators along 
with NMs can facilitate optimization of killing of cancer 
cells.

NMs inducing pro-death autophagy can be used as nano-
medicines for cancer therapy [200]. As discussed above, 
cellular events like ROS generation, oxidative stress, mito-
chondrial damage, and even lysosomal impairment precede 
nanomaterial induced cytotoxicity which can be exploited for 
treatment of cancers. Similarly, autophagy plays a protective 
role against toxic impact of NPs. Activation of autophagy 
decreased the levels of pro-inflammatory cytokines, TNF-α 
and IL-1β secreted during dextran-coated  Fe3O4 NP induced 
inflammation [201]. In addition, autophagy triggered by 
both MSNs [202] and curcumin-loaded selenium NPs [203] 
diminished NF-κB mediated inflammation. Cells activated 
autophagy to mitigate Endoplasmic Reticulum (ER) stress 
induced by  SiO2 NPs [204]. Recently, nanoparticles have 
been largely explored for wound healing application [60]. 
Autophagy is the key mechanism involved in the process of 
wound healing [205] 205. However, the use of nanoparti-
cles to induce wound healing with autophagy as a direct or 
indirect mediating mechanism has not been widely reported 
and remains a gap in therapeutic interventions driven by 
nanotechnology in wound healing. While NMs that induce 
pro-death autophagy can be potential targets for cancer 
therapy, NMs that induce pro-survival autophagy can be 
considered for wound healing, antioxidant formulations for 
dermatological applications. AuNPs, nearly spherical in 
shape, of size around 36 nm, stabilized with serum proteins 
from fetal bovine serum, induced formation and accumula-
tion of autophagosomes accompanied by upregulated stress-
response proteins and antioxidants in MRC-5 cells [207].

Cerium oxide NPs promoted the clearance of proteolipid 
aggregates in fibroblasts derived from infantile neuronal 

ceroid lipofuscinosis patients by inducing autophagy-medi-
ated activation of transcription factor EB [208]. In Neuro 2A 
cells, autophagy induced by europium hydroxide nanorods 
(EHNs) facilitated the degradation and clearance of mutant 
huntingtin protein aggregation via MEK/ERK1/2 signaling 
pathway [209]. Furthermore, Au NPs of size 45 nm were 
reported to induce osteogenesis through the activation of 
autophagy. As the inhibition of autophagy with 3-Methylad-
enine, a well-known autophagy inhibitor, reversed the angio-
genesis process, active autophagy was confirmed to be the 
underlying mechanism [210]. In addition to the protective 
role of NPs evoked autophagy, simultaneous impairment in 
the autophagy flux is a rising concern. This is predominantly 
due to the accumulation of NPs, impaired clearance mecha-
nisms. For example, Palladium NPs induced autophagy in 
HeLa cells and also resulted in the inhibition of autophagy 
flux [143].

To further exemplify the therapeutic potential of modulat-
ing autophagy with NMs, known autophagy inhibitors can 
be used to inhibit pro-survival autophagy induced by NMs 
to kill cancer cells. Zhang et al., demonstrated this by using 
Ag NPs to induce autophagy and increasing autophago-
somes without disrupting lysosome function and cargo 
degradation. Interestingly, they reported that inhibition of 
autophagy using wortmannin increased Ag NPs induced cell 
death in mouse B16 melanoma model indicating that Ag 
NPs induced pro-survival autophagy [121].

Similarly, pro-survival autophagy can be modulated 
to develop and improve the anti-cancer efficacy of NMs 
[211]. Additionally, cellular ROS production post uptake of 
NPs precedes autophagy activation [81, 122, 212]. There-
fore, NPs that can augment cellular ROS levels can trig-
ger autophagy. However, the type of autophagic response 
towards cell death and survival varies depending on phys-
icochemical properties of NPs. On the other hand, disrupted 
autophagy or blockade at different stages of the autophagy 
pathway can lead to pathogenesis of diseases and often leads 
to cell death. The disruption may result from accumulation 
of NPs within autophagosomes, impairment of lysosomal 
stability eventually decreasing autophagic flux by inhibit-
ing the fusion of autophagosomes to lysosomes. This results 
in the accumulation of damaged proteins, DNA and orga-
nelles increasing the risk of neurodegenerative diseases [91] 
and cancer [87]. NMs can override the pro-death nature of 
autophagy by stimulating and upregulating pro-survival 
factors. Additionally, it is also possible that the cell debris 
accumulated from NPs induced cell death (via apoptosis or 
necrosis) requires the activation of autophagy for clearance. 
However, this process is often misinterpreted as autophagic 
cell death. In such cases, the use of autophagy inhibitors 
does not inhibit cell death. Therefore, autophagy cannot be 
confirmed as a killing event but a bona fide process of cell 
death [213].
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On the other hand, autophagy remains one of the major 
cellular responses against exposure to micro and nanoplastic 
particles. The toxicity induced by nPs was attenuated by can-
idin-3 glucoside via activation of autophagy [214]. Internali-
zation of 100 nm of polystyrene nPs caused damage to cell 
membrane in HUVECs triggering autophagosome formation 
and indicating the initiation of autophagy. However, PS-NPs 
caused impairment in autophagy flux [115]. Exposure to 
PSNPs/LPS disrupted myocardial structure and exacerbated 
autophagy and myocardial fibrosis in mice through ROS 
generation [139]. Furthermore, PSNPs impaired autophagic 
flux in intestinal epithelial cells affecting their survival and 
growth [153]. Interestingly, several studies have reported the 
non-cytotoxicity of PSNPs both in vitro and in vivo. How-
ever, despite being non-cytotoxic, PSNPs were reported to 
have altered several cellular responses [215]. These reports 
suggest that NMs inducing autophagy, both pro-death and 
pro-survival, can be promising targets for use as nanomedi-
cine for treatment of several diseases. Schematic represen-
tation of pro-death and pro survival autophagic response to 
NMs is shown in Fig. 4.

