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Abstract
Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused 
by age, genetics, and environment. The disease severely impacts a patient’s quality of life and can even be life-threatening. 
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely 
expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact 
on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including 
both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand 
the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia 
nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and 
their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia 
nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, 
they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia 
plays a role in the pathological process of PD by affecting the neuroinflammatory response.
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Abbreviations
PD  Parkinson’s disease
HCN  Hyperpolarization-activated cyclic nucleotide-

gated channel
Ih  Hyperpolarization-activated current
LC  Locus ceruleus
SNpc  Substantia nigra pars compacta
SNr  Substantia nigra pars reticulate
GWAS  Genome-wide association studies
GP  Globus pallidus
GPe  Globus pallidus externus
GPi  Globus pallidus internus
LGP  Lateral globus pallidus
EPN  Entopeduncular nucleus
STN  Subthalamic nucleus
MPTP  1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
CAD  Chronic coronary artery disease
CHF  Chronic heart failure
AD  Alzheimer's disease
ALS  Amyotrophic lateral sclerosis
SMA  Spinal muscular atrophy
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RMP  Resting membrane potential
CNBD  Cyclic nucleotide-binding domain
GYG   Glycine-tyrosine-glycine amino-acid
LHb  Lateral habenular nucleus
MSO  Medial superior olive
DRG  Dorsal root ganglion
NT  Nitric oxide
MPP  Methyl-4-phenylpyridinium
CPGs  Central pattern generators
AHPs  After hyperpolarizations
IBIs  Interburst intervals
SPNs  Striatal projection neurons
d-SPNs  Direct pathway-striatal projection neurons
i-SPNs  Indirect pathway-striatal projection neurons
ChIs  Cholinergic interneurons
TRIP8b  Tetratricopeptide repeat-containing Rab8b-

interacting protein
L-DOPA  L-3,4-dihydroxyphenylalanine
PV  Parvalbumin
mIPSCs  Miniature inhibitory postsynaptic currents
EPN  Entopeduncular nucleus
SST  Somatostatin
NOS  Nitric oxide synthase
DBS  Deep brain stimulation
HVSs  High-voltage spindles
ACh  Acetylcholine
HEK293  Human embryonic kidney 293
MSO  Medial superior olive
BCs  Basket cells

Introduction

Parkinson's disease (PD) is among the most frequently 
occurring central nervous system disorders, with an 
increasing incidence rate globally. It is characterized by 
changes in the function of the entire basal ganglia net-
work due to the slow and progressive degeneration of the 
dopaminergic neurons in the brain’s substantia nigra pars 
compacta (SNpc) [1–4]. The main clinical manifestations 
of PD patients are persistent tremors, bradykinesia, muscle 
rigidity, and postural instability [5, 6]. PD is associated 
with various risk factors, including aging, genetics, and 
environmental exposure, with aging being the most sig-
nificant [7, 8]. Aging impacts the immune system, with 
immune stress being an important consequence. Postmor-
tem studies of the SNpc in individuals without PD reveal 
moderate pathological changes, including mild mitochon-
drial dysfunction, dysregulated calcium and iron levels, 
and antioxidant deficiencies. These changes are more prev-
alent in this brain region than in other areas of similar age 
[9, 10]. This correlation suggests that age-related biomo-
lecular changes in PD-prone brain regions, specifically the 

SNpc, increase the risk of PD onset. In addition to aging, 
the risk of developing PD is elevated by both environmen-
tal exposure and genetic factors. Studies have shown that 
pesticide exposure and traumatic brain injury are among 
the environmental factors that can influence the incidence 
of PD [8, 11, 12]. Moreover, approximately 5–10% of PD 
cases are familial, resulting from genetic mutations, and 
genome-wide association studies (GWAS) have identified 
genes that contain common genetic variants that increase 
susceptibility to PD [13, 14].

The HCN1-4 gene family encodes the hyperpolarization-
activated cyclic nucleotide-gated channel (HCN) which 
transmits a hyperpolarization-activated current (Ih) that 
has unique effects on neuronal excitability and rhythmic 
activity [15–17]. PD murine models have revealed that the 
function of HCN channels, widely distributed in the SN, 
striatum, subthalamic nucleus (STN), and pallidum of the 
basal ganglia, is abnormal, indicating their contribution to 
underlying causes of PD symptoms [18–22]. The suppres-
sion of the Ih current in SN dopaminergic neurons is closely 
associated with the degeneration of these neurons in drug-
induced and gene-modified rat PD model [23]. In addition, 
MitoPark mice are a PD model characterized by mutations 
in genes affecting dopaminergic neuronal function. These 
mutations cause mitochondrial dysfunction and the for-
mation of intracellular inclusion bodies similar to Lewy’s 
bodies and have reduced Ih current density before the onset 
of PD symptoms [24]. Moreover, in the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of 
PD, the active metabolite,  MPP+, penetrates dopaminergic 
neuron mitochondria via dopamine transporters, inhibiting 
mitochondrial complex 1 activity, leading to oxidative dam-
age and ATP synthesis blockade. ATP consumption opens 
ATP-sensitive potassium channels and ultimately inhibits 
the Ih current [25].

HCN channels are a promising candidate for drug devel-
opment, although their pharmacological efficacy is relatively 
modest compared to other voltage-gated and ligand-gated 
ion channels. Research have demonstrated the efficacy of 
ivabradine, ZD7288, and cesium in inhibiting HCN channels 
in vivo in animal models [18, 21, 26, 27]. However, only 
ivabradine is currently approved for human use as the sole 
HCN channel inhibitor, which blocks all four HCN isoforms 
equally. Ivabradine, approved for treating chronic coronary 
artery disease (CAD) and chronic heart failure (CHF), act 
as a heart rate-lowering agent. Furthermore, preclinical 
research indicates that ivabradine may possess antiarrhyth-
mic properties [28, 29]. The involvement of HCN subtypes 
in the central nervous system and PD pathology underscores 
the need for novel HCN-targeted drugs as a therapeutic 
approach for PD. HCN1-4 channels exhibit significant phar-
macological differences, distinct functional roles, and varied 
tissue distributions [19–21]. As a result, the possibility of 
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targeting specific tissues and subtypes in PD pathology pre-
sents an attractive avenue for developing PD therapy.

Recent studies have extensively explored the role of 
HCN channels in neurological disorders, such as epilepsy, 
neuropathic pain, affective disorders, PD, Alzheimer's dis-
ease (AD), amyotrophic lateral sclerosis (ALS), and spinal 
muscular atrophy (SMA). They also explore the potential 
of HCN channels as therapeutic targets and ways to design 
drugs to act on specific isoforms [15, 30]. Based on recent 
research conducted by our laboratory and others, this review 
aims to investigate the significance of HCN channels in neu-
rons of the basal ganglia nuclei [17–21, 27, 31–34]. Specifi-
cally, this review aims to examine alterations in the expres-
sion of these channels within basal ganglia nuclei neurons 
and how they impact neuronal electrical activity in both 
wide-type and PD animal models, with the ultimate goal 
of investigating the involvement of HCN channels in PD 
pathogenesis. This review first addresses the composition, 
expression, distribution, and function of HCN channels. 
Then, it delves into the distribution and functions of HCN 
channel isoforms in various basal ganglia nuclei, focusing 
on their altered expression in PD and their effects on motor 
and non-motor symptoms. We emphasize the involvement of 
HCN channels in PD movement disorders due to their effects 
on neuron firing rate and pattern. Lastly, we examine the 
role of HCN channels in PD-associated neuroinflammation.

Basic features of HCN channels

In mammals, HCN channels are encoded by four genes 
(Hcn1-4), each producing a channel protein, namely 
HCN1, HCN2, HCN3, and HCN4 [35, 36]. HCN channel 
is a tetrameric structure composed of four subunits, and 
each subunit has four major structural modules, includ-
ing a transmembrane voltage-sensing domain (S1-S4), a 
transmembrane pore-forming domain (S5-S6), a cytosolic 
C-link, and a cyclic nucleotide-binding domain (CNBD). 
In the membrane, the S4 helix carrying positive charges 
acts as the voltage sensor and shifts outward during mem-
brane depolarization and inward during hyperpolariza-
tion. The voltage-sensing and pore-forming domains are 
covalently connected via the S4-S5 linker. The pore-form-
ing domain has the glycine-tyrosine-glycine amino-acid 
(GYG) motif between S5 and S6, creating the ion selec-
tivity filter. Following S6, there are 80 residue C-link-
ers composed of six α-helices (A'-F') and CNBD, which 
comprises three α-helices (A-C) and a β-roll between the 
A- and B-helix. The C-linker and CBND are collectively 
known as "cAMP sensing domains" or "tetratricopeptide 
repeat-containing Rab8b-interacting protein (TRIP8b) 
sensing domains". These molecules critically modulate the 
positive shift of voltage-dependent HCN channel activa-
tion by cAMP or TRIP8b (Fig. 1) [22, 37, 38].

Fig. 1  Probable structure of HCN channels. HCN channels function 
as tetramers, which can be homologous or heterologous (left). Each 
HCN subunit comprises six transmembrane segments: the NH2 ter-
minal, the voltage sensor (S4), the pore region between S5 and S6, 
and the COOH terminal (right). The pore region contains the selec-
tivity filter that carries the glycine-tyrosine-glycine amino-acid 

(GYG) sequence. The channel’s COOH terminal domain comprises 
the C-linker (comprises six α-helices designated A’ to F’) and the 
cyclic nucleotide-binding domain (CNBD) located after the C-linker 
domain. CNBD consists of alpha-helices A–C and a beta-roll 
between helices A and B. TRIP8b and cAMP regulate CNBD
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Studies have indicated that there are three processes 
involved in the opening of the HCN channels: voltage-sens-
ing domain activation, spreading of the activation energy 
from the voltage-sensing to the pore-forming domain, and 
a structural rearrangement of the pore-forming domain to 
open the pore gate, allowing the ions to pass through the 
membrane [39, 40]. Recently, it was revealed that the S4-S5 
linker between the voltage-sensing and pore domains does 
not modulate the ligand-dependent gating or hyperpolari-
zation-dependent activation. In contrast, the pore domain's 
voltage-sensing domain and the hyperpolarization voltage 
reduce this self-inhibition, opening the pore [41]. How-
ever, more studies are required to understand the opening 
mechanism of the HCN channel. HCN channels comprise 
tetrameric structures, forming four distinct tetramer subtypes 
with different activation kinetics in-vivo. HCN1 has the fast-
est activation speed, and HCN4 has the lowest activation 
speed, whereas HCN2 and HCN3 have a constant activation 
time between HCN1 and HCN4. These four subtypes exhibit 
different sensitivities to cAMP, where HCN2 and HCN4 are 
strongly regulated, while HCN1 and HCN3 indicate weak 

regulation (Table 1). In addition, in normal tissue, HCN 
channel subtypes aggregate into heterotetrameric struc-
tures, forming functional HCN channels. This combination 
enhances the range of HCN channels and their unique func-
tions within the central nervous system [37, 42–44].