Autophagy: indicator for nanomaterial 
toxicity

The activation of autophagy by nPs can indicate either the 
toxic impact of NMs to induce cytotoxicity via autophagic 
cell death or the cell’s attempt to alleviate nPs induced stress 

and toxicity. Similarly, nPs mediated inhibition of autophagy 
flux mainly represents their toxicity [216]. However, this is 
different in the case of nanoparticles intended for treatment 
and therapeutic strategy as many NMs are synthesized and 
designed to target and modulate autophagy. Additionally, 
autophagy activation remains the non-targeted response of 
cells treated with NMs that are designed to possess thera-
peutic potential [67]. Although there is no specific pattern of 
NMs-mediated autophagy modulation to count its induction 
or inhibition as an indication of nanomaterial’s toxicity, as 
discussed above, modulation of autophagy remains a major 
response of cells exposed to NMs, NPs and nPs.

In contrast to other NMs and nano-formulations, cells 
exposed to nPs majorly display stimulated autophagy [78]. 
Interestingly, activation of autophagy is an initial response, 
but autophagosomes tend to accumulate within the cells at 
later time points due to the accumulation of nPs in lysosomes 
[215] 215, which impairs autophagy flux. Co-treatment of 
arsenic (As) and PS-NPs activated excess autophagy even-
tually inducing apoptosis in mice liver [217]. Remarkably, 
nPs, particularly polystyrene, induce autophagy that results 
in cell death [218]. Although the modality of cell death may 
be different, autophagy activation is one of the preceding 
responses to nPs exposure. Similarly, stress signals precede 
autophagy activation. nPs can induce several stress signals 
that activate autophagy [219, 220]. Activation of autophagy 
following NMs-mediated stress signals such as oxidative 
stress and ER stress has been reported [221, 222]. Further-
more, activation of autophagy is a definite response against 

Fig. 4  NMs differentially regulate autophagy. Schematic representation of autophagy being a pro-death and pro-survival mechanism in response 
to nanomaterial exposure is showed here. Autophagy is also activated as a supporting mechanism for cell death
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exposure to nPs across several species. For example, in Sac-
charomyces Cerevisiae, activation of autophagy as a protec-
tive role was also confirmed upon exposure to polyethylene 
terephthalate nanoplastics (PET-NP) [223]. Nevertheless, 
whether the autophagy activated in response to nPs is pro-
survival or pro-death still needs a clarification. Activation of 
autophagy as a basic stress response to NM exposure makes 
the pathway a reliable early detection marker for NM toxic-
ity reinforcing the existing NM toxicity evaluation strategies.

Challenges and opportunities: the dual role 
of autophagy in nanoparticles

The intricate relationship between autophagy and nanopar-
ticles (NPs) offers both exciting opportunities and intricate 
challenges, especially in the realms of clinical and environ-
mental scenarios.

From a clinical perspective, leveraging the power of 
autophagy in NP therapies can herald groundbreaking 
treatments. The ability of certain nanoparticles to modulate 
autophagic processes means they can either boost the cel-
lular defense mechanism or use it as an avenue to introduce 
therapeutic agents, presenting a unique dual-action mode 
of therapy [45]. However, challenges arise in ensuring 
the precise modulation of autophagy for therapeutic pur-
poses. Overstimulating autophagy pathway might lead to 
unintended cell death, whereas inhibiting it excessively can 
interfere with the natural defense mechanisms, potentially 
limiting the very cells we intend to treat [224].

The environmental implications are profound. As our 
ecosystems face contamination from micro and nanoplas-
tics, understanding how autophagy responds to these foreign 
entities becomes paramount. Autophagy might serve as a 
cellular safeguard, attempting to process and neutralize these 
particles [225]. Yet, autophagy process can be compromised 
by nPs, affecting cellular health and, on a broader scale, the 
health of organisms [226]. The silver lining here lies in the 
potential to engineer NPs that can either enhance autophagy 
where it is beneficial or inhibit it where it is detrimental, thus 
offering a means to mitigate environmental risks associated 
with nPs pollution.

Conclusion

While nanotechnology driven therapeutic interventions 
are increasing, almost all the compartments of ecosystem 
are contaminated with micro and nanoplastics. There is an 
increased risk of exposure through all routes. Autophagy is 
currently being explored as a cellular response to nanomate-
rial exposure and as an exploitable mechanism to facilitate 
the use of NMs for therapies and treatment of diseases. In 

this regard, we provided an overview of the clinical potential 
of autophagy modulation with nano formulations. However, 
it is also important to consider the role of autophagy as a 
defensive mechanism against NMs. Autophagy is a fasci-
nating phenomenon in biological systems that bridges the 
gap between NMs existing in the environment and those 
intended for use in therapeutics. Nevertheless, further stud-
ies are required to understand the effect of nanoscale and 
submicron plastics on cellular process and deeper organs 
through circulation. Further, the synthesis and development 
of more NMs that can effectively modulate autophagy path-
way are crucial for future treatment aspects and to set up 
novel clinical trials.

In conclusion, the interplay between autophagy and NPs 
holds immense promise, albeit fraught with challenges. The 
key lies in continued rigorous research, bridging the gap 
between the therapeutic potential of autophagy-modulating 
nanoparticles and the environmental imperatives of the pre-
sent day. It should be mentioned that autophagy should be 
evaluated carefully for each NP as there is a complex inter-
action between NPs and the cellular autophagic machinery, 
which depends on physico-chemical characteristics of NPs, 
including size, charge dispersity, and concentrations, as well 
as type and content of cell models.
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