The HCN channel mediates a membrane potential that 
generates an inward rectifying Ih current. This current exhib-
its rectification properties characterized by a higher con-
ductance in the negative voltage range [17, 32]. The HCN 
channel’s current characteristic was initially discovered in 
neurons and cardiac sinoatrial node cells in the late 1970s. 
It was widely studied in the biomedical field during the early 
1980s. Later, it was also found in rod and pyramidal cells 
in the CA1 region of the hippocampus [22, 45]. The HCN 
channel has unique ion selectivity and gating characteristics. 
For instance, it selectively and interdependently permeates 
 Na+ and  K+ simultaneously, and  K+ permeability is 3 to 5 
times larger than  Na+ [22]. HCN channels are expressed 
in various brain regions, primarily activated neurons, when 
the resting membrane potential (RMP) falls below -50 mV. 
Inhibiting the Ih current results in RMP hyperpolarization 

Table 1  Half-activation potentials  (V1/2) and activation time constants (τon) measured at − 120 mV, − 100 mV*, or − 110.5  mV# for the four 
subtypes of the HCN channel

HEK293 human embryonic kidney 293, EPN entopeduncular nucleus, STN subthalamic nucleus, PV parvalbumin, LHb lateral habenular 
nucleus, MSO medial superior olive, DRG dorsal root ganglion, BCs basket cells.

Subtypes V1/2(mV) τon (ms) Cell type References

HCN1 (Clone) − 72.8 ± 0.2 Sinoatrial node cells Saponaro et al. 2018 [17]
− 80.5 ± 0.6 HEK293 cells Chen et al. 2005 [49]
− 79.3 ± 9.1 31.8 ± 4.8 X. laevis oocytes Meng et al. 2011 [50]
− 69.5 ± 3.3 67.0 ± 16.0* HEK293 cells Stieber et al. 2005 [51]

HCN2 (Clone) − 93.7 ± 0.3 Sinoatrial node cells Saponaro et al. 2018 [17]
− 98.6 ± 0.6 HEK293 cells Chen et al. 2005 [49]
− 100.7 ± 1.3 217.8 ± 40.8 X. laevis oocytes Meng et al. 2011 [50]
− 95.6 ± 3.8 562.0 ± 198.0* HEK293 cells Stieber et al. 2005 [51]

HCN3 (Clone) − 77.0 ± 5.3 1244.0 ± 198.0* HEK293 cells Stieber et al. 2005 [51]
HCN4 (Clone) − 102.8 ± 0.3 2000 ± 200 Sinoatrial node cells Saponaro et al. 2018 [17]

1357 ± 227.9 X. laevis oocytes Meng et al. 2011 [50]
− 100.5 ± 3.3 5686.0 ± 2234.0* HEK293 cells Stieber et al. 2005 [51]

HCN1-4 − 91.7 ± 1.3 145.2 ± 8.9 EPN PV neurons Peng et al. 2023 [18]
− 95.8 ± 0.9 STN neurons Zhuang et al. 2018 [19]
− 95.5 ± 1.1 Vestibular ganglion neurons Bronson and Kalluri 2023 [52]
− 107.6 ± 2.7 LHb neurons Good et al. 2013 [53]
− 79.0 ± 1.0 95.6 ± 7.0# MSO ventral neurons (P18) Baumann et al. 2013 [54]
− 87.0 ± 2.0 191.3 ± 28.1# MSO dorsal neurons (P18) Baumann et al. 2013 [54]
− 76.0 ± 3.0 78.0 ± 3.6# MSO ventral neurons (P22) Baumann et al. 2013 [54]
− 81.0 ± 2.0 109.6 ± 18.7# MSO dorsal neurons (P22) Baumann et al. 2013 [54]
− 101.9 ± 1.6 815.0 ± 170.0 Small-sized DRG neurons Tu et al. 2004 [55]
− 99.5 ± 0.9 646.0 ± 64.0 Medium-sized DRG neurons Tu et al. 2004 [55]
− 97.3 ± 1.2 266.0 ± 17.0 Large-sized DRG neurons Tu et al. 2004 [55]
− 83.9 190.4 ± 23.1 BCs of the hippocampus Aponte et al. 2006 [56]
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and increased membrane impedance. As a result, the impact 
of modified HCN channel expression on neuronal excitabil-
ity is determined by the interplay between RMP and resist-
ance [22]. Rest potential hyperpolarization reduces neuronal 
excitability by moving them away from the firing threshold. 
In contrast, depolarization of the resting potential increases 
the input resistance of neurons and decreases the current 
required to depolarize cells, thereby increasing excitability 
[15, 27, 33]. However, research shows that HCN channel 
activity significantly affects the subliminal conductance of 
other co-expressed ion channels in specific neurons. There-
fore, Ih’s overall effect depends on the unique combination 
and relative density of subthreshold conductance from all 
ion channel types within a neuron class, potentially modu-
lating neuronal excitability in varied situations [15, 37, 46]. 
HCN channel-mediated Ih currents serve to maintain normal 
body functions, such as rhythmic and pacemaker activities, 
dendritic integration, synaptic transmission, spatial work-
ing memory, water and electrolyte homeostasis, perception, 
neuronal proliferation, and sensory signaling [16, 47]. How-
ever, abnormal HCN channel expression under pathological 
conditions can cause neurological dysfunction [22, 48].

Basal ganglia HCN channel expression 
and PD symptoms

The basal ganglia are integral to motor function regulation 
within the subcortex. PD, a serious motor disorder, results 
from an imbalance in the direct and indirect pathways of the 
basal ganglia due to dopaminergic neuron degeneration in 
the substantia nigra. Our recent studies have demonstrated 
the presence of HCN channels in various basal ganglia 
regions, including the striatum, globus pallidus (GP), and 
STN [18, 19, 21, 27]. It was observed that reduced expres-
sion of HCN channels correlates with PD pathology, impact-
ing neuronal firing patterns and leading to movement dis-
orders [19, 21]. Based on these findings and corroborating 
evidence from other research groups, we first reviewed the 
normal physiological function of HCN channels in basal 
ganglia nuclei neurons (Fig. 2) and then further reviewed the 
changes in the expression of HCN channels in PD pathology 
and their relationship with motor and non-motor symptoms 
(Fig. 3).

HCN channels in the SNpc

PD is the second most prevalent neurodegenerative disor-
der, mainly characterized by the progressive deterioration 
of dopaminergic neurons in the SNpc [4, 57]. Multiple stud-
ies have attested to the association of dopaminergic pheno-
type with HCN expression. HCN channels are extensively 

Fig. 2  Function of neuronal HCN channels in basal ganglia nuclei. 
The basal ganglia, a subcortical structure, plays a crucial role in regu-
lating motor function by processing information from and feeding it 
back to the cerebral cortex. Substantia nigra, a key nucleus within the 
basal ganglia, functions as a regulatory agent. HCN channels, which 
are important in regulating the normal electrical activity of neurons, 
are expressed in the basal ganglia nuclei. HCN hyperpolarization-

activated cyclic nucleotide-gated channel, ChIs cholinergic interneu-
rons, d-SPNs direct pathway-striatal projection neurons, i-SPNs indi-
rect pathway-striatal projection neurons, SNpc substantia nigra pars 
compacta, SNr substantia nigra pars reticulata, GPe globus pallidus 
externus, EPN entopeduncular nucleus, PV parvalbumin, STN subtha-
lamic nucleus
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expressed in basal ganglia nuclei neurons, including dopa-
minergic neurons of the SNpc [22], and the presence of 
the Ih current is a hallmark of midbrain dopaminergic neu-
rons, including those of the SNpc [58]. The HCN channel 
of SNpc neurons is targeted by several neurotransmitters 
such as dopamine, serotonin, noradrenaline, neurotensin, 
and ghrelin. Dopamine activates the Gi-cAMP pathway by 
stimulating D2 receptors widely distributed in SNpc neu-
rons, thereby suppressing adenylate cyclase activity and 
intracellular cAMP levels, ultimately reducing the amplitude 
of the Ih current on SNpc neurons. In addition, the perfusion 
of the brain slices from SNpc with serotonin decreases the 
Ih current, while noradrenaline significantly increases the 
Ih current in the SNpc neurons [30, 59]. Moreover, neu-
rotensin caused a reversible decrease in the amplitude of 
Ih in the rat SNpc by reducing the maximum current; how-
ever, it did not change the voltage dependence of activation. 
The effect of nitric oxide (NT) depends on the activation of 
PKC pathways, as the NT-induced Ih inhibition was blocked 
by staurosporine, a specific PKC inhibitor, and mimicked 
using the PKC activator [43]. Furthermore, in PD, ghrelin 
increased the Ih current by activating the GHSR-adenylate 
cyclase (AC)-cAMP-PKA or PKC/RTK-MAPK pathway, 

counteracting Methyl-4-phenylpyridinium (MPP +)-induced 
Ih current inhibition, thus enhancing the electrical activity 
of dopaminergic neurons [60].

The HCN channel has been shown to modulate both RMP 
and the spontaneous firing activity of dopaminergic neurons, 
thereby affecting the firing activity of SNpc dopaminergic 
neurons by regulating cell membrane excitability [60, 61]. 
The RMP for dopaminergic neurons is usually within the 
range of -55 mV to -40 mV. When the neuron is hyperpo-
larized to -70 mV, the HCN channel opens and selectively 
allows  Na+ and  K+ inflow to maintain the cell membrane 
excitability [22, 30]. In addition, the HCN channel cur-
rent Ih can regulate the reactivity of SNpc dopaminergic 
neurons to achieve excitatory synaptic transmission [62]. 
Early PD pathology may trigger mitochondrial failure and 
ATP depletion, resulting in the loss of Ih function [63]. This 
can then induce apoptosis of SNpc dopaminergic neurons 
through a calcium-dependent excitatory toxicity mechanism 
[64]. Dopaminergic neurons in the SNpc are “autonomous 
pacemakers” whose spontaneous electrical activity causes 
the continuous release of neuronal dopamine, maintaining 
its basal ganglia levels [65]. Studies have shown that the 
HCN channel on dopaminergic neurons essentially regulates 

Fig. 3  The relationship between the expression of HCN channels in 
the basal ganglia nuclei and the symptoms of PD. The expression of 
HCN channels in neurons of the basal ganglia nuclei was downreg-
ulated in the pathological state of PD. The downregulation of HCN 
channels in dopaminergic neurons results in decreased neuronal firing 
rates, which are associated with motor dysfunction. The downregula-
tion of HCN channels in striatal ChIs results in decreased neuronal 
firing rates, which are associated with cognitive dysfunction. The 

downregulation of HCN channels in GPe/STN/SNr/EPN PV neurons 
results in decreased neuronal firing rates and irregularized firing pat-
tern, which are associated with motor dysfunction. PD Parkinson’s 
disease, HCN hyperpolarization-activated cyclic nucleotide-gated 
channel, ChIs cholinergic interneurons, SNpc substantia nigra pars 
compacta, SNr substantia nigra pars reticulata, GPe globus pallidus 
externus, EPN entopeduncular nucleus, PV parvalbumin, STN subtha-
lamic nucleus
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dopamine release by maintaining the dopaminergic neuron’s 
spontaneous low-frequency firing after external signals [58, 
66]. The discharge characteristics of dopaminergic neurons 
are linked to the pathogenesis of PD. The surviving dopa-
minergic neurons in the SNpc show alterations in discharge 
activity including a reduced spontaneous discharge fre-
quency and number of discharging neurons, and an increase 
in sudden discharges [66]. At the same time, stereotactic 
administration of HCN channel blockers ZD7288 and 
ivabradine can lead to SNpc-specific neurodegeneration and 
to a semi-Parkinsonian motor phenotype in rats [23]. Thus, 
this evidence presented above strongly suggests that the ade-
quate expression of HCN channels is crucial for maintaining 
proper neuronal function and electrical activity in the SNpc.

HCN channels in the striatum

The striatum, the largest nucleus in the basal ganglia, reg-
ulates motor control, planning, procedure learning, and 
action selection. It consists mainly of GABAergic projection 
neurons, called striatal projection neurons (SPNs), which 
inhibit their targets when activated. The remaining neurons 
are mainly giant cholinergic (ChIs, 1%-3%) and GABAergic 
(2%-5%) interneurons [21, 67]. In PD, it has been shown 
that the striatum is particularly affected by the loss of SNpc 
dopaminergic neurons. Thus, the striatum is the primary 
therapeutic target for treating the condition [68]. In addi-
tion to dopaminergic innervation, it is widely believed that 
the large cholinergic interneurons in the striatum crucially 
regulate the movement by balancing dopamine signaling 
[69]. In individuals with PD, the hypercholinergic state 
can be determined by administering anticholinergic drugs, 
which can alleviate the motor symptoms of patients, while 
acetylcholinesterase inhibitors can worsen the symptoms, 
such as tremors and bradykinesia. Consequently, anticho-
linergic drugs were the standard treatment for PD prior to 
the emergence of levodopa [70]. The development of more 
precise surgical techniques has allowed the targeting of large 
cholinergic interneurons in the striatum and their associated 
receptors as a potential new treatment for PD [71].

The striatal ChIs express four HCN channel subtypes, 
with HCN2 and HCN3 as dominant subtypes that regulate 
the interneuron's discharge activity [72]. Progressive dopa-
mine loss reduces the HCN mRNA transcription, decreases 
ChIs firing, and changes the structure of HCN channels. The 
reduction of HCN gene expression decreases the impact of 
dopamine on ChIs and changes motor function. The down-
regulation in gene expression of HCN channels could be due 
to a reduction in cAMP, PKA activity-dependent availability, 
due to the presence of the auxiliary HCN TRIP8B cytoplas-
mic protein, an alternative splicing isoform that contains 
helper HCN tetrapeptide repeats. The TRIP8b is modulates 
HCN surface expression and inhibition of CNBD activation 

through cAMP. Altering the extreme domain, which includes 
the C-linker and CBND domain, of the HCN channel can 
also change its functional association with TRIP8b, modify-
ing channel expression and kinetics [17]. The HCN chan-
nel’s expression stabilization might improve the interaction 
between acetylcholine (ACh) and dopamine, thus enhanc-
ing motor function in PD patients[73]. Hence, decreased 
expression of HCN channels in ChIs may indicate midbrain 
dopaminergic neuronopathy during PD pathology [71]. Fur-
thermore, it may indicate that reduced HCN channel activity 
in the striatum’s ChIs is essentially linked with PD develop-
ment and related movement disorders. Prolonged treatment 
with l-3,4-dihydroxyphenylalanine (L-DOPA) can restore 
the HCN channel activity of ChIs. Although targeting HCN 
channels is an efficient therapeutic intervention, modula-
tors that specifically act on the channels of each cell type 
to achieve effective and safe behavioral outcomes are still 
required [74].

Cognitive dysfunction in PD depends on the interaction 
of striatal ACh and dopamine systems [75, 76]. The lack of 
dopamine decreases HCN channel expression in the ChIs of 
the striatum, a reduction in Ih current, as well as decreased 
neuronal excitability, thus inhibiting ACh release [77]. 
Though both the production and release of Ach and dopa-
mine are decreased, the concentration of ACh is still higher 
than that of dopamine, disrupting the balance between the 
two and leading to cognitive impairment [73]. Therefore, 
overexpressing HCN channels in ChIs may enhance the 
activity of these neurons, restoring the balance of the dopa-
mine/ACh ratio and potentially ameliorating the cognitive 
dysfunction associated with PD.

HCN channel in GPe

The GPe, also known as the lateral globus pallidus (LGP), 
plays a vital role in regulating the indirect pathway of the 
basal ganglia circuit, contributing to important motor regu-
lation functions in both physiological and pathological cir-
cumstances [27, 78]. The GPe neuron subtypes are of two 
classes: the parvalbumin-expressing  (PV+) neurons and the 
transcription factor Npas1-expressing  (Npas1+) neurons. 
Approximately 55% of GPe are  PV+ neurons, whereas only 
27% are  Npas1+ neurons.  PV+ neurons primarily project 
to the STN, whereas  Npas1+ neurons predominantly target 
the dorsal striatum [79]. Functionally, these two types of 
neurons act in unison to regulate the transitions between 
behavioral states in mice[80]. The HCN channel subtypes 
are widely distributed in GPe neurons, and, according to the 
results of single-cell q-PCR, LGP  PV+ neurons express all 
four HCN channel subtypes. Among them, HCN2 channel 
subtype is the most highly expressed, followed by HCN1, 
HCN4, and HCN3 [27]. Immunoperoxidase labeling for 
HCN1 and HCN2 was observed in various GP regions, 
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including somata, dendritic processes, myelinated and 
unmyelinated axons, and axon terminals [81]. Furthermore, 
the HCN channel also modulates synaptic transmission[82]. 
Perfusion of ZD7288 increased the frequency but not the 
amplitude of miniature inhibitory postsynaptic currents 
(mIPSCs) on GP neurons, implying that HCN channels regu-
late the presynaptic GABA release at these synapses [81].

PD is characterized by reduced dopamine that alters the 
firing patterns of GPe neurons. The electrophysiological 
and immunohistochemical experiments have indicated that 
GPe neurons receive dopaminergic innervation from axonal 
branches of SN-striatum fibers and that D1 and D2-like 
receptors are expressed in the GPe [83]. Dopamine medi-
ates normal GPe neuronal pacing by upregulating the activ-
ity of HCN channels, which in turn depolarizes the neuron. 
Reduced dopamine levels decrease the depolarizing effect 
of the HCN channel. Furthermore, the expression of HCN 
channels is inhibited, leading to a decrease in the autono-
mous pacemaker function of the GPe neuron due to a lack of 
dopamine in PD. [20, 84]. In addition, in line with the HCN 
channel downregulation that controls pacemaker activity of 
pallidal neurons in PD-afflicted animals, administration of 
intra-pallidal ZD7288 injection diminished the proportion of 
slow-firing neurons in the pallidum, subsequently improv-
ing the locomotor activity in MPTP parkinsonian mice [84]. 
Moreover, The HCN channel is essential for sustaining the 
firing pattern of LGP neurons, and continuous depletion of 
dopamine decreases the current of the HCN channel in GPe 
neurons[85]. Concurrently, the mRNA and protein levels of 
the four pore-forming HCN subunits and the HCN transport 
protein TRIP8b were reduced [30]. Downregulation of the 
HCN2 subunit, dominant in LGP, is the most significant 
alteration. The selective knockdown of the gene encoding 
HCN2 silences LGP neurons. It was observed that the viral 
delivery of the HCN2 expression constructs reversed the 
firing activity loss after dopamine depletion and regular-
ized the firing patterns of neurons [20]. Demonstrating that 
HCN2 downregulation inhibits neuronal firing activity and 
regularizes the firing patterns. Alterations to firing rates and 
patterns have been consistently linked to motor symptoms of 
PD in animal models and human patients, such as bradyki-
nesia, static tremor, gait instability, and rigidity; moreover, 
these are also closely related to the decreases in LGP neu-
ron activity and increased synchronous oscillatory discharge 
activity due to dopamine loss [20, 80].

HCN channel in the STN

The STN is the only excitatory glutamatergic nucleus in the 
basal ganglia circuit, serving as an important node in the 
classical indirect pathway. It receives direct projection from 
the cortex and forms a hyper-direct pathway, acting as a 
pacemaker that modulates all basal ganglia circuit activities 

[19, 86]. In the classical indirect pathway, the STN receives 
GABAergic inputs from the GPe and sends glutamatergic 
nerve fibers to the GPi, increasing the inhibitory output of 
the basal ganglia from the thalamus and terminating motor 
behavior resulting from the activation of the direct path-
way. This pathway balances the indirect and direct path-
ways, maintaining the normal motor function of the basal 
ganglia circuit [87, 88]. Recently, it has been revealed that 
the hyper-direct glutamatergic pathway from the cerebral 
cortex to STN and the classical indirect pathway through 
STN functionally inhibit movement [31]. In PD, the basal 
ganglia lose its dynamic regulation of dopaminergic afferent 
neurons in the SN, causing a relative imbalance between the 
hyper-direct and indirect pathways. Increased dysfunction 
of basal ganglia circuitry and activity becomes a signifi-
cant characteristic of PD, ultimately contributing to motor 
impairment in patients [89, 90].

The presence of the four HCN channel subtypes in STN 
neurons was confirmed via single-cell q-PCR, immunohis-
tochemistry, and western blot analyses. The HCN channel 
activity closely relates to the firing activity of STN neurons 
and motor behavior [19, 91]. With the help of multi-barrel 
extracellular recordings, in-vivo bidirectional modulation 
of STN neuron firing rates was assessed by the selective 
HCN channel blocker ZD7288 and agonist 8-Br-cAMP 
through micro-pressure ejection. The unilateral microinjec-
tion of ZD7288 or 8-Br-cAMP was administered to acquire 
postural behavior in conscious rats [91]. Additionally, the 
firing patterns of STN neurons were regularized through 
pharmacological activation of HCN channels, whereas its 
inhibition disrupted their firing patterns [19]. Furthermore, 
the haloperidol ZD7288 or 8-Br-cAMP unilaterally admin-
istered in the STN indicated significantly deviant posture on 
the contralateral or ipsilateral side [91].

The STN firing pattern configurations may determine the 
pathogenesis of PD symptoms and provide insight into the 
normal motor control mechanisms [19, 92–94]. The STN 
exhibits excessive firing bursts in animals deprived of dopa-
mine, suggesting that the firing pattern is a crucial patho-
physiological component causally related to the locomotor 
deficits observed in PD. STN burst discharge alterations 
via techniques such as DBS of different polarities reduce 
or increase the associated locomotor deficits [92, 93]. In 
addition, during in-vivo experiments on freely moving rats, 
the local injection of an HCN blocker in the STNs resulted 
in a higher power of high-voltage spindles (HVSs), which 
are characteristic oscillations with theta frequencies and 
are linked with immobility behavior. Moreover, HVSs have 
displayed an increased power during PD. Interestingly, the 
effect of the HCN blocker was reversed by the local injection 
of lamotrigine, an HCN agonist [94]. Furthermore, in a PD 
rat model it has been shown that the HCN channel expres-
sion in the STN neurons of a PD rat model is closely linked 
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to the neuronal firing mode. Thus, it may be logical to sup-
pose that during PD pathogenesis, HCN channel expression 
in STN neurons is reduced, therefore disrupting neuronal 
firing pattern and leading to movement disorders. Therefore, 
increasing HCN2 channel expression in STN neurons can 
regulate the neuronal firing patterns and improve the dyski-
nesia of animals [19].

HCN channels in substantia nigra pars reticulata 
(SNr)

The SNr mainly comprises neurons that utilize gamma-
aminobutyric acid (GABA) as their neurotransmitter. It is 
the primary output nucleus of the basal ganglia and inte-
grates information from other basal ganglia nuclei (striatum, 
GPe, and STN) and transmits it to external structures, regu-
lating processes such as motor, cognitive, and emotional-
motivational. Electrophysiology tissue and single-cell RNA 
sequencing have revealed the distribution of HCN channels 
in SNr [15, 95, 96]. The SNr GABAergic neurons within the 
SN microcircuit exhibit an Ih current with plateau potential 
and significant depression amplitude. Furthermore, there are 
variations in the Ih current amplitude among SNr GABAe-
rgic neurons. By enhancing the HCN conductance of SNr 
GABAergic neurons, a higher Ih current amplitude can mod-
ulate the GABAergic input received by SNpc dopaminergic 
neurons, suggesting that HCN channels may indirectly influ-
ence the activity of SNr GABAergic neurons [95]. Addi-
tionally, the stimulation of GPe GABAergic neurons, which 
project to SNr, activates HCN channels in SNr GABAergic 
neurons. Through this mechanism, the currents activated by 
hyperpolarization show SNr responses that are excitatory 
and biphasic inhibitory-to-excitatory. This suggests that the 
HCN channel also regulates the excitability of SNr GABAe-
rgic neurons [96].

The function of HCN channels in SNr neurons is closely 
associated with the neuronal firing rate and pattern. About 
50% of SNr neurons in dopamine-depleted mice exhibited 
delta oscillations, which were related to alterations in dis-
charge rate, irregularity, bursts, and synchronicity [97]. 
Delta oscillation may be related to the interaction between 
the HCN channels in hyperpolarized neurons [98]. Moreo-
ver, the absence of dopamine reveals pathological central 
pattern generators (CPGs) that exhibit an unusual number of 
neurons involved in rhythmic bursting in SNr [99]. ZD7288, 
an HCN channel antagonist, inhibited the inward current 
conducted through HCN channels, causing increased after 
hyperpolarizations (AHPs) that follow the bursts. Conse-
quently, it decreased neuronal firing rate and regularity. 
During the interburst intervals (IBIs), outward currents are 
presumed to dominate, suggesting that a mixture of HCN 
channels forms IBIs [100]. Therefore, the HCN channels in 
SNr neurons may contribute to the bursting firing pattern.

HCN channel in GPi

The GPi (entopeduncular nucleus (EPN) in rodents) is the 
primary output core of the basal ganglia. It is believed 
to receive and integrate information from the direct and 
indirect basal ganglia pathways and send it to various 
functional targets to integrate motion information and 
control the precise execution of motion programs [101]. 
EPN comprises at least four types of GABAergic neurons; 
of these, around 29% are positive for PV and are primar-
ily found in the caudal/posterior two-thirds of the central 
nuclear EPN, and approximately 6.8%, 38.9%, and 20.1% 
are somatostatin (SST) and nitric oxide synthase (NOS)-
expressing neurons, SST-only neurons, and NOS-only 
neurons, respectively. In EPN, these neurons are located 
in the rostral/anterior half and the shell region [102, 103]. 
It has been indicated that the EPN has a critical function 
in different physiological and pathological processes, such 
as controlling movements in PD. For example, injecting 
botulinum toxin type A into the EPN alleviates the extent 
of gait rigidity in animal PD models [104]. Furthermore, 
research indicates that GPi is an essential deep brain stim-
ulation (DBS) target for PD [105, 106]. GPi/EPN stimula-
tion through DBS has the potential to alleviate generalized 
dystonia in PD patients and animal models [107].

In the mammalian brain, HCN channels are widely 
expressed throughout most basal ganglia nuclei, including 
the EPN [30, 72]. According to single-cell q-PCR experi-
ments, all four HCN channel subtypes are expressed in 
EPN  PV+ neurons with the highest expression levels of 
the HCN2 subtype, followed by HCN1, HCN4, and HCN3. 
The HCN channels maintain the RMP of EPN  PV+ neu-
rons and can influence their excitability and firing mode. 
Pharmacological activation of the HCN channel on EPN 
 PV+ neurons increase the channel's half-activating poten-
tial and activation time constant. Moreover, selective 
HCN2 channel downregulation decreases the excitability 
and RMP of  PV+ neurons in EPN [18]. Animal PD mod-
els show changes in the expression and function of HCN 
channel subtypes in the EPN, suggesting a correlation 
between the GPi neuron’s HCN channel activity and the 
development and occurrence of PD [18]. Furthermore, in 
the mouse PD model, the decrease in expression of EPN 
 PV+ neuron’s HCN channel subtypes resulted in a slower 
neuronal firing rate and an irregular firing pattern, which 
caused motor dysfunction characteristics of PD. Moreover, 
CRISPR/Cas9-induced HCN2 down regulation in EPN 
 PV+ caused irregularities in neuronal firing patterns and 
aggravated motor dysfunction in mouse models of PD; 
however, its upregulation produced regularity in neuronal 
firing patterns and alleviated motor dysfunction [18].
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Microglial HCN channel involved in PD 
neuroinflammation

Neuroinflammation in PD, characterized by microglial 
activation, contributes to dopaminergic neuron degenera-
tion and disease progression [108]. Notably, the substantia 
nigra exhibits higher microglial density than other brain 
regions, increasing the vulnerability of dopaminergic neu-
rons to external immune stimuli. Furthermore, systemic 
or intracerebral lipopolysaccharide injections significantly 
increase microglial proliferation and decrease the number 
of tyrosine hydroxylase-positive neurons in the substantia 
nigra [108].

The central nervous system indicates signs of persis-
tent inflammation during early PD stages, and the HCN 
channel is among the most widely characterized channel 
proteins involved in neuroinflammation [109]. The litera-
ture suggests that HCN channels may contribute to PD 
pathogenesis by affecting the neuroinflammatory response. 
Microglia are the main type of glia involved in the brain’s 
inflammatory response [110]. When a neurotoxin, such 
as  MPP+, persists in the brain and exceeds the microglial 
compensatory capacity, microglia are activated to play an 
anti-inflammatory role, leading to dopaminergic neuronal 
deformation and necrosis through phagocytosis [110, 
111]. Activated microglia and increased inflammatory 
cytokines release (IL-1β and TNF-α) have been observed 
in the SNpc and striatum of PD patients and PD animal 
models [112]. In a recent study, Vay et  al. confirmed 
for the first time that microglia express all HCN chan-
nel subtypes and that microglial HCN channel expression 
changes after pro-inflammatory and anti-inflammatory 
stimuli, where HCN2 channel expression is upregulated 
during pro-inflammatory stimulation and downregulated 
during anti-inflammatory stimulation, while that of HCN3 
is downregulated under both stimuli. In addition, blocking 
or silencing HCN2 channels can inhibit microglial activa-
tion [34], and since ZD7288 blocks the HCN channel, it 
inhibits microglial proliferation [113]. Since neuroinflam-
mation is a characteristic feature of various neurological 
disorders, microglial HCN channel activity could serve 
as a novel therapeutic target in the treatment of PD [34].

Conclusion

Recent evidence indicates that HCN channels in the basal 
ganglia nucleus neurons may serve as promising targets for 
treating PD. In the absence of disease, the expression of 
HCN channels in each basal ganglia nucleus plays a cru-
cial role in maintaining normal basal ganglia physiological 

functions. HCN channel expression in the basal ganglia 
nuclei decreases during PD onset and development. This 
reduction impacts neuronal firing rates and patterns, lead-
ing to PD's motor and non-motor symptoms. Pharmaco-
logical activation or overexpression of specific HCN chan-
nel subtypes may alleviate the symptoms of PD. Targeting 
HCN channels or their specific subtypes with drugs or 
gene therapies presents a significant potential for clini-
cal PD treatment. Modulating HCN channels in micro-
glia, which are involved in PD's inflammatory response, 
could potentially reduce inflammation and protect dopa-
minergic neurons. Further research into the relationship 
between changes in HCN and its regulatory proteins in 
the basal ganglia and PD symptoms is crucial for future 
investigation.
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